Math 104 - Worked Examples
Lecture 2, Summer 2010

This is a collection of various examples worked out in full detail. It is not easy to be able
to come up with such proofs on your own at first, but the idea is that after having seen these
techniques being applied, you should be able to recall and use them later on. What you may want
to do is read through the proofs presented below, and then try to recreate them on your own. Feel
free to ask about any questions you may have, and please let me know if you find any mistakes!

Claim. Let C([a,b]) denote the set of continuous, real-valued functions on |a,b]. The function
d: C([a,b]) x C([a,b]) — R given by

d(f,g) := sup |f(x)—g(z)|

z€[a,b]
defines a metric on C([a,b]).

Proof. First, since the absolute value of a real number is always nonnegative, the supremum of such
numbers is also nonnegative so for any f,g € C([a,b]) we clearly have d(f,g) > 0. Now,

d(f,9) = sup |f(z)—g(z)]=0
z€[a,b]

if and only if each quantity |f(x) — g(z)| is zero. This happens if and only if f(z) — g(z) = 0 for
all z € [a,b], so if and only if f(z) = g(x) for all = € [a,b]. Hence d(f,g) =0 if and only if f = g.
Second, since |f(x) — g(z)| = |g(z) — f(x)| for any f,g € C([a,b]) and any = € [a,b], we have

that d(f, g) = d(g, f) for any f,g € C([a,]).
Finally, let f,g,h € C(]a,b]). We must show that

d(f,g) < d(f,h)+d(h,g).
To do this, it suffices to show that
|f(x) — g(@)| < d(f,h)+d(h,g)

for any = € [a,b]. This would show that the right-hand side was an upper bound for the set of
numbers {|f(z) — g(z)| : = € [a,b]}, and so the right-hand side would be greater than or equal to
their supremum, which is d(f, g). For any x € [a, b], we have

[f(x) = g(2)] < [f(2) = h(z)] + [h(z) — g(z)|
by the triangle inequality for the usual absolute value. Since
|f(x) = h(z)| < d(f,h) and [h(z) — g(x)] < d(h, g)
for any z € [a, ], we get
[f(x) = g(x)] < |f(2) = h(x)] + |h(z) — g(x)| < d(f,h) +d(g,h)

for any = € [a, b], which is what we wanted to show. We conclude that d is a metric on C([a,b]) as
claimed. 0



Claim. Suppose that the sequences (z,) and (yn) of real numbers converge to x and y respectively.
Then the sequence (Tnyn) converges to xy.

Thoughts. Given € > 0, we want to find an index N large enough so that for n > N, we have
‘xnyn - a:y| <€

The idea is the same one that often pops up with these “e”-proofs: find a way to bound |z,y, — zy|
by something which you can force to be smaller than e.

Since the only thing we know at the start is how to come up with bounds on |z, — x| and
|yn — y| (using the assumption that the given sequences converge), we should be looking for a way
to bound |z, y, — zy| using these expressions somehow. Note that the triangle inequality implies

|xnyn - :Ey‘ < |xnyn - xny’ + |xny - $y|

(We can also see this by adding and subtracting z,y inside |z,y, — zy| and then using the usual
triangle inequality for the absolute value.) Thus we have

’xnyn - :cy| S ‘anyn - y’ + |xn - xHy’

Now we are in business, and since we have two terms to work with we try and “e/2-trick”.
The second term is easy to bound: since (z,) — =, we know there exists N; € N such that for
n > Nla

This will give us |z, — x||y| < €/2. However, note that this only works if y # 0 since otherwise we
can’t divide by |y|. So, we will have to consider the y = 0 case separately. Let’s skip this for now.
Now we have that for n > Ny,

€
|Tnyn — 2y| < |znllyn — y| + |20 — z||y| < |Znllyn — y| + 3

The first term looks almost as easy to bound, and a first guess may be to use the fact that (y,) — y
to pick Ny € N so that for n > No,

€
— < —.

