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Lecture 1: Field Extensions

This quarter we conclude our study of abstract algebra, by first studying fields to a greater extent
than we did last quarter, and then by introducing the subject of Galois theory, where groups will
make a grand reappearance. Back in the fall we introduced groups in part as a tool for studying
“symmetries/permutations”, and then we introduced rings and modules in the winter as a way to
provide a general notion of “number”, and now we will tie these concepts together more closely
and finally provide an answer to a question we posed on the first day of the fall quarter: for which
polynomials is it possible to express the roots of via a “nice” algebraic formula? The theory of
fields we will develop more deeply at the start will give us the language we need to talk about
“constructing” such roots in an “algebraic” way, and Galois theory will allow us to turn questions
about these roots—or, more precisely, about the fields to which they belong—into questions about
groups, which we will then be able to answer using tools from the fall.

The fundamental object of study in Galois theory is the Galois group of a field extension, which
essentially encodes the ways in which one field can be built up out of another. The name “Galois”
(pronounced gal-WAH) comes from Évariste Galois, a 19th century mathematician whose work
laid the foundations of modern group theory. It was he who first fully realized that questions about
roots of polynomials could be recast in terms of “permutations” of those roots, an idea which
nowadays has been generalized and spread far beyond the topic of “roots of polynomials” alone.
Galois died young in a duel, and the story is that the night before he died he wrote a letter to a
friend which summarized all of his mathematical discoveries, fearing they would be lost in the event
of his death. The friend then sought to get his work recognized by the mathematical community
after Galois’ death, and was, apparently, successful in doing so. Of course, it is hard to tell how
much of this story is true and how much is apocryphal, but certainly the importance mathematical
work itself is no joke.

One type of application we will see of fields and Galois theory beyond the study roots of
polynomials is to questions concerning the types of geometric constructions considered by the
Ancient Greeks: given only a straightedge and compass, what geometric operations can we in fact
carry out? For instance, given a circle, can we construct using straightedge and compass alone a
square whose area matches that of the given circle? (This is the problem of squaring the circle.)
Or, given a cube, can we construct another cube whose volume is double that of the first? (This
is the problem of doubling the cube.) The answer to both of these questions is “no”, and the
reasons for why depend on properties of field extensions. We will also consider the problem of
trisecting a given angle using straightedge and compass, and finally the problem of constructing
regular polygons using straightedge and compass. Equilateral triangles, squares, regular pentagons,
hexagons, and many other polygons can be constructed in this way, but not all; for instance, the
regular 7-gon is not constructible using straightedge and compass alone. Determining the values of
n for which the regular n-gon is constructible can be nicely approached using Galois theory, as we
will do later this quarter. We will hopefully also be able to say a bit about the use of Galois theory
in modern number theory, which underlies the modern proof of Fermat’s Last Theorem. Good stuff
lies ahead!

Extension fields. Before we can talk about any such applications, we must start with the basics
of field theory. We already know what a field is and some basic properties and examples, but now
our focus is on the relation between fields. The fundamental notion is the following: given a field
F , an extension field of F is any field E ⊇ F which contains F as a subfield. We usually say simply
that E is an extension of F , and refer to the pair F ⊆ E as a field extension. We commonly denote
such an extension by E/F (E “over” F ), taking care to not interpret this as a quotient.
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Using the existing multiplication on E ⊆ F , we can always interpret E as a module—or more
precisely a vector space—over F , simply by taking the scalar multiplication of F on E to be ordinary
multiplication on E. (Recall that F is contained in E.) We then define the degree of the extension
E/F to be the dimension of E as an F -vector space, and denote it by [E : F ]:

[E : F ] = number of linearly independent elements of E needed to span E over F .

(It is no coincidence that we are using the same notation here for the degree [E : F ] that we used
in the fall for group indices [G : H], as the two notions will be intimately related to one another in
the context of Galois theory later.) We say that the extension E/F is finite if it has finite degree,
and infinite if not.

Examples. The field C of complex numbers is an extension of the field R of real numbers of degree
2. Indeed, 1, i ∈ C form a basis for C over R: any element of C is of the form a ·1+ bi with a, b ∈ R,
so 1 and i span C over R, and a · 1 + bi = 0 implies a = b = 0, so 1 and i are linearly independent
over R. (In fact, C is the only finite extension of R, as we will see later—this is essentially the
Fundamental Theorem of Algebra.)

The field Q( 3
√

2) is a degree 3 extension of Q. (We call such a thing a cubic extension; an
extension of degree 2 as in the previous example is called a quadratic extension.) This is something
we actually worked out as a Warm-Up last quarter, only we didn’t use the language of extensions
as the time. The fact is that an element of this field explicitly looks like

a+ b
3
√

2 + c
3
√

4 with a, b, c ∈ Q,

so that 1, 3
√

2, 3
√

4 ∈ Q( 3
√

2) span Q( 3
√

2) over Q, and the only such expression which equals 0 is
the one which has a = b = c = 0, which says that 1, 3

√
2, 3
√

4 are linearly independent over Q.
Hence these three elements form a basis for Q( 3

√
2) over Q, so this is indeed an extension of degree

[Q( 3
√

2) : Q] = 3 as stated. (The fact that a+ b 3
√

2 + c 3
√

4 = 0 implies a = b = c = 0 is not obvious,
and depends on the fact that x3 − 2 is an irreducible polynomial over Q which has 3

√
2 as a root.

You can go back and check the proof of this independence we gave last quarter, but we will soon
generalize this result to other fields obtained by adjoining to a base field a root of some polynomial.
Of course, it is also not obvious that the inverse of such an element is again of the same form—so
that these elements do in fact give a field—-but again we will see this in more generality soon.)

For a prime p, we denote by Fp the field Z/pZ. (We use this notation instead of Z/pZ since it
will fit in better with the notation Fpn we will use for other finite fields later on. You will prove
on a homework soon that any finite field must in fact have prime-power order.) The field Fp(x) of
rational functions over Fp is then an infinite extension of Fp. Recall that an element of this field is
a fraction of polynomials in Fp[x]:

a0 + a1x+ · · ·+ anx
n

b0 + b1x+ · · ·+ bmxm
with ak, b` ∈ Fp.

In particular, this field contains all powers of x, which give an infinite linearly independent list,
which forces the dimension of Fp(x) over Fp to be infinite. We write simply [Fp(x) : F] =∞.

The characteristic of a field. One basic invariant that will be useful to work with is that of
the characteristic of a field. This notion was actually introduced for rings (with unity) on the first
homework last quarter, but was never used again until now. Recall that the characteristic is the
minimal number of times we must add 1 to itself in order to get 0; if no such number of times
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exists, we say the ring has characteristic zero. So, Z/nZ has characteristic n for instance, and Z
has characteristic zero.

That problem on the first homework last quarter asked to show that integral domains, of which
fields are examples, either have characteristic 0 or prime characteristic. (The proof was: suppose
the characteristic (if positive) factors as n = ab, so that 0 = n · 1 = ab · 1 = (a · 1)(b · 1), then
use the integral domain property to get a · 1 = 0 or b · 1 = 0, and then minimality of n to get
n = a or n = b.) We will denote the characteristic of a field F by char F , so that char C = 0,
char Q( 3

√
2) = 0, and char Fp(x) = p for instance.

Constructing roots of polynomials. As we saw last quarter, a basic technique for constructing
fields is to take the quotient of a ring (commutative with unity) by a maximal ideal. More specifi-
cally, the case we will be interested in this quarter is the quotient of a polynomial ring over a field
by the ideal generated by an irreducible polynomial: F [x]/(p(x)). As a first use of such quotients,
we show that given an irreducible polynomial p(x) over a field F , there always exists an extension
of F over which p(x) has a root. In some sense, this is something we already saw last quarter at
times, where the point is that by forcing p(x) to be 0 in the quotient, x itself becomes the root for
which we are looking.

But let us be a bit pedantic about the details, to make sure they are crystal clear. Since
p(x) ∈ F [x] is irreducible, (p(x)) is a maximal ideal of F [x], so F [x]/(p(x)) is a field, which we will
denote by E. The claim is that E is the extension of F we want. Indeed, if we know E is in fact
an extension of F (perhaps not completely obvious, so we will expand on this in a bit), then the
fact that our original polynomial has a root in E is easy. To be clear, x ∈ E now no longer denotes
a “variable”, but is an honest element of E. To avoid abusing notation, we should perhaps denote
the variable of our polynomial by X, so that p(X) is the polynomial we are considering. Setting
the variable X to be the element x ∈ E gives p(x) = 0 in E (by the way in which E was defined),
so that x ∈ E is indeed the root we want. (This is just a simply amazing “cheat”: we force our
polynomial p(x) to have a root by literally declaring x to be that root. Good stuff!)

The only detail left is the claim that E as defined above is an extension of F , or in other words
that F is (isomorphic to) a subfield of E. This is almost obvious, since we can consider elements
of F to be constant polynomials in E, but to be precise we have to know that this identification is
one-to-one, so that different elements of F give different elements of E in this way. Let us phrase
this in the following way: the field homomorphism F → E that sends a ∈ F to the constant
polynomial a ∈ E has a kernel which is an ideal of F , which must thus be either 0 or all of F since
these are the only ideals a field has; this kernel cannot be F since the map in question is not the
zero map, so the kernel must be trivial, meaning the map F → E is injective. It is this injectivity
that guarantees F is a subfield of E as desired.

Homomorphisms of fields. The fact about the homomorphism F → E above, that it is either
zero or injective, is worth singling out since it is true of any homomorphism between fields (the
same fact about the kernel used above still holds), and is quite useful when studying the relation
between fields. The upshot is that whenever we have a nonzero map F → E between fields, we
can always use it to think of F as a subfield of E, or equivalently of E as an extension of F . Or,
said another way, if E contains no subfield which is isomorphic to F , then the only homomorphism
F → E is the zero map.

The structure of quotient extensions. The types of fields F [x]/(p(x)) we get above are easy
enough to work with, but we already saw last quarter that in many cases these “quotient” extensions
can be identified with other recognizable fields. For instance, R[x]/(x2+1) is simply another way of
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thinking about C, and Q[x]/(x3−2) is Q( 3
√

2). (Apply the First Isomorphism Theorem to R[x]→ C
which sends x 7→ i and to Q[x] → Q( 3

√
2) which sends x 7→ 3

√
2 to get the desired isomorphisms.)

After all, C is indeed an extension (in fact the “smallest” one) of R over which x2 + 1 has a root,
and Q( 3

√
2) is an extension (again “smallest”) of Q over which x3 − 2 has a root, so the fact that

these isomorphisms exist should not be surprising. C is a degree 2 extension of R whose elements
look like a+ bi, and Q( 3

√
2) is a degree 3 extension of Q whose elements look like a+ b 3

√
2 + c 3

√
4,

so one question to ask is how these degrees and corresponding bases are reflected in the structure
of the quotient F [x]/(p(x))?

The answer is again something we already saw last quarter. Explicitly, if p(x) has degree n,
then elements of F [x]/(p(x)) are of the form

a0 + a1x+ · · ·+ an−1x
n−1

with ai ∈ F , since the equality p(x) = 0 in the quotient gives a way to replace all larger powers of
x in a random polynomial. This says that the elements

1, x, x2, . . . , xn−1

span F [x]/(p(x)) over F . Moreover, we claim these elements are linearly independent over F as
well. Indeed, if a0 + a1x + · · · + an−1x

n−1 = 0 in F [x]/(p(x)) for some ai ∈ F , then a0 + a1x +
· · · + an−1x

n−1 ∈ (p(x)). This means that p(x) divides a0 + a1x + · · · + an−1x
n−1, but since p(x)

has degree n, this is only possible if a0 + a1x+ · · ·+ an−1x
n−1 is the zero polynomial, which means

that each ai = 0. Thus 1, x, . . . , xn−1 are indeed linearly independent over F , so they give a basis
for F [x]/(p(x)) over F . There are n elements in this basis, so we conclude that the degree of the
extension is the degree of the polynomial: [F [x]/(p(x)) : F ] = deg p(x).

Thus, the structure of F [x]/(p(x)) as a field is pretty straightforward to understand. When
we identify such a field with another well-known field, then the analysis above carries over to that
second field. For instance, R[x]/(x2 + 1) ∼= C with deg(x2 + 1) = 2 reflects the quadratic nature
of the extension C/R, and Q[x]/(x3 − 2) ∼= Q( 3

√
2) with deg(x3 − 2) = 3 reflects the cubic nature

of Q( 3
√

2)/Q. In this latter example, the basis 1, x, x2 for Q[x]/(x3 − 2) then becomes the basis
1, 3
√

2, 3
√

4 for Q( 3
√

2). (Observe that we can now see why the multiplicative inverse of an element
a+ b 3

√
2 + c 3

√
4 is indeed of the same form: this comes from the fact that the multiplicative inverse

of a+ bx+ cx2 in Q[x]/(x3 − 2) is of the same form, which is guaranteed because we already know
that Q[x]/(x3 − 2) is in fact a field.) We will explore such observations more next time, in the
context of algebraic extensions.

Lecture 2: Algebraic Extensions

Warm-Up. We construct a field which deserves to be called “F49(
3
√

3)”, that is, an extension of F49

that contains a cube root of 3. (We will explain the use of quotations marks after the construction.)
As a first step, we should construct F49—a field with 49 elements—which we do as an extension
of F7. We actually showed as an example last quarter that there exists a field of order p2 for any
prime p, where all we needed is the existence of an irreducible quadratic polynomial we can then
quotient by.

To be explicit, here let us take x2 − 3 ∈ F7[x]. Since this is quadratic, being irreducible is
equivalent to having no root, which we can check by hand:

12 = 1 22 = 4 32 = 2 42 = 2 52 = 4 62 = 1.
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Since 3 is not a square in F7, x
2 − 3 has no root, so it is irreducible and hence F7[x]/(x2 − 3) is a

field. Elements of this field look like
a+ bx

with a, b ∈ F7, which indeed gives 72 = 49 elements in total. So, let us take F49 to be this particular
field. (We stated last quarter that any two finite fields of the same order are in fact isomorphic—
still to be proved—so any field with 49 elements is isomorphic to this particular one, meaning that
we lose nothing by using this one in our computations.)

Next, let us verify that F49 as constructed does not already contain a cube root of 3. A cube
root of 3 would be an element a+ bx ∈ F49 whose third power is 3. Using the fact that x2 = 3 in
F49 as constructed, we compute:

(a+ bx)(a+ bx)(a+ bx) = [(a2 + 3b2) + 2abx](a+ bx)

= (a3 + 3ab2 + 6ab2) + (a2b+ 3b3 + 2a2b)x

= (a3 + 2ab2) + (3a2b+ 3b3)x.

In order for this to equal 3 ∈ F49 we must have

a3 + 2ab2 = 3 and 3a2b+ 3b3 = 0.

As a side computation, let us verify that F7 does not contain a cube root of 3:

13 = 1 23 = 1 33 = 6 43 = 1 53 = 6 63 = 6.

If b above is zero, then the first requirement becomes a3 = 3, and there is no a ∈ F7 which satisfies
this. Thus b would have to be nonzero, in which case 3a2b + 3b3 = 0 becomes a2 + b2 = 0. Then
b2 = −a2, so the first requirement is

3 = a3 + 2a(−a2) = −a3, or a3 = −3 = 4.

But the same side computation above also shows that there is not such a, so we conclude that no
a+bx ∈ F49 cubes to 3. Thus x3−3 is irreducible over F49, so F49[x]/(x3−3) is the extension which
deserves to be called “F49(

3
√

3)”. This is a field with 76 elements (elements look like α+ βx+ γx2

with α, β, γ ∈ F72), so in fact, taking the uniqueness of finite fields of a given order for granted, we
see that any field of order 76 contains a cube root of 3.

Now, we use quotation marks in “F49(
3
√

3) since it does not make literal sense to take F49 and
adjoin 3

√
3. The point is that when we write something like Q( 3

√
2), we already have a predetermined

notion as to what 3
√

2 means: in this case the real number 3
√

2 ∈ R. The field Q( 3
√

2) is then (by
definition, if you want) the smallest subfield of the already existing field R that contains Q and
3
√

2. But in the case at hand, there is no already existing field that contains both F49 and the real
number 3

√
3, simply because F49 is not realizable as a subfield of R: F49 has characteristic 7, while

R has characteristic 0. So, we cannot construct a literal F49(
3
√

3) as a subfield of an existing field,
meaning we only have the quotient construction available. This quotient construction does adjoin
an element x to F49 which behaves like 3

√
3, but it is not literally the 3

√
3 we already know and love.

The field “F49(
3
√

3)” we get is a degree 3 extension of F49.
A similar observation can be made about our construction of F49 = F7[x]/(x2−3): we construct

F49 (an extension of F7 of degree 2) by adjoining to F7 a “square root of 3”, so that F49 is
morally (but not literally) speaking something like “F7(

√
3)”. (Consequently, any field of order

49 contains a square root of 3.) The extension of F49 we constructed above can then be thought of
as “F7(

√
3, 3
√

3)”, meaning that in a sense we “adjoin” to F7 both a square root of 3 and a cube root
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of 3. Overall this is an extension of F7 of degree 6. (We will see next time that degrees multiply:
F49(

3
√

3) has degree 3 over F49, and F49 has degree 2 over F7, so F49(
3
√

3) has degree 3 · 2 over F7.)

Simple extensions as polynomial quotients. Extensions such as Q( 3
√

2) over Q and R(i) = C
over R which are generated by adjoining single elements are known as simple extensions, which
is somehow the field-theoretic analog of “cyclic”. The element we adjoin, i.e. the generator, is
called a primitive element for the extension. Later we will see that finite extensions of fields of
characteristic zero are always simple, but proving this will require some Galois theory.

In the case where the element we adjoin is a root of an irreducible polynomial over the base
field, the resulting simple extension is straightforward to describe, as we have already seen. That
is, if p(x) is irreducible over F and α is a root of p(x) in some extension of F , then F (α) (i.e. the
smallest subfield of that extension that contains both F and α) is isomorphic to the quotient of
F [x] by the ideal generated by p(x):

F (α) ∼= F [x]/(p(x)).

(The proof, as before, comes from the First Isomorphism Theorem applied to F [x]→ F (α) sending x
to α. The fact that α is in the image guarantees that everything is in the image.) As a consequence,
anything in F (α) is of the form c0 + c1α+ c2α

2 + · · ·+ cn−1α
n−1 with ci ∈ F , where n is the degree

of p(x), so that in particular the multiplicative inverse of such an element is again of the same form.

Examples. Many of the examples we have seen fall into the framework above, such as:

Q(
3
√

2) ∼= Q[x]/(x3 − 2), R(i) = R[x]/(x2 + 1), F49 = “F7(
√

3)” ∼= F7[x]/(x2 − 3).

One thing to note is that the specific root we adjoint does not matter: if α, α′ are both roots of the
same p(x), then F (α) ∼= F (α′) because both are isomorphic to the same F [x]/(p(x)). For instance,
4
√

2 (ordinary real number) and i 4
√

2 are both roots of x4 − 2 over Q, so

Q(
4
√

2) ∼= Q(i
4
√

2)

as subfields of C. In some sense, the extension itself (as a standalone field) cannot distinguish
between the roots adjoined without more information. Bases for these degree 4 extensions are still
easy to obtain: 1, 4

√
2, 4
√

4, 4
√

8 for Q( 4
√

2), and 1, i 4
√

2,− 4
√

4,−i 4
√

8 for Q(i 4
√

2). (Of course, the same
elements without the negative signs in the latter case also give a basis.)

Algebraic extensions. The extension Q(π) (i.e. the smallest subfield of C containing Q and π)
of Q is also simple, but in this case not as straightforward to describe. Elements here look like

a0 + a1π + · · ·+ anπ
n

b0 + b1π + · · ·+ bmπm

with ak, b` ∈ Q, which cannot be reduced to a more compact form. In particular, this extension
is infinite. The reason for why this is the case as opposed to the examples Q( 3

√
2) and R(i) comes

from the fact that π is not the root of any polynomial with rational coefficients, which leads to the
following definition.

Given a field extension E/F , we say that α ∈ E is algebraic over F if there exists a nonzero
polynomial over F having α as a root. If not, we say that α is transcendental over F . For instance,
π is transcendental over Q, a fact which cannot be proven using algebraic means alone, but requires
some analysis, which we will not go through. If every element of E is a algebraic over F , then we
say that E is an algebraic extension of F .
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The algebraic case is the one where we get particularly nice descriptions of simple extensions
which are necessarily finite. If α ∈ E is algebraic, then it is the root of some polynomial over
F , so we can consider the monic polynomial mα(x) of smallest degree over F which has α as a
root, which we call the minimal polynomial of α. (Note that the minimal polynomial depends
on the base field: if we consider

√
2 as algebraic over Q, its minimal polynomial is x2 − 2, but

if we consider it as algebraic over Q(
√

2), then its minimal polynomial is x −
√

2.) The minimal
polynomial defined in this way is necessarily irreducible, since if not α would have to be a root of
one of its factors, which would lead to a polynomial of smaller degree having α as a root.

The upshot is that when α is algebraic over F , then

F (α) ∼= F [x]/(mα(x))

holds, so that the simple extension on the left is of degree n equal to that of the minimal polynomial
mα(x), with basis 1, α, . . . , αn−1. If α is transcendental over F , then F (α) will be an infinite
extension of F , which is a consequence of the following fact.

Finite extensions are algebraic. We claim that any finite extension of a field F is algebraic.
(Thus in particular, if the extension F (α)/F is finite, then α must be algebraic over F .) Indeed,
suppose E is finite over F of degree n, and let α ∈ E. Since E is an n-dimensional vector space
over F , the n+ 1 elements

1, α, α2, . . . , αn

of E must in fact be linearly dependent over F . (This type of thing is true for free modules over
integral domains in general, which we stated but did not prove last quarter.) Thus there exist
ci ∈ F , at least one of which is nonzero, such that

c0 + c1α+ · · ·+ cnα
n = 0.

But this means that α is a root of the nonzero polynomial c0 + c1x + · · · + cnx
n ∈ F [x], so α is

algebraic over F . Since α ∈ E was arbitrary, E is algebraic over F .
One nice thing to note here is that if α ∈ E is algebraic over F , then so are α2, α3, 1+α

α2 , and
indeed so is any “rational function” in α. These are all elements of the finite extension F (α) of
F , which is necessarily algebraic, which means that all of its elements are algebraic. This is not
obvious, since for instance it is not at all clear how to write down a polynomial having α2 as a
root given only one which has α as a root, and this only gets harder to do for more complicated
expressions involving α. Think about this: 3

√
2 is a root of x3 − 2, but how to you explicitly give

from this alone a polynomial which has 3
√

4 as a root? Of course, the answer should be x3 − 4, but
the problem is in constructing this polynomial solely from x3− 2. But, there is no need to do this,
since the machinery of “finite =⇒ algebraic” guarantees that this can be done. In general, if E
is an extension of F , not necessarily algebraic, then the subset of E consisting of all elements of E
which are algebraic over F will in fact be a field itself.

Lecture 3: More on Extensions

Warm-Up. Suppose F is a field of characteristic not equal to 2, and let E be a degree 2 extension
of F . We show that E is of the form E = F (

√
D) for some D ∈ F which is not a square. (If D

was a square in F ,
√
D would be in F and hence F (

√
D) = F would be of degree 1, not 2, over

F .) Pick α ∈ E which is not in F . The minimal polynomial of α is then of the form

x2 + bx+ c with b, c ∈ F.
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(The minimal polynomial is not of degree 1, since this would require that it be x − α and hence
that α be in F .) But we know how to express the roots of such a polynomial explicitly using the
quadratic formula:

α =
−b±

√
b2 − 4c

2
.

(The derivation of the usual quadratic formula over Q, or R, or C works just as well over any field,
as long as the characteristic of the field is not 2: if it were 2, then 2 = 1 + 1 = 0 would not be
invertible in the field, and so the point at which you have to divide by 2 in the derivation would
not be valid. In other words, having the 2 in the denominator above would not make sense. This
is the key reason why many results about fields often have a “non-characteristic 2” assumption.)

Note here that
√
b2 − 4c makes sense as an element of E (not in F ) since it is equal to√

b2 − 4c = ±(2α+ b) ∈ E.

This in particular implies that
√
b2 − 4c ∈ F (α). But also, α = −b±

√
b2−4c
2 ∈ F (

√
b2 − 4c), so

we conclude that F (α) = F (
√
b2 − 4c). As a vector space over F , F (α) is a subspace of E of

dimension larger than 1 (since α /∈ F ), but since E has dimension 2 over F we must then have
E = F (α) = F (

√
b2 − 4c). Thus E is of the required form F (

√
D) with D = b2 − 4c.

To see what happens in the characteristic 2 case, consider F4 = F2[x]/(x2+x+1) as an extension
of F2 of degree 2. (Note x2 + x+ 1 is irreducible over F2 since it has no root.) There is no D ∈ F2

such that F4 as constructed is equal to F2(
√
D), simply because every element of F2 is a square:

02 = 0, 12 = 1. The proof above breaks down here precisely because the quadratic formula is not
valid in characteristic 2.

Algebraic number fields. Before moving on, let us touch on the subject of algebraic number
theory a bit, where we can clarify some observations from last quarter. Consider a quadratic
extension Q(

√
D) of Q, where D ∈ Z is not a square. Since this extension is finite, we know it

is algebraic, so every element is the root of a monic polynomial over Q. Among these algebraic
elements are those whose minimal polynomials actually have integer coefficients, such as

√
D itself

with minimal polynomial x2 − D. Such elements are called algebraic integers, and the collection
of them actually forms a subring of Q(

√
D), called the ring of integers of Q(

√
D). The name

comes from the observation that in the case of Q viewed as a degree 1 extension of itself, so that
the minimal polynomial of any rational a

b is x− a
b , the elements whose minimal polynomials have

integer coefficients are precisely the ordinary integers Z. The ring of integers of Q(
√
D) is then

the proper generalization of “integers” to this larger field. These rings are simple to describe, and
showed up in various examples last quarter: in most cases, the ring of integers Q(

√
D) is just

Z[
√
D]—specifically this is true when D 6≡ 1 mod 4—but interestingly when D ≡ 1 mod 4 the ring

of integers of Q(
√
D) is larger than Z[

√
D] alone, it is actually Z[12(1 +

√
D)]. We will not verify

this here, but you can if you like try to work out the minimal polynomial of 1
2(1 +

√
D) in this case

and see why it has integer coefficients precisely when D ≡ 1 mod 4.
In general, an algebraic number field is a finite extension of Q, and provides a more general type

of “rational number”. As above, the elements of this extension whose minimal polynomials have
integer coefficients form the ring of algebraic integers of this number field. For instance, Q( 3

√
2) is

a number field (of degree 3 over Q), and its ring of algebraic integers is Z[ 3
√

2]. (This is actually
quite non-trivial to show!) One important fact about rings of integers inside number fields is that
they are always Dedekind domains, which are a type of ring we briefly mentioned last quarter as
one where unique factorization of ideals into prime ideals always holds. Much of modern number
theory is devoted to studying such fields and rings.
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Tower law. It will be important for us to study successive extensions F ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En of
a base field F . A first key tool for studying such extensions is known as the Tower law (our book
does not use this name), whose name comes from drawing the given fields as a “tower”, such as

F

K

E

in the case of two successive extensions. The Tower law says that degrees multiply along such a
tower: if F ⊆ K ⊆ E, then [E : F ] = [E : K][K : F ]. Induction then gives

[En : F ] = [En : En−1][En−2 : En−3] · · · [E1 : F ]

when we have more successive extensions. Before proving this, note the similarity with a result we
saw in the fall on the multiplicative property of group indices: if A ≤ H ≤ G is a chain of groups,
then [G : A] = [G : H][H : A]. Of course, this is no coincidence, as Galois theory will make clear.

Suppose then that F ⊆ K ⊆ E are two field extensions. First note that if either E/K or K/F
are of infinite degree, then so is E/F : if E/K is infinite, then an infinite collection of linearly
independent elements of E over K will remain linearly independent over F since restricting the
coefficients preserves independence, while if K/F is infinite then an infinite collection of linearly
independent elements of K over F will also be an infinite linearly collection in E over F since
K ⊆ E. Thus we are left with the case where E/K and K/F are both finite, in which case we
show that E/F is necessarily finite and determine the degree.

Say that α1, . . . , αn is a basis for E over K (so [E : K] = n) and β1, . . . , βm is a basis for K
over F (so [K : F ] = m). Any element x of E is then of the form

x = k1α1 + · · ·+ knαn

for some ki ∈ K since the αi span E over K. Each ki here can be written as

ki = fi1β1 + · · ·+ fimβm

for some fij ∈ F since the βj span K over F , and making these substitutions into x above will
express x as a linear combination of the products αiβj over F :

x =
∑
i,j

(coefficient in F )αiβj .

This shows that the αiβj span E over F . We claim that these products are also linearly independent
over F , in which case we will be done: the αiβj will give a basis for E over F , and there are nm
such elements, giving [E : F ] = nm = [E : K][K : F ] as desired.

To check independence, suppose

f11α1β1 + · · ·+ f1mα1βm

+f21α2β1 + · · ·+ f2mα2βm
...

+fn1αnβ1 + · · ·+ fnmαnβm = 0

10



is a linear combination of all the αiβj over F . (We have written it this way so that all the terms
involving α1 are in the first two, all the terms with α2 are in the second, and so on.) Factoring αi
out of each term in the i-th row gives

(f11β1 + · · ·+ f1mβm)α1 + · · ·+ (fn1β1 + · · ·+ fnmβm)αn = 0.

Each coefficient (i.e. term in front of αi) here is an element of K, so since the αi are linearly
independent over K we have

fi1β1 + · · ·+ fimβm = 0

for all i. But the βj are independent over F , so we get fij = 0 for all i, j, which shows that the
αiβj are linearly independent over F as claimed. (If you go back and look at the proof of the
multiplicative index property for groups, note that it is “morally” but not literally similar to this
one, since it too involves multiplying different representatives together and using the “intermediate”
object to move one step at a time.)

Example. As a quick example, we use the Tower law to show that the real number 3
√

2 cannot be
obtained from Q by the basic algebraic operations (add, substract, mulitply, divide) and (repeated)
square root extractions alone. That is, 3

√
2 cannot be written as something like√√

3 + 5−
√√

7

4−
√

4 +
√

5 +
√

11

.

(Not this exact number necessarily, but something like this.) The point is to interpret the con-
struction of such a number in terms of (successive) field extensions, and then to use to degrees to
study these extensions.

To express a number in this form requires constructing extensions of Q where we adjoin a square
root at each step. For instance, the specific number written above, we must first introduce

√
3 in the

denominator by extending to Q(
√

3), then introduce
√

7 in the denominator by extending further

to Q(
√

3,
√

7), then introduce
√√

7 by extending to Q(
√

3,
√

7,
√√

7), and so on. That is, we build
up all the required terms by considering a quadratic extension of what we had before at each step.
The specific number above thus lies in an extension like√√

3 + 5−
√√

7

4−
√

4 +
√

5 +
√

11

∈ Q

(
√

3,
√

7,

√√
7,

√
√

3 + 5−
√√

7,
√

11,

√
5 +
√

11,

√
4 +

√
5 +
√

11

)
,

and a general number expressible in terms of repeated square roots in this way will lie in a similar
extension E of Q. Since at each step the extension is quadratic–because we adjoin a single square
root—the degree of each intermediate extension is 2, so that the degree of the final extension is

[E : Q] = 2 · 2 · 2 · · · 2 = 2n

for some n by the Tower law. If 3
√

2 were expressible in this way, we would have 3
√

2 ∈ E in such
an E, and then the Tower law applied to Q ⊆ Q( 3

√
2) ⊆ E would give

[E : Q] = [E : Q(
3
√

2)][Q(
3
√

2) : Q] = [E : Q(
3
√

2)]3,

which is not possible because the left side is a power of 2. Thus 3
√

2 is not expressible in this way
as claimed. (This result is precisely the reason why the Ancient Greek problem of “doubling the
cube” by straightedge and compass alone is impossible, but we’ll clarify this later.)
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Lecture 4: Splitting Fields

Warm-Up. Suppose a ∈ Q is positive and that its nth root a1/n is not rational for all n ≥
2. (This guarantees that the minimal polynomial of a1/n over Q is xn − a. For instance, the
minimal polynomial of 41/8 over Q is not x8 − 4—it is x4 − 2.) If gcd(m,n) = 1, we show that
Q(a1/m, a1/n) = Q(a1/mn). To give some context here, we will see later that any finite extension
of a field of characteristic zero is in fact simple, so we know that Q(a1/m, a1/n)—although written
with two generators here—can in fact be generated by a simple element alone, and the claim is
that a1/mn does the job. We will consider this from two perspectives: one more brute-force, and
another more “field-theoretic”.

