
The Completion of a Metric Space

Let (X, d) be a metric space. The goal of these notes is to construct a complete metric space
which contains X as a subspace and which is the “smallest” space with respect to these two
properties. The resulting space will be denoted by X and will be called the completion of X with
respect to d. The hard part is that we have nothing to work with except X itself, and somehow it
seems we have to pull a larger space out of thin air. Indeed, the point is that the completion will
be constructed using only X and the metric d, and will not rely on knowing that we already have
a space “larger” than X.

First we describe the completion as a set. For any Cauchy sequence (xn) in X, let [(xn)] denote
the set of all Cauchy sequences (yn) in X such that d(xn, yn) → 0 as n → ∞. So, [(xn)] consists
of all Cauchy sequences in X whose terms are getting “closer” and “closer” to the terms in (xn)
itself. For example, the Cauchy sequence (xn) is in [(xn)] since d(xn, xn) = 0 is the constant zero
sequence and so definitely converges to 0.

The intuition is the following. Recall that if X is not complete, the Cauchy sequence (xn) does
not necessarily converge and a Cauchy sequence (yn) such that d(xn, yn)→ 0 does not necessarily
converge either. However, if these Cauchy sequences did converge, the condition d(xn, yn) → 0
would imply that they converged to the same thing. Similarly, if (xn) and (yn) were Cauchy
sequences which did converge and had the same limit, then the sequence (yn) would be in the set
[(xn]) we have defined above. The point is that [(xn)] consists of all Cauchy sequences which, if
they did converge, would converge to the same thing as (xn) if (xn) converged as well. In other
words, we are grouping the Cauchy sequences in X according to whether or not they “should”
converge to the same thing.

Remark. In fact, if you have taken a course in abstract algebra before, this construction should
sound somewhat similar to the construction of the quotient group of a group by a normal subgroup.
In that case, we group the elements of a group according to whether or not they define the same
cosets, and then look at the set consisting of those cosets themselves. This is analogous to the
idea we are using here, and indeed both constructions are instances of considering the equivalence
classes of an equivalence relation. We will not use this terminology here, but you can check other
sources—say Wikipedia—for further details.

We call the set [(xn)] the class represented by (xn). If (yn) and (zn) are both in [(xn)], it
follows from the triangle inequality that d(yn, zn)→ 0, so that (zn) is in the class [(yn)] as well. In
particular, since (xn) is in [(xn)], (xn) itself is in [(yn)]. The point is that different Cauchy sequences
(xn) and (yn) can still give rise to the same class [(xn)] = [(yn)], and this happens precisely when
(xn) is in [(yn)] and vice-versa:

Proposition. Two Cauchy sequences (xn) and (yn) in (X, d) represent the same class if and only
if (xn) is in the class [(yn)].

Definition. The set X is the set of classes of Cauchy sequences in X:

X := {[(xn)] | (xn) is a Cauchy sequence in X}.

This will be the underlying set in the completion of (X, d). Note that if we had simply defined
X to be the set of Cauchy sequences of X, without grouping them into “classes”, we would end
up with a scenario where multiple elements of X represented the same “point” so we wouldn’t be
uniquely describing the elements of the completion. The point of grouping Cauchy sequences into
classes as above is to eliminate this ambiguity, which is essential for making our claims about the
completion actually work out.



Next we will define a metric on X and show that we can view X as a subspace of the resulting
metric space. Finally, we will show that X with the metric we construct is in fact a complete metric
space. But first, let us consider a simple and yet standard example:

Example. Consider the rational numbers Q with the Euclidean metric. In this case, two Cauchy
sequences (xn) and (yn) of rational numbers satisfy the condition that |xn − yn| → 0 if and only if
they converge to the same real number x in R. Thus this makes clear—at least in this example—the
general statement above that two Cauchy sequences are in the same class if they “should” converge
to the same thing.

Indeed, in this case we can identify the set of classes of Cauchy sequences of rational numbers
with the set of real numbers itself: to a class [(xn)] of Cauchy sequences of rational numbers we
associate the real number x which is the common limit of the Cauchy sequences in [(xn)] when
viewed as sequences in R, and to a real number x we associate the class of all Cauchy sequences
which converge to x in R. This gives a bijection between the set of real numbers and the set Q of
classes of Cauchy sequences of rational numbers as defined above. The construction we describe in
the rest of these notes applied to this example is how we can construct the real numbers from the
rational numbers via Cauchy sequences.

