Notes on Compactness

These are some notes which supplement the material on compactness in the book. The book
only gives proofs of the main properties of compact spaces using the sequence characterization of
compactness, so here I reprove these main properties using the open cover point of view. I feel
that this point of view is actually more natural and more intuitively captures the idea of what
“compact” is supposed to mean, which is somehow that a compact space is not “too large”. On
exams and in the homework, you can use whichever point of view you find simpler to work with.

First we recall the open cover characterization of compactness:

Definition. Let M be a metric space and S C M a subspace. An open cover of S is a collection
{Uy} of open subsets of M such that S is contained in their union—meaning that any element of
S is in at least one of the U,. A subcover of an open cover {U,} is an open cover {Vz} of S so that
each V3 occurs in the collection {U,}. An open cover is finite if it contains finitely many sets.

Definition. A subspace K of a metric space M is said to be compact if any open cover of K has
a finite subcover—i.e. given any collection of open subsets {U,} of M whose union contains K,
there exist finitely many sets Uy, ..., U, in the collection whose union also contains K.

Note that since we can consider a metric space to be a subspace of itself, it also makes sense to
say that a metric space M is itself compact. For each result below, try drawing a picture of what
the conclusion is saying, and a picture illustrating how the proof works.

Proposition. A compact subspace of a metric space is closed and bounded.

Proof. Let K be a compact subspace of a metric space M. The “open cover” proof that K is closed
is left for the fourth homework. Here we show that K is bounded.

Pick any p € K and consider the collection {M,(p) | » > 0} of all balls centered at p of any
positive radius. This is an open cover of K since the element ¢ € K is contained in the ball of
radius d(q,p) + 1 around p.

Since K is compact, this has a finite subcover—let r1,...,r, be the radii of the balls in this
finite subcover, and set » = max{ry,...,r,}. Then each of the balls M, (p) is contained in the ball
M, (p), and since these balls cover K, it follows that K itself is contained in M, (p). Hence K is
bounded. O

Proposition. A closed subspace of a compact metric space is compact. (This is problem 2.47 in
the book)

Proof. Suppose that M is a compact metric space and that S C M is a closed subspace. Note that
then M\S is open in M. Let {U,} be an open cover of S—to be clear, each U, is an open subset
of M and their union contains S. Then

{Ua} U(M\S)

is an open cover of M. Since M is compact, this has a finite subcover—let Uy,...,U, be the
elements of this finite subcover which come from the collection {U,}. Then {U,...,U,} is a finite
subcover of the open cover {U,} of S. Thus any open cover of S has a finite subcover, so S is
compact. ]

The point above is that using the fact that M is compact gives a finite subcover, and then if
we just throw away the open set M\S if it happens to be in in there, we are left with a finite cover
of S which is a subcover of the open cover of S we started with.



Proposition. The image of a compact subspace under a continuous map is compact. (This is
problem 2.48 in the book)

Proof. Suppose that f : M — N is a continuous function between metric spaces M and N and let
K C M be a compact subspace. We must show that f(K) C N is compact. Let {U,} be an open
cover of f(K). Since f is continuous, each preimage f~!(U,) is open in M. Since the U, cover
f(K), it follows that the f~1(U,) cover K. Hence {f~1(U,)} is an open cover of K, so since K is
compact, this has a finite subcover—say

{710, fHU))

It follows that {U1,...,U,} is an open cover of f(K), and this is then a finite subcover of the open
cover {U,} of f(K). We conclude that f(K) is compact. O

Notice the power of the open cover definition of compactness used in the final result. At each
point of our metric space M, we have a certain ball with some property; compactness of M then
allows us to reduce this possibly infinite number of balls to a finite collection, and we can do things
like take the minimum of their radii. It is a good idea to see exactly what goes wrong in the proof
below if M is not compact.

Proposition. A continuous function on a compact metric space is uniformly continuous.

Proof. Suppose that f : M — N is a continuous function between metric spaces M and N and
that M is compact. Let € > 0. Since f is continuous, for each p € M there exists §, > 0 (which
may depend on p) such that

€

dnr(q,p) < 0p implies dn(f(q), f(p)) < 7

We want to find a é > 0 satisfying this condition for any p, so a § independent of p.
The collection {Ms, /5(p)}, as p ranges over all points of M, is then an open cover of M. Since
M is compact, this has a finite subcover—say

{Mépl/Q(pl), ceey M(;pn/g(pn)}.