First, since a1/m = (a1/mn)n and a1/n = (a1/mn)m, both the mth and nth roots of a lie in the
field generated by the mnth root, so

Q(a1/m, a1/n) ⊆ Q(a1/mn).

Conversely, since m and n are relatively prime, there exist p, q ∈ Z such that mp+ nq = 1, so that

(a1/m)q(a1/n)p = aq/m+p/n = a(mp+nq)/mn = a1/mn.

This shows that a1/mn ∈ Q(a1/m, a1/n), so Q(a1/mn) ⊆ Q(a1/m, a1/n) and we get equality as claimed.
Now, for a second approach, let us still begin with the observation that

Q(a1/m, a1/n) ⊆ Q(a1/mn)

as argued above. The point is that we can verify the opposite containment, not via a brute-force
computation in terms of generators, but perhaps more elegantly by considering degrees. Note that
[Q(a1/mn) : Q] = mn since the minimal polynomial of the mnth root of a is xmn− a. Thus for sure
Q(a1/m, a1/n) has degree no larger than mn over Q. We claim that it is exactly mn, which will
verify the equality we want. Consider the extensions

Q ⊆ Q(a1/m) ⊆ Q(a1/m, a1/n) and Q ⊆ Q(a1/n) ⊆ Q(a1/n, a1/m).

Since Q(a1/m) has degree m over Q and Q(a1/n) has degree n over Q, we get

[Q(a1/m, a1/n) : Q] = (something)m and [Q(a1/m, a1/n) : Q] = (something)n

respectively. Thus [Q(a1/m, a1/n) : Q] is divisible by both m and n, so it is divisible by their least
common multiple, which is mn since gcd(m,n) = 1. Hence mn divides [Q(a1/m, a1/n) : Q], but at
the same time this degree is at most mn, so we conclude that [Q(a1/m, a1/n) : Q] = mn as desired.

Composite fields. The field Q(a1/m, a1/n) in the Warm-Up is by definition the smallest field (in
C) containing Q, a1/m, and a1/n. Thus we can also characterize it as the smallest field containing
the two fields Q(a1/m) and Q(a1/n), so it is the composite Q(a1/m)Q(a1/n) of these two fields. In
general, the composite K1K2 of two subfields K1,K2 ⊆ E of a given field is the smallest subfield of
E containing both K1,K2. Composites will be useful tools for constructing fields from given ones.

The result about the degree of Q(a1/m, a1/n) we derived in the second approach to the Warm-Up
is a special case of the following results of degrees of composite fields. Suppose K1,K2 are both
finite extensions of F contained in a larger extension. Then

[K1K2 : F ] ≤ [K1 : F ][K2 : F ],
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so that the degree of the composite is bounded by the product of the individual degrees. The book
has a nice visualization of this as a tower: if m = [K1 : F ] and n = [K2 : F ], then we have

F

K1 K2

K1K2

m n

≤ n ≤ m

where the key point is that [K1K2 : K1] is at most n and [K1K2 : K2] at most m. The proof is as
follows. Consider for instance K1K2 over K1 and let α1, . . . , αn be a basis for K2 over F , so that
we can write K2 as K2 = F (α1, . . . , αn). Then K1K2 over K1 is

K1K2 = K1(α1, . . . , αn).

The elements α1, . . . , αn still span K1K2 over K1, so that [K1K2 : K1] ≤ n. Swapping the roles of
K1 and K2 shows that [K1K2 : K2] ≤ m by a similar argument, and we have our result. Note that
we cannot guarantee equality, since it could be that α1, . . . , αn, although linearly independent over
F , might become linearly dependent over K1, and similarly with K1,K2 switched. In fact, equality
in [K1K2 : F ] ≤ [K1 : F ][K2 : F ] holds if and only if the basis for K2 over F remains linearly
independent over K1, or if the basis for K1 over F remains linearly independent over K2. This is
what happens in the Warm-Up for instance.

Two more facts about extensions. Let us state two more facts about extensions which are
useful to know. The book gives more thorough (perhaps too thorough) justifications for these
than what we’ll say. First, we have seen that F (α) is a finite extension of F if and only if α is
algebraic over F , and more generally we can characterize all finite extensions of a given field: E is
a finite extension of F if and only if E is generated by a finite number of algebraic elements, i.e.
E = F (α1, . . . , αn) where each αi is algebraic over F . The forward direction follows from the fact
that all finite extensions are algebraic, so that the basis elements are the finitely many algebraic
generators we need. The backwards direction comes from applying the case of a simple extension
F (α) repeatedly along with the tower law: if E = F (α1, . . . , αn) with each αi algebraic, then

F ⊆ F (α1) ⊆ F (α1)(α2) ⊆ . . . ⊆ E

is a sequence of simple extensions, which are each finite since the generator αi at each step is
algebraic over the previous field, so that the tower law implies [E : F ] is finite.

The second fact we’ll state is that “algebraic extensions of algebraic extensions are algebraic”:
if E is algebraic over K and K is algebraic over F , then E is algebraic over F . Indeed, let α ∈ E.
Then α is algebraic over K, so α is the root of some

k0 + k1x+ · · ·+ knx
n with ki ∈ K.

In particular α is actually algebraic over F (k1, . . . , kn), since this field already contains the coeffi-
cients needed for the minimal polynomial of α. Then F (k1, . . . , kn, α) = F (k1, . . . , kn)(α) is a simple
extension of F (k1, . . . , kn) by an algebraic generator, so it is a finite extension of F (k1, . . . , kn). Each
ki is algebraic over F , so F (k1, . . . , kn) is a finite extension of F by the first fact above, and thus

[F (k1, . . . , kn, α) : F ] = [F (k1, . . . , kn, α) : F (k1, . . . , kn)][F (k1, . . . , kn) : F ]
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is finite as well. Since α belongs to a finite extension of F , it is algebraic over F , so E is algebraic
over F as claimed since α ∈ E was arbitrary.

Splitting fields. Given a polynomial p(x) over a field F , we say that p(x) splits in an extension
E ⊇ F if it factors into a product of linear terms:

p(x) = (x− α1) · · · (x− αn) in E[x].

We call E the splitting field of p(x) if p(x) splits over E and if E is the smallest extension of F with
this property, meaning that p(x) does not split over any proper subfield of E. Splitting fields will
be essential tools for studying roots of polynomials. Note that we called E here the splitting field
of F , rather than a splitting field, and indeed splitting fields are in fact unique up to isomorphism:
any two splitting fields of p(x) are isomorphic by an isomorphism which fixes elements of the base
field F . We will prove this later. We will also prove that splitting fields always exist, so that there
will be no confusion when talking about the splitting field of a given polynomial.

Let us look at a few examples. The splitting field of x2 − 2 ∈ Q[x] is Q(
√

2), which is probably
simple enough to see without much justification: x2−2 splits as (x−

√
2)(x+

√
2) over this extension,

and it does not split in any subextension since the only proper subfield of Q(
√

2) is Q. This latter
result is due to the fact that Q(

√
2) has degree 2 over Q, so that there can be no nontrivial proper

intermediate extension by the tower law.
Second, the splitting field of (x2 − 2)(x2 − 3) is Q(

√
2,
√

3), which again is probably simple
enough to believe. The only nontrivial part of this is arguing that no proper subfield will do the
trick, but this can shown by verifying that

√
3 does not belong to Q(

√
2), nor does

√
2 belong to

Q(
√

3). Now, we mentioned before that any finite extension of Q is simple, so Q(
√

2,
√

3) must be
simple. Indeed, we claim that

√
2 +
√

3 is a primitive element, i.e. a generator. It is clear that
Q(
√

2 +
√

3) ⊆ Q(
√

2,
√

3), and for the reverse containment we can argue as follows. We have

(
√

2 +
√

3)2 = 5 + 2
√

6,

which implies that
√

6 ∈ Q(
√

2 +
√

3). Then
√

6(
√

2 +
√

3) = 2
√

3 + 3
√

2 is also in this field, and
hence so are

3(
√

2 +
√

3)− (2
√

3 + 3
√

2) =
√

3 and − 2(
√

2 +
√

3) + (2
√

3 + 3
√

2) =
√

2,

which proves the claim.
More elegantly, we can argue by degrees by finding the minimal polynomial of

√
2 +
√

3. If we
set α =

√
2 +
√

3, then

α2 = 5 + 2
√

6, so
1

2
(α2 − 5) =

√
6.

Squaring this gives a degree 4 polynomial expression satisfied by α, so the minimal polynomial of√
2+
√

3 is of degree 4 and thus [Q(
√

2+
√

3) : Q] = 4. Since composite Q(
√

2,
√

3) = Q(
√

2)Q(
√

3)
has degree at most 2 · 2 = 4, it must be exactly 4 since the subfield Q(

√
2 +
√

3) has degree 4 over
Q, so these two fields are the same.

Roots of unity. Let us look at a final example, which we also use as an opportunity to introduce
the roots of unity. The polynomial x3 − 2 ∈ Q[x] has a root in Q( 3

√
2), but it does not split in this

extension since it does not contain the other two roots of x3 − 2. More precisely, we have

x3 − 2 = (x− 3
√

2)(x2 + x
3
√

2 +
3
√

4)
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and x2 + x 3
√

2 + 3
√

4 is actually irreducible over Q( 3
√

2), as can be checked by, say, the rational root
test from last quarter applied to the ring Z[ 3

√
2], of which Q( 3

√
2) is the fraction field. The details of

this are a bit tedious to check, so we will skip the verification here in favor of discussing the other
two roots of x3 − 2 instead.

The other two roots of x3− 2 are not real, and can be easily described using the complex roots
of unity. The complex nth roots of unity are the complex numbers whose nth power is 1, or in other
words the roots of xn − 1 over C. These form a group under multiplication. For n ≥ 1, set

ζn = e2πi/n := cos(2πn ) + i sin(2πn ).

Then ζnn = 1, and moreover (ζn)k also has nth power equal to 1. Thus

1, ζ, ζ2, . . . , ζn−1

gives all the nth roots of unity. Hence the group of nth roots of unity is cyclic with ζn a generator,
which we call a primitive nth root of unity. In general, (ζnw)n = wn for any w ∈ C, so the point is
that the other two non-real roots of x3 − 2 are ζ3

3
√

2 and ζ23
3
√

2, where ζ3 is a primitive third root
of unity. (The ζn we wrote down above is not the only root of unity which generates all the others,
it is just the most common one to use.)

The splitting field of x3 − 2 over Q is thus Q( 3
√

2, ζ3
3
√

2, ζ23
3
√

2). If we use

ζ3 = cos(2π3 ) + i sin(2π3 ) = −1
2 + i

√
3
2 ,

then ζ23 = cos(4π/3) + i sin(4π/3) = −1
2 − i

√
3
2 . Thus both ζ3 and ζ23 can be obtained by adjoining

i
√

3 alone to Q, so the splitting field of x3 − 2 can more simply be described as Q( 3
√

2, i
√

3). In
general, the splitting field of xn− a over Q will be Q( n

√
a, ζn), provided that n

√
a makes sense in R.

Lecture 5: Algebraic Closures

Warm-Up. We determine the degree of the splitting field of x5 − 3 over Q. The roots of x5 − 3
in C are

5
√

3, ζ5
5
√

3, ζ25
5
√

3, ζ35
5
√

3, ζ45
5
√

3

where ζ5 is a primitive fifth root of unity, say

ζ5 = e2πi/5 = cos(2πn ) + i sin(2π5 ).

The splitting field is thus Q( 5
√

3, ζ5), which is the composite of Q( 5
√

3) and Q(ζ5). The extension
Q( 5
√

3) has degree 5 over Q, and Q(ζ5) has degree 4 over Q since the minimal polynomial of ζ5 over
Q is the 5th cyclotomic polynomial :

φ5(x) = x4 + x3 + x2 + x+ 1.

This polynomial was shown to be irreducible last quarter as a consequence of Eisenstein’s criterion
(this was the “replace x by x+ 1” trick), and it does have ζ5 as a root since

φ5(x) = x4 + x3 + x2 + x+ 1 =
x5 − 1

x− 1

and the numerator is zero at x = ζ5.
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The composite Q( 3
√

5, ζ5) thus has degree at most 5 · 4 = 20 over Q. But upon considering
the intermediate extensions Q ⊆ Q( 5

√
3) ⊆ Q( 5

√
3, ζ5) and Q ⊆ Q(ζ5) ⊆ Q( 5

√
3, ζ5), we see that

the degree of the composite should be divisible by both 5 and 4, and hence by their least common
multiple, which is 20. We thus conclude that [Q( 5

√
3, ζ5) : Q] = 20.

Normal extensions. The types of fields which can arise as splitting fields of polynomials over F
are called the normal extensions of F . To be precise, E/F is a normal extension if it is algebraic
and if E is the splitting field of a collection of polynomials over F . (A splitting field for a collection
of polynomials just means the smallest field over which all polynomials in that collection split
simultaneously. The splitting field of one polynomial in the collection will be contained in the
splitting field of the entire collection.) The book tends to avoid the term “normal” and simply calls
E a “splitting field” over F .

But, it is more common to state the definition of normal in the following equivalent way: E is
normal over F if it is algebraic and whenever an irreducible polynomial p(x) over F has a root in
E, then it splits completely over E. For instance, Q( 5

√
3) is not normal over Q since x5 − 3 has a

root in this field but does not split in this field. The full splitting field Q( 5
√

3, ζ5) of x5 − 3 over Q
is normal over Q. We will tend to use “E is normal over F” instead of “E is a splitting field over
F” in these notes, and use whichever of the two equivalent definitions of “normal” is appropriate
for the problem at hand.

Existence of splitting fields. We now prove that splitting fields always exist. Suppose F is a
field and p(x) ∈ F [x]. To get an idea for what to do, suppose p(x) facts into irreducibles as

p(x) = (x− α1) · · · (x− αk)q1(x) · · · qm(x)

where we have written the linear factors first (for αi ∈ F ) and each qi(x) has degree at least 2. The
roots of the linear factors are already in F , so we need only adjoin roots of the irreducible factors.
But this we know we can do by taking a quotient: for instance,

E1 := F [x]/(q1(x))

contains a root of q1(x); let us call this root β (which is really the element x ∈ E1), so that we can
continue to refer to the variable of the polynomials we are working with as x. In this extension we
can then “split off” a linear factor x − β from q1(x) = (x − β)h(x), for some h(x) ∈ E1[x], and
then factor h(x) further into irreducibles. Then we do the same thing: take one of these irreducible
factors and take another quotient

E2 := E1[x]/(irreducible)

to get a further extension of F in which q1(x) now has an additional root, so that we can split off
another linear factor. And so on we keep going, taking more and more quotients, and going back
and doing the same with the other original irreducible factors q2(x), . . . , qm(x), until we get a final
extension E of F over which p(x) has split completely.

To make this process “cleaner” we can phrase it as an induction on the degree of p(x). If
deg p(x) = 1 then p(x) is already split in F itself, so F serves as the splitting field. Suppose now
n > 1. There exists an extension K/F in which p(x) has a root α: if p(x) already has a root in
F , this extension is just F , but if not then the quotient by some irreducible factor of p(x) will do.
Over K we have

p(x) = (x− α)q(x)
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for some q(x) ∈ K[x]. Since deg q(x) = n − 1 < n, by induction we may assume that there exists
a splitting field E for q(x) over K, and since α ∈ K ⊆ E, this E also serves as a splitting field for
p(x) over F as desired. (Note p(x) does not split in a proper subfield of E because q(x) does not.)

Uniqueness and degree. As a consequence of the same ideas as those used in proof of the
existence of splitting fields, we also get a proof of uniqueness and a bound on the degree of the
splitting field. For uniqueness, we use the fact that F (α) ∼= F (α′) whenever α, α′ are roots of
the same irreducible polynomial over F , which if you recall is true simply because both of these
extensions are isomorphic to the same quotient of F [x]. Intuitively, adjoining roots of p(x) ∈ F [x]
one at a time to extend F into the splitting field should thus produce only one possible field in
the end. To be more precise we can again phrase this as an induction on the degree. Suppose
p(x) ∈ F [x] has splitting fields E and E′. If p(x) is of degree 1, then F ∼= E ∼= E′ since E,E′

cannot be proper extensions of F because already splits in F . If p(x) has degree at least 2, we pass
to an extension containing a root α of p(x), where it does not matter which root we use by the
F (α) ∼= F (α′) observation above. In this extension we have

p(x) = (x− α)q(x)

for some q(x). Then E and E′ both serve as splitting fields for q(x), so since deg q(x) < deg p(x),
we have that E ∼= E′ by induction as desired.

As for the degree, note that if p(x) was irreducible to begin with, then an extension (constructed
as a quotient) containing a first root α will have degree n = deg p(x). Then we factor p(x) =
(x − α)q(x): if q(x) is now irreducible, the next extension we get (adjoining a root of q(x)) has
degree deg q(x) = n− 1. And so on, if we get a new irreducible factor at each step, the degrees of
the resulting extensions decrease to n− 2, n− 3, and all the way down to 3 and finally 2 once we
reach the splitting field. The tower law then says that the degree of the splitting field is n!. Now,
there is no guarantee that we actually get irreducible factors at each step, and for instance perhaps
p(x) was not irreducible to begin with. The point is that the degrees in the scenario above are only
upper bounds in general, in that the degree at each step in the construction of the splitting fields
are at most n, then n−1, then n−2, etc. Thus we get that in general the splitting field has degree
at most n! over the base field.

Now, this bound on the degree will be quite large in general. For example, in the Warm-Up
we see that the splitting field of x5 − 3 over Q has degree 20, which is significantly smaller than
5! = 120. But, this will be a useful bound nonetheless. One observation to make now is that we
have seen the number n! in another context previously, as the order of the symmetric group Sn.
This is a reflection of the fact that the Galois group (whatever that means) of the splitting field of
a polynomial of degree n will always be a subgroup of Sn, as we’ll see.

Algebraically closed fields. We say that a field F is algebraically closed if any polynomial over
F has a root in F . Equivalently, by factoring out more and more linear terms, which is always
possible since any remaining factor still has a root in F , we see that this definition is equivalent to
the statement that any polynomial over F splits in F . Thus, an algebraically closed field serves as
the splitting field for any polynomial over it. Another way of saying all this is that an algebraically
closed field has no algebraic (and hence no finite) extensions: if E is algebraic over F and F is
algebraically closed, then any α ∈ E is the root of a polynomial over F , which means that α ∈ F
since F is algebraically closed, so that in fact E = F .

The most basic example of an algebraically closed field is C, where the statement that C is
algebraically closed is known as the Fundamental Theorem of Algebra, which we will prove later
using Galois theory. Our proof will be almost purely algebraic, except for one fact from analysis
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(or calculus, even) we will need. For now we just comment that this is theorem has tons of other
non-algebraic proof as well, which highlights its importance across mathematics broadly: if you take
a course in complex analysis (MATH 325), you will see a proof there using what’s called Liouville’s
Theorem, and if you take a course in algebraic topology (MATH 344-2), you will see a proof using
the notion of the fundamental group of the circle. Good stuff!

Fields of algebraic elements. C is thus an algebraically closed field containing Q, but is in
fact not the smallest such field. (C is the smallest algebraically closed field containing R however.)
Denote by Q the set of elements of C that are algebraic over Q:

Q = {z ∈ C | z is algebraic over Q}.

We have argued before that sums, products, and quotients (nonzero denominator) of algebraic
elements are algebraic as well, so that Q is a field, called the field of complex algebraic numbers.
We now claim that Q is algebraically closed, so that it is the smallest algebraically closed field
containing Q. (No proper subfield will be algebraically closed since for α ∈ Q which is not in that
subfield, the minimal polynomial of α over Q does not split in the subfield.)

To see that Q is algebraically closed, let p(x) ∈ Q[x] and let α be a root of p(x) in C. Then
Q(α) is an algebraic extension of Q, which in turn is an algebraic extension of Q. Since algebraic
extensions of algebraic extensions are algebraic, Q(α) is algebraic over Q, so in particular α is
algebraic over Q. Thus α ∈ Q, so Q is algebraically closed. More generally, if F ⊆ K and K is
algebraically closed, the same argument shows that the set F of elements of K which are algebraic
over F is an algebraically closed field, and indeed the smallest such one containing F .

Algebraic closures. The field F constructed above, as the smallest algebraically closed field
containing F , is called the algebraic closure of F . But, the construction of F here depends on the
existence of some algebraically closed field containing F , since we define F to be the set of algebraic
elements of that field. We seek to make sense of this notion of “algebraic closure” without having
to make reference to a larger algebraically closed field to begin with.

Here is a definition we can give without such a reference: an algebraic closure of a field F is an
algebraic extension F of F in which every polynomial over F splits. Another way of saying this
that F is the simultaneous splitting field for the collection of all polynomials over F . Yet another
way of saying this is that F is the maximal algebraic extension of F , but justifying this will take a
bit of effort, which we’ll look at next time. It turns out that an algebraic closure, if it exists (which
it always does, as we’ll see), is unique up to isomorphism, as we’ll prove next time. Because of this,
it makes sense to talk about the algebraic closure of F .

The same proof we gave above showing that Q is algebraically closed also shows that F (assum-
ing it exists) is algebraically closed, with a slight modification: p(x) ∈ F [x] has a root α in some
algebraic extension of F , and then the “algebraic over algebraic is algebraic” reasoning will show
that α is algebraic over F ; the minimal polynomial of α over F then splits in F by the definition
of algebraic closure, which means that α must actually lie in F , so that F is algebraically closed.
We will show next time that the two uses of the notation F we have given—as an algebraic closure
of F and as the set of elements in a larger algebraically closed field that are algebraic over F—are
the same, and use this to justify the fact that any field has an algebraic closure.

Lecture 6: More on Closures

Warm-Up. For p prime, we show that
⋃
n Fpn serves as an algebraic closure of Fp. (We will take

for granted the fact that a finite field of order pn always exists and is unique, which is something we
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will be able to prove very shortly.) Now, there is some ambiguity here, in that at first it is not clear
how to define the required union: taking the union of sets ordinarily requires that all of those sets
be subsets of a common larger superset. For instance, it technically does not make sense to take
the union of R and {people in this class}, unless these two were already subsets of some larger S,
in which case the union is defined as the set of all x ∈ S that belong to at least one of the subsets
in question. Given the sets Fpn , it is not clear that there is a set which will contain all, in order
for the required union to make sense. But, we will appeal to the fact we will prove in a bit, that
an algebraic closure Fp always exists. This algebraic closure will contain all Fpn , simply because
it contains all algebraic (hence finite) extensions of Fp. Thus, this problem is not really asking to
show that Fp exists in the first place, but rather that once we know it does, to verify that it is the
union of all Fpn .

We verify that
⋃
n Fpn satisfies the second definition of algebraic closure we gave last time: it is an

algebraic extension of Fp in which every polynomial over Fp splits. First, observe that this union is in
fact a field, basically because every algebraic operation we need to consider (addition, multiplication,
etc) when verifying the field axioms will take place within a specific Fpn : if α, β ∈

⋃
n Fpn , with

say α ∈ Fpk and β ∈ Fp` , then α and β both belong to the composite FpkFp` , which is a finite field

itself since it has degree at most [Fpk : Fp][Fp` : Fp] = pkp` over Fp; thus α, β ∈ Fpi for some i, so
the the field axioms (closure under addition, closure under multiplication, etc) can be checked in
Fpi if nothing else. Next,

⋃
n Fpn is algebraic over Fp, since if α is in the union, then α lies in some

finite (hence algebraic) extension Fpk of Fp, so that α is algebraic over Fp.
Now, let p(x) ∈ Fp[x]. If p(x) is of degree n, then the splitting field of p(x) is of degree at most

n! over Fp, so in particular this splitting field is a finite extension of Fp, and is thus Fpk for some

k. Hence p(x) splits in Fpk ⊆
⋃
n Fpn , so

⋃
n Fpn = Fp is an algebraic closure of Fp as claimed.

Algebraic elements form a closure. We now verify the statement that F , constructed as the set
of elements in an algebraically closed extension K of F which are algebraic over F , is an algebraic
closure of F in the sense of having every polynomial over F split in F , so that the various definitions
of “algebraic closure” we gave are equivalent. To this end, let p(x) ∈ F [x]. Since p(x) ∈ K[x] as
well and K is algebraically closed, p(x) splits over K:

p(x) = (x− α1) · · · (x− αn) for some αi ∈ K.

By construction, each αi is the root of a polynomial over F—namely p(x)—so each αi is algebraic
over F and hence belongs to F . Thus the splitting of p(x) above is actually a valid splitting in
F [x], so F is an algebraic closure of F .

Closures exist. So, algebraic closures exist, at least for fields which are contained in algebraically
closed fields. But, for F without an obvious previously-defined algebraically closed extension, how
do we actually check for the existence of an algebraic closure?

One approach comes from thinking of an algebraic closure as a maximal algebraic extension: if
we can show that F has a maximal (meaning not contained in any larger) algebraic extension, then
that should be the algebraic closure. Showing that there is in fact a maximal algebraic extension
seems like the type of thing which Zorn’s Lemma should apply to: naively, we take the set of all
algebraic extensions of F , show that it has a maximal element by verifying the hypotheses of Zorn’s
Lemma, and then show that this maximal element is an algebraic closure. But, this approach runs
into a similar issue as the “take the union of all Fpn” ambiguity we had in the Warm-Up, in that
taking the “set of all algebraic extensions” only makes sense for extensions which sit inside of an
already-constructed larger set. In other words,

{E | E is an algebraic extension of F}
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is not actually a well-defined set since it does not specify what types of objects the E’s should be
in the first place; only something like

{E ⊆ S | E is an algebraic extension of F}

is well-defined, where we say definitively that we only consider E’s that come from some set S
which already exists. (This distinction is the same reason why “the set of all sets” is not actually
a well-defined set.) In the language of set theory, {E | E is an algebraic extension of F} is what’s
called a proper class, which is no good for our purposes since Zorn’s Lemma only applies to things
which are actually sets. (This was not an issue in past quarters, since for instance when using Zorn’s
Lemma to construct maximal ideals, the ideals used did in fact all belong to an already-existing
set, namely the ring in question.) To make such a “maximal algebraic extension” argument work,
we would need to know that there in fact exists a (very) large set S which does in fact contain
every possible algebraic extension of F . It turns out that this is actually true, but constructing
the required set S would take us too far into the realm of advanced set theory and the study of
cardinality to be worth it here.

Instead, we give an alternative approach, which is the one the book gives and is based on the
idea of using quotients to construct extensions over which polynomials have roots. Our goal is to
construct an algebraically closed field K containing F in this way, after which the set of elements of
K which are algebraic over F will be an algebraic closure of F , as we have already shown. So, given
F , we first construct an extension K1 over which every polynomial in F [x] has at least one root.
For a single polynomial, say irreducible, we can simply quotient out by the ideal generated by that
polynomial, so we aim to do something similar here, only where we quotient out by all polynomials
at once. To this end, for each monic nonconstant p(x) ∈ F [x], introduce a new “variable” xp. (We
need only consider monic polynomials since the roots of a non-monic polynomial are the roots of
the monic polynomial obtained by dividing through by the leading coefficient.) Then we consider
the polynomial ring over F generated by all of these (infinitely many) variables:

R := F [xp : p(x) ∈ F [x] is nonconstnat and monic].

We then consider p(xp) ∈ R[x], which is the same polynomial as p(x) only with xp as the variable
instead of x. The point is that we use these new variables to keep track of which polynomial we
are looking at: x2p + 2xp + 3 corresponds to the original p(x) = x2 + 2x + 3, x4q − 2x3q + 4xq − 3
corresponds to the original q(x) = x4 − 2x3 + 4x− 3, and so on.

We would like to quotient out by all the p(xp), which will force every polynomial in F [x] to now
have a root: xp in the quotient is a root of p(xp). But, the issue is that there is no guarantee we
get a field when quotienting out by the p(xp), or more precisely by the ideal I they generate, since
we do not know that I will be maximal. (This is avoided in the previous F [x]/(p(x)) constructions
we’ve used since p(x) was irreducible in those cases, but the construction we are attempting here is
much more general.) We have a quick fix however: by Zorn’s Lemma, I is contained in a maximal
ideal of R, as long as we know that I is a proper ideal of R. If so, then we use K1 := R/M where
M is such a maximal ideal containing I; since M still contains all p(xp), every p(x) ∈ F [x] will
have a root over the extension K1 ⊇ F . To show that I is proper, we show that 1 ∈ R is not in I.
If it was, we would have

1 = q1p1(xp1) + · · ·+ qnpn(xpn)

for some qi ∈ R and pi(x) ∈ F [x]. (Recall that I is the deal generated by the p(xp).) There is an
extension of F over which each pi(x) has a root, since we can first take such an extension for p1(x)
alone, then enlarger further if need be to ensure p2(x) has a root, then enlarger further for p3(x),
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and so on until we do so for pn(x). If αi is a root of pi(x) in this common extension, then setting
xpi = αi in the equation above gives 1 = 0, which is not possible. Thus 1 /∈ I, so I is proper.

We thus get a field K1 in which each p(x) ∈ F [x] has at least one root. We want to get an
algebraically closed field which contains F , but we do not know anything now about polynomials
in K1[x] in terms of whether they have roots in K1. But no matter, we do the exact same thing
as above only with K1 instead of F : we get an extension K2 of K1 over which every polynomial in
K1[x] has a root! And so on we keep going, to obtain a chain of extensions

F ⊆ K1 ⊆ K2 ⊆ . . .

with the property that every p(x) ∈ Ki[x] (set K0 := F ) has a root in Ki+1[x]. We claim that the
union

⋃
nKn is in fact an algebraically closed field containing F , which is what we want to obtain.

As stated before, an algebraic closure of F is then obtained by taking the set of elements of K that
are algebraic over F .

The union
⋃
nKn clearly contains F , and the proof that is a field is the same as the argument for

why
⋃
n Fpn was a field in the Warm-Up: given two elements, all the necessary algebraic operations

needed to verify the field axioms will take place within a specific Ki, which we already know to
be a field. Thus all that remains is to check that the union is algebraically closed. But if p(x)
is a polynomial over

⋃
nKn, the finitely many coefficients of p(x) will lie in finitely many of the

Kn, so there is one Km that contains all coefficients. Then p(x) ∈ Km[x], so p(x) has a root in
Km+1, which belongs to

⋃
nKn as well. Hence every polynomial over

⋃
nKn has a root in

⋃
nKn,

so
⋃
nKn is algebraically closed.

Closures contain all algebraic extensions. Our final goal is to show that algebraic closures
are unique. But for this we need to know first that a given algebraic closure of F will contain all
algebraic extensions of F . Now, there is some ambiguity as to what we actually mean by this: until
we know that algebraic closures are unique, it will not be true that a given one literally contains
every possible algebraic extension. That is, if, say, F and F

′
are two algebraic closures of F without

any a prior relation to one another, an algebraic extension F ⊆ K ⊆ F contained in F does not have
to be a literal subset of F

′
, so we have to be careful about what “F

′
contains K” actually means in

this context. What we really mean is that a given algebraic closure will contain an isomorphic copy
of any algebraic extension: more precisely, if F is an algebraic closure of F and K is an algebraic
extension of F , then there exists a injective field homomorphism K → F . (The image of this map
is then the isomorphic copy of K inside F we want.)

To show this, we again exploit the wonders of Zorn’s Lemma. Let K be an algebraic extension
of F , and consider the set S of all injective mappings of subextensions F ⊆ L ⊆ K into F , where
F is a fixed algebraic closure of F :

S := {injective L→ F | L is a subextension of K}.