Returning to the construction of the completion, we now define a metric on X. Given two
classes [(xn)], [(yn)] ∈ X, we can form the sequence (d(xn, yn)) of real numbers: that is, the n-th
term in this sequence is the distance between the n-th terms in (xn) and (yn). We claim that
(d(xn, yn)) is a Cauchy sequence in R. To see this, let ε > 0 and pick N,N ′ ∈ N such that

d(xn, xm) <
ε

2
for n,m ≥ N and d(yn, ym) <

ε

2
for n,m ≥ N ′.

Then for n,m ≥ M := max{N,N ′}, we have (after playing around with the triangle inequality a
bit):

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) <
ε

2
+
ε

2
= ε,

Thus the sequence of real numbers (d(xn, yn)) is indeed Cauchy in R. Since R is complete, this
sequence converges and we denote the resulting limit by d̄([(xn)], [(yn)]):

d̄([(xn)], [(yn)]) := lim
n→∞

d(xn, yn).

This defines the metric d̄ on X we are looking for. A few remarks are in order.
First, to construct d̄ we use the fact that R is complete in a crucial way. So, you could object

that this construction already depends on knowing what R is and on proving beforehand that R is
complete. This is absolutely correct: the construction of R as the completion of Q must be carried
out separately before the procedure we are using here works. To be precise, after we have “defined”
R as the set of classes of Cauchy sequences in Q, we must construct the metric on R and show
it is complete in some other way and without using the technique we are outlining here. This is
certainly possible, but we will skip the details in these notes. Or, another way to get around this
is by first constructing R using Dedekind cuts in Q and then showing that R defined in this way is
complete. This is also possible, but again we leave the details to other sources.

Second, note that our definition of d̄ uses the specific Cauchy sequences (xn) and (yn), whereas
we said earlier that different Cauchy sequences can represent the same class. In other words, say
that (x′n) was another Cauchy sequence representing the same class as (xn): [(x′n)] = [(xn)]. Then
the “distance” from this element of X to [(yn)] should not depend on whether we are using (x′n)
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or (xn) to represent the class [(x′n)] = [(xn)]. To be precise, it should be true that even if (x′n) and
(xn) are different Cauchy sequences representing the same class, the “distances”

d̄([(xn)], [(yn)]) = lim
n→∞

d(xn, yn) and d̄([(x′n)], [(yn)]) = lim
n→∞

d(x′n, yn)

should be the same. This too can be proven using the inequality:

|d(xn, yn)− d(x′n, yn)| ≤ d(xn, x
′
n)

which is derived from the triangle inequality, and is what mean by saying that d̄ is well-defined : in
other words, d̄ only depends on classes of Cauchy sequences—i.e. on elements of X—and not on
the specific Cauchy sequence we use to represent a class.

After all this is cleared up, it is not hard to check that d̄ indeed defines a metric on X, which
we do now. First, since d(xn, yn) is always nonnegative, the limit of such numbers is nonnegative
so

d̄([(xn)], [(yn)]) ≥ 0 for any [(xn)], [(yn)] ∈ X.

This expression is zero if and only if limn→∞ d(xn, yn) = 0, which is what it meant to say that the
classes [(xn)] and [(yn)] are equal. (Note that here it is important that we are defining the elements
of the completion as classes of Cauchy sequences and not simply as Cauchy sequences themselves.)
This verifies the first property required of a metric. Since d(xn, yn) = d(yn, xn), the limits of such
expressions are the same, which verifies the second property required of a metric. Finally, suppose
that [(xn)], [(yn)], [(zn)] ∈ X. Take the triangle inequality for X:

d(xn, yn) ≤ d(xn, zn) + d(zn, yn),

and take limits throughout. The left side converges to d̄([(xn)], [(yn)]) by definition, and the right
converges to

lim
n→∞

d(xn, zn) + lim
n→∞

d(zn, yn),

which is d̄([(xn)], [(zn)]) + d̄([(zn)], [(yn)]). This gives the triangle inequality for d̄.
Thus we have an honest metric on X, and we have the definition:

Definition. Given a metric space (X, d), the completion of X with respect to d is the set X of
classes of Cauchy sequences in X with the metric d̄ defined above.