However, this is bad since the right hand side is changing as n does because of the z, term. We
need to find a way to bound |z,||y, — y| by something which does not depend on n. To do this,
note that first we can bound |z,| as follows. Since for |z,, — x| < €¢/2|y| for n > Ni, we also have
that (you should convince yourselves that this is true)

€

Tn| < |x|+
eal < Jel + 51

for n > Nj. This gives us

€
anllin = o1 < (Il 55 ) o =
for n > Njp, and now we can apply our €/2-trick as we did before since the only thing depending
on n now is |y, — y|. This will give us a natural number N, and to make sure that all our bounds
hold we need to guarantee that the n’s we consider are larger than both N; and N,. Let’s proceed
to our final proof.



Proof of Claim. Let € > 0. First we consider the case y = 0. Since (z,,) converges to z, there exists

N7 € N such that for n > Ny,
|xn — x| <1, so |z,| < |z|+ 1.
Since (y,) converges to y = 0, there exists Ny € N such that
€
< —— for n > Na.

Thus for n > max{Ny, N2} we have

€
|x| + 1

|Znyn — O] = [@n[lyal < (J2] + Dlyn| < (Jz]+1)

We conclude that if y = 0, then (x,y,) converges to zy = 0.
Now, suppose that y # 0. Choose Ny € N such that

|z, — x| < £ if n > Ny.
2|yl

Note that then also

2| < || + —— if n > Ny
2[y|

Next, choose Ny € N such that

€ .
lyn =yl < ———=
2 (|x! + L)
If n > max{Nj, Ny}, we then have:

’xnyn - xy| < |$n||yn - y| + |xn - xHy’

<(||+ ) L
|+ — | ————+ =y
2yl 2(’35‘+ﬁ> 2ly|

We conclude that (z,y,) converges to xy as claimed.

= €.

O

Claim. For any natural number n > 2, the function f : R — R defined by f(x) = x™ is continuous.

(This is a rephrasing of problem 1.14 in Pugh.)

Thoughts. We will use the e-§ definition of continuity to show that f is continuous at any y € R.

Let € > 0. The goal is to find § > 0 so that

|lu —y| < & implies |f(u) — f(y)| <e.

The § we want should only depend on the known quantities in the problem, which are € and y. In
particular, ¢ should not depend on u. If you have trouble following what comes below, try working

out the n = 2 case first.

We want to find a way to bound |u™ — y™| by something depending on ¢, which we can then set
to be less than or equal to €. This is what will help us actually find the § we want. Also, note that

the assumption |u — y| < § gives an additional bound we can try to use.



Now, we have the identity

fw) = fy)=u"—y" = (u—y)W" " +u" Py 4+ y" .

Notice that after taking absolute values, we can bound the first term on the right side by . So we
have the bound
’un o yn| < 5|un—1 + un—2y R yn—1|‘

The point is that we’ve gotten rid of at least one w on the right side. The goal is now to find a
way to bound the second term on the right in a way which does not involve u. Using the triangle
inequality a few times, we can further bound the right by

O™t + "y by T <O T Pyl [y

by “bringing all the absolute values inside”.
If lu—y| <6, then |u| < |y| + 6. (You should convince yourselves that this is true. This is a
good type of bound to keep in mind for the rest of the course.) Thus we also have

lul® < (Jy| + 6)* for any k € N.
Hence we can bound the right side of the inequality we had above by
S(Ju|™ 4 |u) 2yl -+ y[" 1) < 0](ly|+6)" 1+ other stuff you get by replacing |u| with |y| + d].

After doing so, we have a bound on |u™ — y"| which does not depend on |u|. We want to find a ¢
to make the resulting expresssion smaller than or equal to €. But since we end up so many §’s on
the right side, it is not at all clear that such a § can be found.