(We should actually require that these injective maps fix elements of the base field F . Also, this is a
well-defined set, since we only consider things which sit inside of the already-existing K.) Our goal
is to show that K is actually in this set, so that we do have an injective mapping K → F . (We’re
being a bit sloppy here conflating the fields L with the injective maps L→ F , but that’s not a big
deal and is easy to avoid. We only do this to not get bogged down in notation.) A straightforward
application of Zorn’s Lemma shows that S has a maximal element: S is not empty since F ∈ S,
and the usual “union of elements in a chain” argument will give an upper bound for the chain;
we’ll omit the specific details, but there is nothing new we haven’t seen before. Say that M is the
maximal element. If M 6= K, then there exists α ∈ K −M . This element is algebraic over F , since
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K is algebraic over F , so it has a minimal polynomial over F . But this minimal polynomial splits
and thus has a root in the algebraic closure F ; if β is this root, then F (α) ∼= F (β) since the specific
root of the minimal polynomial we adjoin does not matter. This shows that M(α) ∈ S, since the
injective map M → F can be extended to α using the isomorphism F (α) ∼= F (β) ⊆ F (i.e. send α
to β). This contradicts maximality of M , so we must in fact have M = K, so that any algebraic
extension K of F does map injectively into the specified algebraic closure F .

Closures are unique. Thus, suppose F and F
′

are two algebraic closures of F . Since F is
algebraic over F , there exists an injective map F → F

′
by the fact above, so that F is isomorphic

to a subfield E of F
′
. If α ∈ F ′, then α has some minimal polynomial mα(x) over F . But this

minimal polynomial splits in F ∼= E since F is also an algebraic closure of F , which means that
the root α must belong to E. Hence F

′
= E, so F ∼= F

′
as desired. We conclude that algebraic

closures are unique (up to isomorphism), so that we can speak of the algebraic closure of F . (There
is a lot of machinery that goes into the existence and uniqueness of algebraic closures in general!)

p-adic complex numbers. As a fun aside, let us introduce the p-adic complex numbers, who
construction depends on the notion of an algebraic closure. For p prime, last quarter we saw the
example of the Qp, the field of p-adic numbers, whose elements are most easily described as Laurent
series in the “variable” p. Those elements whose Laurent series expansions are actually power series
(no negative exponents) make up Zp, the ring of p-adic integers, and Qp is the fraction field of Zp.

Now, we briefly (in the notes, at least) discussed how Qp can be obtained analytically from Q,
as the completion of Q with respect to the p-adic metric, just as R is the completion of Q with
respect to the standard Euclidean metric. (No worries if you haven’t seen enough analysis to know
what of this means, we are just mentioning it for fun! Check the notes from last quarter to see
what the p-adic metric is.) In the case of R, we can then take the algebraic closure to obtain C,
which also inherits a metric and is in fact complete with respect to that metric. So, the process of
beginning with Q and alternating between taking completions and closures ends with C:

Q R C.

In the p-adic case, Qp is complete, but not algebraically closed, so we must take an algebraic
closure in order to obtain an algebraically closed field Qp. As opposed to the “standard” case
above, however, this algebraic closure is not complete with respect to the inherited p-adic metric,
and so we must take another completion in order to obtain a complete metric space.

This completion, it turns out, is in fact still an algebraically closed field, and is commonly
denoted by Cp, the field of “p-adic complex numbers”:

Q Qp  Qp  Cp.

This field Cp is the ultimate field in which “p-adic analysis” takes place, and is used through number
theory and algebraic geometry. In fact, as a field, Cp is actually isomorphic to C, but the point is
that the analytic metric structures (i.e. the way in which you measure distance) is very different.

Separable polynomials. We finish by moving away from the main topic of the day, to quickly
introduce the notion of a separable polynomial. This will be very brief, and it probably makes sense
to just postpone the definition until next time, but we introduce it now just so that we can hit the
ground running with a Warm-Up which deals with this concept next time.

Our eventual goal is to the define the notion of a separable extension. We are working towards
Galois theory, and want to understand the types of extensions over which Galois theory works as
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nicely as possible, and it turns out that separability is one key ingredient towards this; the other is
normality, which we introduced last time. (An extension which is both normal and separable will
be called a Galois extension.) Now, the definition of a separable extension (which we will give next
time) will possibly seem counterintuitive at first, or more precisely it will seem counterintuitive
that such a definition is needed, since at first glance it will appear as if every extension should
be separable. Indeed, pretty much every field extension you have seen so far in your life is in fact
separable, in particular because in characteristic zero every extension is indeed separable. To have
any hope of seeing extensions which are not separable we must move to prime characteristic, but
even that is not enough since, as we’ll see, all finite extensions of finite fields are also separable.
The point is that separability can possibly only fail for infinite fields of prime characteristic, and
we just have not seen many examples of such things apart from Fp. (But actually, Fp is separable
over Fp, so this doesn’t cut it either.) Even though our main focus will be on field extensions where
separability is always guaranteed to hold, it will nevertheless be useful to come to terms with this
concept in order to understand why it is so important to Galois theory. (It will also be crucial to
the construction and uniqueness of all possible finite fields.)

Here is the key definition: we say that a polynomial p(x) ∈ F [x] is separable if it has no repeated
roots in any extension, or equivalently if it has distinct roots in its splitting field; otherwise, we
say that p(x) is inseparable. (The name “separable” comes from the idea that the roots can be
“separated” from one another, because they are distinct.) For example, (x − 1)2 = x2 + 2x + 1 is
inseparable over Q since it has a repeated root of 1 (of multiplicity 2), and x2− 2 is separable over
Q since its roots ±

√
2 in its splitting field are distinct. The polynomial x3−2 is also separable over

Q since its distinct roots are 3
√

2, ζ3
3
√

2, and ζ23
3
√

2 (where ζ3 is a primitive third root of unity),
each of multiplicity 1.

The property that will characterize separable extensions comes from asking whether there exist
any irreducible polynomials which are not separable. As alluded to before, the answer is “no” over
a field of characteristic zero, and “no” for polynomials over finite fields, but can be “yes” in other
settings, with a basic example given below. We will look at all this more closely next time.

Example. Consider the field F3(x) of rational functions (fractions of polynomials) over F3. This
field has characteristic 3, and is an infinite extension of F3. Now, take the polynomial

X3 − x

over this field, meaning in the polynomial ring (F3(x))[X]. (So, x here is no longer the variable
of polynomials, but rather an element of the coefficient field F3(x). Capital X is the polynomial
variable.) We claim first that this polynomial is irreducible over F3(x). Indeed, if we recognize
F3(x) as the fraction field of F3[x], we see that x is a prime in the ring F3[x] since the quotient
F3[x]/(x) ∼= F3 is an integral domain. Eisenstein’s criterion with this prime then applies to show
that X3 − x is irreducible over F3[x], and hence over F3(x) by Gauss’s Lemma.

But, in the extension F3(x)( 3
√
x) ∼= (F3(x))[X]/(X3 − x), where we adjoin a cube root of

x ∈ F3(x), we have:
X3 − x = (X − 3

√
x)3.

Indeed, multiplying out the right side gives

(X − 3
√
x)3 = X3 − 3 3

√
xX2 + 3

3
√
x2X − x,

which simplifies to X3 − x since 3 = 0 in characteristic 3 so that the terms in the middle vanish.
This shows that X3 − x has only one root in its splitting field, namely 3

√
x, but that this root
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is repeated with multiplicity 3. Hence X3 − x is an irreducible polynomial over F3(x) which is
inseparable. (The same is true of Xp − x over Fp(x) for a similar reason for any prime p.) We
will see next time what inseparability of irreducibles can fail to give us, and see hints of why it is
something we want to avoid.

Lecture 7: Separable Extensions

Warm-Up. We show that irreducible polynomials over R are always separable. (In fact, the
same argument will apply to irreducible polynomials over Q.) This is a special case of the fact
we mentioned last time that irreducible polynomials over a field of characteristic zero are always
separable, which we will prove in full in a bit. Here, however, we can give a more brute-force proof
since we know where roots of polynomials over R (or Q) lie, namely in C.

A key observation is that if α ∈ C is a root of a polynomial with real coefficients, then so is the
complex conjugate α. Indeed, if α satisfies

c0 + c1α+ · · ·+ cnα
n = 0

for some ci ∈ R, then conjugating both sides yields

c0 + c1α+ · · ·+ cnα
n = 0,

where we use the fact that conjugation preserves addition and multiplication of complex numbers,
and that ci = ci since ci is real. So, suppose p(x) ∈ R[x] is irreducible. Then p(x) cannot have a
repeated real root a ∈ R, since such a repeated root would lead to a factorization like

p(x) = (x− a)2q(x)

for some q(x) ∈ R[x], but then p(x) is reducible since it factors as x− a times (x− a)q(x). (For a
similar reason, p(x) has at most one real root, since otherwise we would have at least two distinct
real factors x− a and x− b.)

Now, suppose α ∈ C is non-real root of p(x), so that α is also a root. Note that

(x− α)(x− α) = x2 − (α+ α)x+ αα

is a polynomial over R since α + α and αα are both real. Over C then, p(x) is divisible by x − α
and x− α, so it is divisible by the real polynomial (x− α)(x− α), so p(x) factors over R as

p(x) = (x− α)(x− α)q(x)

for some q(x) ∈ R[x]. Now, any other roots of p(x) have to come from roots of q(x), so if α is to
be a repeated root of p(x) it must be a root of q(x). But for the same reason as above, this would
give a factorization like

q(x) = (x− α)(x− α)h(x)

for some h(x) ∈ R[x]. But then we have

p(x) = [x2 − (α+ α) + αα]2h(x),

so p(x) would be reducible over R. Thus p(x) has no repeated roots in C, so it is separable. (This
also essentially classifies irreducible polynomials over R: there are the linear ones x− a for a ∈ R,
and the quadratic ones (x− α)(x− α) for α a non-real complex number.)
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Separability via derivatives. For irreducible polynomials over other fields, an argument such as
the one above will not work since we do not know how to describe the roots explicitly; in particular,
there is no analog of “if α ∈ C is a root, then so is α”. So, we need a way to characterize separability
in a way which does not make explicit reference to the unknown roots.

But, if a is a repeated root of p(x) ∈ F [x] in some extension, so that we can write p(x) as

p(x) = (x− a)2q(x)

over that extension (note this allows for the possibility that a has multiplicity greater than 2, since
q(x) could still have a as a root), taking derivatives gives

p′(x) = 2(x− a)q(x) + (x− a)2q′(x).

To be clear, by “derivative” here we mean the usual algebraic formula for the derivative of a
polynomial, which makes sense over any field; there is no “limit” definition being used, which
would not make sense over arbitrary fields. (One can show using induction that the product rule
still holds for such derivatives, which we used above.) We see that a is then still a root of p′(x)
due to the x− a factors present in the expression for p′(x) above. Conversely, if a is a root of p(x),
write p(x) as

p(x) = (x− a)h(x)

for some h(x), so that
p′(x) = h(x) + (x− a)h′(x).

If a is also a root of p′(x), then this equality shows that a is a root of h(x) as well, so h(x) =
(x− a)g(x) for some g(x). This then gives

p(x) = (x− a)h(x) = (x− a)2g(x),

so that a is a repeated root of p(x) . We conclude that a is a repeated root of p(x) (over any field)
if and only if a is a root of both p(x) and p′(x).

If a is a root of both p(x) and p′(x), then x− a is a divisor of both p(x) and p′(x), so that p(x)
and p′(x) are not relatively prime, assuming neither is constant Conversely, if p(x) and p′(x) are
not relatively prime, then their greatest common divisor is a polynomial g(x) of degree at least 1;
this g(x) then has a root in some extension of F , which will be a root of both p(x) and p′(x) since
x− a divides g(x) implies x− a divides p(x) and p′(x). The final upshot is the following result:

p(x) is inseparable (i.e. has a repeated root) if and only if p(x) and p′(x) (assuming
p′(x) 6= 0) are not relatively prime; or equivalently, p(x) is separable if and only if p(x)
and p′(x) are relatively prime.

We thus have our desired characterization of separability which does not depend on being able to
describe, or even mention, the roots of a polynomial.

Examples. The polynomial p(x) = x2 − 2x+ 1 = (x− 1)2 has derivative p′(x) = 2(x− 1), so p(x)
and p′(x) are both divisible by x− 1 and are thus not relatively prime. Hence we recover the fact
that p(x) = x2−2x+1 is inseparable over Q. For q(x) = x3−2 over Q, we have q′(x) = 3x2, which
is relatively prime to x3 − 2 since only the only non-units dividing q′(x) are x and x2 (or these
times units), and neither divide q(x). (Also note that q(x) and q′(x) do not share a root.) Thus
q(x) = x3 − 2 is, as expected, separable. The polynomial Xp − x ∈ Fp(x) (we looked at the special
case p = 3 last time) has derivative pXp−1, which is 0 since Fp(x) has characteristic p. Thus we
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cannot say anything definitive using derivatives in this case, but of course we argued that Xp − x
was inseparable over Fp(x) last time.

The polynomial xn − 1, whose roots are the nth roots of unity, has derivative nxn−1. Over a
field of characteristic zero, this derivative is nonzero and relatively prime to xn − 1, so xn − 1 is
separable over such a field. This means that there are always n distinct nth roots of unity lying
in some extension (say in the algebraic closure if nothing else) of a field of characteristic 0. (In
the case of Q ⊆ R ⊆ C, we know this already since we can describe the roots of unity explicitly
as ζkn where ζn = e2πi/n.) Over a field of characteristic not dividing n, nxn−1 is still nonzero and
relatively prime to xn − 1, so the algebraic closure of such a field also contains n distinct nth roots
of unity. If the characteristic of F, however, divides n, then nxn−1 = 0 so no information about
the number of roots of unity can be derived from this alone. (In fact, it turns out there are strictly
fewer than n distinct nth roots of unity in this case, each with multiplicity greater than 1.)

Irreducible over characteristic zero. We can now prove that irreducible polynomials over fields
of characteristic zero are always separable, generalizing the Warm-Up. Suppose q(x) is irreducible,
say of degree n ≥ 1. Then q′(x) is nonzero (since the characteristic is not zero) of degree n − 1.
Since q(x) is irreducible, its only divisors are 1 and q(x) (or these times units), and q(x) does not
divide q′(x) since q′(x) has smaller degree. Thus q(x) and q′(x) are relatively prime, so q(x) is
separable over a field of characteristic zero.

The reason why this does not work over a field of characteristic p is that q′(x) could in fact
be zero, which happens when all the coefficients of q′(x), or equivalently all exponents in q(x), are
divisible by p. (In which case q(x) does divide q′(x) = 0.) If q′(x) is in fact nonzero, then the proof
above does work, and we can conclude that irreducible polynomials with nonzero derivatives are
separable over fields of prime characteristic.

Separable extensions. We say that E is a separable extension of F if it is algebraic over F and
the minimal polynomial of every element of E is separable over F . (Equivalently, all irreducible
polynomials over F are separable.) The claim proved above thus says that any finite (or more
generally algebraic) extension of a field of characteristic zero is separable.

Freshman’s dream and Frobenius. Now, let us focus on the characteristic p case, where, as
discussed above, it is not immediate that irreducible polynomials are separable. (Indeed, this is
not true over Fp(x) for example.) We claim that this is in fact true over finite fields at least, and
to prove this we need what’s called the freshman’s dream: (x+ y)n = xn + yn.

Now, of course, this seems like wishful thinking (and it often is for those attempting to use this
in a high school algebra or calculus course), but the fact is that there is some truth to this, in
that it actually holds in characteristic p for n = p! (That’s an exclamation mark, not a factorial.)
Indeed, suppose F has characteristic p. Then for x, y ∈ F we have:

(x+ y)p = xp + pxp−1y + 1
2p(p− 1)xp−2y2 + · · ·+ pxyp−1 + yp

by the binomial theorem, where the coefficient of xp−kyk is
(
p
k

)
= p!

(p−k)!k! . For p prime, this binomial

coefficient is in fact divisible by p for 0 < k < p (we actually proved this in last quarter’s notes
when discussing the irreducibility of the pth cyclotomic polynomial using Eisenstein’s criterion), so
all of these intermediate terms vanish and we are left with:

(x+ y)p = xp + yp,

i.e. the freshman’s dream. (Perhaps all of those freshmen are actually on to something!)
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As a consequence of this, the pth power map F → F sending x to xp is a field homomorphism,
since it preserves addition (freshman’s dream) and multiplication. This homomorphism is known
as the Frobenius map, or often simply “Frobenius” on its own. As we’ll see, it plays an important
role in Galois theory in prime characteristic. The Frobenius map F → F is always injective (the
kernel is trivial), and when F is finite it is actually surjective too, simply because any injective map
between sets of equal finite size is automatically surjective. In the finite case then, Frobenius is
actually an automorphism.

Perfect fields. If F is finite of characteristic p, the fact that Frobenius is surjective says that every
element of F is a pth power: for any a ∈ F, there exists b ∈ F such that bp = a. Or in other words,
every element of F has a pth root in F. We say that a field F is perfect if it has characteristic zero,
or characteristic p and every element of F is a pth power, which we symbolically denote as K = Kp

where Kp denotes the set of pth powers. Thus, finite fields are perfect, as are our usual Q, R, C,
and subfields thereof. (I do not know where the name “perfect” came from historically, but it’s a
good name in my mind since these are the “perfect” fields to use in Galois theory.)

Irreducible over perfect field. We can now extend the fact that irreducible polynomials over
fields of characteristic zero are separable to hold over perfect fields more generally. So, suppose
F is perfect of characteristic p (which thus encompasses at least all finite fields) and that p(x) is
inseparable. As discussed earlier, this forces p′(x) to be the zero polynomial, which requires that
all exponents showing up in p(x) be multiples of p:

p(x) = a0 + a1x
m1p + a2x

m2p + · · ·+ akx
mkp

for some ai ∈ F and mi ∈ N. Since F is perfect, each ai is a pth power, say ai = bpi for some bi ∈ F.
Then we have:

p(x) = a0 + a1x
m1p + a2x

m2p + · · ·+ akx
mkp

= bp0 + bp1x
m1p + bp2x

m2p + · · ·+ bpkx
mkp

= bp0 + (b1x
m1)p + (b2x

m2)p + · · ·+ (bkx
mk)p

= (b0 + b1x
m1 + b2x

m2 + · · ·+ bkx
mk)p,

where the last equality is the freshman’s dream. But this shows that p(x) is reducible (the term
in parentheses above is a p-fold factor), so we conclude that irreducible polynomials over a perfect
field are separable.

Finite over perfect is separable. As a consequence, any finite (or algebraic) extension of
a perfect field is separable, which, in particular, means that finite extensions of finite fields are
separable. This is why we have to move to more exotic infinite prime characteristic examples, such
as extensions of Fp(x), if we want to see settings where separability can fail. As we develop Galois
theory, we will see what use separability truly has.

Lecture 8: Cyclotomic Extensions

Warm-Up. Suppose F is a finite field of characteristic p, so that it is an extension of Fp. We show
that that the fixed points of the Frobenius automorphism on F are precisely the elements of Fp:
ap = a for a ∈ F if and only if a ∈ Fp ⊆ F. First, if a ∈ F×p , then since F×p is a (multiplicative)
group of order p − 1 we have ap−1 = 1. (In other words, all nonzero elements of Fp are (p − 1)-st
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roots of unity.) Multiplying by a gives ap = a, so a ∈ F×p is a fixed point of Frobenius. Since 0p = 0
is also true, all elements of Fp are fixed points.

Now, ap = a is equivalent to ap − a = 0, which says that a is a root of the polynomial
xp − x ∈ Fp[x]. This polynomial has at most p roots in an extension of Fp (in fact exactly p roots
since it is separable and hence has no repeated roots: the derivative of xp − x is −1, which is
relatively prime to xp − x.) But of course, we know from above that elements Fp already give p
such roots, so these must be all the roots. Hence if β ∈ F satisfies βp = β, so that it is a root of
xp − x, β must actually be in Fp ⊆ F. Thus the fixed field of Frobenius on F is precisely Fp.

As a quick application, we show that if f(x) is a polynomial over Fp, then Frobenius sends roots
to roots. Let α be a root of

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n, ci ∈ Fp

in some extension. Then
c0 + c1α+ c2α

2 + · · ·+ cnα
n = 0.

Taking the pth power of both sides and applying the freshman’s dream to the result gives:

cp0 + cp1α
p + cp2(α

p)2 + · · ·+ cpn(αp)n = 0.

But Frobenius fixes ci ∈ Fp, so this becomes

c0 + c1α
p + c2(α

p)2 + · · ·+ cn(αp)n = 0,

which says that αp is a root of f(x). Iterating this map then gives αp
2

as a root, then αp
3

as a
root, and so on. In fact, this process gives all roots of f(x) ∈ Fp[x] (to be proved later), so that
the Frobenius map has the effect of permuting the roots of a polynomial over Fp. We will come
back to see what this says about the Galois theory of extensions of Fp later.

Existence and uniqueness of finite fields. We can now finally achieve the long sought-after
understanding of finite fields: for any prime power pn, there exists a unique field of order pn. Let
us first demonstrate uniqueness. To this end, suppose F is a field of order pn. Since the group of
units F× has order pn− 1, any nonzero a ∈ F satisfies ap

n−1 = 1, which gives ap
n

= a. The element
a = 0 also satisfies this, so we see that all elements of F are roots of xp

n − x. But this polynomial
has at most pn roots since its degree is pn, so the elements of F must give all the roots and hence
F is the splitting field of xp

n − x. (A proper subfield would exclude some a ∈ F, and hence would
not contain all roots of xp

n − x.) Since splitting fields are unique, this shows that a field of order
pn—if it exists—is unique, up to isomorphism of course.

Now for the existence. The algebraic closure Fp of Fp contains the set S of roots of xp
n−x ∈ F[x]:

S := {α ∈ Fp | αp
n

= α}.

Since the derivative of xp
n −x is pnxp

n−1− 1 = −1, xp
n −x is relatively prime to its derivative and

hence is separable, so the roots of xp
n − x are all distinct, which means that S contains exactly pn

elements. We claim that S is actually a field, which is the sought-after field of order pn we want.
If α, β ∈ S, then

(αβ)p
n

= αp
n
βp

n
= αβ

and
(α+ β)p

n
= αp

n
+ βp

n
= α+ β,
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so αβ, α + β ∈ S, which means S is closed under addition and multiplication. (The first step
in the second line above comes from repeated application of the freshman’s dream: for example,
(α+β)p

2
= ((α+β)p)p = (αp +βp)p = αp

2
+βp

2
, and similarly for larger powers of p.) If αp

n
= α,

then taking reciprocals gives (α−1)p
n

= α−1, so that S is also closed under taking inverses, and
hence we conclude that S is a field as claimed.

We make one final note that doing computations with Fpn (now unambiguously defined) de-
scribed as the roots of xp

n − x in the algebraic closure of Fp, or as the splitting field of xp
n − x,

is not so easy, since these descriptions alone do not give an obvious way to manipulate elements
directly. In practice, if one is seeking to do concrete computations, one should instead first describe
Fpn as Fp[x]/(f(x)) by finding an irreducible polynomial f(x) of degree n over Fp, and then work
with elements in this quotient instead. Finding such a polynomial, or rather proving that your
candidate is actually irreducible, is not easy, but nowadays various pieces of computing software
can easily handle such computations.

Cyclotomic extensions. We have seen that the group of complex nth roots of unity, often denoted
by µn, is cyclic with generator

ζn = e2πi/n = cos(2πn ) + i sin(2πn ).

The other primitive roots of unity, i.e. those which can also be taken as generators of µn, can be
described as ζan where a is relatively prime to n, since we saw back in the fall that for a cyclic group
G = 〈x〉 of order n, the order of xk in general is n/(n, k), which is n if and only if (n, k) = 1. The
field Q(ζn) is the splitting field of xn − 1 over Q, and we refer to this field as the nth cyclotomic
extension of Q. (Any other primitive nth root of unity will generate the same field.)

The degree of this extension is the degree of the minimal polynomial φn(x) of ζn over Q, and we
call this φn(x) the nth cyclotomic polynomial over Q. We saw one special case of this last quarter,
namely when n = p is prime:

φp(x) = xp−1 + xp−2 + · · ·+ x+ 1.

We showed this was irreducible using Eisenstein’s Criterion on the shifted polynomial φp(x + 1),
and it has ζp as a root since

xp−1 + xp−2 + · · ·+ x+ 1 =
xp − 1

x− 1
.

(Note that it is not at all obvious to see without this identity that 1 + ζp + ζ2p + · · ·+ ζp−1p is zero!)
Thus [Q(ζp) : Q] = p− 1 when p is prime. When n is not prime, we still have that ζn is a root of
xn−1 + · · ·+ x2 + x+ 1, but this polynomial is no longer irreducible.

Cyclotomic polynomials. We now give an explicit description of φn(x) in general. We claim
that:

φn(x) =
∏

primitive n-th
roots of unity ζ

(x− ζ) =
∏

(a,n)=1

(x− ζan),

where ζn in third expression is our usual primitive nth root of unity. Note that ζn is a root of this
polynomial, since (ζn− ζn) = 0 is one of the factors which occurs. What remains to be seen is that
this actually has rational—in fact integer—coefficients (not obvious, since for now the coefficients
appear to lie only in Q(ζn)) and that it is irreducible over Q. It is these properties that will
guarantee this definition of φn(x) matches the one we gave before, as the minimal polynomial of

29



ζn. We will prove irreducibility next time, but for now note that as a consequence we can say
definitively what the degree of Q(ζn) over Q is: it is the number of positive integers smaller than
n that are relatively prime to n, or in other words ϕ(n) where ϕ is the Euler phi-function.

Here are the first few examples. The only first root of unity is 1, so

φ1(x) = x− 1.

There are two second roots of unity, ±1, but only −1 is primitive. (Indeed, 1 is a second root of
unity which is also a first root of unity. In general, a dth root of unity is also an nth root of unity
when d | n, but not a primitive one. The primitive ones are those which do not occur as roots of
unity for any smaller exponent.) Thus

φ2 = x− (−1) = x+ 1.

Since 3 is prime, φ3(x) = x2+x+1. To see this via the new characterization above, take ζ3 = e2πi/3,
so that ζ3 and ζ23 are the primitive third roots of unity, and compute:

φ3(x) = (x− ζ3)(x− ζ23 ) = x2 − (ζ3 + ζ23 )x+ ζ33 = x2 + x+ 1

where we use ζ33 = 1 and 1+ζ3+ζ23 = 0. (Again recall that ζn always satisfies 1+ζn+· · ·+ζn−1 = 0.)
The fourth roots of unity are ±1,±i, and of these ±i are primitive, so

φ4(x) = (x− i)(x+ i) = x2 + 1.

The n = 5 case is prime, so φ5(x) = x4 +x3 +x2 +x+ 1, and for n = 6 we have two primitive roots
of unity, so:

φ6(x) = (x− ζ6)(x− ζ56 ) = x2 − (ζ6 + ζ56 )x+ ζ66 .

Since
ζ6 = cos(2π6 ) + i sin(2π6 ) = 1

2 + i
√
3
2 and ζ56 = cos(5·2π6 ) + i sin(5·2π6 ) = 1

2 − i
√
3
2 ,

we have ζ6 + ζ56 = 1, so φ6(x) = x2 − x+ 1.

Recursion and integer coefficients. Computing φn(x) using the factorization via primitive
roots of unity above gets tedious quickly, but we can use these factorization to obtain a recursive
method for computing these polynomials. As an example, consider n = 6, where the roots of unity,
including the non-primitive ones, are 1, ζ6, ζ

2
6 , ζ

3
6 , ζ

4
6 , ζ

5
6 . These are all the roots of x6 − 1, so this

factors as:
x6 − 1 = (x− 1)(x− ζ6)(x− ζ26 )(x− ζ36 )(x− ζ46 )(x− ζ56 ).

But among here we can find the cyclotomic polynomials for n = 1, 2, 3, and 6 by grouping roots
according to their status as primitive roots for possibly smaller exponents: 1 is the primitive first
root of unity, ζ36 = ζ2−1 is the primitive second root of unity, ζ26 = ζ3 and ζ46 = ζ23 are the primitive
third roots of unity, and ζ6 and ζ56 are the primitive sixth roots of unity, which means

x6 − 1 = φ1(x)φ2(x)φ3(x)φ6(x).

If we know φ1(x), φ2(x), and φ3(x), then from this we can determine φ6(x). More generally, by
grouping roots in the same way for any n, we get:

xn − 1 =
∏

n-th roots
of unity ζ

(x− ζ) =
∏
d|n

∏
primitive d-th
roots of unity ζ

(x− ζ) =
∏
d|n

φd(x)
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which thus gives a recursive way to find φn(x) from the previous cyclotomic polynomials.
As a consequence of this recursion, we can now see inductively that φn(x) will always have

integer coefficients. Suppose we know already that φd(x) has integer coefficients for d | n, d 6= n.
Then

φn(x) =
xn − 1∏

d|n,d 6=n φd(x)
,

considered as a polynomial over Q(ζn), is a quotient of two integer polynomials. If the denominator
above did not divide xn − 1 over Q, then we would have

xn − 1 = (denominator)q(x) + r(x)

for some q(x), r(x) ∈ Q[x] with r(x) 6= 0 by the division algorithm, but this equality would then
also hold in Q(ζn)[x], so that the denominator would not divide xn − 1 in Q(ζn)[x] either. Since it
does, the denominator does divide xn − 1 in Q[x]. By Gauss’s Lemma (note all polynomials here
are monic), this implies the denominator also divides xn − 1 in Z[x], so φn(x) ∈ Z[x] as claimed.

Lecture 9: Geometric Constructions

Warm-Up. We determine which finite field serves as the 9th cyclotomic extension of F5. Now,
the notion of a cyclotomic extension of a finite field is analogous to the one we gave last time for
Q: in this case, it is the smallest extension of F5 which contains a primitive 9th root of unity, or
equivalently the splitting field of x9 − 1 over F5. A “primitive” 9th root of unity in this context is
an element of multiplicative order 9.

Any root of unity is necessarily nonzero, and so belongs to F×5n , which is a cyclic group of order
5n − 1. (We proved last quarter that the group of units of any finite field is cyclic.) In order for
this to contain an element of order 9 requires that 9 divide 5n−1, and our work from the fall shows
that this is condition sufficient as well. Thus we are looking for the smallest n such that 9 | 5n− 1.
Checking increasing n by brute force shows that n = 6 is the first value that works, so we conclude
that F56 is the smallest extension of F5 that contains a primitive 9th root of unity. This is thus the
9th cyclotomic extension of F5.

Irreducibility of cyclotomic polynomials. We now prove that φn(x), defined as the monic
polynomial whose roots are precisely the primitive nth roots of unity, is irreducible over Q. (We
argued last time using the recursive expression for these polynomials that φn(x) ∈ Z[x] for all n.)
This then justifies the claim that φn(x) is the minimal polynomial of ζn, so that Q(ζn) has degree
ϕ(n) over Q, where ϕ(n) is the number of relatively prime positive integers less than n. The proof
give here is essentially the same as the book’s proof, only written in a (I think) clearer way.

Suppose φn(x) = f(x)g(x) for some f(x), g(x) ∈ Q[x] (in fact, since φn(x) ∈ Z[x] we can assume
by Gauss’s Lemma that f(x), g(x) ∈ Z[x]) and let ζ be a primitive nth root of unity. (Note that ζ
is not necessarily ζn = e2πi/n, although it is a power of ζn.) Then ζ is a root of φn(x), so it must be
a root of either f(x) or g(x), so let us say that it is a root of f(x). We claim that in fact then all
other primitive nth roots of unity are roots of f(x) as well, which implies that φn(x) = f(x) (since
φn(x) and f(x) will have exactly the same roots), which implies that φn(x) is irreducible.

Suppose p - n (p prime) and consider the primitive nth root of unity ζp. This is a root of φn(x),
so it is a root of either f(x) or g(x), and by way of contradiction let us assume it is a root of g(x).
Then g(ζp) = 0, which can be instead interpreted as saying that ζ is a root of the polynomial g(xp);
i.e. plugging ζp into g(x) is the same as plugging ζ into g(xp). Since ζ is now a root of both f(x)
and g(xp), both are divisible by x− ζ, and hence these are not relatively prime over Q(ζ). But we
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claim this implies they are also not relatively prime over Q (note that x − ζ would not work as a
common factor over Q since ζ /∈ Q, I guess unless n = 1, 2): if f(x), g(xp) are relatively prime over
Q, then

f(x)h(x) + g(x)`(x) = 1

for some h(x), `(x) ∈ Q[x] by the Euclidean algorithm, but this same identity holds over Q(ζ) as
well, so that f(x) and g(xp) would be relatively prime over Q(ζ) too, which they are not.