Example. Returning to the example of the completion of Q with respect to the standard metric,
it is not hard to see using the continuity of the absolute value function that under the previously-
mentioned identification of Q with R, the metric d̄ on Q indeed corresponds to the usual absolute
value metric on R.

Note that there is a natural way to view X as a subspace of X: we simply associate to each
x ∈ X the constant sequence x, x, x, . . ., and consider the class [(x)] of this specific Cauchy sequence.
This defines an injective mapping X → X, and one can check that the metric d̄ evaluated on the
constant Cauchy sequences [(x)] and [(y)] gives the same value as the distance d(x, y) determined by
the original metric d. So, we view (X, d) as the subspace of (X, d̄) consisting of classes of constant
Cauchy sequences.

So, we have accomplished the first part of our goal: given a metric space (X, d), we have
constructed a “larger” metric space (X, d̄) containing X as a subspace. Now, we claim that the
metric space (X, d̄) constructed in this way is always complete:
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Theorem. Given any metric space (X, d), the completion (X, d̄) defined as above is complete.
Moreover, the completion is the smallest complete metric space containing X in the sense that any
other complete space Y containing X as a subspace also contains X as a subspace.

The tricky part about this is in simply wrapping your head around what it means: a Cauchy
sequence in X looks like (pn) where each pn ∈ X, meaning that each pn is itself a (class) of Cauchy
sequences in X! So, (pn) is something like a “Cauchy sequence of Cauchy sequences”, and the claim
is that such a thing always converges with respect to d̄. Here are the details.

Proof. STILL TO COME

Remark. If (X, d) was already complete to begin with, then the completion X constructed as above
turns out to be X itself—or rather, there is a natural identification between X and X in this case.
For example, the completion of the real numbers with respect to the standard metric is R itself
with the standard metric.

The above remark should not be surprising given our original goal: to construct the “smallest”
complete metric space containing a given metric space—if the original space is complete to begin
with, it already is the smallest complete space containing itself!

We finish with some other interesting and important examples of completions; if you ever take
an advanced number theory course, expect to see these examples again:

Example. Fix a prime number p. Define a metric dp on Q as follows. First, we note that given
any rational number r ∈ Q, we can write it uniquely as a fraction:

r =
m

n
with m,n ∈ N, n > 0, and with m,n having no common factors.

We can factor each m and n into a product of prime numbers, and then pull out the largest powers
of p that occur in the so-obtained factorizations to write r as uniquely in the form

r = pa
m′

n′
with m′, n′ having no common factors and neither divisible by p.

Given two rational numbers s, s′, write s− s′ in this form and define

dp(s, s
′) =

1

pa
where a is the exponent of p occuring in the expression for s− s′ outlined above.

This defines a function dp : Q × Q → R, which it turns out is a metric for any prime p called the
p-adic metric on Q.

For instance, let us compute the distance between 3
5 and 3

4 with respect to the 2-adic metric.
We start by writing the difference of these two as

3

5
− 3

4
= − 3

20
= −(2−2)

3

5
.

The “pa” term in this case is 2−2, and so the 2-adic distance between 3
5 and 3

4 is

d2

(
3

5
,
3

4

)
=

1

2−2
= 22 = 4.

Similarly, you can check that the 3-adic distance between 3
5 and 3

4 is 1
3 , and the 5-adic distance

between them is 5. There are no other primes occurring in the prime factorization of 3
5 −

3
4 = − 3

20 ,
so the p-adic distance between 3

5 and 3
4 for another other prime p is p0 = 1.
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The completion of Q with respect to the p-adic metric is denoted by Qp and is called the
field of p-adic numbers. It turns out that this really is a field in the sense of Math 113: you
can define addition and multiplication operations on Qp extending those on Q, and with these
operations Qp will be a field. Just as real number can be more simply characterized in terms of
their decimal expansions instead of as Cauchy sequences of rational numbers, elements in Qp can
also be characterized in terms of certain expansions: an element x ∈ Qp can be written as

x =
∞∑

k=−n
akp

k where n ∈ N and ak ∈ Z,

and so has a “decimal expansion base p” of the form

x = . . . a3a2a1.a−1a−2 . . . a−n

where we have an infinite number of digits to the left of the decimal and only finitely many after—in
contrast to decimal expansions of real numbers.

We will not go further into this construction here, but one can google “p-adic numbers” to find
tons of other references. The key point for us is that this is nothing but an instance of the general
construction of the completion of a metric space we have outlined in these notes.
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