Here is how we get around this, which is a common technique used in these kinds of arguments.
Suppose it happened to be the case that |u —y| < 1. Again this gives |u| < |y| + 1. Using the same
inequalities above, we get the bound

[ =y < S[(lyl + D"+ (lyl + D" 2yl + -+ Jy "

Now we are good: since the right side now only has a single ¢ in it, to make this smaller than or
equal to € we only need to pick § > 0 so that it satisfies

€
lyl+ D"+ (yl+ D2yl + - A+ [y

5§(

Note that the denominator is positive, so the right side is indeed a positive number. However, this
only works if |u — y| < 1, so what happens otherwise?

Here is the key point: to be able to use the bounds on |u"™ — y"| we used above, we need to have
both |u —y| < 1 and |u — y| < the right side of the inequality above with e in the numerator and
that whole mess involving |y| in the denominator. To get this to work, we will choose our actual
(and final) value of § to be

€
d = min {1, } .
(lyl + D)=t 4 (lyl + D)2yl + - - - + [yt

This will give us exactly the bounds we want. Follow the proof given below to see that it does
indeed work.



Proof of Claim. Let y € R and let € > 0. Set

€
d = min {1, } .
(Iyl + D+ (jyl+ D)2yl + - + [y
Note that both terms above are positive, so their minimum ¢ is also positive. Suppose that u € R
satisfies
lu—y| < 4.

Then we have |u| < |y| + §, so

" =y = fu = yllu" T WPy ey
<O a2y ey
< S(ful™ A+ Jul" Pyl 4yt
<O[(lyl+0)" "+ (lyl +8)" 2yl + -+ |y[*)
<O[(lyl + )" 4yl + D" 2yl + - + [y ]

€ » _2 B
: (yl + DT+ (jy| + Dn2ly| + - + |y|? [yl + )"+ (yl + 1) 2|y + -+ [y" Y
=€

In the fifth line we used the fact that 6 < 1 while in the sixth we used that

€
0 < ;
(lyl+ D"+ (yl + D)2yl + -+ [y

which are both true by the choice of ¢ as the minimum of these two numbers. Hence for this choice
of § > 0, we have that
|lu —y| < § implies [u" — y"| <,

so we conclude that f is continuous at y. Since y € R was arbitrary, f is continuous. O

Claim. Suppose that every monotone and bounded sequence in R converges. Then any nonempty
and bounded above subset S of R has a supremum. (This is the hard part of problem 30b in Pugh.)

Thoughts. Here is a failed attempt at a proof. This is the one I originally had in mind when I first
assigned the problem, only to realize later that it doesn’t quite work.

By the mentioned analog for supremums of problem 1, it is enough to construct a sequence
of elements of S which converge to an upper bound of S. This upper bound will then be the
supremum. Pick any x; € S. If x1 is the supremum, we are done; otherwise, there exists o € S
such that z1 < x9. If x5 is the supremum of of S, we are done; otherwise pick x3 € S such that
2 < x3. Continuing in this manner either gives the supremum at some step or produces a strictly
increasing sequence (x,) of elements of S. Since S is bounded above, this sequence is bounded to
by our assumption it converges to some x € S.

Here is the problem: this x may in fact not be an upper bound of S! If it is, then we are done,
but there is no way to guarantee that it will be. This is what I missed when I first assigned the
problem. To get around this, you have to be more careful about how you construct the x,—you
want to construct them in a way that ensures that their limit will be an upper bound of S. If
you have trouble following the proof below, draw a picture of what is going on. We start with an
interval [z1,y1], and then construct an interval [za, y2]—what does it look like? What can you say
about its length? What about the interval [z3, y3] constructed next? And so on.



Proof of Claim. If S itself had a largest element, i.e. a maximum, then that maximum would be
the supremum and there is nothing to show. So, suppose that .S does not have a maximum.