Hence there is a common divisor d(x) ∈ Z[x] (not just in Q[x] but in Z[x] as well by Gauss’s
Lemma) of both f(x) and g(xp) of positive degree, which we can take to be irreducible. (We can
just take an irreducible factor of the gcd of f(x) and g(xp).) Reducing coefficients mod p then shows
that d(x) divides both f(x) and g(xp) over Fp. (Bars indicate the reductions.) But g(xp) = g(x)

p

by the freshman’s dream and the fact that any a ∈ Fp is a fixed point of Frobenius:

c0 + c1x
p + · · ·+ cn(xp)n = cp0 + cp1x

p + · · ·+ cpn(xn)p = (c0 + c1x+ · · ·+ cnx
n)p.

Since d(x) is irreducible (hence a prime element of Fp[x]) and divides g(x)
p
, it divides g(x) as well.

But then, a root α of d(x) in an extension of Fp will be a root of both f(x) and g(x), hence a

repeated root of f(x) g(x) = φn(x), and hence a repeated root of xn − 1 over Fp because φn(x)
divides xn − 1. However, xn − 1 is separable over Fp since its derivative nxn−1 is nonzero (because
p - n) and relatively prime to xn − 1, so it cannot have repeated roots. We thus conclude that the
original ζp must have been a root of f(x) and not g(x) all along.

Thus if ζ is any primitive nth root of unity which is a root of f(x), then ζp is also a root of
f(x) for any prime p - n. If p1, p2 are two primes not dividing n, then ζp1 is a root of f(x), so
(ζp1)p2 = ζp1p2 is also a root of f(x) by this reasoning since ζp1 is itself a primitive nth root of
unity. This new root is still primitive, so if p3 is a third prime that does not divide n then

((ζp1)p2)p3 = ζp1p2p3

is also a root of f(x). And so on, we conclude that for any primes pi not dividing n, ζp1···pn is a
root of f(x). All a ∈ N relatively prime to n are products of such primes, so we get that ζa is a
root of f(x) whenever (a, n) = 1, which means that all primitive nth roots of unity are roots of
f(x). As stated earlier, this means that φn(x) = f(x), so whenever φn(x) = f(x)g(x) we have that
φn(x) equals one of the factors, so it is irreducible as claimed. (A lot of good stuff went into this
argument!)

Geometric constructions. Before moving on to Galois theory, we discuss the topic of straightedge
and compass constructions, focusing on how they can be formulated in a field-theoretic manner.
The starting point is a straightedge, which is a tool we can use to draw straight lines, and a
compass, which we can use to draw circles. (Note that the straightedge is not assumed to have any
markings, so that it is not a ruler, just a literal straight edge.) The fundamental problem is that
of determining what types of geometric objects can be constructed using these tools alone.

We will not delve too heavily into the process of actually constructing said objects, since our goal
is to interpret them field-theoretically, so for the most part we will assume that the constructions
we claim are possible are in fact possible. But, to get a sense for what we mean, we will show that
given a line and point on it, we can construct a line passing through that point that is perpendicular
to the given line:
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Take the compass and draw any circle (radius doesn’t matter) centered at the given point, and
mark off the two points where our given line intersects the circle. Extend the legs of the compass to
match the diameter of the circle, with endpoints to the points we just drew, and draw two circles
with radius equal to this diameter, each centered at one of our two points:

Finally, mark off the two points where these two circles intersect each other, and then draw a line
connecting them using the straightedge. This final line is that one we want: it is perpendicular to
the original line, passes through the original point (see picture above), and was constructed using
straightedge and compass alone.

Given a line and a point not on that line, by constructing one line perpendicular to the first
line and then a third line perpendicular to the second line, we can also construct parallel lines
using straightedge and compass. Other geometric objects which can be constructed in similar ways
include equilateral triangles, squares, and bisected angles. The four historical problems considered
in this subject are:

• squaring the circle: given a circle, can a square of area equal to that of the circle be constructed
using straightedge and compass?

• doubling the cube: given a cube, can a cube of double the volume be constructed using
straightedge and compass?

• trisecting the angle: given an angle, can an angle of a third the measure of the first be
constructed using straightedge and compass? and

• constructing polygons: for which n can a regular n-gon be constructed using straightedge and
compass?

The answers to these depends on the field theory we have developed, and, in the fourth case,
the Galois theory we will soon develop. (We should note that these problems might seem like
merely “cute” problems by today’s standards, in that they might seem all that important as stated.
But, to the ancient Greeks, this was all that mattered: they had no concept of “number” as the
abstract notion we interpret it as today, and to them numbers only made sense as lengths, so that
constructing things via straightedge and compass was how they actually interpreted “arithmetic”.)

Constructible numbers. Given a line segment that we interpret as having length “1”, we can
determine which “numbers”—i.e. lengths—can be constructed from this using straightedge and
compass. (From now, we will simply say “construct” instead of the full “construct using straightedge
and compass”.) For example, by putting this line segment next to itself (set the legs of the compass
to be at the endpoints of this line segment, and use this as the radius of circle we can use to “copy”
the first line segment) we get a segment of length “2”. Then in a similar way we get 3, 4, and in
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fact any positive integer. It turns out that given line segments of lengths α and β, it is possible to
construct a line segment of length α/β, so that we get all positive rational numbers as well.

We say that a positive real number α is constructible if it a line segment of length α can be
obtained from the starting length 1 through a sequence of intermediate constructions. So, any
positive rational is constructible. In general, it turns out (check the book or take MATH 340 to
see how to actually do these things) that the set of constructible numbers is closed under addition,
subtraction (as long as the result is positive), multiplication, division, and square root extractions,
where for the last one we mean that if α is constructible, then

√
α is constructible. So, the set of

constructible numbers is almost a field with no degree 2 extensions (such things required square
roots not in the base field), except for the lack of negatives.

Now, to determine precisely which numbers are constructible requires thinking about the algebra
that underlies straightedge and compass constructions. The possible line segments—and hence
constructible numbers—we can obtain via these operations are those connecting points obtained
by intersecting constructible lines with constructible lines, constructible lines with constructible
circles, and constructible circles with constructible circles. (See the construction of perpendicular
lines we gave before, for example. The constructible lines and circles are those whose defining
data—slopes, radii, centers—are constructible.) Such lines and circles have equations of the form

ax+ bx = c and (x− p)2 + (y − q)2 = r2

where a, b, c, p, q, r are all constructible, and the point is that determining the intersections of these
by substituting one thing to another leads to equations which are at most quadratic. Solving these
equations produces new constructible numbers that are obtained from previous ones (a, b, c, d, p, q,
and r) using the operations of addition, subtraction, multiplication, division, and square root
extraction alone, so the conclusion is that α is constructible if and only if α can be obtained from
1 using a sequence of operations involving only addition, subtraction, multiplication, division, and
square root extractions alone. For example,√√

3 + 5−
√√

7

4 +

√
4 +

√
5 +
√

11

is constructible, and to actually construct it we would construct 7, then
√

7, then
√√

7, then

5−
√√

7, and so on, working our way “outward” in both the numerator and denominator and then
constructing the quotient.

Constructibility in terms of fields. The upshot is that if α ∈ R is constructible, then in
fact Q(α) must be an extension of Q with degree a power of 2. This is something we saw in a
previous example which asked about the impossibility of expressing 3

√
2 in terms rational numbers

and addition, subtraction, multiplication, division, and square root extractions. The point was that
each additional square root (not already in the set we have so far) introduced in the construction
increases the degree by exactly 2, so by the tower law the final result has degree 2n where n denotes
the number of root extractions which were necessary. For example,√√

3 + 5−
√√

7

4 +

√
4 +

√
5 +
√

11

lies in a degree 27 extension of Q. (The numerator needs four root extractions, and the denominator
three, which are all different from the ones needed in the numerator.)
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With this in mind, we can now answer some of our Greek construction questions. First, to
“square” a circle of area πr2 requires constructing of square of side length r

√
π. But

√
π is tran-

scendental over Q (if it was algebraic, π would be as well), so Q(
√
π) has infinite degree over Q and

hence [Q(
√
π) : Q] is not a power of 2. Thus

√
π is not constructible, so circles cannot be squared.

Second, to double a cube of side length a and volume a3 requires constructing a cube of side length
a 3
√

2. But 3
√

2 is not constructible since [Q( 3
√

2) : Q] = 3, so cubes cannot be doubled.
Angle trisection in general is not possible either (it is for certain angles), as can be shown by

considering the trisection of a 60◦ angle: this angle is constructible (take an angle in a constructed
equilateral triangle), but trisecting requires constructing a 20◦ angle, which is not possible. We will
come back to this next time to see why, and will wrap things up by relating the construction of
regular n-gons to the construction of primitive roots of unity and hence to cyclotomic extensions.

Lecture 10: Galois Groups

Warm-Up. We show that an angle θ is constructible using straightedge and compass—meaning
that line segments intersecting at and angle θ can be constructed—if and only if cos θ is a con-
structible real number. Take a construction of θ. Extend the line segments used in this construction
so that they are longer than the base length “1”, and draw a circle of radius 1 with center as the
angle vertex:

Mark where this circle intersects one leg from the angle, and construct the perpendicular from
this intersection to the other leg. (See above.) The length from the original vertex to where this
perpendicular intersects this leg is then cos θ, so that cos θ is constructible if θ is.

Conversely, given a length cos θ, extend it to have length longer than 1, and draw a circle of
radius 1 centered at the other endpoint:

Construct the perpendicular to this line that passes through the non-center endpoint of the original
line segment, and mark the intersect of this perpendicular with the circle. (See above.) Connect
this point to the center of the circle and we have constructed θ.

Trisections and polygons. We can now argue that angle trisection by straightedge and compass
is not always possible. This is not to say that it is never possible, since for example an angle of
measure 180◦ can be trisected because we know that an angle of measure 60◦ (if we accept the fact
that equilateral triangles are constructible) is constructible, but just that there are constructible
angles that cannot be trisected. In particular, 60◦ is constructible, but we claim that its trisection
20◦ is not, or equivalently that cos 20◦ is not constructible. Indeed, using the trig identity:

cos(3α) = 4 cos3 α− 3 cosα
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with α = 20◦ (this identity can be derived by taking the real parts in the complex-exponential
equality (eiα)3 = e3iα), we can see that cos 20◦ is a root of 4x3 − 3x − 1

2 . Then 2 cos 20◦ is a root
of x3 − 3x− 1, which is irreducible over Q. (No rational roots.) Thus 2 cos 20◦ generates a degree
3 extension of Q, so it is not constructible, and thus neither is cos 20◦.

As for constructing a regular n-gon, the key observation is that a regular n-gon is constructible
if and only if the “interior” angle 2π/n (in radians) is constructible. Indeed, if the polygon is
constructible, drawing line segments from the vertices to the center will construct the angle 2π/n,
and conversely if this angle is constructible, constructing it n times in a row in a “circular” manner
where each new angle is adjacent to the previous one and then drawing a circle will give the vertices
of the n-gon, which we can then connect by line segments. So, n-gon construction is equivalent to
construction of cos(2π/n). But this is the real part of the primitive root of unity ζn = e2πi/n, so
the point is that the constructibility of the n-gon comes down to properties of the n-th cyclotomic
extension Q(ζn) over Q. Galois theory will provide the final ingredient needed to understand this
extension in full.

From field extensions to groups. We have seen how questions about “constructing”, or more
generally “expressing”, numbers in a certain way can be turned into questions about field extensions;
for example, expressing α in terms of rationals and +,−, ·,÷,

√
turns into a question about

obtaining Q(α) from Q via intermediate quadratic extensions. Similarly, it should seem plausible
now that the problem of expressing roots of polynomials via “nice” formulas can similarly be
rephrased in terms of field extensions, but we will clarify this in detail later. Our goal now is to
understand the final piece of this puzzle, which is the problem of turning questions about field
extensions into questions about groups:

constructions field extensions groups.

The upshot is that we already know quite a lot about groups, and this will help to understand
fields and their extensions more thoroughly.

Here is the key definition. Given a field extension E/F , we define the automorphism group of
the extension to be the group Aut(E/F ) of those (field) automorphisms of E which fix the base
field F :

Aut(E/F ) := {σ ∈ Aut(E) | σ(a) = a for all a ∈ F}.
We also say that σ ∈ Aut(E/F ) is an automorphism of E over F . This is a subgroup of the full
automorphism group Aut(E) of E (the group operation is composition), but is one that attempts
to encode information about the base field somehow: not all automorphisms of E will behave in
any particularly special way with regard to F , so we take F into consideration by requiring that
automorphisms fix the elements of F . In some sources this group is already called the Galois group
of E/F , but the phrase “Galois group” is more commonly only used in a special case to be clarified
in a bit, and we will do so as well.

Examples and root preservation. An automorphism σ of Q(
√
D) over Q (where D is a non-

square in Q) is determined by its effect on
√
D since it is required to fix the elements of Q: for

a, b ∈ Q, we have
σ(a+ b

√
D) = σ(a) + σ(b)σ(

√
D) = a+ bσ(

√
D).

At first glance σ(
√
D) is an element of Q(

√
D), and so is of the form σ(

√
D) = c + d

√
D, but

there are other restrictions on what this element can actually be. In particular, since
√
D satisfies

(
√
D)2 −D = 0, we can see that σ(

√
D) must also satisfy the same equation:

(
√
D)2 −D = 0 =⇒ σ((

√
D)2 −D) = σ(0) =⇒ (σ(

√
D))2 −D = 0.
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That is,
√
D is a root of x2 −D ∈ Q[x] and σ(

√
D) must then be a root of the same polynomial.

This gives only two possibilities: σ(
√
D) =

√
D (which gives the identity automorphism overall)

and σ(
√
D) = −

√
D, so Aut(Q(

√
D)/Q) is a group of order 2 and is thus isomorphic to Z/2Z.

In general, if p(x) ∈ F [x], then any σ ∈ Aut(E/F ) must sends roots of p(x) to roots of p(x),
and moreover gives a bijection (i.e. a permutation) of the roots contained in E: if α ∈ E satisfies

c0 + c1α+ · · ·+ cnα
n = 0 for ci ∈ F,

then applying σ ∈ Aut(E/F ) gives

c0 + c1σ(α) + · · ·+ cnσ(α)n = 0,

where we use the fact that the elements ci of F are fixed under σ. The fact that all the roots of p(x)
are permuted in this way is a consequence of the fact that there are finitely many roots: σ gives
an injective map from the set of roots to itself, so since this set is finite this map must actually
be bijective. These observations will make computing elements of Aut(E/F ) simple—although
still possibly nontrivial—in many examples. (Note for later that if p(x) has m roots in E, then
this observation produces a homomorphism Aut(E/F )→ Sm, where Sm is a symmetric group, by
sending each automorphism to the bijection it induces on the roots.)

As a second example, we compute Aut(Q( 3
√

2)/Q). Again any σ ∈ Q( 3
√

2) is determined by its
value on a generator, which here we can take to be 3

√
2. Since 3

√
2 is a root of x3− 2 ∈ Q[x], σ( 3

√
2)

must be a root of x3 − 2 as well. But the only root of x3 − 2 contained in Q( 3
√

2) is 3
√

2 itself,
since the other two roots are non-real complex. (They are ζ3

3
√

2 and ζ23
3
√

2 where ζ3 is a primitive
complex third root of unity.) Thus the only possibility is

√
( 3
√

2) = 3
√

2, which forces σ to be the
identity map. Hence Aut(Q( 3

√
2)/Q) = {id} is the trivial group.

Fixed fields. This final example Aut(Q( 3
√

2)/Q) = {id} shows that some caution should be taken
if we are trying to use these groups to study field extensions, since in this case the automorphism
group of the extension is not actually able to detect the extension, or more precisely the base field,
at all: considering Q( 3

√
2) as an extension of itself also produces a trivial automorphism group,

and so this group cannot tell exactly what we are considering Q( 3
√

2) to be an extension of. We
would like for Aut(E/F ) to truly detect F so that we know definitively we are considering E as
an extension of F and not of something else, and the upshot is that not all field extensions will
be suitable in this regard. What we really want is to consider those extensions where the only
elements of E that are fixed by all elements of Aut(E/F ) are those of F .

Given a subgroup H of the full field automorphism group Aut(E), we defined the fixed field EH

of H to be the set of elements of E fixed by all elements of H:

EH := {a ∈ E | σ(a) = a for all σ ∈ H}.

This is in fact a subfield of E since the fact that automorphisms preserve addition and multiplication
implies that EH is closed under the field operations of E, so we can thus consider E to be an
extension of EH . Now, here are two observations which hint at the deeper relation between field
extensions and groups we are working towards. First, if H1 ≤ H2 ≤ Aut(E) are two subgroups of
Aut(E), one contained in the other, then anything fixed by all elements of H2 is necessarily fixed
by all elements of H1 as well, so EH2 ⊆ EH1 . Thus, subgroups of automorphism groups correspond
to subextensions of fields, only with the order reversed. Second, if F1 ⊆ F2 ⊆ E is a tower of
extensions, then anything that fixes all of F2 will also fix all of F1, so Aut(E/F2) ≤ Aut(E/F1).
Thus, subextensions of fields correspond to subgroups of the automorphism group, again with the
order reversed.
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This is good stuff (!), and as stated before hints at a deep relation between these two types
of objects. For example, we can ask things like: to what types of field extensions do normal
subgroups correspond? What do quotient groups then correspond to? Can we classify all possible
subextensions of a given field extension by classifying the corresponding groups instead? Galois
theory will give us all the answers we need.

Galois groups and extensions. If we truly want Aut(E/F ) to detect the actual fact that E
is an extension of F in particular, then we should require that the fixed field of E corresponding
to this full group is F itself. We say that E is a Galois extension of F when this is the case, so
E/F is Galois if EAut(E/F ) = F . Thus, for example, Q(

√
D) is a Galois extension of Q, but Q( 3

√
2)

is not a Galois extension of Q. When E is a Galois extension of F , then we call Aut(E/F ) the
Galois group of the extension, and denote it by Gal(E/F ) instead. (As said earlier, some sources
use “Galois group” and the notation Gal(E/F ) for arbitrary extensions, but we will reserve these
only for the case of an extension which is actually Galois.)

We should note that this definition of “Galois extension” is one of many equivalent ones that
can be given, and indeed the book gives a different definition first in terms of the relation between
Aut(E/F ) and the degree [E : F ]. The Galois property is also equivalent to saying that E is
the splitting field of a separable polynomial over F , which using other terminology is the same as
saying that the extension is normal and separable. We have chosen to give the fixed field definition
first since it highlights the idea that we want elements of the group to detect the actual extension
including the base field, but we will show the equivalence of this with other definitions soon enough.

Lecture 11: More on Galois Groups

Warm-Up 1. We compute Aut(Q(
√

2,
√

3)/Q) and determine if Q(
√

2,
√

3) is a Galois extension
of Q. Since

√
2 and

√
3 generate this extension, we know that any σ ∈ Aut(Q(

√
2,
√

3)/Q) is
determined by its values on

√
2 and

√
3. Furthermore, since these two are roots of (x2− 2)(x2− 3)

over Q, we know that any σ must permute them among the other roots, which means that the only
possibilities for σ(

√
2) and σ(

√
3) are ±

√
2,±
√

3. At first glance this appears to give 12 possible
choices for σ: pick one of four values for σ(

√
2), and then pick one of the three remaining values

for σ(
√

3).
But there are some more restrictions we can derive, since

√
2 is also a root of x2− 2 alone, and√

3 of x3−2. The point is that all polynomial equations must be preserved, not only the one whose
roots are the given generators. This means that σ must permute

√
2 among the roots of x2 − 2,

and similarly for
√

3 and x3 − 2, so that the only possibilities are actually:

σ(
√

2) = ±
√

2 and σ(
√

3) = ±
√

3.

This gives four such automorphisms, so Aut(Q(
√

2,
√

3)/Q) is a group of order 4. If we denote by
σ1 the element that exchanges

√
2 and −

√
2 but fixes

√
3, and by σ2 the element fixing

√
2 and

exchanging
√

3 with −
√

3, then the four elements are 1, σ1, σ2, and σ1σ2. In fact, we have

Aut(Q(
√

2,
√

3)/Q) = 〈σ1〉〈σ2〉 ∼= 〈σ1〉 × 〈σ2〉 ∼= Z/2Z× Z/2Z,

where each Z/2Z factor keeps track of what is happening to each generator: leave it alone, or send
to its negative. (We’re using group-theoretic notation here, so that 〈σ1〉〈σ2〉 denotes the product
of two cyclic subgroups in the sense of the fall quarter.)

To determine if this extension is Galois we need to compute the fixed field of this entire auto-
morphism group. Elements of this extension look like

a+ b
√

2 + c
√

3 + d
√

6 with a, b, c, d ∈ Q.
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To determine which such elements are fixed by all σ ∈ Aut(Q(
√

2,
√

3)/Q), it is enough to check
which are fixed by the generators σ1 and σ2. Applying σ1 gives

a+ bσ1(
√

2) + cσ1(
√

3) + dσ1(
√

6) = a− b
√

2 + c
√

3− d
√

6,

where we use the fact that
√

6 =
√

2
√

3 in order to compute σ1(
√

6). This forces b = 0 and d = 0
for an element fixed by σ1, and then to also be fixed by σ2 forces c = 0:

a+ c
√

3 = σ2(a+ c
√

3) = a− c
√

3 ⇐⇒ c = 0.

Thus the only elements of the extension fixed by all elements of the automorphism group are those
in Q. The extension Q(

√
2,
√

3)/Q is hence Galois, and its Galois group is Z/2Z× Z/2Z.
Note that proper subgroups of the full Galois group can have larger fixed fields. For example,

the composite map σ1σ2 sends both of
√

2 and
√

3 to their negatives, and this ends up fixing
√

6:

σ1σ2(
√

6) = σ1σ2(
√

2
√

3) = [σ1σ2(
√

2)][σ1σ2(
√

3)] = (−
√

2)(−
√

3) =
√

6.

The fixed field of the subgroup 〈σ1σ2〉 is thus Q(
√

6). (It is only after imposing the requirement
that σ1 and σ2 individually fix field elements that we reduce to a fixed field of Q.) This hints at
the way in which subextensions of Q(

√
2,
√

3) over Q can be extracted from subgroups of the full
Galois group, a fact which will be clarified in the Fundamental Theorem of Galois Theory later.

Warm-Up 2. We do the same thing as above for the extension Q( 4
√

2) of Q. An element σ of the
automorphism group Aut(Q( 4

√
2)/Q) must send 4

√
2 to one of the following roots of x4 − 2 in C:

4
√

2, i
4
√

2, − 4
√

2, −i 4
√

2.

(Note i is a primitive fourth root of unity.) But the only such roots that lie in Q( 4
√

2) are ± 4
√

2
since the other two are not real. Thus there are only two possibilities for σ: the identity, and
4
√

2 7→ − 4
√

2. Hence Aut(Q( 4
√

2)/Q) ∼= Z/2Z.
If σ( 4

√
2) = − 4

√
2, then we have:

σ(
4
√

4) = σ(
4
√

2
4
√

2) = σ(
4
√

2)σ(
4
√

2) = (− 4
√

2)(− 4
√

2) =
4
√

4

and
σ(

4
√

8) = σ(
4
√

2
4
√

4) = σ(
4
√

2)σ(
4
√

4) = (− 4
√

2)(
4
√

4) = − 4
√

8.

An element in this extension is a linear combination of 1, 4
√

2, 4
√

4 =
√

2, and 4
√

8, so we see that the
elements fixed by the entire automorphism group are those of the form a + b 4

√
4 with a, b ∈ Q, so

the fixed field is Q( 4
√

4) = Q(
√

2). Thus Q( 4
√

2) is not Galois over Q. (Note, however, that Q( 4
√

2)
is Galois over Q( 4

√
4) = Q(

√
2) and Gal(Q( 4

√
2)/Q(

√
2)) ∼= Z/2Z.)

Orders and degrees. As a first step towards attaining a better understanding of the structure
of automorphism/Galois groups, and in particular of restrictions we can use to make the determi-
nation of these groups less labor intensive, we have the following relation between the order of an
automorphism group and the degree of the given field extension:

If E is the splitting field of a polynomial p(x) ∈ F [x], then |Aut(E/F )| ≤ [E : F ].
(So, the degree bounds the order.) If moreover p(x) is separable over F , then we have
equality: |Aut(E/F )| = [E : F ].
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The condition that |Aut(E/F )| = [E : F ] is, as we’ll see, one of the equivalent ways of saying what
it means for E/F to be Galois, and is how the book first defines the notion of a Galois extension.
To say that E is the splitting field of a polynomial over F is the book’s definition of what it means
for E to be normal over F , which we alternatively defined as an extension in which any irreducible
polynomial that has a root splits completely. (A problem on the Discussion 2 Problems sheet proves
that these two notions of “normal” are equivalent.) Thus, said another way, the claim is that if
E is a (finite) normal extension of F , then |Aut(E/F )| ≤ [E : F ], and if E is also separable over
F , then |Aut(E/F )| = [E : F ]. The first inequality is in fact true without the normality/splitting
field assumption, but we’ll save this general case for later.

As a quick sanity check, let us see what this looks like in the examples we’ve done so far:
Gal(Q(

√
D)/Q) ∼= Z/2Z (D not a square) has order 2, which agrees with the degree [Q(

√
D) : Q];

Gal(Q(
√

2,
√

3)Q) ∼= Z/2Z× Z/2Z has order 4, which also agrees with the degree [Q(
√

2,
√

3) : Q];
and Aut(Q( 4

√
2)/Q) ∼= Z/2Z has order 2, which is strictly less than the degree [Q( 4

√
2) : Q] = 4.

(Of course, this final strict inequality reflects the fact that Q( 4
√

2) is not Galois over Q.) Also, the
example |Aut(Q( 3

√
2)/Q)| = 1 from last time also works here, since Q( 3

√
2) has degree 3 over Q.

Proof of order/degree relation. To prove the claim above, we argue by induction on the degree
[E : F ]. In the base case [E : F ] = 1, we have E = F and so Aut(E/E) is trivial, and thus has
order at most (in fact equal to) [E : E] = 1. Now, if [E : F ] > 1, pick an irreducible factor q(x) of
p(x) and a root α ∈ E of q(x). (Note α /∈ F .) For any σ ∈ Aut(E/F ), σ(α) is also a root of q(x),
and σ restricts to an automorphism

τ : F (α)→ F (root)

that sends α to the root. The point is that to count the possible σ ∈ Aut(E/F ), we can proceed via
a two-step process: first count the possible such τ , which are isomorphisms between F (α) and other
fields obtained by adjoining a root of q(x) to F , and then count the number of ways of extending
such a τ up to a full automorphism σ : E → E, whose restriction to F (α) is the given τ :

|Aut(E/F )| = (number of E → E extending a given τ)(number of possible τ ’s).

Visually, the idea is that the possible σ’s fit into the following diagram:

F

F (α) F (root)

E E

τ

σ

and we can “construct” σ by first lifting up from the base field F up to τ = σ|F (α) : F (α)→ F (root),
and then lifting further up to σ : E → E.

Now, since τ is completely determined by sending α to a root of q(x), the number of such τ is
the number of distinct roots of q(x), which is bounded by the degree of q(x) itself:

number of possible τ = number of distinct roots of q(x) ≤ deg q(x).
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If q(x), and hence p(x) of which q(x) is a factor, is separable and thus has deg q(x) distinct roots
in E, then we have equality here. Since q(x) is irreducible over F , the degree of F (α) over F is
precisely deg q(x), so we get

number of τ ≤ deg q(x) = [F (α) : F ]

with equality if q(x) (or p(x)) is separable.
Next we consider the problem of lifting a given τ . We can use such a τ : F (α) → F (root) to

identity F (α) with F (root), so that the lifting problem becomes that of extending the identity map
id : F (α)→ F (α) to σ : E → E. (To be clearer, the point is that the number of σ which extend the
given τ is the same as the number of σ extending the identity on F (α). This is because given two
σ and σ′ extending the same τ , we have that σ−1σ′ : E → E extends τ−1τ = id : F (α) → F (α),
and given σ extending the identity F (α) → F (α) and σ′ extending τ , σ′σ : E → E also extends
τ ◦ id = τ . This sets up a one-to-one correspondence between σ extending τ and σ extending the
identity on F (α).) But the σ : E → E which extend the identity on F (α) are precisely the elements
of Aut(E/F (α)), so the number of E → E extending a given τ is |Aut(E/F (α))|. We thus have

|Aut(E/F )| = |Aut(E/F (α))|(deg q(x)) ≤ |Aut(E/F (α))|[F (α) : F ],

with equality if p(x) is separable.
Since [E : F (α)] < [E : F ] by the tower law and because we can still view E as the splitting field

of p(x) only now over the base field F (α), we may assume by induction (on the extension degree)
that the conclusion of our claim holds for the extension E/F (α). Thus |Aut(E/F (α))| ≤ [E : F (α)]
with equality if p(x) is separable. Putting this all together gives

|Aut(E/F )| ≤ |Aut(E/F (α))|[F (α) : F ] ≤ [E : F (α)][F (α) : F ]

with equality if p(x) is separable. Since [E : F (α)][F (α) : F ] = [E : F ], we have our desired result.

Why separability? As a quick example, we illustrate why separability is an important condition
to require in the theory we’re building up. Certainly the equality |Aut(E/F )| = [E : F ] in the
result above might not hold without it (we technically only proved that separability implies this
equality, but not that this equality implies separability), but we can also see what can go wrong in
the fixed field definition of Galois extension.

For p prime, we can consider the extension Fp(x)( p
√
x) of Fp(x), which as we’ve seen is the

splitting field of the irreducible polynomial Xp − x. (So, Fp(x)( p
√
x) is literally defined to be

Fp[x]/(Xp − x).) This extension is normal since it is a splitting field extension, but it is not
separable since Xp − x does not have distinct roots: since

Xp − x = (X − p
√
x)p

by the freshman’s dream, p
√
x is the only root and it thus has multiplicity p. The point is that an

element of Aut(Fp(x)( p
√
x),Fp(x)) must send roots to roots, so the only option is to send p

√
x to

itself, which means that any such automorphism fixes everything. Thus Aut(Fp(x)( p
√
x),Fp(x)) is

trivial with fixed field all of Fp(x)( p
√
x), so the extension is not Galois. In this case, the size of the

automorphism group is strictly less than the degree of the extension: 1 < p. The upshot is that
without separability there aren’t enough roots to permute in order to get a good Galois group!

Galois groups of finite fields. We finish by giving a first application of the result proved
above. We claim that any finite extension Fpn of Fp is Galois, and that its Galois group over Fp is
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straightforward to describe explicitly. Since Fpn is normal and separable over Fp—it is the splitting
field of the separable polynomial xp

n − x ∈ Fp[x], as we’ve seen before—the result above gives

|Aut(Fpn/Fp)| = [Fpn : Fp] = n.

We claim that this group is actually cyclic, which we can verify by finding an element of order n.
But we have seen this element before: it is the Frobenius map σ : a 7→ ap. This is an automor-

phism of Fpn , and we showed as a Warm-Up previously that its fixed field is precisely Fp ⊆ Fpn ,
so it is indeed an element of Aut(Fpn/Fp). If this element has order k < n, then σk = id, which
means that

σk(a) = a for all a ∈ Fpn .

But σk(a) = ap
k

since each application of σ takes another pth power, so saying that σk(a) = a is the

same as saying that a is a root of xp
k − x, which has pk roots. Since Fpn has pn elements, it is not

possible for σk(a) = a for all a ∈ Fpn if k < n, so we conclude that the smallest power of σ which
is the identity map is the nth power. Thus σ has order n and thus generates all of Aut(Fpn/Fp)
as claimed. Moreover, since the fixed field of σ alone is Fp, the fixed field of all of Aut(Fpn/Fp) is
also Fp since any automorphism here is a power of σ. Thus Fpn is a Galois extension of Fp, with
cyclic Galois group generated by Frobenius. The moral of the story is that finite fields are simple
Galois-theoretic objects to study!