Set § = min{dy, /2,...,0p,/2}. Note that since each J,, > 0 and there are only finitely many, the
minimum of this set exists and is positive.
Suppose that ¢ and ¢ are any two points of M such that

dM(q7 q,) < 6

Since the radii dp, /2, ...,0p, /2 give balls which cover M, ¢’ is in one of these balls—without loss
of generality say that ¢’ € M(;pl/Q(pl). Note that then

dr(g.p1) < dp(q,q") +dar(q' s p1) <6+ 6p, /2 < 6y /240y, /2 < 6,

Thus dar(q,p1) < 0p, and dar(q',p1) < dp, /2 < Op,, so by the choice of §,, we have

An(1(@). F(&) < dn(F(@), () + dn(F(d). FB) < 5 + 5 =<

Hence we have that
dn(q.q") < 0 implies dn(f(q), f(d)) <,

so we conclude that f is uniformly continuous. O



Again, the point above is that the J that was constructed does not depend on which point we
are checking continuity at—the same § works for any p € M, which is what uniform continuity
requires.

Let me also point out another “good” property of compact spaces. Given a function f : R — R,
you have probably seen before that integrals of the form

/_Z £(z) da

are not always defined, even if f is continuous. So, you cannot always integrate functions over all of
R. However, you will (or may) see in later courses that integrals over compact spaces of continuous
functions are always defined; for example, integrals of continuous functions f : [a,b] — R are
always defined since [a, b] is compact. This turns out to perhaps be the most down-to-earth useful
property of compact spaces, once you figure out what it actually means to define integration over
more general types of spaces.

Finally, we give first a proof that nonempty, closed intervals are compact using sequences but
different than the one given in the book, and then a proof of the same fact using open covers.

Lemma. Any sequence (z,) in R has a monotone subsequence.

Proof. Consider those indices n with the property that z,, is larger than every term in the sequence
coming after it. There are two possibilies:
First, suppose there were infinitely many such indices, and list them in increasing order:

ny<ng <ng<---.

Then by the property above which these indices satisfy, it follows that the subsequence (z, ) of
(z,) is decreasing:
Lpy > Tpy > Tpg > 00,

and hence monotone.

Second, suppose there were finitely many such indices (this includes the possibility that there
are no such indices), and let m; be an index larger than all of them. Since m; then does not satisfy
the given property, there is an index mg > m; such that x,,, < z,,,. Similarly, mo does not satisfy
the above mentioned property, so there is an index ms3 > mg such that z,,, < z,,,. Continuing in
this manner produces an increasing (and hence monotone) subsequence (x,, ) of (z). O

Theorem (Bolzano-Weierstrass). Any bounded sequence (xy,) of real numbers has a convergent
subsequence.

Proof. By the lemma, the sequence (z,) has a monotone subsequence (x,,). Since the original
sequence is bounded, so is this subsequence. Thus this subsequence converges since monotone and
bounded sequences always converge. O

Corollary. For any a < b, the interval [a,b] is compact.

Proof. Let (x,) be any sequence in [a,b]. Since [a, b] is bounded, this sequence is bounded as well.
Thus by the Bolzano-Weierstrass Theorem, it has a convergent subsequence, showing that [a, ] is
compact. 0

The open cover proof of this is trickier, but very nice; this is problem 2.46 in the book. This
is not something you will be expected to know how to do on the midterm, but is a good exercise
nonetheless since it really requires you to know what “least upper bound” and “open cover” really
mean. I encourage you to go through it step-by-step and convince yourself that it works.



Theorem. For any a < b, the interval [a,b] is compact.

Proof. Let {Ua} be an open cover of [a,b] C R. Define the set C' by
C = {z € [a, b] | finitely many of the U, cover [a,z]}.

This set is nonempty (since a € C because [a,a] = {a} is covered by a single set in the given
collection) and bounded above by b. Thus it has a supremum—call it u < b. We claim that v € C
and u = b; if so, then this shows that b € C, so by the definition of C' it follows that the original
open cover indeed has a finite subcover, and we will be done.

Since {U,} forms an open cover of [a,b], at least one set U’ in this collection contains the
element u € [a,b]. Since U’ is open, there is some € > 0 so that (u — e,u +¢€) C U. Now, u — € is
not an upper bound of C, so there is some x € C such that u —e < z. If {Uy,,,...,U,, } are finitely
many sets in our collection which cover [a, x| (which exist since z € C'), then

{Ua1v"'7Uan7U,}

are finitely many sets in our collection which cover [a,u]. Thus u € C.
If w < b, then (u — €, u + €) contains an element z larger than w and smaller than b. But then
the collection

{Usys .., Uy, , U}

from above will also cover [a, z|, showing that z € C' and contradicting the fact that u is an upper
bound of C. Thus we must have u = b as claimed. We conclude, as mentioned before, that [a, b] is
compact. [

Note in the proof above exactly where we used that « was an upper bound of C and where we
used that it was the least upper bound—both facts were essential.