Pick any element 7 € S and any upper bound y; of S. Let ¢; be the midpoint of the interval
[€1,y1]. If ¢ is an upper bound of S, let xo = x1 and y2 = ¢1; if ¢1 is not an upper bound of S, let
o be an element of S larger than ¢; and let yo = y;. Now let ¢o be the midpoint of the interval
[x2,y2]. As before, if c¢o is an upper bound of S, let x3 = z9 and y3 = co; if ¢y is not an upper
bound of S, let x3 be an element of S larger than ¢y and let y3 = y3. Continuing in this manner
produces a collection of intervals [z, yy], the left endpoints of which give an increasing sequence
(zy,) of elements in S. Note that each of the right endpoints, y,, by construction is an upper bound
of S and none of them can be in S since we are assuming that S does not have a maximum. Also
note that if € = y; — x; > 0 is the length of the first interval, the length of the interval [z, y,]
is less than ¢/2" ! since we constructed each of these intervals by using midpoints of the previous
interval.

Now, since S is bounded, the sequence (z,,) is bounded, so by our assumption it converges to
some number x. Note that since the sequence (x,,) is increasing, it follows that x,, < x for all n.
We claim that = sup .S. Using the mentioned analog for supremums of problem 1, since we have
a sequence of elements in S converging to z, it suffices to show that x is an upper bound of S. Note
that since each y,, is an upper bound of S, we must have x < v, for all n since if y5; < x for some
M, then the terms in the sequence (z,) would be bounded away from z by a distance of at least
x —yp > 0 and so could not converge to x, which they do.

Finally, to show that = is an upper bound of S, let s € S. We must show that s < x. If s = «,
there is nothing to show, so assume that s # z. Since the lengths €/2"~! of the intervals [x,, yy]
converge to 0, there exists N € N such that the length of [xx,yy] is smaller than |z — s|. Since z
itself is in this interval, it follows that s ¢ [xn,yn]. But yun is an upper bound of S, so we cannot
have yy < s and thus we must have

s<zny < x.

We conclude that = is an upper bound of S and hence that x is the supremum of S. O

Claim. Let f: M — N be a continuous function between two metric spaces M and N. Suppose
that f has the following property: a sequence (pn) converges in M if and only if (f(pn)) converges
in N. Prove that the image of a closed set in M 1is closed in N.

Thoughts. This is actually quite easy to prove, but I just wanted to point out a subtle point. A
map with the property that the image of closed set is closed is itself said to be closed. The point
here is that continuous functions are not necessarily closed. For example, let f : (0,2) — R be the
function given by f(x) = x. This is continuous, but the image of the interval (0, 1] (which is closed
as a subset of the domain (0,2)) is not closed in R, so f is not a closed map. It is a good idea to
look at the quick proof below, and see what goes wrong for this function, and in general to figure
out why we need to make the additional assumptions we make in the claim.

Similarly, a map g : M — N is said to be open if the image of any open set is open. Again,
continuous functions are not necessarily open—you should try to come up with a counterexample
and think of additional assumptions we can make on a continuous function that would guarantee
it was open.

Proof of Claim. Let V be a closed subset of M and let (gy,) be a sequence of points in f(V') which
converges to some ¢ € N. We want to show that ¢ € f(V). Now, since each g, € f(V), we can find
points p, € V so that f(p,) = ¢,. By our assumption, since (f(p,)) converges in N, (p,,) converges
to some p € M.



Now, since V is closed and each p, € V, it follows that p € V. Since f is continuous, we know
that (f(pn)) then converges to f(p). Since (f(pn)) = (qn) also converges to ¢, it must be that
g = f(p). Thus q € f(V), so we conclude that f(V') is closed in N. O

Claim. The set R of real numbers, with respect to the usual Fuclidean distance, is complete. (This
proof is the one we gave in class, which is different than the one given in the book.)

Proof. Let (x,) be a Cauchy sequence in R. For each n, define b,, to be
by, = inf{xy | k > n}.

Note that for each n, this set is nonempty and bounded since (z,,) itself, being Cauchy, is bounded.
Hence these infimums all exist. Since for each n, the set for which b,, is the infimum contains the
one for which b, is the infimum, it follows that b,, < b,41 for each n. Hence (b,,) is an increasing
and bounded sequence, so it converges to some b € R. We claim that (x,) also converges to b.