Lecture 12: Fundamental Theorem of Galois Theory

Warm-Up. We define the Galois group of a separable polynomial over a field F to be the Galois
group of its splitting field. (For now we’re taking it for granted that the various ways of defining
what it means for an extension to be “Galois” are equivalent, and being the splitting field of a
separable polynomial is one of them.) Let us determine the Galois group of x3 − 2 over Q. As
we have seen before, the splitting field is Q( 3

√
2, ζ3) and is of degree 6 over Q. (The splitting field

is the composite of Q( 3
√

2) and Q(ζ3), so it has degree at most 3 · 2 = 6—recall that the minimal
polynomial of ζ3 is φ3(x) = x2 + x+ 1—but at the same time the degree is divisible by the degrees
3 and 2 of the subextensions Q( 3

√
2) and Q(ζ3), so the degree is exactly 6.)

Thus by the result from last time, since x3 − 2 is separable over Q we have

Gal(Q(
3
√

2, ζ3)/Q) = [Q(
3
√

2, ζ3) : Q] = 6.

Now, we get a map Gal(Q( 3
√

2, ζ3)/Q) → S3 by having each automorphism act on the roots of
x3 − 2 by permutation. Moreover, this map is injective since if σ acts as the identity permutation
on the roots it must be the identity automorphism on Gal(Q( 3

√
2, ζ3)/Q): if σ fixes all the roots,

it fixes all elements generated by the roots, but this is the entirety of Q( 3
√

2, ζ3) since the roots
generate the splitting field. Thus Gal(Q( 3

√
2, ζ3)/Q) is isomorphic to a subgroup of S3 of order 6,

so the only possibility is Gal(Q( 3
√

2, ζ3)/Q) ∼= S3, which is thus the Galois group of x3 − 2 over Q.
But, we can see more explicitly that the Galois group should be S3 by determining what its

elements are concretely in terms of cycle notation. Let us denote by “1”, “2”, and “3” the roots
3
√

2, ζ3
3
√

2, and ζ23
3
√

2 (in that order) of x3 − 2. An element of the Galois group will permute these
amongst themselves, and will permute ζ3 amongst the roots of φ3(x) = x2+x+1 (i.e. the primitive
third roots of unity), of which the only additional root is ζ23 . Thus, to start, any element of the
Galois group will send ζ3 either to itself or to ζ23 .

Let us determine first the possibilities where ζ3 7→ ζ3. The root 1 (not the number 1, but the
root we’ve labeled “1”) can be sent to either root 2 or root 3. If 1 7→ 1, then we can work out that
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2 and 3 are fixed as well:

ζ3
3
√

2 7→ (image of ζ3)(image of
3
√

2) = ζ3
3
√

2 and ζ23
3
√

2 7→ (ζ23 )(
3
√

2) = ζ23
3
√

2.

Thus in this case we get the identity automorphism (1) ∈ S3. If 1 7→ 2, then

ζ3
3
√

2 7→ (ζ3)(ζ3
3
√

2) = ζ23
3
√

2 and ζ23
3
√

2 7→ (ζ23 )(ζ3
3
√

2) = ζ33
3
√

2 =
3
√

2,

so 2 is sent to 3 and 3 to 1. Hence this element of the Galois group gives (123) ∈ S3. Finally, if
1 7→ 3, then we can work out that 3 7→ 2 and 2 7→ 1, so this element is (132) ∈ S3.

Now we consider the possibilities where ζ3 7→ ζ23 . If 1 7→ 1, we have:

ζ3
3
√

2 7→ (ζ23 )(
3
√

2) = ζ23
3
√

2 and ζ23
3
√

2 7→ (ζ23 )2(
3
√

2) = ζ3
3
√

2,

so this is (23). If 1 7→ 2, we get:

ζ3
3
√

2 7→ (ζ23 )(ζ3
3
√

2) =
3
√

2 and ζ23
3
√

2 7→ (ζ23 )2(ζ3
3
√

2) = ζ53
3
√

2 = ζ23
3
√

2,

so we have (12). Finally, for 1 7→ 3:

ζ3
3
√

2 7→ (ζ3)
2(ζ23

3
√

2) = ζ3
3
√

2 and ζ23
3
√

2 7→ (ζ23 )2(ζ23
3
√

2) =
3
√

2,

which is (13) ∈ S3. Thus Gal(Q( 3
√

2, ζ3)/Q) = {(1), (123), (132), (23), (12), (13)} = S3 as expected.

Lattices and towers. The group S3 has six subgroups (including itself and the trivial group),
which we can arrange in the following subgroup lattice, where each node is a subgroup of the ones
connecting to it above:

1

〈(12)〉〈(123)〉 〈(13)〉 〈(23)〉

S3

. . / /

/

(The triangles indicate which group is normal in which.) Now, to each of these groups H we can
associate their fixed field Q( 3

√
2, ζ3)

H as a subfield of Q( 3
√

2, ζ3). For example, the fixed field of the
entire Galois group S3 is the base field Q since the extension Q( 3

√
2, ζ3)/Q is Galois, and the fixed

field of the trivial subgroup 1 is all of Q( 3
√

2, ζ3) since the identity automorphism fixes everything.
For the remaining fixed fields, we have that:

• the only generator fixed by (123) is ζ3 (recall that (123) came from the case ζ3 → ζ3 in the
Warm-Up), so the fixed field of 〈(123)〉 is Q(ζ3),

• the only generator fixed by (12) is ζ23
3
√

2 (this came from the ζ3 7→ ζ23 case, so ζ3 is not fixed),
so the fixed field of 〈(12)〉 is Q(ζ23

3
√

2),

• (13) fixes ζ3
3
√

2 and no other generator, so this fixed field is Q(ζ3
3
√

2), and

• (23) fixes 3
√

2 and no other generator, so this fixed field is Q( 3
√

2).
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We can arrange all the resulting fixed fields in a tower diagram, where each node is now an
extension of the ones connecting to it above:

Q( 3
√

2, ζ3)

Q(ζ23
3
√

2)Q(ζ) Q(ζ3
3
√

2) Q( 3
√

2)

Q

. . / /

/

(The triangles indicate which extensions are Galois, but note that this is not at all standard
notation.) The clear similarity between these two diagrams is precisely what the statement of
the Fundamental Theorem of Galois Theory gives us, which at its core tells us how to study
properties of fields via the corresponding Galois groups. A first basic observation is that the second
diagram in fact contains all possible subextensions of Q( 3

√
2, ζ3) over Q: any intermediate field

Q ⊆ E ⊆ Q( 3
√

2, ζ3) must be the fixed field of some subgroup of Gal(Q( 3
√

2, ζ3)/Q) ∼= S3. (One
reason why this theorem is so powerful is that, in general, subfields of a given field are actually
quite difficult to classify completely. In this case, showing that Q( 3

√
2, ζ3) only contains six subfields

extending Q—including itself and Q—directly would be a bit labor intensive. The problem is that
a subfield could by generated by anything, and there is no obvious reason at first why a random
generator would give the same field as one of the ones used above. For example, it is not immediately
obvious that Q(ζ3

3
√

4) is indeed included in the tower diagram above, but it is because it equals
Q(ζ23

3
√

2) since (ζ23
3
√

2)2 = ζ3
3
√

4 and (ζ3
3
√

4)2 = 2ζ23
3
√

2. The idea is that classifying subgroups of a
given group is a much more tractable problem, and if we have this then we get a classification on
the field side as well.)

We can recover the group diagram from the field diagram by taking Galois groups: each sub-
group in the subgroup lattice is Gal(Q( 3

√
2, ζ3)/E) where E is the field in the corresponding spot

in the tower diagram. Moreover, containments between fields is reflected by the containments be-
tween groups, only with the direction reversed: for example, Q ⊆ Q( 3

√
2) ⊆ Q( 3

√
2, ζ3) corresponds

to S3 ≥ 〈(23)〉 ≥ 1. (We stated this observation when we first introduced automorphism groups
of extensions: E1 ⊆ E2 ⊆ K implies Aut(K/E2) ≤ Aut(K/E1), and H1 ≤ H2 ≤ Aut(K) implies
KH2 ⊆ KH1 ⊆ K.) Another fact: the degrees [Q( 3

√
2, ζ3) : E] in the lowest rungs of the tower dia-

gram are exactly the orders of the groups Gal(Q( 3
√

2, ζ3)/E). Indeed, Q( 3
√

2, ζ3) has degree 3 over
Q(ζ), which is the order of 〈(123)〉, and Q( 3

√
2, ζ3) has degree 2 over each of Q(ζ23

3
√

2), Q(ζ3
3
√

2),
and Q( 3

√
2), which is the order of each of 〈(12)〉, 〈(13)〉, and 〈(23)〉. And finally, normality: the

fact that 〈(123)〉 is normal in S3 reflects the fact that Q(ζ3) is Galois over Q (it is the splitting
field of φ3(x) = x2 + x + 1), and the fact that, for instance, 〈(23)〉 is not normal in S3 reflects
the fact that Q( 3

√
2) is not Galois over Q. To top it all off: the quotient of S3 by the normal sub-

group 〈(123)〉, which is Z/2Z, is precisely the Galois group of the corresponding Galois extension
Q(ζ3)/Q)—generated by the map ζ3 7→ ζ23—and of course the degree of this extension is the size of
the Galois group. (In the non-normal cases, it is the indices of the subgroups that correspond to
the degrees of the corresponding extensions. For example, 〈(23)〉 has index 3 in S3, and this is the
degree of Q( 3

√
2) over Q.)

So, to summarize: all field-theoretic data in the tower diagram is reflected by the group-theoretic
data in the subgroup lattice, and vice-versa!
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Fundamental Theorem of Galois Theory. The observations made above are not unique to the
example at hand, and are reflective of a more general phenomenon. Here, then, is the statement of
the Fundamental Theorem of Galois Theory in all its glory. Suppose K is a Galois extension of F .
Then:

(0) There is a bijective correspondence between subextensions ofK/F and subgroups of Gal(K/F )
given by:

{F ⊆ E ⊆ K} → {H ≤ Gal(K/F )}
E 7→ Aut(K/E)

KH ←[ H

(1) These mappings are inclusion reversing, as we’ve seen.

(2) The degree [K : E] is the order Aut(K/E) (note here the base field E is what varies), and
the degree [E : F ] is the index [Gal(K/F ) : Aut(K/E)] (note here the extension E varies).

(3) K is always Galois over E, so that all automorphism groups Aut(K/E) above are actually
Galois groups Gal(K/E).

(4) E is Galois over F if and only if Gal(K/E) is a normal subgroup of Gal(K/F ). In this case,
the Galois group Gal(E/F ) is isomorphic to the quotient Gal(K/F )/Gal(K/E).

(5) Intersections of fields correspond to joins of subgroups (i.e. the group the two subgroups
generate), and intersections of groups correspond to composites of fields:

E1 ∩ E2 7→ 〈(Gal(K/E1),Gal(K/E2)〉
KH1KH2 ←[ H1 ∩H2.

Note that the book does not give this first part of the statement a number, so I’m calling it part
“zero”. I think this is important enough to emphasize in its own right since the claim that these
mappings are inverse to one another is highly non-trivial.

And there you have it! We will work towards the proof of this over the next few days. The full
statement might seem a bit daunting at first—particularly part (4)—but the more we use it the
more natural it will become. Speaking of part (4), note that since K/F is separable, K/E is always
separable as well since whether or not a polynomial has a repeated root does not depend on the
extension we are in. So, the only thing missing in order for E/F to be “Galois” is the condition
that E be normal over F , and the claim is that this is equivalent to normality on the group side;
indeed, this is where the name “normal” for a normal extension comes from! (I don’t know where
the name “normal” in the group case comes from.)

Biquadratic extensions. We finish with a quick and easy example. Recall that an extension
Q(
√
D1,
√
D2) of Q is biquadratic if none of D1, D2, D1D2 are squares in Q. (This notion was

introduced on the first homework.) Just as in the case of Q(
√

2,
√

3) we saw previously, the Galois
group of a biquadratic extension is Z/2Z×Z/2Z, where each Z/2Z factors tells us whether we send
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√
Di to itself or its negative. The subgroup lattice is:

{0}

〈(1, 1)〉Z/2Z× {0} {0} × Z/2Z

Z/2Z× Z/2Z

(In this case all subgroups are normal since Z/2Z × Z/2Z is abelian, so we omit / from the nota-
tion. By the way, a Galois extension with an abelian Galois group is called an abelian extension,
so Q(

√
D1,
√
D2) is an abelian extension of Q for example, whereas Q( 3

√
2, ζ3) is not an abelian

extension of Q.) The corresponding tower diagram is:

Q(
√
D1,
√
D2)

Q(
√
D1D2)Q(

√
D2) Q(

√
D1)

Q

Indeed, Z/2Z × {0} does not fix
√
D1 because of first Z/2Z factor but does fix

√
D2 because of

the second zero factor, and vice-versa for {0} × Z/2Z, while 〈(1, 1)〉 changes the sign of both
√
D1

and
√
D2, so that

√
D1

√
D2 7→ (−

√
D1)(−

√
D2) =

√
D1

√
D2 is fixed. (Again, try proving that

these are in fact all the subfields of Q(
√
D1,
√
D2) extending Q without using Galois theory—it is

possible but tedious!) All intermediate fields have degree 2 “above” and “below”, and all of the
“middle” groups in the subgroup lattice have order 2 “below” and index 2 “above”.

More generally, the same is true for biquadratic extensions of any field F of characteristic not
equal to 2. (We need charF 6= 2 to guarantee that −

√
D is not the same as

√
D.) In fact, this

gives a Galois-theoretic definition of “biquadratic extension”: a biquadratic extension of F is a
Galois extension with Galois group Z/2Z× Z/2Z. Using the subgroup lattice we can produce the
tower diagram, and the fact that each resulting intermediate field in the middle has degree 2 over
F guarantees that it is of the form F (

√
D) for some D, and the fact that there are only three such

intermediate fields guarantees that one of them is indeed the form F (
√
D1D2) where

√
D1 and

√
D2

generate the other two.

Lecture 13: More on Galois Extensions

Warm-Up. We determine the Galois group of x4 − 2 over Q, and over F5. (We didn’t do the F5

example in class.) First, the splitting field of x4− 2 over Q is Q( 4
√

2, i) (note i is a primitive fourth
root of unity), so the group we want is Gal(Q( 4

√
2, i)/Q). By thinking of this field as the composite

of Q( 4
√

2) and Q(i), we see that it has degree at most 4 · 2 = 8 over Q. But this degree is also
divisible by 4 via the subextension

Q ⊆ Q(
4
√

2) ⊆ Q(
4
√

2, i),
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so it is either 4 or 8. If it was 4 then we would necessarily have Q( 4
√

2, i) = Q( 4
√

2), which is not
true since the latter does not contain i, so we have [Q( 4

√
2, i) : Q] = 8. This can also be seen from

the tower law applied to the subextension above using the fact that Q( 4
√

2, i) has degree 2 over
Q( 4
√

2) since i has minimal polynomial x2 + 1 over Q( 4
√

2).
Thus Gal(Q( 4

√
2, i)/Q) is a group of order 8. To see which group of order 8 it is, note that it

can be viewed as a subgroup of S4 via permuting the four roots of x4 − 2. A subgroup of order
8 of S4 is a Sylow 2-subgroup, and hence must be isomorphic to any other subgroup of order 8
since all Sylow 2-subgroups are conjugate to one another. Since D8 (recall dihedral groups!) is a
subgroup of S4 of order 8 (view elements of D8 as rotations and reflections of a square and permute
the vertices), we have that any subgroup of S4 of order 8 is isomorphic to D8, so we conclude that
Gal(Q( 4

√
2, i)/Q) ∼= D8 is the desired Galois group.

When viewed as a polynomial over F5, x
4 − 2 is irreducible. Linear factors are ruled out by

not having a root in F5, and quadratic factors can be ruled out by brute force or by using the fact
derived on the most recent homework that x4 − 2 is irreducible over F5 if it is relatively prime to
x5 − x and x5

2 − x, which can be verified using the Euclidean algorithm. Thus x4 − 2 has a root
in F54 = F5[x]/(x4 − 2), and in fact splits completely in this extension since it is normal. (We will
show definitively in a bit that Galois implies normal.) Thus F54 is the splitting field of x4 − 2 over
F5, so its Galois group is Gal(F54/F5) ∼= Z/4Z generated by Frobenius. (We determined the Galois
group Gal(Fpn/Fp) ∼= Z/nZ in general a few days ago.)

Another lattice/tower diagram. Let us use the example of the splitting field of x4 − 2 over Q
to illustrate again the relations encoded by the Fundamental Theorem of Galois Theory. Using the
rotation/reflection notation for D8 = {0, 90, 180, 270, H, V,D,A}, the subgroup lattice is:

{0}

{0, 180}{0, V }{0, H} {0, D} {0, A}

{0, 90, 180, 270}{0, 180, H, V } {0, 180, D,A}

D8

To determine the fixed field of each subgroup, let us describe the elements of the Galois group as
explicit cycles. Each element of the Galois group permutes 4

√
2 among the roots of x4 − 2:

4
√

2 7→ 4
√

2, i
4
√

2, − 4
√

2, −i 4
√

2 (call these 1, 2, 3, 4 in that order)

and permutes i among the roots of x2 + 1: i 7→ i, −i. The possibilities when i 7→ i are:

(1), (1234), (13)(24), (1432).

For example, if 1 7→ 4, so that 4
√

2 7→ −i 4
√

2, then −i 4
√

2 7→ −(i)(−i 4
√

2) = − 4
√

2, so 4 7→ 3, and
so on, recalling that i is fixed in this case. In terms of the rotation/reflection notation, these four
elements are 0, 90, 180, 270 respectively. The possibilities for i 7→ −i are:

(12)(34), (13), (14)(23), (24),
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which are V,A,H,D respectively. For example, if 1 7→ 2, then i 4
√

2 7→ (−i)(i 4
√

2) = 4
√

2, so 2 7→ 1,
and − 4

√
2 7→ −(i 4

√
2) = −i 4

√
2, so 3 7→ 4 and you can check that 4 7→ 3. As another example, if

1 7→ 3, so that 4
√

2 7→ −i 4
√

2, then i 4
√

2 7→ (−i)(− 4
√

2) = i 4
√

2, so 3 is fixed, as is 4 in this case.
With this notation, we can compute some fixed fields. Since 180 = (13)(24), none of the roots

4
√

2, i 4
√

2, − 4
√

2, −i 4
√

2 are fixed by 180, but 4
√

4 =
√

2 is fixed:
√

2 = (
4
√

2)(
4
√

2) 7→ (− 4
√

2)(− 4
√

2) =
4
√

4 =
√

2.

This element also fixes i since it came from the i 7→ i case, so the fixed field of {0, 180} is Q(
√

2, i).
(We can use the degree restrictions in the Fumdamental Theorem to argue that the fixed field is
not larger: since {0, 180} has index 4 in D8, the degree of the fixed field over Q should be 4, and
Q(
√

2, i) already has degree 4 over Q.) Since D = (24) fixes 4
√

2 and not i (this came from the
i 7→ −i case), the fixed field of {0, D} is Q( 4

√
2). If we want elements fixed by both D = (24) and

180 = (13)(24), note that 4
√

2 no longer works since this is not fixed by 180, but
√

2 = ( 4
√

2)2 does
work: this is fixed by 180 as shown above, and also by D since D fixes 4

√
2. (Note that now i is not

fixed because D does not fix i.) Thus the fixed field of {0, 180, D,A} (A introduces nothing new
since A = 180 ◦D) is Q(

√
2), and so the chain of subgroups

{0} ⊆ {0, 180} ⊆ {0, 180, D,A} ⊆ D8

corresponds to the chain of towers

Q(
4
√

2, i) ⊇ Q(
4
√

2) ⊇ Q(
√

2) ⊇ Q.

Computing all fixed fields gives the following tower diagram:

Q( 4
√

2, i)

Q(
√

2, i)Q((1 + i) 4
√

2)Q((1− i) 4
√

2) Q( 4
√

2) Q(i 4
√

2)

Q(i)Q(i
√

2) Q(
√

2)

Q

Note that some of these, in particular Q((1 − i) 4
√

2) and Q((1 + i) 4
√

2), take some effort to find
explicitly. For example, the fixed field of {0, H}, or equivalently just H, has degree 4 over Q
since this is the index of {0, H} in D8. So, to describe this explicitly we need an element of
Q( 4
√

2, i) fixed by H which has a minimal polynomial of degree 4 over Q. Finding such an element
requires possibly more guess and check than earlier examples, but we should be looking for someting
expressible in terms of the roots of x4 − 2, in this case as a sum of such roots. We can verify that
(1− i) 4

√
2 = 4
√

2− i 4
√

2 is indeed fixed by H: H = (14)(23) sends 4
√

2 7→ −i 4
√

2 and i 4
√

2 7→ − 4
√

2, so

4
√

2− i 4
√

2 7→ (−i 4
√

2)− (− 4
√

2) =
4
√

2− i 4
√

2.

If x = (1 − i) 4
√

2, then x4 = 2(1 − i)4 = 2(−2i)2 = −8, so x4 + 8 is the minimal polynomial of
(1 − i) 4

√
2. Thus Q((1 − i) 4

√
2) is a degree 4 extension of Q fixed by H, so it must be the desired

fixed field since we already know this fixed field should have degree 4 over Q.
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Finally, let us point out a few spots in this diagram that illustrate how normality comes in.
The subgroup {0, 90, 180, 270} is normal in D8 (it has index 2), so the corresponding fixed field
Q(i) should be a Galois extension of Q, which it is since it is the splitting field of x2 + 1. The
subgroup {0, 180} is also normal in D8 (it is the center of D8), so the fixed field Q(

√
2, i) should

be Galois over Q, and it is since it is the splitting field of (x2 − 2)(x2 + 1). In this case, the Galois
group of Q(

√
2, i) over Q, which is Z/2Z× Z/2Z since this extension is biquadratic, should be the

quotient of D8
∼= Gal( 4

√
2, i) by Z/2Z ∼= {0, 180}, which it is. Finally, the subgroup {0, D} is not

normal in D8, so the corresponding fixed field Q( 4
√

2) is not a Galois extension of Q, as we have
seen before: the fixed field of Q( 4

√
2)/Q is actually Q(

√
2), and the fact that Q( 4

√
2) is Galois over

Q(
√

2) reflects the fact that {0, D} is a normal subgroup of {0, 180, D,A}, just not of all of D8.

Degrees and fixed fields. Now we start working towards a proof of the Fundamental Theorem
of Galois Theory. As a first step, we state the following result:

If H is a finite subgroup of Aut(K), then the degree of K over the fixed field KH is the
order of H: |H| = [K : KH ].

We will take this for granted for the time being, and will say something about the proof—which is
quite involved—later. Certainly, this claim is a consequence of the Fundamental Theorem of Galois
Theory, but of course since we are wanting to use it to prove the Fundamental Theorem, we must
give an independent proof. This result really is the key to making it all work.

But assuming this for now, we can now justify the fact that the size of any automorphism group
Aut(K/F ) is bounded by the degree [K : F ]. We proved this previously in the case where K is the
splitting field of a polynomial over F , but now we make no such assumption. Moreover, we also
claim that equality |Aut(K/F )| = [K : F ] holds if and only if F is the fixed field of Aut(K/F ). (In
the splitting field case, equality was true under the assumption that the polynoimal in question was
separable.) So, assume K is an extension of F , and let E be the fixed field of Aut(K/F ), which
contains F as a subfield since, by definition, anything in Aut(K/F ) fixes F . By the result above,
we have |Aut(K/F )| = [K : E]. (Take H to be Aut(K/F ) in teh result above, so that E = KH .)
Since [K : F ] = [K : E][E : F ], we have

|Aut(K/F )| = [K : E] ≤ [K : F ],

which is the desired bound. Moreover, equalilty |Aut(K/F )| = [K : F ] holds if and only if
[K : F ] = [K : E], which given that F ⊆ E holds if and only if E = F , or equivalently F is the
fixed field of Aut(K/F ).

Revisting Galois extensions. The condition |Aut(K/F )| = [K : F ] is the book’s definition
of what it means for K/F to be a Galois extension, and so now we see that this definition is
equivalent to the one we gave: K/F is Galois if F is the fixed field of Aut(K/F ). Given the bound
|Aut(K/F )| ≤ [K : F ], we thus see that Galois extensions are precisely those which have the
maximum number of automorphisms possible, which in the end is what makes it possible to use
automorphisms to distinguish between the extension and the base field—the original motivation
we gave for introducing “Galois” extensions.

Now, as mentioned above, when K is the splitting field of a separable polynomial over F , we
have already proved that we have equality |Aut(K/F )| = [K : F ]. Thus such extensions are
always Galois. In fact, we can now prove that this condition is equivalent to being Galois, and to
being normal and separable. We claim that the following conditions on a finite extension K/F are
equivalent:
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(i) K/F is Galois (take either the fixed field definition or the degree definition)

(ii) K/F is normal and separable

(iii) K is the splitting field of a separable polynomial over F .

We have already proved (iii)⇒ (i), and (ii)⇒ (iii) was essentially on the problem set for Discussion
2 (showing that my definition of “normal” and the book’s definition are equivalent), but we will
prove it here again anyway. (The term “normal” in (ii) is my definition: whenever an irreducible
polynomial over F has a root in K, it splits completely in K.)

To prove (i)⇒ (ii), suppose K/F is Galois and suppose p(x) ∈ F [x] is irreducible with a root
α ∈ K. Denote the elements of Gal(K/F ) by id, σ1, . . . , σm. Then

α, σ1(α), . . . , σm(α) ∈ K

are all roots of p(x) since Galois group elements send roots to roots. (Note we do not yet know
that these give all the roots of p(x), only that each one is in fact a root.) Let

α, β1, . . . , βk ∈ K

denote the distinct elements from the list above, and set f(x) to be the polynomial

f(x) = (x− α)(x− β1) · · · (x− βk) ∈ K[x].

We claim that f(x) = p(x), which, if true, gives us what we want: p(x) splits completely in K
since, by construction, f(x) splits in K, and the roots α, β1, . . . , βk of f(x) = p(x) are all distinct,
so that p(x) is separable; since p(x) was an arbtirary irreducible polynomial over F with a root in
K, this shows that the entire extension K/F is both normal and separable.

By construction, any element of Gal(K/F ) permutes the elements α, β1, . . . , βk ∈ K, so it
permutes the roots of f(x). This means that any Galois automorphism simply permutes the factors
in the definition of f(x), so that the polynomial obtained after applying Galois automorphisms to
the roots is f(x) itself. But if we expand f , this means precisely that each coefficient of f(x) (made
up of the α, βi) must be fixed by the action of the entire Galois group. Thus each coefficient is in
the fixed field of the Galois group, which is F because K/F is Galois, so that f(x) is actually an
element of F [x]. Any polynomial in F [x] having α as a root is divisible by p(x) since p(x), being
irreducible, generates the ideal of all polynomials with α as a root; hence p(x) | f(x) since f(x) has
α as a root. Moreover, since each α, βi is a root of p(x), we have that f(x) | p(x): the factorization
of p(x) in its splitting field (whatever it is) must include at least each of the linear factors making up
f(x), so that the product f(x) of these linear factors must divide the factorizatoin of p(x). Thus we
have p(x) | f(x) and f(x) | p(x), so since both of these are monic polynomials, we get p(x) = f(x)
as claimed. As explained above, this shows K/F is normal and separable, so (i)⇒ (ii).

Finally we show (ii)⇒ (iii), which completes the proof of equivalence. Suppose K/F is normal
and separable, and let α1, . . . , αn ∈ K be generators for K over F . (Recall K/F is finite.) Let
pi(x) ∈ F [x] be the minimal polynomial of αi over F . Note that each pi(x) has distinct roots
since K/F is separable. Since each pi(x) has a root in K (namely αi) and K/F is normal, each
pi(x) splits completely over K, so K contains all the roots of the pi(x). Let q(x) be the product
p1(x) · · · pm(x) with any repeated factors excluded (in case some pi(x) are the same), so that q(x)
has distinct roots and is thus separable. Since K contains all roots of q(x), K is then the splitting
field of the separable polynomial q(x) over F , as desired. (Note the splitting field cannot be a
proper subfield of K since it must contain all αi because these are all roots of q(x), and K is the
smallest field extending F that contains all αi.)
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Lecture 14: More on the Fundamental Theorem

Warm-Up. We prove (what I called) part (0) of the Fundamental Theorem of Galois Theory,
which is the claim that the correspondence between subextensions and subgroups is bijective: if
K/F is a Galois extension, then the maps

{F ⊆ E ⊆ K} → {H ≤ Gal(K/F )}
E 7→ Aut(K/E)

KH ←[ H

are inverses of one another. First, take a subextension F ⊆ E ⊆ K. From this we get the subgroup
Aut(K/E) of Gal(K/F ), and then from this we get the fixed field KAut(K/E). The claim is that
this fixed field is precisely E itself, so that composing the maps above forwards and then backwards
produces the identiy map on the set of subextensions. To say that the fixed field of Aut(K/E) is
E is just what it means for K/E to be a Galois extension, which is what we prove. We use the
fact that Galois is equivalent to being the splitting field of a separable polynomial over the base.
Since K/F is Galois, K is the splitting field of a separable polynomial f(x) ∈ F [x]. But then also
f(x) ∈ E[x] since E contains F , so K is also the splitting field of a separable polynomial over E,
meaning that K/E is Galois as desired.

Now, take a subgroup H ≤ Gal(K/F ). Then we get the fixed field KH , and then the group
Aut(K/KH). The claim is that this automorphism group is just H again, so that composing
backwards and then forwards above gives the identity map on the set of subgroups. Note that H
is a subgroup of Aut(K/KH) since, by definition, any element of H fixes any element of KH . The
question is whether there can be more automorphisms that fix KH other than those in H, and
the answer is no: we have |H| = [K : KH ] by the still unproven key fact from last time (that we
took for granted), so |H| = [K : KH ] = Aut(K/KH), where the second equality follows from the
fact that K/KH is Galois by the reasoning we gave in the “forwards then backwards” argument
above. Thus H is a subgroup of Aut(K/KH) with order equal to that of the entire group, so
H = Aut(K/KH) as claimed. Hence the correspondence between subextensions and subgroups in
the Fundamental Theorem of Galois Theory is indeed bijective.

Proof of the Fundamental Theorem. We are now ready to prove the Fundamental Theorem
of Galois Theory. Actually, we have proven many of the parts already, so here we go. Fix a
subextension F ⊆ E ⊆ K. Then we check each part of the theorem:

(0) This is the claim that the correspondence between subextensions and subgroups is bijecive,
which we just proved.

(1) This is the claim that this correspondence is inclusion-reversing, which we pointed out when
we first introduced Galois groups.

(2) The first claim here is that the degree of K/E is the order of Gal(K/E), which is just the
claim that K/E is Galois and was proved in the Warm-Up. (This is why we now use the
notation of Gal(K/E) instead of Aut(K/E).) The second claim is that the degree of the
smaller extension E/F is equal to the index of Gal(K/E) in Gal(K/F ), and comes from the
tower law together with Lagrange’s Theorem for groups from the fall:

[E : F ] =
[K : F ]

[K : E]
=
|Gal(K/F )|
|Gal(K/E)|

= [Gal(K/F ) : Gal(K/E)].

(3) This is the claim that K/E, which is just a restatement of the first part of (2), nothing new.
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(4) This is the claim that the smaller extension E/F is Galois if and only if Gal(K/E) is a normal
subgroup of Gal(K/F ), and that in this case the Galois group of E/F is (isomorphic to) the
quotient of Gal(K/F ) by Gal(K/E). This will take some work to prove, and we will come
back to this after the final part.

(5) Finally, this is the claim that intersections of fields correspond to joins of subgroups, and
that intersections of subgroups correspond to composites of fields. Suppose we have two
subextensions E1, E2 of K/F . Then E1 ∩ E2 is also a subextension (simple to verify) of
K/F , and is fixed by both groups Gal(K/E1) and Gal(K/E2), which are each subgroups
of Gal(K/F ). Thus E1 ∩ E2 is fixed by the subgroup these two generate, which is the join
〈Gal(K/E1),Gal(K/E2)〉. If a ∈ K is an element not in E1 ∩E2, then it is excluded form E1

or E2, so that there is an element in either Gal(K/E1) or Gal(K/E2) not fixing a. But this
means that the join 〈Gal(K/E1),Gal(K/E2)〉 then does not fix a, so we conclude that the
only elements of K fixed by the join are those in E1 ∩ E2. Hence we get our first claim:

Gal(K/E1 ∩ E2) = 〈Gal(K/E1),Gal(K/E2)〉.

Going the other way, take two subgroups H1, H2 of Gal(K/F ). Then elements of H1 ∩H2 fix
both individual fixed fields KH1 and KH2 (since the intersection is contained in both H1 and
H2), so H1 ∩ H2 fixes all elements of the composite KH1KH2 . (Note that elements of this
composite are all expressible in terms of elements of KH1 and KH2 alone, in particular they
are explicitly quotients of sums of products of an element of KH1 with an element of KH2 .)
If σ ∈ Gal(K/F ) is not in H1 ∩H2, then it is not in at least one of H1 or H2, so there is an
element of KH1 or of KH2 it does not fix. But then σ does not fix every element of KH1KH2 ,
so we conclude that the only elements of Gal(K/F ) fixing the composite KH1KH2 are those
in H1 ∩H2. This gives the second claim we need:

KH1KH2 = KH1∩H2 .

And there’s our proof, except of course for part (4), and the still unproven claim that [K : KH ] = |H|
for a finite subgroup H of Aut(K) upon which everything has depended since it was crucial in
deriving the various characterizations of “Galois extension” we gave last time. We will come back
to this claim next time.

Conjugates and embeddings. Part (4) of the Fundamental Theorem is best approached using
some new terminology. Given α ∈ K and σ ∈ Gal(K/F ), we call σ(α) a (Galois) conjugate of α.
(Note that, with this terminology, the roots of an irreducible polynomial over F are all conjugates
of one another.) Given F ⊆ E ⊆ K and σ ∈ Gal(K/F ), we call the image σ(E) of E under σ
a (Galois) conjugate of E; this is always a subfield of K and contains the conjugates of all the
elements of E. (The reason for using the term “conjugate” will soon become clear.)

Now, each σ ∈ Gal(K/F ) restricts to an isomorphism σ|E : E → σ(E) from E to the corre-
sponding conjugate field. This map can be viewed as an injective homomorphism E → K with
image σ(E), and so gives an embedding of E into K over F , where “over” F means that it restricts
to the identity on F . (An embedding is simply an injective field homomorphism. We pointed out
in the first week or so that any homomorphism between fields is either the zero map or an embed-
ding.) We denote the set of such embeddings by Emb(E/F ), and our goal for now is to determine
the number of such embeddings. Not only is it true that restricting an element of Gal(K/F ) to
E gives an embedding of E into K, but we claim that all such embeddings arise in this way: any
embedding E → K over F can be “extended” to an automorphism K → K over F , or in other
words an element of Gal(K/F ).
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To see this, note that since K/E is actually Galois, K is the splitting field of a separable
polynomial over E, so we can express K as being generated by the roots of this polynomial over E:
K = E(α1, . . . , αm). Now, given an embedding τ : E → K over F , we argue that we can extend it
first to E(α1), and then to E(α1, α2), and so on until we have extended it to K = E(α1, . . . , αm)
as desired. We have actually seen this type of argument a few times before—when showing that
splitting fields are unique and when bounding the order of Aut(E/F ) by [E : F ] when E is the
splitting field of a polynomial over F—but let us be clear. Using the minimal polynomial of α1

over E, we can identity E(α1) with a quotient E[x]/(m(x)), which we can in turn identity with
τ(E)[x]/(image of m(x)) ∼= τ(E)(root) where “root” is any root of the image of m(x). By sending
α1 to this “root”, we thus get a map

E(α1)→ τ(E)(root)

that extends E → τ(E) ⊆ K. Now we do the same thing with α2: use the minimal polynomial of α2

over E(α1) and the corresponding quotient E(α1)[x]/(polynomial) to extend E(α1)→ τ(E)(root)
to a map

E(α1, α2)→ τ(E)(root, another root) ⊆ K.

Continuing in this way then gives a map K = E(α1, . . . , αm) → K extending the original τ :
E → K. (There is one subtle point here, in that we need to know all the “roots” we adjoin on
the right side at each step are actually in K, so that the resulting map indeed has image in K as
opposed to simply an algebraic closure of K. But this follows from the fact that K is a splitting
field: the minimal polynomial of α1 is sent to the minimal polynomial of the corresponding root
under the first extension to E(α1), so that K, which contains all the root of the first minimal
polynomial, also contains the roots of the second. This is true at each step, so K contains all the
required roots.) This resulting map is an automorphism since, being nonzero, it is injective, and
the fact that [K : E] = [image of K : E] implies that it is surjective as well. Thus, as claimed, any
embedding E → K is the restriction of an element of Gal(K/F ).

Now, suppose σ1, σ2 ∈ Gal(K/F ). We want to determine when it is that these two elements give
the same restriction to E. But σ1|E = σ2|E if and only if σ−11 σ2|E is the identity map on E, which
just means that σ−1σ2 fixes E and is thus an element of Gal(K/E). Recalling some things about
cosets from the fall, we see that this condition is the same as saying that σ1 and σ2 determine the
same coset of Gal(K/E) in Gal(K/F ). Thus, σ1 and σ2 give the same restriction to E, or in other
words the same embedding in Emb(E/F ), if and only if they become equal in the set of cosets.
Hence, the number of such embeddings is precisely the number of cosets:

|Emb(E/F )| = [Gal(K/F ) : Gal(K/E)].

Since the index [Gal(K/F ) : Gal(K/E)] equals the degree [E : F ] by part (3) of the Fundamental
Theorem of Galois Theory, we thus get that |Emb(E/F )| = [E : F ].

Normality. To say that E/F is Galois is the same as saying that |Aut(E/F )| = [E : F ], which,
based on the equality derived above, is the same as saying that the number of automorphisms of E
over F equals the number of embeddings of E over F : |Aut(E/F )| = |Emb(E/F )|. But note that
any automorphism φ is in particular an embedding as well, in this case with conjugate field φ(E)
equal to E itself. Thus Aut(E/F ) is always a subset of Emb(E/F ), so the condition that E/F is
Galois is equivalent to saying that every embedding of E over F actually has image equal to E, or
in other words that every conjugate field of E is E itself:

E/F is Galois ⇐⇒ σ(E) = E for all σ ∈ Gal(K/F ).
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We thus seek to understand when it is that this is true.
The key observation is that σ(E) is the fixed field of the conjugate subgroup σGal(K/E)σ−1

of Gal(K/F ). (Hence why we use the term “conjugate” in the field setting.) Indeed, if a ∈ E and
τ ∈ Gal(K/E), then

(στσ−1)(σ(a)) = σ(τ(a)) = σ(a),

where we use the fact that τ(a) = a since τ ∈ Gal(K/E) fixes elements of E. This says that
elements of σGal(K/E)σ−1 fix elements of σ(E), so

σ(E) ⊆ KσGal(K/E)σ−1
.

But the degree of K over σ(E) is the same as the degree of K over E since σ(E) is isomorphic to
E (over F ), and the order of σGal(K/E)σ−1 is equal to the order of Gal(K/E). Thus

[K : σ(E)] = [K : E] = |Gal(K/E)| = |σGal(K/E)σ−1| = [K : KσGal(K/E)σ−1 |,

so we must have σ(E) = KσGal(K/E)σ−1
as claimed.

Thus E/F is Galois if and only if σ(E) = E for all σ ∈ Gal(K/F ) if and only if E =
KσGal(K/E)σ−1

for all σ ∈ Gal(K/F ). But E is the fixed field of Gal(K/E), so by bijectivity
of the Galois correspondence:

KGal(K/E) = KσGal(K/E)σ−1 ⇐⇒ Gal(K/E) = σGal(K/E)σ−1

for all σ ∈ Gal(K/F ), which is precisely the condition that Gal(K/E) be a normal subgroup of
Gal(K/F ). Hence “Galois” on the field side is equivalent to “normal” on the group side, which is
the first part of (4) in the Fundamental Theorem.

Finally, when E/F is Galois, we have a homomorphism Gal(K/F )→ Gal(E/F ) of groups given
by restriction: σ 7→ σ|E . This is surjective since every embedding (in particular automorphism)
of E over F is the restriction of an element of Gal(K/F ), and its kernel consists of those element
of Gal(K/F ) that become the identity map on E, which are precisely the elements of Gal(K/E).
Thus the first isomorphism theorem for groups gives

Gal(K/F )/Gal(K/E) ∼= Gal(E/F ),

which is the rest of part (4) of the Fundamental Theorem of Galois Theory. This completes our
(elaborate!) proof of this theorem.

Lecture 15: More on Galois Theory

Warm-Up. Suppose K/F is Galois of prime-power degree pn for some prime p. We show that
there exists a chain of extensions

K ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn−1 ⊆ K

such that each field is of degree p and Galois over the previous one. The point is that trying to
justify this in a strictly field-theoretic manner (no groups) is likely to be quite challenging if not
impossible, since it would require constructing the desired extensions seemingly out of nowhere.
But, this is the type of thing which Galois theory makes feasible, essentially because we have already
solved the corresponding problem for groups. We’ll note that going forward we will be using much
of the group theory we did in the fall, some of which involved results for very specific types of
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groups, and that it is not expected that you will immediately be able to recall all of this. But, the
goal is to revisit these topics in the course of looking at various applications, so that hopefully your
memory will be refreshed. You can check the lecture notes for the fall quarter to recall why these
results are true if you’d like, but we will treat them here as a black box.

Since [K : F ] = pn, the Galois group Gal(K/F ) has order pn, so it is what we called in the fall
a p-group. A key property of p-groups is that they have subgroups of any possible allowed order,
meaning that for each 1 ≤ k ≤ n there exists a subgroup of order pk. (This was a consequence of
the class equation and properties of the center of a group. Again, check the notes from the fall if
you want to see more.) Thus in particular Gal(K/F ) has a subgrouop H of order pn−1. H then has
index pn

pn−1 = p in Gal(K/F ), so since this index is the smallest prime divising |Gal(K/F )| = pn, H

must actually be a normal subgroup. (That H being normal is implied by [G : H] being the smallest
prime dividing |G| is another group-theoretic result to recall.) By the Fundamental Theorem of
Galois Theory, the fixed field KH of H is then a Galois extension of F of degree p, so this is our
sought-after “K ′′1 . Set K1 := KH .

Now consider the Galois extension K/K1. This has degree pn−1 by the tower law, so Gal(K/K1)
has order pn−1. This is still a p-group, so there exists a subgroup A of order pn−2. This subgroup

then has index pn−1

pn−2 = p, so it is normal in Gal(K/K1). Thus if K2 denotes the fixed field KA of

A ≤ Gal(K/K1), K2 is a Galois extension of K1 of degree p. And so on, continuing in this manner
produces the desired K3 as the fixed field of a subgroup of order pn−3 of Gal(K/K2), then K4, and
onward as required.

Revisiting constructibility. In particular, we see that if [K : F ] is a power of 2, then K can be
constructed from F by a sequence of successive quadratic extensions. This fact gives the converse
to the claim that if α is a constructible real number (in the straightedge and compass sence), then
[Q(α) : Q] is a power of 2. Recall that α is constructible if and only if it can be expressed in terms
of rational numbers using only the operators of addition, subtraction, multiplication, diviison, and
(repeated) square root extractions, and we argued previously that if this is true, then Q(α) has
degree over Q which is a power of 2, since each new square root we introduce in expressing α
requires moving to a new quadratic extension. We now claim that if [Q(α) : Q] is a power of 2,
then α is constructible.

Indeed, if [Q(α) : Q] is a power of 2, then the Warm-Up gives

Q ⊆ K1 ⊆ . . . ⊆ Kn−2 ⊆ Kn−1 ⊆ Q(α)

where each field is of degree 2 over the previous one. Any extension of degree 2 over Q is obtained
by adjoining a square root (we did this as a Warm-Up early in the quarter), so Ki = Ki−1(

√
Di)

for some non-square Di ∈ Ki−1. (Set K0 = Q and Kn = Q(α) so that this notation works for all
fields above.) Thus, we have Q(α) = Kn−1(

√
Dn), so

α = a+ b
√
Dn for some a, b ∈ Kn−1.

But now a, b,Dn are all in Kn−1 = Kn−2(
√
Dn−1), so each is expressible as

a = x+ y
√
Dn−1, b = c+ d

√
Dn−1, Dn = s+ t

√
Dn−1

for some x, y, c, d, s, t ∈ Kn−2. Plugging these into α = a + b
√
Dn gives an expression for α in

terms of x, y, c, d, s, t,Dn−1 and square root extractions. Now do the same for x, y, c, d, s, t,Dn−1 ∈
Kn−2 = Kn−3(

√
Dn−2), expressing each in terms of elements of Kn−3, Dn−2 ∈ Kn−2, and square

root extractions. Continuing down all the way to K0 = Q will give an expression for α in terms
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of rationals and the basic operations (including square root extractions), showing that α is con-
structible. Thus, we conclude that α is constructible if and only if [Q(α) : Q] is a power of 2.
(Proving this converse direction without Galois theory is bound to be quite tedious, since knowing
only that Q(α) has degree 2n over Q does not at all immediately suggest how to actually express α
in a certain way, let alone via repeated square root extractions. I think that it is probably possible
to do this directly—indeed, something along these lines was likely the proof that Gauss originally
gave of this fact in the 19th century—but it for sure won’t be easy.)

Bound on degree. Now we come back to the one unproven claim we have left: if H is a finite
subgroup of Aut(K), then [K : KH ] = |H|. Recall that this formed the basis of our starting point
in the proof of the Fundamental Theorem of Galois Theory, but we postponed the proof until now.
Part of the reason why we did so is because the first step, namely that [K : KH ] ≤ |H|, is a bit
technical and I felt it would detract us from the key ideas in Galois theory. The proof does illustrate
some nice ideas, in particular how the fact that KH is a fixed field comes in, but is not all that
illustrative of crucial techniques going forward. Nonetheless, here we go. We give essentially the
same proof as the book, only cleaned up a bit.

Denote the elements of H by H = {id, σ1, . . . , σk} and suppose α1, . . . , αm ∈ K are nonzero
with m > |H|. We claim that these elements are linearly dependent over KH (i.e. considering K
as a vector space over KH), which if true gives the desired inequality [K : KH ] ≤ |H|: no linearly
independent set of elements can have size larger than |H|, so the size [K : KH ] of a basis for K over
KH must in particular be at most |H|. Apply each element of H to the αj and form the following
system of linear equations with coefficients the resulting elements of K:

α1x1 + · · ·+ αmxm = 0

σ1(α1)x1 + · · ·+ σ1(αm)xm = 0

σ2(α1)x1 + · · ·+ σ2(αm)xm = 0

...
...

...

σk(α1)x1 + · · ·+ σk(αm)xm = 0.

So, the first equation is the one with coefficients id(αj), and the i-th equation (i > 1) has coefficients
σi(αj). Since m > |H|, this system has more variables than equations, and hence there exists
a nontrivial solution (x1, . . . , xm) where each xi ∈ K. We may assume that this solution has
the minimal number of nonzero values (there is at least one nonzero value since the solution is
nontrivial), and by rearranging the xj ’s and αj ’s if necessary we can assume the nonzero values
occur at the beginning, so that in particular x1 6= 0.

Now, the nonzero product x1σ1(x1)σ2(x1) · · ·σm(x1) ∈ K is fixed by all elements of H, since
applying any element of H will simply permuate the factors. (Note that since H is a group, left mul-
tiplication by any element in it is a permutation of the elements.) Thus x1σ1(x1)σ2(x1) · · ·σm(x1)
belongs to the fixed field KH . After multiplying the first equation in our system through by
σ1(x1)σ2(x1) · · ·σm(x1) we thus obtain a solution to our system of linear equations whose first en-
try is an element of KH , so we may as well assume that x1 was already in KH . The claim is then
that all xj are actually in KH . If so, then the first equation of our system

x1α1 + · · ·+ xmαm = 0

expresses 0 as a nontrivial linear combination of the αj over KH , which shows they are linearly
dependent over KH as required.
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If there is some xt not in KH , then there is some σ` that does not fix xt: σ`(xt) 6= xt. Applying
σ` to all equations in our system produces a new system with the same coefficients, only with
the xj replaced by σ`(xj); in other words, we get the same system of equations but with solution
(σ`(x1), . . . , σ`(xm)) instead. Indeed, the point is that the set of products σ`σi ∈ H is just H itself
with the elements permuted, so the effect of applying σ` is to simply permute the equations of our
system. For example, the new first equation is

σ`(α1)(σ`(x1)) + · · ·+ σ`(αm)(σ`(xm)) = 0,

which is the original (`+ 1)-st equation evaluated at (σ`(x1), . . . , σ`(xm)).
So we now have two solutions of our system of equations:

(x1, . . . , xm) and (σ`(x1), . . . , σ`(xm)).

Since our system of equations is homogeneous (meaning we have all zeroes to the right side of the
equal signs), the difference of these two solutions is still a solution, so

(x1 − σ`(x1), . . . , xm − σ`(xm))

is a solution of our system of equations. But since x1 ∈ KH , x1 = σ`(x1) = 0, so the first value
in this new solution is zero. This solution is nontrivial since the entry xt − σ`(xt) is nonzero by
the choice of σ`, so this is thus a solution with a fewer number of nonzero values than the original
(x1, . . . , xm). (Note that any xj which were originally zero still gives xj − σi(xj) = 0.) This
contradicts the choice of (x1, . . . , xm) as a solution with a minimal number of nonzero components,
so we conclude (finally!) that all xj are in fact in KH . As explained above, this then shows that
α1, . . . , αm ∈ K are linearly dependent over KH , as desired. (Maybe now you can see why I saved
this proof until the end!)

Bound on order. The remaining inequality, |H| ≤ [K : KH ], is simpler to justify. We will give
a different proof than the book does, which uses ideas we’ve already seen quite a bit. (The book’s
proof is phrased using the language of characters, which are homomorphisms from a group into the
multiplicative group of a field. This is certainly an important topic in further study of algebra, but
is not something we will need in our course, hence why I don’t want to take the time to introduce
them.) By what we just proved above, we know that K is a finite extension of KH . Let α1, . . . , αn
be a basis, so that K = KH(α1, . . . , αn).

We count (or rather bound) the number of embeddings of K into, say, the algebraic closure of
KH over KH . (We use the algebraic closure because it is guaranteed to be a field that contains
the roots of all polynomials over KH .) Any embedding of K → KH restricts to an embedding of
KH(α1), and to an embedding of KH(α1, α2), and to an embedding of KH(α1, α2, α3), and so on.
Thus we can bound the number of embeddings by bounding the number of such restrictions at each
step. At the first step, we have argued (in the proof that splitting fields have automorphism group
order bounded by the degree) that the number of embeddings of KH(α1) is bounded by the number
of roots of the minimal polynomial of α1 over KH (since α1 in particular has to be sent to such a
root), which in turn is bounded by the degree of this polynomial, which is equal to [KH(α1) : KH ].

In the same way, at the next step the number of embeddings of KH(α1, α2) (given that we have
already specified what happens to α1) is bounded by the number of roots of the minimal polynomial
of α2 over KH(α1), which is bounded by [KH(α1, α2) : KH(α1)]. At the next stage, the number
of embeddings of KH(α1, α2, α3) is bounded by [KH(α1, α2, α3) : KH(α1, α2)], and so on as we go

57



“up” the tower. In the end, the number of embeddings of K = KH(α1, . . . , αn) is bounded by the
product of the number of embeddings at each step, which is:

[K : KH(α1, . . . , αn−1)] · · · [KH(α1, α2) : KH(α1)][K
H(α1) : KH ] = [K : KH ].

Thus |Emb(K/KH)| ≤ [K : KH ], and since automorphisms are special types of embeddings, we
have:

|H| ≤ |Aut(K/KH)| ≤ |Emb(K/KH)| ≤ [K : KH ],

as desired. We thus conclude that [K : KH ] = |H|, our last unproven claim. (This same reasoning
shows that for any finite extension K/F , splitting field or not, we have |Aut(K/F )| ≤ [K : F ]. We
instead derived this fact a few days ago as a consequence of the [K : KH ] = |H| claim.)

Galois correspondence in topology. Next time we will begin to look at more concrete applica-
tions of the Fundamental Theorem of Galois Theory, but we finish for now with a brief digression
meant to illustrate how the ideas of Galois theory, in terms of creating a “dictionary” between
certain mathematical objects (fields in the case at hand) and groups, can show up in other areas.

Recall that on the last day of the fall quarter we spent a brief amount of time talking about
the concept of the fundamental group of a space. (The fundamental group of a space is a group
constructed out of the loops in that space, but you can check the notes from the fall for clarification.)
The intent then was simply to illustrate an interesting way in which groups show up in topology, and
to hint at how free groups in particular can be studied via topological means. Now, an important
notion in topology is that of a covering space, which is space that in a sense “covers” another space.
For example, we can view the circle as a “1-fold” cover of itself, which means that we can project
a circle onto a circle so that any point below corresponds to one point above:

By doubling up the circle above into a “double helix” we get a 2-fold cover of the circle, as in the
second picture above: each point in the circle below now corresponds to two points in the (twisted)
circle above. And so on, we can form a 3-fold cover of the circle, a 4-fold cover, etc. Other spaces
besides circles can be “covered” by other “covering spaces” as well.

One can then study the group of “automorphisms” of a cover, which are continuous mappings
of the cover to itself that “preserve” the base space being covered:
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It turns out that this automorphism group can be viewed as a subgroup of the fundamental group of
the base space, and lo-and-behold there ends up being a one-to-one correspondence between covers
of X and subgroups of the fundamental group of X. This correspondence is known as the Galois
correspondence in topology, so named because of the obvious analogy with the relation between
field extensions and groups given by Galois theory. (In a sense, a covering space is somehow
analogous to an extension field.) Numerical data on the topology side, such as the “degree” of
the cover, corresponds to numerical data on the group side—orders, indices—and certain types
of covers correspond to normal subgroups. So, precisely the types of things one would expect a
“Galois correspondence” to preserve! Take a topology course like MATH 344-2 to learn more.

That’s all we’ll say about this topic, except for this final crazy thing. The idea of viewing
covers and extensions fields as analogous to one another is purely meant in a figurative and not
literal sense... or so one would think! Crazy as it may sound, given how disparate fields and
spaces seem to be, there is actually a way to think about field extensions as if they were literal
covering spaces, in the setting of algebraic geometry! (Recall from a brief discussion last quarter
that algebraic geometry provides a way to study algebra—in that case rings—by treating them
as if they were geometric objects.) The claim is that a Galois extension K/F can be viewed as
a literal type of “covering space”, only that you have to greatly generalize what you mean by
“cover”. (This requires a whole bunch of the subject called category theory to make precise, but
it can be done!) One you do this, it turns out that the Galois group of K/F becomes the literal
(well, almost literal) “fundamental group” of the “covering space” K/F , thereby merging the two
notions of “Galois correspondence” together. Pretty awesome (albeit highly technical) stuff! (If
you have ever seen the movie A Beautiful Mind about John Nash, there is a scene towards the
end were Nash—played by Russell Crowe—is talking to a graduate student, who says something
like “I believe I can prove that Galois extensions are covering spaces.” Now, of course, the person
who wrote the movie just through this in in order to include some cool-sounding mathematical
buzzwords, but there’s no doubt that real mathematicians were consulted when drafting this since
the idea that “Galois extensions are covering spaces” is an actual thing that people study! Fun
fact: this is now the second time I make reference to this movie in my teaching—I also mention it
when teaching MATH 291-3!)

Lecture 16: Simple Extensions

Warm-Up. Suppose E1 and E2 are both Galois extensions of F . We show that the intersection
E1 ∩ E2 and the composite E1E2 are Galois over F as well. For the intersection, we use the
characterization of Galois as being normal and separable. If E1 and E2 are both separable over F ,
then E1 ∩ E2 is too since repeated roots in E1 ∩ E2 of an irreducible polynomial over F whould
also be repeated in both E1 and E2. If p(x) ∈ F [x] is irreducible and has a root α ∈ E1 ∩E2, then
it also has a root in each Ei and thus splits in Ei since Ei is normal over F . Thus p(x) splits in
E1 ∩ E2, so E1 ∩ E2 is Galois over F .

For the composite, for i = 1, 2 take a separable polynomial fi(x) ∈ F [x] whose splitting field
is Ei. (This uses the splitting field characterization of Galois.) Then the splitting field of the
product f1(x)f2(x) is E1E2: all roots of fi(x) lie in Ei, so all roots of the product are in E1E2,
and f1(x)f2(x) does not split in any proper subfield of E1E2 since the splitting field of the product
must contain both E1 and E2 (since fi(x) splits in Ei), and hence must contain the smallest field
extending both E1 and E2, which is precisely E1E2. Now, f1(x)f2(x) might not be separable, but
by factor each fi(x) into linear terms and removing any duplicate factors we obtain a separable
polynomial over F whose splitting field is still E1E2, so E1E2 is Galois over F .
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Remark. After discussing the Fundamental Theorem of Galois Theory, the book spends a section
talking about finite fields, and then has more to say about composites in the following section.
All of the material here on finite fields is something we’ve already discussed in class or on the
homework, except for one minor point we will clarify in a bit. So, we will skip this discussion.
Similarly, we are only highlighting the aspects of the Galois theory of composite fields that are
important for our purposes as we need them, and will omit some of the less crucial results.

Galois closures. The results of the Warm-Up allow us to construct, for any finite separable
extension of a field F , a Galois extension which contains it. This is good since Galois extensions
are the ones to which the Fundamental Theorem of Galois Theory applies, and we are saying that we
can study arbitrary finite and separable extensions via Galois ones. If K/F is finite and separable,
say generated by α1, . . . , αn ∈ K, let Ei denote the splitting field of the minimal polynomial of
αi. Then the composite E1 . . . En is a Galois extension of F (by the Warm-Up and induction) that
contains K.

If there is a Galois extension of F containing K, then we can ask for the smallest such extension,
and this is what we call the Galois closure of K/F . This can be constructed as the intesection of all
Galois extensions of K containing F , where we again use the Warm-Up (or rather, its generilzation
to more than 2 Galois extensions) to argue that this intersection is Galois. The upshot is that we
can always a nice Galois extension containing a given (finite and separable) K/F to work with.

In practice, the Galois closure is not to difficult to determine when given explicit fields. For
example, we claim that the Galois closure of Q( 3

√
2) over Q is Q( 3

√
2, ζ3), or in other words the

splitting field of x3 − 2 ∈ Q[x]. Indeed, this splitting field is certainly a Galois extension of Q
that contains Q( 3

√
2). To see that it is the smallest such extension, note that any Galois extension

containing Q( 3
√

2) contains the root of 3
√

2 of x3 − 2, and thus, being normal, must contain all the
roots. Hence any Galois extension containing Q( 3

√
2) contains all of Q( 3

√
2, ζ3), so this is indeed the

Galois closure. More generally, the Galois closure of Q(α) over Q will be the splitting field of the
minimal polynomial of α over Q.

Simple extensions. Now we come to justify a fact we’ve mentioned before, namely that any finite
extension of Q is simple. (Recall that a simple extension of F is one F (α) which is generated by
a single element. We call this element a primiitive element for the extension.) More generally, the
claim is that any finite separable extension of any field is simple.

But before proving this, we first state the following characterization of simple extensions, at
least in the finite case: if K/F is finite, then K is simple if and only if there are only finitely many
intermediate fields between F and K. (Note that there is no separaibility assumption here.) For
the forwards direction (we give this direction for completeness, but it is not essential), suppose that
α generates K over F . If E is an intermediate field F ⊆ E ⊆ K, then the minimal polynomial
of α over E has degree [K : E]. If E′ is the field generated by the coefficients of this minimal
polynomial, then the minimal polynomial of α over E′ is the same as that over E, so [K : E′] is
also [K : E]. But E′ ⊆ E since E already contains the coefficients of this minimal polynomial,
so E′ = E and we conclude that all the only intermediate fields F ⊆ E ⊆ K are those generated
by minimal polynomials of α over subextensions of K. Any such minimal polynomial divides the
minimal polynomial of α over F , so since this latter polynomial has only finitely many factors,
there can be only finitely many such intermediate fields as desired.

For the backwards direction, which is the one we actually care more about, we must distinguish
between the case of finite fields vs infinite fields. Since any finite field is a finite extension of some
Fp, it is enough to show that any finite field (of characteristic p) is a simple extension of Fp. (Then
when Fpm ⊆ Fpn , Fpn being simple over Fp implies that it is simple over Fpm as well with the
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same generator.) To see that K = Fpn is simple over Fp, let α ∈ Fpn be a generator of the cyclic
multiplicative group F×pn . Then we claim that α generates all of Fpn over Fp. Indeed, if Fp(α) was

contained in a proper subfield Fpm of Fpn , then α would belong to the multiplicative group F×pm
and would have order dividing pm − 1, so that it could not generate F×pn . Hence Fpn = Fp(α) for
this α as claimed.

Now suppose F is infinite and let α, β ∈ K. The fields F (α+ cβ) for c ∈ F are all intermediate
between F and K, so since by assumption there can only be finitely many of these, we must have

F (α+ c1β) = F (α+ c2β)

for some c1 6= c2 ∈ F . But then the difference (c1 − c2)β of the generators is in F (α + c1β), and
thus so is β after dividing by c1 − c2 ∈ F , and hence so is α = (α+ c1β)− c1β. We conclude that
F (α, β) ⊆ F (α + c1β), so we have equality since the other containment is clear. By induction, we
thus have that any F (α1, . . . , αn) is simple over F , and K is of this form.

Primitive Element Theorem. The primitive element theorem states any finite separable exten-
sion of a field is simple. (In particular then, any finite extension of a field of characteristic zero, such
as Q, is simple.) The proof is now a quick application of Galois theory and the characterization
of simple extensions given above. If K/F is finite and separable, then consider the Galois closure
L of K/F . Then Gal(L/F ) is a finite group (Galois extensions are always of finite degree), so it
has only finitely many subgroups. But any field intermediate between F and K is the fixed field of
one of these subgroups, so there can only be finitely many such intermediate extensions. Thus K
is simple over F by the characterization of simple extensions above.

We should note that there are ways of proving the primitive element theorem without using
Galois theory, but they are fairly tedious and require some heavy computations with the Euclidean
algorithm. (One approach to Galois theory is to first prove the primitive element theorem without
it, and then derive the Fundamental Theorem of Galois Theory from it.) The approach we have
followed is, I think at least, a better one conceptually.

Fundamental Theorem of Algebra. We finish by giving a proof of the Fundamental Theorem
of Algebra using Galois theory and the primitive element theorem. This will be, for the most part,
a purely algebraic proof, except for one property of polynomials over R that requires some analysis
(or calculus, really) to understand. We will point this out when we get there. We should point out
that the book gives two proofs of the Fundamental Theorem of Algebra later on when discussing
Galois groups of polynomials over Q, but the proof we give here is not quite the same. This proof
is a “tour de force” in using the machinery of group theory to avoid doing any hard computations
with fields.

Recall the claim is that C is algebraically closed, which means that any polynomial over C
has a root in C. As we mentioned a while back, this is equivalent to the claim that there are no
proper finite extensions of C, which is what we actually prove. (A proper finite extension would be
generated by an element with minimal polynoial of degree at least 2, and so would be a polynoimal
with no root in C.) So, suppose K is a finite extension of C. Our goal is to show that K = C.

Since K is finite over C and C is finite over R, K is finite over R and

[K : R] = [K : C][C : R] = 2[K : C].

The extension K/R is finite and separable, so by replacing K by its Galois closure over R we can
assume that K is Galois over R. Then Gal(K/R) has order [K : R], which is even. Write this order
has |Gal(K/R)| = 2nm where m is odd, and let H be a Sylow 2-subgroup of Gal(K/R), so that
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|H| = 2n. The index of H in Gal(K/R) is then m, so the Fundamental Theorem of Galois Theory
says that the fixed field KH has degree m over R.