To see this, let € > 0. Since (x,) is Cauchy, there exists N € N such that |z, — 2| < €/2 for
n,m > N. In particular, for n > N we have

€
|zy, —zN| < 7

This implies that
Ty € [N —€/2,xn + €/2] for n > N.

Thus the infimum of any set contained in this interval is also in this interval (here we use the fact
that the interval is closed), so

by € [N —€/2,2n5 + €/2] for n > N.

Again since this interval is closed, it follows that the limit b of (b)) is also in this interval, so

Thus, for n > N, we have

€ €
]a:n—b|S\xn—xN\+]mN—b]<§+§:e.

We conclude that (z,,) converges to b, and hence that R is complete. O

Claim. Suppose that M is a compact metric space and (py,) is a sequence in M with the property
that every convergent subsequence of it converges to the same p € M. Then (py,) itself converges to

p-

Proof. By way of contradiction, suppose that (py,) did not converge to p. Then there exists € > 0
such that for every N € N, there exists n > N such that

d(pnap) > €.

First pick such an ny > 1, so that d(py,,p) > €. Then there exists ng > nj such that d(pn,,p) > ¢,
and then n3 > ng so that d(pn,,p) > €. Continuing in this manner produces a subsequence (py, )
of (pn) so that

d(pn,,,p) > € for all k.

Since M is compact, this has a convergent subsequence (pnk,_,)7 which converges to p since this is
also a convergent subsequence of the original sequence (p,). This is a contradiction since each
term in this subsequence is at a distance at least € away from p, and so cannot converge to p. We
conclude that (p,) converges to p. O



Claim. A subset S of a metric space M is dense in M if and only if every open ball in M contains
an element of S.

Proof. Suppose that S is dense in M, Let p € M and e > 0, and consider the ball M,(p). Since S
is dense in M, there is a sequence (py,) in S converging to p. Then, for large enough n, d(p,,p) < €.
Hence in particular, M,(p) contains an element of this sequence, which is an element of S.

Conversely, suppose that every open ball in M contains an element of S. Let p € M. To show
that S is dense in M, we must show that there is a sequence of elements of S converging to p. For
each n € N, the ball M /,,(p) contains an element of S—call it p,. These points then satisfy

1
d 7 )
(Pnsp) <

implying that (p,) converges to p. Since p € M was arbitrary, we conclude that S = M, so S is
dense in M. n

Claim. A function f : M — N is uniformly continuous if and only if dn(f(pn), f(gn)) — 0 for
any sequences (pn) and (qyn) in M such that dyr(pn, ¢n) — 0.

Proof. Suppose that f is uniformly continuous and let (p,) and (g,) be two sequences in M such
that (das(pn,qn)) converges to 0. Let € > 0. Then there exists § > 0 such that

dn(f(z), f(y)) < € whenever dys(x,y) < 0.

Since das(pn, gn) — 0, there exists N € N so that das(pn, ¢n) < 0 if n > N. Thus if n > N, we also
have

dn(f(pn), fgn)) <€,

showing that (dn(f(pn), f(gn))) converges to 0 as claimed.

To prove the converse, we instead prove its contrapositive: if f is not uniformly continuous,
then there exist sequences (p,) and (g,) in M such that das(pp, gn) — 0 but dy(f(pn), f(gn)) does
not converge to 0. So, suppose f is not uniformly continuous. Then there exists € > 0 so that for
any ¢ > 0 there exist points p, ¢ € M such that

dr(p,q) < 0 but dn(f(p), f(a)) = e
In particular, for each n € N, there exist points p,, and ¢, such that
1
dM(pna Qn) < 5 but dN(f(pn)a f(Qn)) > €.

It follows that for these two sequences, (dps(pn, ¢rn)) does converge to 0 but (dy(f(pn), f(gn))) does
not since each term in the latter sequence is bounded away from 0 by at least € > 0. O