But m is odd, and we claim that the only extension of R of odd degree is R itself. Indeed,
KH = R(α) for some α by the primitive element theorem, and the minimal polynomial of α over
R then has degree m. Here is the fact from analysis/calculus we need: any polynomial p(x) of odd
degree over R in fact has a real root! This is a consequence of the Intermediate Value Theorem:
since the degree is odd, one of limx→∞ p(x) and limx→−∞ p(x) is +∞ and the other −∞, so since
p(x) is continuous it must attain the value 0 at some c ∈ R, which is then a real root. (We won’t
give a proof of this here—it is a standard part of any analysis course.) In our case, this means that
the minimal polynomial of α has degree 1 since if it had larger degree it could not be irreducible.
This implies α ∈ R, so KH = R(α) = R, and hence m = 1.

Thus |Gal(K/R)| = 2n, and in turn |Gal(K/C)| = 2n−1. If this order is larger than 1, then
Gal(K/C) is a 2-group, so there exists an extension of C of degree 2. (See the Warm-Up and
discussion about constructibility from last time.) But this is not possible since the square root of
any complex number is complex by the quadratic formula, so we conclude that |Gal(K/C)| = 1.
Thus K has degree 1 over C, so K = C as claimed.

Lecture 17: More on Cyclotomic Extensions

Warm-Up. Suppose p is prime. We show that Fp(x, y) is a finite but non-simple extension of
Fp(xp, yp). Here, Fp(x, y) is the field of two-variable rational functions (quotients of two-variable
polynomials) over Fp, and Fp(xp, yp) is the same only with x and y appearing with exponents
that are multiples of p. Note that the Primitive Element Theorem implies that non-simple finite
extensions do not exist over fields of characteristic 0 nor over finite fields since such extensions are
always separable, so if we want a non-simple finite extension we must work with infinite fields of
prime characteristic. (Fp(x, y) is inseparable over Fp(xp, xp) since Xp−xp = (X−x)p is irreducible
over Fp(xp, yp) and has repeated root x ∈ Fp(x, y).)

First, the fact that Fp(x, y) is finite over Fp(xp, yp) comes (among other ways) from viewing
it as the composite of Fp(x, yp) and Fp(xp, y): this composite should be the smallest extension
of Fp(xp, yp) containing both x and y, and this is Fp(x, y). The fields Fp(x, yp) = Fp(xp, yp)(x)
and Fp(xp, y) = Fp(xp, yp)(y) each have degree p over Fp(xp, yp), since the minimal polynomial the
generator (x or y) over Fp(xp, yp) is Xp − xp in the first case and Xp − yp in the second. The
composite Fp(x, y) thus as degree at most [Fp(x, yp) : Fp(xp, yp)][Fp(xp, y) : Fp(xp, yp)] = p2, so it
is finite over Fp(xp, yp). Actually, the degree is exactly p2. We can see this by working out the
degree of Fp(x, y) over Fp(x, yp), for instance, using minimal polynomials: the minimal polynomial
of y ∈ Fp(x, y) over Fp(x, yp) divides Xp− yp, so this extension has degree dividing p, and it is not
1 since Fp(x, y) 6= Fp(x, yp).

Now, to see that Fp(x, y) is not simple over Fp(xp, yp), let α ∈ Fp(x, y). Then

α =
f(x, y)

g(x, y)

for some f(x, y), g(x, y) ∈ Fp[x, y]. By the freshman’s dream and the fact that Frobenius fixes Fp,
we have f(x, y)p = f(xp, yp) and g(x, y)p = g(xp, yp), so that

αp =
f(x, y)p

g(x, y)p
=
f(xp, yp)

g(xp, yp)
∈ Fp(xp, yp).

Hence α is a root of Xp − αp over Fp(xp, yp), so its minimal polynomial has degree at most p and
hence Fp(x, y)(α) has degree at most p over Fp(xp, yp). Thus no elmeent of Fp(x, y) can generate
an extension of degree p2 over Fp(xp, yp), so Fp(x, y) is not simple over Fp(xp, yp).
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Degrees of composites. Before moving on, we highlight one fact about composites of Galois
extensions. If E1, E2 are Galois over F , we already know that [E1E2 : F ] is at most [E1 : F ][E2 : F ],
but now we claim that we can give the following exact value for [E1E2 : F ]:

[E1E2 : F ] =
[E1 : F ][E2 : F ]

[E1 ∩ E2 : F ]
.

The book derives this in the more general setting where only one of E1 or E2 is assumed to be
Galois over F , but we give a simpler proof here assuming both are Galois. This is in some sense
the field-theoretic analog of the equality

|AB| = |A||B|
|A ∩B|

we saw for subgroups A,B of a group G in the fall. Note we showed last time that if E1 and E2

are Galois over F , then so are E1E2 and E1 ∩ E2.
First, the join 〈Gal(E1E2/E1),Gal(E1E2, E2)〉 (as a subgroup of Gal(E1E2/F )) is simply the

product Gal(E1E2/E1) Gal(E1E2/E2): this product is a subgroup given that each factor is normal
in Gal(E1E2/F ), so it is indeed the smallest subgroup containing both factors, as the join should
be. The join is the Galois group of E1E2 over E1 ∩ E2 by the Fundamental Theorem of Galois
Theory, so since Gal(E1 ∩ E2/F ) ∼= Gal(E1E2/F )/Gal(E1E2/E1 ∩ E2), we have:

|Gal(E1 ∩ E2/F )| = |Gal(E1E2/F )|
|Gal(E1E2/E1 ∩ E2)|

=
|Gal(E1E2/F )|

|Gal(E1E2/E1)||Gal(E1E2/E2)|
.

Now, Gal(Ei/F ) ∼= Gal(E1E2/F )/Gal(E1E2/Ei), so

|Gal(Ei/F )| = |Gal(E1E2/F )|
|Gal(E1E2/Ei)|

.

Putting it all together gives

|Gal(E1 ∩ E2/F )| = |Gal(E1E2/F )|
|Gal(E1E2/E1)||Gal(E1E2/E2)|

=
|Gal(E1/F )||Gal(E2/F )|

|Gal(E1E2/F )|
.

Rearranging and replacing these orders by degrees of field extensions gives the desired equality.
Note in the Warm-Up that this equality does happen to give the right answer p2 for the degree

of Fp(x, y) over Fp(xp, yp) even though the extensions involved are not Galois, where we use the
fact that Fp(x, yp) ∩ Fp(xp, y) = Fp(xp, yp). Thus this equality can hold in settings other than the
Galois case, even though the Galois case will be our primary focus going forward.

Revisiting cyclotomic extensions. Before moving on to focusing more heavily on Galois groups
of polynomials next time, we revisit the topic of cyclotomic fields and definitively settle the problem
of constructing regular n-gons with straightedge and compass. Recall that the n-th cyclotomic ex-
tension of Q is Q(ζn) where ζn is a primitive (complex) n-th root of unity. The minimal polynomial
of ζn over Q is the n-th cyclotomic polynomial φn(x), whose roots are precisely the primitive n-th
roots, which can all be written as ζan for some a relatively prime to n:

φn(x) =
∏

(a,n)=1
1≤a≤n

(x− ζan).
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The degree of φn(x), and hence the degree of the extension Q(ζn)/Q is ϕ(n), the number of positive
integers less than n that are relatively prime to n.

Let us now determine the Galois group Gal(Q(ζn)/Q). Any element of this group is determined
by its value on the generator ζn, which has to be sent to another primitive n-th root of unity since
the Galois group permutes the roots of φn(x). Thus an element of the Galois group is determined
by some 1 ≤ a ≤ n, (a, n) = 1 via ζn 7→ ζan, and for any such a we get such a map. This thus gives
a bijection between Gal(Q(ζn)/Q) and (Z/nZ)×, the group of elements of Z/nZ that are relatively
prime to n:

Gal(Q(ζn)/Q)→ (Z/nZ)× defined by σ 7→ the exponent a in σ(ζn) = ζan.

We claim this bijection is actually a group isomorphism, meaning that composition in the Galois
group corresponds to multiplication in the multiplicative group. Indeed, if σa and σb are the maps
corresponding to a, b ∈ (Z/nZ)× respectively, then

(σaσb)(ζn) = σa(ζ
b
n) = (ζbn)a = ζabn = σab(ζn),

so that the composition σaσb corresonds to ab. Thus Gal(Q(ζn)/Q) ∼= (Z/nZ)× as groups.
A final observation comes from the Chinese Remainder Theorem: if n = pk11 · · · pkmm is the prime

factorization of n with the pi distinct, we saw last quarter that

(Z/nZ)× ∼= (Z/pk11 Z)× × · · · × (Z/pkmm Z)×

as a consequence of the Chinese Remainder Theorem. By the work above, (Z/pkii Z)× is the Galois
group of Q(ζ

p
ki
i

)/Q, so this isomorphism turns into

Gal(Q(ζn)/Q) ∼= Gal(Q(ζ
p
k1
1

)/Q)× · · · ×Gal(Q(ζ
pkmm

)/Q).

This reflects the fact that Q(ζn) is the composite of the fields Q(ζ
p
ki
i

), which can be proved using

the formula for the degree of composities we derived earlier. Check the book for details if interested.

Constructing polygons. We can now address the constructibility of regular polygons. Recall
the problem is to characterize the values of n for which the regular n-gon is constructible using
straightedge and compass alone. We previously argued that this is equivalent to constructing the
center angle 2π/n of such a polygon, and that this in turn is equivalent to constructing cos(2π/n).
This is the real part of ζn, so this is equivalent to constructing the complex number ζn, which
is finally equivalent to the degree [Q(ζn) : Q] being a power of 2. (The direction saying that
constructible implies power of 2 uses the tower law, and the direction saying that power of 2
implies constructible was an application of Galois theory we saw a few days ago.)

Now, the degree of Q(ζn) over Q is ϕ(n), so the problem comes down to determing the n for
which ϕ(n) is a power of 2, which is now a number-theoretic computation. As a first step, note that
when n = pk11 · · · pk

m

m with pi distinct primes, the Chinese Remainder isomorphism above implies
that

ϕ(n) = ϕ(pk11 ) · · ·ϕ(pkmm )

since ϕ(a) is the order of (Z/aZ)×. Thus for ϕ(n) to be a power of 2, it is equivalent that each
ϕ(pkii ) be a power of 2

The value ϕ(pk) can be determined by a simple counting argument. List the numbers 1 through
pk as follows:

1, 2, . . . , p, p+ 1, p+ 2, . . . , 2p, . . . , 3p, . . . , pk−1p = pk.
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The numbers here that are relatively prime to pk are those not divisible by p. There are p− 1 such
numbers between 1 and p, another p− 1 between p+ 1 and 2p, and so on: between np and (n+ 1)p
there are p−1 numbers not divisible by p. There are pk−1 such “intervals” overall in the list above,
so we get pk−1(p− 1) numbers in this list not divisible by p. Thus

φ(pk) = pk−1(p− 1) for p prime.

So, φ(pk) is a power of 2 precisely when p = 2 (no restriction on k here), or when k = 1 and p is
an odd prime such that p− 1 is a power of 2. (If k > 1 and p is odd, then the pk−1 term prevents
φ(pk) from being a power of 2.) Now that to say k = 1 means that we have distinct odd primes in
the prime factorization of n.

If p is an odd prime, then φ(p) = p− 1 is a power of 2, say 2`, if and only if p = 2` + 1. But in
fact, it turns out that being prime places restrictions on `, in that if 2` + 1 is prime then ` must
itself actually be a power of 2! Indeed, if ` is divisible by some odd number m > 1, say ` = mb
for some b > 1, then 2b + 1 divides (2b)m + 1 = 2` + 1, so that 2` + 1 would not be prime. (The
divisibility comes here from the fact that the polynomial x+ 1 divides xm + 1 when m is odd, since
−1 is a root of xm+1 in this case.) Hence if 2`+1 is prime, ` cannot be divisible by an odd number
larger than 1, so it must be a power of 2. The conclusion is that φ(p) is a power of 2 if and only if
p is a prime of the form 22

t
+ 1–such primes are called Fermat primes.

Thus, in summary, φ(n) is a power of 2 if and only if n is the product of a power of 2 and distinct
Fermat primes, so that the regular n-gon is constructible by straighedge and compass if and only
if n is a power of 2 (20 = 1 allowed) times a product of distinct Fermat primes. Since 22

0
+ 1 = 3,

22
1

+ 1 = 5, and 22
2

+ 1 = 17 are Fermat primes, we thus get for example that the regular 5-gon
is construtible, and so is the regular 17-gon, so is the regular 15-gon, and tons of other examples.
(Fun fact: the only known Fermat primes are those above, 22

3
+ 1 = 257, and 22

4
+ 1 = 65537. It

turns out that 22
t

+ 1 is not prime for 5 ≤ t ≤ 30, and the primality of larger such numbers is still
an open question.) The regular 7-gon is the first example of a nonconstructible polygon, since 7 is
not a Fermat prime.

To actually construct the resulting polygons is a different matter, but can be handled by Galois
theory as well. What is required is to produce a sequence of extensions:

Q ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Q(ζn),

each quadratic over the previous one, which one can do by working out the subgroups of the Galois
group (Z/nZ)×. We will look at an example of this next time.

Abelian extensions. The Galois group of Q(ζn) over Q is abelian, and for this reason we call
Q(ζn) an abelian extension of Q. (In general, an abelian extension of a field is a Galois extension
with abelian Galois group. We will soon consider cyclic extensions of fields—the case of a cyclc
Galois group—in relation to the solvability of polynomials.) We will not say much about abelian
extensions apart from how they show up in questions about polynomials, but let us mention here
some interesting facts without proof anyway.

Not only are cyclotomic extensions of Q abelian, but one of the most basic (basic in the sense
of a being cornerstone of the theory, not in terms of having a “basic” proof) results is that in
some sense these are the building blocks of all abelian extensions of Q. The key fact here is
the Kronecker-Weber Theorem (highly, highly nontrivial to prove), which states that any abelian
extension of Q is contained in a cyclotomic extension: if E/Q is abelian, then E ⊆ Q(ζn) for some
n. There is a basic procedure for constructing subfields of cyclotomic fields (again, we will see an
example next time), so in some ways this gives a description of all abelian extensions of Q.
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Now, fix the prime p and consider the cyclotomic extensions Q(ζpk) for varying k. The compos-

ites of these fields is the subfield of C generated by all pth-power roots of unity. This is in fact an
infinite extension of Q, so Galois theory in the sense we have developed does not apply to it since
our definition of “Galois extension” is restricted to finite extensions only, but there is a version of
“infinite Galois theory” which works in much the same way in this case. The key observation is
that the “Galois group” of this extension over Q arises as a type of “limit” of the Galois groups
of the finite extensions Q(ζpk)/Q; these Galois groups are (Z/pkZ)×, and the resulting “limit” of
these turns out to be the multiplicative group of the ring Zp of p-adic integers we briefly introduced
last quarter! (In fact, there was a homework problem last quarter alluding to the idea of viewing
Zp as a type of “limit” of the Z/pkZ.) Thus, the p-adics appear in field theory in describing the
Galois groups of certain infinite abelian extensios of Q.

The “maximal” abelian extension of Q (no finiteness condition) is the composite of all the
pth-power roots of unity fields above, and is generated by all roots of unity, regardless of which n
they come from. The Galois group of this maximal abelian extension turns out to be the product
of the (Z/pZ)× as p ranges among all primes, and this group turns out to be a crucial object in
number theory. Indeed, much of modern number theory is devoted to studying this and related
groups that arise as Galois groups of infinite extensions of Q. For reasons beyond the scope of this
course, the study of such Galois groups turns out to be intimately connected to the problem from
last quarter of determining which rings Z[something] were actually UFDs, where in particular the
rings Z[ζn] obtained by adjoining a root of unity to Z (the “ring of integers” of the field Q(ζn)) are
the important ones needed to understand Fermat’s Last Theorem.

Inverse Galois theory. Let us mention one more topic as a tangent, which we will very very
briefly mention in the next few days abut which we won’t study in any more depth. The subject of
inverse Galois theory is concerned with determining which groups can actually arise as examples
of Galois groups. (So, given the group construct the extension, hence the name “inverse”.) It
is a fact that any finite abelian group is indeed the Galois group (over Q) of some subfield of a
cyclotmic field, which gives a sort of converse to the Kronecker-Weber theorem mentioned above.
This converse is much easier to prove, and indeed the book gives a proof, which you can check if
interested. (The idea is to write your finite abelian group as a product of cyclic groups, then to
realize each of these cyclic factors as a quotient of some (Z/pZ)×, and then to take a fixed field.)

We will be able to show shortly that, if we are only asking for some field extension with Galois
group equal to a given group, the answer is that this is always true: for any finite group G, there
exists a Galois extension K/F of some field F with Gal(K/F ) ∼= G. The more difficult problem,
and is what inverse Galois theory is primarily concerned with, is whether there exists a Galois
extension of Q specifically whose Galois group is G. The answer is “yes” for finite abelian groups
as alluded to above, but it is in general an open problem for arbitrary finite groups. The answer
is not likely to be all that important for its own sake, but the point is that developing an answer
will likely require new fundamental insights into fields and Galois theory, and that these insights
are bound to give important techniques applicable to other problems going forward. Tough stuff!

Lecture 18: General Polynomials

Warm-Up. We determine an explicit sequence of extensions

Q ⊆ E1 ⊆ E2 ⊆ Q(ζ15)

where each field is quadratic over the previous one. This is possible since 15 = 3 · 5 is a product of
distinct Fermat primes, so that ζ15 is a constructible complex number. (Hence the regular 15-gon
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is constructible with straightedge and compass.) Since ϕ(15) = 8, we can only fit two intermediate
fields E1 and E2 into our desired chain, so that [E1 : Q] = 2, [E2 : Q] = 4, and [Q(ζ15) : Q] = 8.

Explicitly, we have (Z/15Z)× = {1, 2, 4, 7, 8, 11, 13, 14} under multiplication mod 15. The field
E1 should be the fixed field of a subgroup of order 4 since its index in (Z/15Z)× will be [E1 : Q] = 2,
and then E2 should be the fixed field of a subgroup of order 2 (in order to have index [E2 : Q] = 4)
contained in this first subgroup (in order to guarantee E1 ⊆ E2). Note that both of these fields
should be simple extensions of Q by the Primitive Element Theorem. One set of possible choices
for these subgroups are

{1, 2, 4, 8} ⊇ {1, 4}.

To determine the fixed field of {1, 2, 4, 8}, all we need is an element fixed under the action of this
subgroup but not anything larger. This element should be expressible in terms of ζ15 alone since
this generates all of Q(ζ15). We can see that

ζ15 + ζ215 + ζ415 + ζ815

works. Indeed, acting by 2 ∈ (Z/15Z)×, which generates this entire subgroup, gives:

ζ15 + ζ215 + ζ415 + ζ815 7→ (ζ215) + (ζ215)
2 + (ζ215)

4 + (ζ215)
8 = ζ215 + ζ415 + ζ815 + ζ15,

so ζ15 + ζ215 + ζ415 + ζ815 is fixed. (Recall that a ∈ (Z/15Z)× denotes the element of the Galois group
defined by ζ15 7→ ζa15.) In the same way, the generator for the fixed field of {1, 4} can be taken to
be ζ15 + ζ415. Thus E1 = Q(ζ15 + ζ215 + ζ415 + ζ815) and E2 = Q(ζ15 + ζ415), so

Q ⊆ Q(ζ15 + ζ215 + ζ415 + ζ815) ⊆ Q(ζ15 + ζ415) ⊆ Q(ζ15)

is the tower of extensions we want.
Now, to go a bit further, to actually construct ζ15, or equivalently the regular 15-gon, requires

knowing how to explicitly write ζ15 in terms of rationals and square root extractions. For this we
need to know the square roots that generate each of the extensions above, starting with Q(ζ15 +
ζ215+ζ415+ζ815) as a quadratic extension of Q. This is not so straightforward, and essentially requires
determining the minimal polynomial of ζ15 + ζ215 + ζ415 + ζ815 over Q, which we know should be a
quadratic polynomial. We won’t go through the details here, but it turns out that

Q(ζ15 + ζ215 + ζ415 + ζ815) = Q(
√

5).

Next, Q(ζ15 + ζ415) should be quadratic over Q(
√

5), and some more tough computations will show
that

Q(ζ15 + ζ415) = Q(
√

5,

√
30− 6

√
5).

Finally, we can work out that in fact Q(ζ15) = Q(
√

5,
√

30− 6
√

5,

√
7 +
√

5−
√

30 + 6
√

5), which

is quadratic over Q(
√

5,
√

30− 6
√

5). From this one can work out how to explicitly express ζ15 =
cos(2π/15) + i sin(2π/15) as a constructible number, where the answer ends up being:

cos(2π15 ) = 1
8

(√
30− 6

√
5
)

+
√

5 + 1 and sin(2π15 ) = 1
4

√
7 +
√

5−
√

30 + 6
√

5.

Note that constructing cos(2π15 ) only requires going up to the third field in our tower, whereas
constructing sin(2π15 ), and hence ζ15, requires going all the way to Q(ζ15). To actually construct the

regular 15-gon, you would first construct
√

5, then 30− 6
√

5, then
√

30− 6
√

5, and so on.
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Hints of solvability. The goal for the remainder of the course is to generalize the discussion of
constructiblity in terms of square root extractions, to the setting where we will now allow arbitrary
root extractions. We will give precise definitions later, but let us see now the basic idea. It is
these arbitrary root extractions which are the ones to consider when looking for an analog of the
quadratic formula for the roots of polynomials of higher degree. (For example, the “cubic equation”
requires both square root and cube root extractions).

Analogously to what whappened with constructible numbers, to express a number α using
rationals, +,−, ·,÷, and arbitrary root extractions requires coming up with a tower of extensions
of the form

Q ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Q(α)

where now Ki is generated over Ki−1 by some ni-th root: Ki = Ki−1(
ni
√
Di). (No restriction on the

the types of roots ni
√

being used here.) We want each extension to be Galois over the previous
one, and then this sequence corresponds to a chain of subgroups:

G D G1 D G2 D . . . D 1,

each normal in the previous. The key property which will make this all work out is that each
extension Ki/Ki−1 be a cyclic extension, meaning that the Galois group is cyclic. These Galois
groups are quotients of the Gi in the chain above, so we want each quotient Gi/Gi−1 to be cyclic.
Cyclic groups are abelian, and having a chain like this where each quotient is abelian is precisely
by the definition we gave in the fall of a solvable group. Thus, we see that solvability of groups is
directly related to “solvability” of polynomials. (In the finite case, we will see that having a chain
with abelian quotients is equivalent to having a chain with cyclic quotients, due to the fact that
finite abelian groups are products of cyclic groups.)

Galois groups of polynomials. So, that is where we are headed. But before we can get there,
we need a better understanding of Galois groups of polynomials. Recall that if f(x) is a separable
polynomial over a field F , its Galois group is by definition the Galois group of its splitting field
over F . This group permutes the roots of f(x), so if f(x) has degree n then the Galois group can
be realized as a subgroup of Sn. We worked out previously that for x3−2 over Q, the Galois group
is all of S3—the largest it can be for a polynomial of degree 3—while for x4 − 2 over Q, the Galois
group is D8, which is strictly smaller than S4. Why do we get the full symmetric group in one case,
but not the other?

Our first goal is to understand the type of scenario where the Galois group is indeed the largest
it can be, i.e. Sn. Then we can think about when the Galois group will be the next largest thing
it can be, which is the alernating group An since An is the largest proper subgroup of Sn. (This
was a result from the fall: An is the only subgroup of index 2 in Sn.) Ideally, we want a way
to determine these things without having to determine the Galois group in full, since this can be
challenging given that the roots of an arbitrary polynomial are not straightforward to write down.
We want theorems that dictate, without too much work, what Galois group we will get, or at least
which narrow down the choices.

General polynomials. Let F be a field, and let x1, . . . , xn be a set of indeterminates. (So, these
are independent variables, but we will think of them as elements in a field rather than variables.
They are literally just n symbols.) We then define the general polynomial of degree n to be the
one that has x1, . . . , xn as roots:

f(x) = (x− x1)(x− x2) · · · (x− xn).
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(Here x is a variable.) This can be viewed as a polynomial over F (x1, . . . , xn), the field of rational
functions over F in x1, . . . , xn. The point is that this represents the most “generic” polynomial one
can write down, where there are absolutely no predetermined relations among the roots.

The coefficients (without signs) of f(x) are called the elementary symmetric polynomials in the
indeterminants x1, . . . , xn. These are “symmetric” in the sense that they are invariant under any
permutation of the xi. Concretely, we have:

f(x) = xn − s1xn−1 + s2x
n−2 − · · ·+ (−1)nsn

where the elementary symmetric polynomials s1, . . . , sn are

s1 = x1 + · · ·+ xn =
∑
i

xi

s2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn =
∑
i<j

xixj

...

sn = x1 · · ·xn.

The upshot is that f(x) is actually a polynomial in F (s1, . . . , sn)[x], where F (s1, . . . , sn) is the
field of rational functions in the s1, . . . , sn, and F (x1, . . . , xn) is then the splitting field of f(x) over
F (s1, . . . , sn). (Note f(x) is separable simply because the roots x1, . . . , xn are distinct by definition.
Also, F (x1, . . . , xn) is finite over F (s1, . . . , sn) since, being the splitting field of a polynomial of
degree n, its degree is bounded by n!.) Thus F (x1, . . . , xn) is a Galois extension of F (s1, . . . , sn),
and we would like to understand its Galois group, which we claim is precisely Sn.

Invariants of the permutation action. By permuting x1, . . . , xn, we can view Sn as a subgroup
of the automorphism group of F (x1, . . . , xn). The fixed field of this subgroup is a subfield of
F (x1, . . . , xn) over which this latter field has degree n!. (This is the claim that if H is a finite
subgroup of Aut(K), then [K : KH ] = |H|.) Now, since the elementary symmetric polynomials
s1, . . . , sn are invariant under this action of Sn, we see that the entire field F (s1, . . . , sn) is contained
in the fixed field of Sn:

F (s1, . . . , sn) ⊆ fixed field ⊆ F (x1, . . . , xn).

By the tower law, we thus have that [F (x1, . . . , xn) : F (s1, . . . , sn)] is divisible by [F (x1, . . . , xn) :
fixed field] = n!. But, we also have from before that [F (x1, . . . , xn) : F (s1, . . . , sn)] ≤ n! since
F (x1, . . . , xn) is the splitting field of the degree n polynomial f(x), so we must thus have that
[F (x1, . . . , xn) : F (s1, . . . , sn)] is exactly n!. Hence F (s1, . . . , sn) is indeed the entire fixed field of
Sn ≤ Aut(F (x1, . . . , xn)):

F (x1, . . . , xn)Sn = F (s1, . . . , sn).

Therefore, we have Gal(F (x1, . . . , xn)/F (s1, . . . , sn)) ∼= Sn, meaning that Sn is also the Galois
group of the general polynomial of degree n, as claimed.

Let us highlight the result of the work above: any rational function in the x1, . . . , xn that is
invariant under all permutations must be expressible in terms of the s1, . . . , sn alone. In particular,
any polynomial that is invariant under all permutations—called a symmetric polynomial—is a
linear combination of s1, . . . , sn, and indeed these form a basis for the vector space of symmetric
polynomials of degree n. (This is why these are the “elementary” symmetric polynomials. This
fact is usually known as the fundamental theorem of symmetric polynomials.) For example, the
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polynomial (x1 − x2)2 is invariant under the action of S2, so it should be possible to write it solely
in terms of s1 = x1 + x2 and s2 = x1x2, which we can work out explicitly:

(x1 − x2)2 = x21 − 2x1x2 + x22 = (x1 + x2)
2 − 4x1x2 = s21 − 4s2.

(There was actualy a homework problem we had in the fall hinting at all this, phrased in terms of
“stabilizers”, which dealt directly with finding fixed elements under this permutation action.)

What makes a polynomial “generic”? The moral is that a “generic” separable polynomial of
degree n over a field F should have Galois group Sn, where “generic” is not a term we will define
precisely but which we should think of as saying that there are no nontrivial “algebraic relations”
among the roots (or coefficients!), as is the case with f(x) = (x − x1) . . . (x − xn). It is this
type of polynomial which will give the largest possible Galois group, and for other “non-generic”
polynomials we should get something smaller.

For example, consider again x3 − 2 and x4 − 2 over Q. The roots of these, respectively, are

3
√

2, ζ3
3
√

2, ζ23
3
√

2 and
4
√

2, i
4
√

2, − 4
√

2, −i 4
√

2.

In what sense is the first set of roots “generic”, but not the second? Again, we will not give a
precise meaning to this, but here is an observation. For the roots of x3 − 2, note that the quotient
of any two is a primitive third root of unity:

ζ3
3
√

2
3
√

2
= ζ3 =

ζ23
3
√

2

ζ3
3
√

2
and

ζ23
3
√

2
3
√

2
= ζ23 .

The idea is that all of these satisfy the same “algebraic relation”, namely x3−1 = 0, and thus, there
is no way to “algebraically distinguish” between any pairs of roots. That is, all roots “behave” in
the same way. (Again, this is the case with the general polynomial f(x) as well.)

But for x4 − 2, we have for instance

i 4
√

2
4
√

2
= i and

− 4
√

2
4
√

2
= −1.

The first is a primitive fourth root of unity, but the second is a primitive second root of unity; the
first satisfies x4−1 = 0 and the second x2−1 = 0. Thus, pairs of roots can indeed be “algebraically
distinguished” from one another, via these specific “algebraic relations”. It is essentially this fact
that places restrictions on the types of permutations allowed in the Galois group, resulting in a
smaller group than all of S4. We thus seek to find ways of detecting these types of behaviors more
efficiently, since, again, the explicit roots are not always easy to work with or even find.

Lecture 19: Discriminants and Cubics

Warm-Up 1. We write the polynomial x21+x22+x23 in terms of elementary symmetric polynomials.
This is possible since x21 + x22 + x23 is invariant under the action of Sn which permutes the xi, so it
belongs to the fixed field of this action. By the work from last time, this fixed field is generated by
the elementary symmetric polynomials s1, s2, s3, which in this case are given by:

s1 = x1 + x2 + x3 s2 = x1x2 + x1x3 + x2x3 s3 = x1x2x3.

We have:
s21 = (x1 + x2 + x3)

2 = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x3x3,
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so
x21 + x22 + x23 = s21 − 2(x1x2 + x1x3 + x2x3) = s21 − 2s2

is our desired expression.

Warm-Up 2. We show that any finite group arises as a Galois group. Suppose G is finite of order
n. By Cayley’s Theorem in group theory, G is (isomorphic to) a subgroup of Sn. (Recall that
this comes from the action of G on itself by left multiplication, which gives a permutation of its n
elements.) Since Sn is the Galois group of the Galois extension

F (s1, . . . , sn) ⊆ F (x1, . . . , xn),

the Fundamental Theorem of Galois Theory says that the fixed field of G ≤ Sn is an intermediate
field E with Gal(F (x1, . . . , xn)/E) ∼= G, as desired. (The tougher, and open, question is whether
G can be obtained as the Galois group of an extension of Q.)

Discriminants. The general polynomial f(x) = (x − x1) · · · (x − xn) gives the “generic” setting
in which the Galois group is the largest it can be, namely Sn, so we now seek to understand when
the Galois group sits inside of the next largest it can be, which is An. (Recall that An is the only
subgroup of Sn of index 2, so it is indeed the proper subgroup of Sn of largest size. Note that
this does not mean all other subgroups are contained in An—D8 ≤ S4 is not contained in A4 for
example—only that all other subgroups have a strictly smaller size.) We will see that determining
whether or not the Galois group sits inside of An is quite straightforward.

Define the discriminant D of the general polynomial f(x) to be the product of the squares of
differences of its roots:

D =
∏
i<j

(xi − xj)2 ∈ F (x1, . . . , xn).

Note that reordering the roots does not alter the discriminant, since this will only change the sign
of some xi − xj , which does not matter after squaring. In fact, this also means that D is fixed
under all permutations of the roots xi, so that D lies in the fixed field for the full Galois group
Sn of F (x1, . . . , xn) over F (s1, . . . , sn), which is F (s1, . . . , sn). In particular, this shows that the
discriminant D, even though defined using the roots of f(x), is expressible solely in terms of the
coefficients ±si of f(x).

Now, the square root of the discriminant is
√
D =

∏
i<j

(xi − xj).

The action of Sn now can affect the sign since we are no longer squaring; for example, the transpo-
sition (12) which exchanges x1 and x2 will turn x1 − x2 into x2 − x1 = −(x1 − x2), and this leads
to
√
D being replaced by −

√
D. (Here we need to assume charF 6= 2 since otherwise

√
D and

−
√
D mean the same thing.) By keeping track of the number of such transpositions, we thus see

that an element of Sn will fix
√
D if and only if that element actually belongs to An. (In fact, this

was how the book originally defined “even permutation” back in the group theory portion, only
without using the term “discriminant”.)

We can now readily apply all this to a concrete polynomial over any field. Suppose f(x) ∈ F [x]
(this is no longer necessarily a ‘general polynomial”) has degree n and let K be its splitting field.
Denote the roots of f(x) by α1, . . . , αn. Then replacing xi by αi gives the discriminant of f(x):

D =
∏
i<j

(αi − αj)2.
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This discriminant is zero as an element of K if and only if at least one root is repeated, so in the
separable case, which we will assume is the case going forward, D 6= 0. Then D is invariant under
Gal(K/F ) ≤ Sn, and so belongs to the fixed field, which is F ; in other words, D belongs to the
field F (s1, . . . , sn) generated by the coefficients of f(x), which is just F itself since all coefficients
of f(x) are in F . The discriminant is thus expressible solely in terms of the coefficients of f(x), so
we have some hope of being able to compute it even without knowing the roots αi explicitly.

The square root
√
D of the discriminant is then an element of K, and by applying the conclusion

we drew in the general polynomial case, we have that
√
D ∈ F if and only if

√
D is fixed by

Gal(K/F ) if and only if Gal(K/F ) ≤ An. Thus, we can tell whether or not the Galois group of
f(x) is a subgroup of An simply by seeing if its discriminant—which we hope to be able to compute
using only the coefficients—is a square in F .

Quadratics. Let us see how the above plays out in the simple case of quadratic polynomials. Here
we already know the answer based on the quadratic formula, so the point is really just to phrase
what we know in terms of the discriminant. One first point to make is that for a polynomial over a
finite field, the answer is easy: we saw before that the Galois group of any finite field over another
is always cyclic and generated by Frobenius, so this characterizes all possible Galois groups of such
polynomials. Thus, we really focus only on the characteristic zero case going forward.

The possible Galois groups of f(x) = x2 + ax + b ∈ F [x] are S2 ∼= Z/2Z and A2, which is the
trivial group. The roots of f(x) are

−a±
√
a2 − 4b

2
.

(Note that writing these down requires charF 6= 2.) The discriminant of f(x) is thus:

D =

(
−a+

√
a2 − 4b

2
− −a−

√
a2 − 4b

2

)2

= a2 − 4b.

If a2−4b is a square in F , then
√
a2 − 4b ∈ F and the two roots of f(x) are in F , whereas if a2−4b

is not a square in F , then the two roots are in the quadratic extension F (
√
D). In the former case,

F is already the splitting field of f(x) and so the Galois group is trivial, and in the latter case the
Galois group is S2 ∼= Z/2Z. Thus we do see that the Galois group is a subgroup of A2 if and only
if D is a square in F . (Note also that D = 0 if and only if there is only one repeated root, so this
is the inseparable case.)

Cubics. Next we consider cubic polynomials. Our aim is to show how an explicit formula for the
discriminant in terms of the coefficients can be found, but the actual derivation should not be the
main takeaway. We will get an explicit formula, and there is also an explicit formula in the degree
4 we will consider next time, but there is really no need to memorize these formulas since it is easy
to look them up when needed. Ultimately, we care more about using the discriminant and related
objects to classify the Galois group, but nonetheless it is nice to see in the cubic how formulas for
discriminants actually come about.

Consider the cubic x3 + ax2 + bx+ c ∈ F [x]. A first observation is that by making a change of
variables x = y − a

3 (only possible in characteristic 6= 3), this cubic can be turned into one which
has no quadratic term:

f(x) = x3 + ax2 + bx+ c g(y) = y3 + py + q

where p = 1
3(3b− a2) and q = 1

27(2a3 − 9ab+ 27c). (We will leave it to you to verify that this does
work. A lot of what is needed in these types of computations is coming up with clever “tricks” that
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simplify the work, but how to actually come up with these tricks is not so enlightening.) A key
thing to note is that f(x) and g(y) have the same the discriminant: the roots of g(y) are the roots
of f(x) translated by a

3 , so the difference between the roots of g(y) is the same as the difference
between the corresponding roots of f(x) because we add and then subtract a

3 . Thus we can focus
only on g(y) when computing the discriminant of f(x).

Let α1, α2, α3 denote the roots of g(y), so that

g(y) = (y − α1)(y − α2)(y − α3).

A simple computation using the product rules gives the following values of the derivative g′(y):

g′(α1) = (α1 − α2)(α1 − α3)

g′(α2) = (α2 − α1)(α2 − α3)

g′(α3) = (α3 − α1)(α3 − α2),

and from this we can see that the discriminant of g(y) (and hence of f(x)) is

D = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2 = −g′(α1)g

′(α2)g
′(α3).

(Check the signs!) But the derivative of g(y) = y3 + py+ q is g′(y) = 3y2 + p (having such a simple
form for the derivative is the reason why the change of variables is useful), so we get:

D = −(3α2
1 + p)(3α2

2 + p)(3α2
3 + p)

= −27α2
1α

2
2α

2
3 − 9p(α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3)− 3p2(α2

1 + α2
2 + α2

3)− p3.

The point is that each of the expressions here in terms of the roots are all invariant under the
action of S3, and hence should be expressible in terms of the “elementary symmetric polynomials”
s1, s2, s3 in the coefficients of g(y)! For instance, α2

1α
2
2α

2
3 is precisely s23, and α2

1 +α2
2 +α2

3 is s21−2s2
according to the first Warm-Up. Similarly, the expression for α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3) in terms of

s1, s2, s3 can be found, and then using the fact that the coefficients in our case

g(y) = y3 + py + q = y3 − s1y2 + s2y − s3

are s1 = 0, s2 = p, and s3 = −q, we get that the discriminant is explicitly

D = −27(−q)2 − 9p(p2)− 3p2(−2p)− p3 = −4p3 − 27q2.

After using the expressions for p and q in terms of a, b, c a formula for the discriminant in terms of
the original coefficients of f(x) can be found, but it is fairly common to leave the discriminant in
terms of the shifted coefficients p and q since this expression is much simpler.

Galois groups of cubics. The upshot of the work above is that the discriminant of a cubic can
be computed solely using the coefficients. This is good since, as we will see, the concrete roots of
a cubic in general are quite messy to write down. But, with the discriminant at hand, we can now
classify all possible Galois groups in the cubic case. Any Galois group of a cubic in F [x] (F of
characteristic zero) is a subgroup of S3, so the possibilities are: the trivial group, Z/2Z generated
by a 2-cycle, A3

∼= Z/3Z generated by a 3-cycle, and all of S3. Note that if a cubic factors, it either
factors into three linear terms or a linear term and an irreducible quadratic term. We have:

• if the cubic has three roots in F , then the splitting field is just F and hence the Galois group
is trivial;
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• if the cubic has only one root in F , then it factors into a linear term and irreducible quadratic
term, and the Galois group is the Galois group of the quadratic factor, which is Z/2Z by
what we said about quadratics before;

• if the cubic has no roots in F and the discriminant is a square in F , then the Galois group is
A3
∼= Z/3Z; and

• if the cubic has no roots in F and the discriminant is a non-square in F , then the Galois
group is S3.

(The first two cover the reducible case, and the latter two the irreducible case.) Thus, Galois groups
of cubics are easily determined.

Here are two examples. We have already worked out before that the Galois group of x3 − 2
over Q is S3. Indeed, now we can compute that the discriminant of x3 − 2 is −27(−2)2 = −3322,
which is not a square in Q. No roots of x3 − 2 are in Q, so the Galois group matches with what
we derived before. For x3 − 3x+ 1 over Q, however, the discrminant works out to be 81, which is
a square in Q. Thus the Galois group of x3 − 2 is A3

∼= Z/3Z. Indeed, it turns out that adjoining
a single root θ to Q already gives the splitting field and that the other two roots are expressible in
terms of θ. (We will talk about the “cubic formula” for expressing such roots in a few days.)

Lecture 20: Quartics and Resolvents

Warm-Up. We describe all splitting fields of cubic polynomials over a field F (characteristic zero),
following the classification of Galois groups we derived last time. First, if the cubic has three roots
in F , then the splitting field is F , as we observed last time. (This is the trivial Galois group case.)
Second, if the cubic has only one root in F , then it factors into a linear term and an irreducible
quadratic, so the splitting field is the splitting field of this quadratic part. Certainly adjoining a
root of this quadratic gives the correct field, but we note more importantly that this field is also
obtained by adjoining

√
D where D is the discriminant of the cubic. Indeed, if K denotes the

splitting field of the cubic in this case, then
√
D ∈ K since

√
D is expressible in terms of the roots

generating K, so that we have
F ⊆ F (

√
D) ⊆ K.

But here both F (
√
D) and K have degree 2 over F (note that

√
D /∈ F since the Galois group

Z/2Z is not a subgroup of A3
∼= Z/3Z), so K = F (

√
D).

Now, if the cubic is irreducible and
√
D ∈ F , the case of Galois group A3, then adjoining one

root of the cubic to F produces the Galois group. Indeed, if θ is a root, then F (θ) has degree 3
over F , which matches the degree of the splitting field K since Gal(K/F ) ∼= A3 has order 3. Here
then the other two roots can be expressed in terms of the chosen root θ alone. Finally, in the case
of an irreducible cubic with

√
D /∈ F and Galois group S3, adjoining one root θ gives a degree 3

extension sitting inside the splitting field:

F ⊆ F (θ) ⊆ K.

The splitting field has degree 6 over F since |S3| = 6, so K has degree 2 over F (θ). Since
√
D /∈ F (θ)

(otherwise
√
D generates a degree 2 extension sitting inside the degree 3 extension F (θ), which is

not possible), we have that F (θ,
√
D) has degree 6 over F , so we must have F (θ,

√
D) = K. Another

way of saying this is that both F (θ) and F (
√
D) are subfields of K, so their composite is as well,

and this composite has degree 2 · 3 = 6, so it must be the splitting field.

What about the roots? Describing the splitting fields in the irreducible cubic case above required
adjoining a root to the base field. So, in order for this to be an explicit description, one might argue
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that we need an explicit root. We will see next time that the explicit roots of a cubic are given
by Cardano’s formulas. Just to give a sense for what they look like now, consider the example of
x3 − 3x+ 1 over Q from last time, with Galois group A3. Set A and B to be the following:

A =
3

√
−27

2
+

3

2

√
−243 and B =

3

√
−27

2
− 3

2

√
−243.

Now, there is some ambiguity here in that cube roots are not unique, so there are three possible
choices for each of A and B. It turns out that there is a choice which also satisfies AB = 9, and
these are the ones we pick. Then the fact is that the roots of x3 − 3x+ 1 are:

A+B

3
,
ζ3A+ ζ23B

3
, and

ζ23A+ ζ3B

3

where ζ3 is a primitive third root of unity. We will discuss the derivation of these a bit next time,
highlighting some ideas that will be important going foward.

Quartic polynomials. Now we study the Galois groups of quartics x4 + ax3 + bx2 + cx+ d. As a
first step, as in the cubic case we can make a change of variables to simplify the polynomial a bit:
setting x = y − a

4 gives

x4 + ax3 + bx2 + cx+ d g(y) := y4 + py2 + qy + r,

with some explicit expression for p, q, r in terms of a, b, c, d that we don’t really care about here.
As in the cubic case, the discriminants of these two quartics are the same. If g(y) is reducible, then
we essentially reduce to previous cases: if g(y) factors into a linear and an irreducible cubic, the
Galois group of g(y) is the Galois group of the irreducible cubic, so either A3 or S3 depending on
whether the discriminant of the cubic is a square; if g(y) factors into two irreducible quadratics,
then the splitting field is F (

√
D1,
√
D2) where D1, D2 are the discriminant of these quadratics. If

this extension is biquadratic, so D1D2 is not a square in F , then the Galois group is Z/2Z×Z/2Z,
whereas if D1D2 is a square, then F (

√
D1,
√
D2) = F (

√
D1) and the Galois group is Z/2Z.

Transitivity. We are thus left with the case where the quartic g(y) is irreducible. A key observation
in this case is that the Galois group must act transitively on the roots: given any two roots, there
is a Galois group element that sends one to the other. Indeed, if α1 and α2 are two roots, then via

F (α1) ∼= F [y]/(g(y)) ∼= F (α2)

we have a map that sends α1 to α2, which can then be extended to an element of the Galois group.
This transitivity places restrictions on which subgroup of S4 the Galois group can be. For

example, the Galois group cannot be 〈(12)〉 since there is not element here that will send the third
root to the fourth root (once we label the roots 1, 2, 3, 4), and the Galois group cannot be of order
3 (so generated by a 3-cycle) for the same reason. Moreover this also rules out an isomorphic copy
of S3 in S4 as the Galois group: if we consider the version of S3 that fixes a root a and permutes
the others b, c, d, then nothing sends a to b, so this is not transitive. We can work out that the only
transitive subgroups of S4 are the following:

S4, A4, a copy of D8, a copy of Z/4Z, and the normal subgroup Z/2Z× Z/2Z of A4.

(The copy of D8 we get depends on how we label the vertices of a square: for the usual 1, 2, 3, 4
counterclockwise ordering, we get the usual version of D8 where the smallest rotation is (1234),
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but if we use the labeling 1, 3, 4, 2 for example, then we get a copy where the smallest rotation is
(1342). The copy of Z/4Z we get depends on the 4-cycle we use to generate it, and by Z/2Z×Z/2Z
we mean {(1), (12)(34), (13)(24), (14)(23)} E A4.) These are thus the only possible Galois groups
we can get in the irreducible quartic case.

Resolvents. We are left having to distinguish between the possibilities above. The basic idea we
will use, and which will also play a role in the derivation of Cardano’s formulas and in our eventual
discussion regarding solvability, is to consider actions of the sought-after Galois group on other
sets apart from simply the roots of the quadratic at hand. After all, we saw examples in the fall
where multiple actions of a groups were used to derive information about its structure, so it only
makes sense that the same should be true for Galois groups. The strategy is as follows: first, use
field theory to produce sets on which the Galois group should act, and then use group theory to
determine the Galois group.

To this end, denote the roots of our irreducible quartic g(y) by α1, α2, α3, α4. Define the elements
θ1, θ2, θ3 (in the splitting field K of the quartic) by

θ1 = (α1 + α2)(α3 + α4)

θ2 = (α1 + α3)(α2 + α4)

θ3 = (α1 + α4)(α2 + α3).

Since the Galois group permutes the αi, we see that it also permutes the θi! Thus, we can view
the Galois group as now acting on these three elements instead. We define the resolvent cubic of
g(y) to be the cubic which has θ1, θ2, θ3 as the roots:

h(y) = (y − θ1)(y − θ2)(y − θ3).

The upshot is that, by using the Galois group of this cubic, which we can fully classify, we can
extract information about the Galois group of our quartic. One thing to note is that the cubic h(y)
and quartic g(y) have the same discriminant: the differences θi−θj in the discriminant of h(y) give
the differences (up to sign) in the discriminant of g(y). For example, we have

θ1 − θ2 = (α1 + α2)(α3 + α4)− (α1 + α3)(α2 + α4) = (α1 − α4)(α3 − α2).

After squaring, all the sign differences go away and we get the same discriminants.
A second fact is that we can determine the coefficients of the resolvent cubic explicitly in terms

of the coefficients of the quartic: the coefficients of h(y) are the elementary symmetric polynomials
in the θi, which are in the base field F since they are fixed under the action of the Galois group
Gal(K/F ), and F = F (s1, s2, s3, s4) where the si elementary symmetric polynomials in the αi,
which are the coefficients of g(y). Going through the necessary computations in terms of symmetric
polynomials results in

h(y) = y3 + 2py2 + (p2 − 4r)y − q2.

We omit the details since they are not so enlightening, and in the end the explicit resolvent cubic
is something we can simply look up when needed.

The irreducible resolvent case. We finish by determining the Galois group Gal(K/F ) in the
cases where the resolvent cubic is irreducible over F . (The reducible cases will be left for next time.)
If the resolvent cubic is irreducible and

√
D /∈ F , where D here denotes either the discriminant of
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our quartic or of the resolvent cubic (they are the same!), then the Galois group of the resolvent
cubic is S3. The splitting field of this cubic is F (θ1, θ2, θ3), so we have the tower

F ⊆ F (θ1, θ2, θ3) ⊆ K.

Since F (θ1, θ2, θ3) has degree |S3| = 6 over F , 6 must divide Gal(K/F ). Looking at the candidates
for Gal(K/F ) (i.e. the transitive subgroups of S4), the only ones which have orders divisible by
6 are A4 and S4. But since

√
D /∈ F , the Galois group is not a subgroup of A4, so we must have

Gal(K/F ) ∼= S4 in this case.
If the resolvent is irreducible and

√
D is an element of F , the Galois group of the resolvent

cubic is A3. Thus in this case F (θ1, θ2, θ3) has degree |A3| = 3, so 3 divides the order of Gal(K/F ).
But now Gal(K/F ) is a subgroup of A4 since

√
D ∈ F , and the only transitive subgroup of A4

with order divisible by 3 is A4 itself. Hence Gal(K/F ) ∼= A4 in this case. Thus, in the case of an
irreducible resolvent, we can fully determine the Galois group using the discriminant alone.

Examples. Here are two quick examples. The resolvent cubic of x4 − x− 1 over Q is

x3 + 4x− 1.

This cubic is irreducible over Q (rational root test), and its discriminant (also the discriminant of
x4 − x − 1) is −283. Since this is not a square in Q, the Galois group of x4 − x − 1 is S4. The
resolvent cubic of x4 + 8x+ 12 over Q is

x3 − 48x− 64.

The rational root also shows that this is irreducible over Q, and its discriminant 5762 is a square
in Q, so x4 + 8x+ 12 has Galois group A4.

Lecture 21: Cardano’s Formulas

Warm-Up. We determine the Galois groups of x4 + 2x+ 2 and x4 + 24x+ 36 over Q. These are
both irreducible over Q, the former by Eisenstein’s Criterion with the prime 2, and the second by
ruling out rational roots and then quadratic factors through a brute-force check. (The details of
checking are straightforward, but somewhat tedious.) Thus we are in the scenario where the Galois
group is a transitive subgroup of S4.

The resolvent cubic of x4 + 2x + 2 is x3 − 8x − 4, which is irreducible over Q since it has no
rational roots. The discriminant of this cubic (which is also the discriminant of the quartic) is 1616,
which is not a square in Q. Thus x4 + 2x+ 2 has Galois group S4 over Q. The resolvent cubic of
x4 + 24x+ 36 is x3 − 144x− 576. This can be shown to be irreducible by the rational root test, or
perhaps more quickly by noting that its reduction mod 5 is x3 + x+ 4, which is irreducible over F5

since it has no root there. The discriminant in this case is 2985984 = 17282, which is a square, so
the Galois group of x4 + 24x+ 36 is A4.

The reducible resolvent case. We finish our determination of Galois groups of quartics by
considering irreducible quartics with reducible resolvent cubics. First, suppose the resolvent factors
into three linear terms over F , so that the roots θ1, θ2, θ3 of the resolvent are all in F . Since F is
the fixed field of the Galois group, this means that the Galois group fixes each θi, so that the Galois
group is contained in the stabilizer of each θi in S4, and hence is contained in the intersection of these
stabilizers. Now, a homework problem from the fall (!) actually determined what these stabilizers
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are: the stabilizer of θi is a copy of D8 in S4. (This was exercise 2.2.12 in our book, which was on
Homework 3 in the fall. Actually, that problem only explicitly dealt with θ1 = (α1 +α2)(α3 +α4),
but the answer is the same for θ2 and θ3 simply by relabeling the roots.) To be sure, the “copy”
of D8 we get depends on how we label the vertices of the square we permute to get D8: for θ1, we
get the copy where the minimal rotation is (1234); for θ2 the copy where the minimal rotation is
(1324); and for θ3 the version where the rotation is (1423). The intersection of all these copies of
D8 can be worked out to be

{(1), (12)(34), (13)(24), (14)(23)} ∼= Z/2Z× Z/2Z,

which thus contains our Galois group. Since no proper subgroup of this group is among our
transitive candidates, we get that the Galois group is precisely Z/2Z× Z/2Z in this case.

Finally we have the case where the resolvent cubic factors into a linear term and an irreducible
quadratic, so that there is only one root in F . The Galois group is then in the stabilizer D8 of this
root, but not in Z/2Z × Z/2Z since it does not stabilize all roots, so the candidates are D8 and
Z/4Z (i.e. the subgroup of rotations in D8) since these are the only transitive subgroups contained
in D8 not equal to Z/2Z×Z/2Z. To distinguish between these two possibilities, consider the tower

F ⊆ F (
√
D) ⊆ K

where D is the discriminant. (Note that
√
D /∈ F in this case since the Galois group, either D8

or Z/4Z, is not contained in A4.) Elements in the Galois group of K over F (
√
D) are elements in

Gal(K/F ) that do fix
√
D. But to fix

√
D requires belong to A4, so we see that the Galois group

of the smaller extension K/F (
√
D) is Gal(K/F ) ∩A4. In the case where Gal(K/F ) = D8, we can

work out that this intersection is Z/2Z× Z/2Z = {(1), (12)(34), (13)(24), (14)(24)}, whereas when
Gal(K/F ) = Z/4Z, this intersection ends up having order 2. In particular, Gal(K/F ) = D8 if and
only if Gal(K/F (

√
D) is transitive. But now we are done: if our quartic is irreducible over F (

√
D),

then Gal(K/F (
√
D)) must act transitively on the roots, so Gal(K/F ) = D8 in this case; while if our

quartic is reducible, Gal(K/F (
√
D)) does not act transitively on the roots since it must permute

the roots of each irreducible factor amongst themselves, so we must have Gal(K/F ) = Z/4Z. (This
latter observation is analogous to how the four roots of (x2 − 2)(x2 − 3) are actually permuted in
pairs, since the roots of the factor x2− 2 are permuted among themselves as the roots of the x2− 3
factor, so that no Galois group element can send a root of one factor to a root of another.) Thus,
we distinguish between D8 and Z/4Z as the Galois group in this final case by seeing whether or
not our quartic is irreducible over F (

√
D).

Examples. The classification of Galois groups of quartic polynomials is not something that is of
crucial importance in general, but it was worth going through since it highlights some ideas—such
as that of having our Galois group act on other sets apart from the just roots themselves—that are
important, and also because it forces us to recall some group theory we will need going forward.
Ultimately, the classification is something we can always look up again when needed, so recalling
each case off the top-of-our-head is not very important either.

But, let us look at a few more examples to see how this final bit of the classification works. First,
the quartic x4 + 36x+ 63 is irreducible over Q, and its resolvent factors as (x− 18)(x+ 6)(x+ 12).
Since this thus has 3 roots in Q, x4 + 36x+ 63 has Galois group Z/2Z× Z/2Z. Next, x4 − 2 is an
example we previously worked out directly, where we found the Galois group to be D8 by explicitly
computing all elements in terms of cycles. Using our new classification we get D8 as follows. The
resolvent of x4 − 2 is x3 + 8x, whose only root in Q is 0. So we are in the D8 or Z/4Z case. Now,
the discriminant here is −211, so Q(

√
D) = Q(i

√
2). Since x4 − 2 factors into quadratics as

x4 − 2 = (x2 −
√

2)(x2 +
√

2),
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we see that x4−2 remains irreducible over Q(i
√

2) since these quadratic factors are not in Q(i
√

2)[x].
Thus since x4 − 2 is irreducible over Q(

√
D), the Galois group is indeed D8.

Finally, consider x4 + 5x+ 5, which has resolvent cubic (x− 5)(x2 + 5x+ 5). This cubic has one
root in Q, so again we are in the D8 or Z/4Z case. The discriminant is 53112, so Q(

√
D) = Q(

√
5).

But now, we have:

x4 + 5x+ 5 = [x2 +
√

5x+ 1
2(5−

√
5)][x2 −

√
5x+ 1

2(5 +
√

5)],

which is a valid factorization over Q(
√

5). Thus x4 + 5x+ 5 is reducible over Q(
√
D), so its Galois

group is Z/4Z ≤ S4.

Cardano’s formulas. We now consider the problem of explicitly finding the roots of a cubic
polynomial, which are given by what are called Cardano’s formulas. Ultimately, these formulas are
not very practically useful since it is rare that we need to know such explicit roots (indeed, modern
algorithms for finding or approximating roots rely on calculus instead, such as in the technique called
Newton’s method), but theoretically the ideas that go into the derivation of Cardano’s formulas are
useful. In particular, we will see a first example of a Lagrange resolvent, which will be crucial to
understanding the solvability of polynomials in general. With this in mind, we will omit most of
the computational details involved and will focus on highlighting the key aspects. (I am doing all
this earlier than the book does, since I want to use this to introduce the keys ideas first.)

Let x3+px+q be our cubic over F . (Assume we’ve already made the change of variables needed
to get rid of the quadratic term.) The Galois group is then a subgroup of S3. Let θ1, θ2, θ3 denote
the roots we want to find. Take ζ to be a primitive third root of unity, and set A in the splitting
field K to be

A = θ1 + ζθ2 + ζ2θ3.

(We will see later that we lose nothing by assuming K does contain ζ.) This A is called a Lagrange
resolvent, and it provides something on which the Galois group can act, which we will use to extract
information about the structure of K. Note that A is not invariant under all permutations of the
roots, but for the element (123) ∈ S3 we have:

(123) ·A = θ2 + ζθ3 + ζ2θ1 = ζ2A

and similarly for (132) we have

(132) ·A = θ3 + ζθ1 + ζ2θ2 = ζA.

The upshot is that, even though A is not fixed by these elements, A3 is fixed, or in other words
A3 is fixed by the alternating group A3 = 〈(123)〉. (Cubing will introduce ζ6 in the first expression
and ζ3 in the second, both of which are 1 since ζ is a cube root of unity.)

In the same way, set B ∈ K to be

B = θ1 + ζ2θ2 + ζθ3.

(This is also a “Lagrange resolvent”.) Then we get that B3 is also fixed by A3. The idea is to then
find explicit expressions for A3 and B3—exploiting the fact that they are fixed by A3—and to then
take cube roots to find A and B. Once we have A and B, we throw in the equation

0 = θ1 + θ2 + θ3,
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which comes from the fact that the first elementary symmetric polynomial s1 is zero (the coefficient
of x2) in our case, to get the following system of linear equations:

θ1 + ζθ2 + ζ2θ3 = A

θ1 + ζ2θ2 + ζθ3 = B

θ1 + θ2 + θ3 = 0.

We can solve this system using the inverse of the matrix1 ζ ζ2

1 ζ2 ζ
1 1 1


to thus get what we want: explicit formulas for θ1, θ2, and θ3 in terms of A and B, which, as we’ll
see, can be given in terms of the coefficients p, q of our cubic.

The structure of the splitting field. Consider the tower

F ⊆ F (
√
D) ⊆ K

where D is the discriminant of our cubic. The fact that A3 lies in the fixed field of A3 but not all
of S3 suggests that, if the Galois group were the full S3, A

3 should lie in an extension between F
and K. In the case where the full Galois group is S3, then in fact the tower above corresponds to
the subgroup chain given by:

S3 ≥ A3 ≥ 1,

where F (
√
D) is precisely the fixed field of A3. (In the case where the Galois group is A3, we have

F = F (
√
D) and what follows still applies, and in the case where the Galois group is trivial or

Z/2Z, we have F = K or F (
√
D) = K respectively, and we don’t need Cardano’s formulas to find

the roots since at worst only the quadratic formula is needed.)
The conclusion is that A3, being fixed by A3, must be an element of F (

√
D), so that A3 should

be expressible in terms of
√
D, and the same is true of B3 also. The overarching idea is that K,

by adjoining a cube root, can be obtained as a cubic extension of F (
√
D), which itself is at worst

a quadratic extension of F , so that we should be able to express A,B and hence our roots θi using
only cube roots, square roots, and the coefficients of our polynomial. Essentially, it is the subgroup
chain S3 ≥ A3 ≥ 1 that allows for this to happen, and specificaly the fact that the quotients S3/A3

and A3/1 in this chain are cyclic of orders 2 and 3 respectively. (In other words, it’s the fact that
S3 and A3 are solvable that is key, as we will see formally next week.)

Deriving the roots. Deriving the explicit roots now comes down to an exercise in working with
symmetric polynomials. (We will omit most of the details of the computations needed.) First,
we can compute A3 directly by cubing A = θ1 + ζθ2 + ζ2θ3. The result will involve expressions
in the θi, some of which are symmetric in these roots and can hence be expressed in terms of
elementary symmetric polynomials s1, s2, s3, or in other words the coefficients of the cubic in
question. Concretely, we get:

A3 = s31 − 3s1s2 + 9s3 + 3ζ(θ21θ2 + θ22θ3 + θ23θ1︸ ︷︷ ︸
R1

)− 3(ζ + 1)(θ1θ
2
2 + θ2θ

2
3 + θ3θ

2
1︸ ︷︷ ︸

R2

).

The terms labeled R1 and R2 above are not symmetric since they are not invariant under all
permutations in S3, but notice that R1 +R2 and R1R2 are symmetric! Hence these expressions can
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be written in terms of the coefficients of our cubic. But these are the coefficients of the quadratic
polynomial

x2 − (R1 +R2)x+R1R2,

whose roots are precisely R1 and R2. Thus if we know how to express this quadratic in terms of the
coefficients of our cubic, then the values of R1 and R2 can be found using the quadratic formula,
and we will get a expressions for R1, R2 involving the coefficients of our cubic and square roots.
We can then repeat this process for B3.

Thus putting it all together, we find the roots of our cubic explicitly as follows:

• write down the quadratic x2− (R1 +R2)x+R1R2 whose coefficients are expressible in terms
of the coefficients of our cubic;

• use the quadratic formula to then find R1 and R2 in terms of our cubic coefficients and a
square root;

• use these values to write down the expression for A3 in terms of our cubic coefficients and a
square root;

• do the same for B3;

• find A and B by taking a cube root, resulting in an expressions involving our cubic coefficients,
a square root, and a cube root;

• use A and B to write down the 3 × 3 system of linear equations we had at the start for the
roots of our cubic, and

• solve this linear system using an inverse matrix to find our roots in terms of the cubic coeffi-
cients, a square root, and a cube root.

(Again, for us actually carrying this out is not as important as recognizing that what allows is
to happen is really the solvable structure of S3, and in particular the ability to write A3 and B3

in terms a square root of the discriminant. A similar idea, using generalizations of the Lagrange
resolvents A and B, will work in the general setting.) If you carry this out, you end up with the
following expressions:

A =
3

√
−27

2
q +

3

2

√
−3D and B =

3

√
−27

2
q − 3

2

√
−3D,

where the cube roots chosen are the ones satisfying AB = −3p, and the roots of x3 + px+ q are

θ1 =
A+B

3
, θ2 =

ζA+ ζ2B

3
, and θ3 =

ζ2A+ ζB

3
.

These are Cardano’s formulas.

Roots of quartics. So, we have the quadratic formula for roots of a quadratic, Cardano’s formulas
(i.e. the “cubic formula”) for the roots of a cubic, and all that remains is a “quartic formula” for the
roots of a quartic. (There is no “quintic formula” or anything along these lines of higher degree.)
In fact, the quartic case (assuming we’ve written it to not have a cubic term) reduces to the cubic
case using the resolvent cubic, and thus also uses Cardano’s formulas. Recall that the roots of the
resolvent cubic where

θ1 = (α1 + α2)(α3 + α4) θ2 = (α1 + α3)(α2 + α4) θ3 = (α1 + α4)(α2 + α3)

where α1, α2, α3, α4 are the roots of the quartic. If you play around with these equations you can
work out that it is possible to solve for α1, α2, α3, α4 solely in terms of θ1, θ2, θ3. For example, one
value is

α1 =
1

2
(
√
−θ1 +

√
−θ2 +

√
−θ3),
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and the others are similar. Thus, we can write down the resolvent cubic, find its roots using
Cardano’s formulas, and then find the roots of our quartic. We end up with an expression involving
the coefficients of our quartic, a square root, a cube root, and more square roots.

Lecture 22: Solvability by Radicals

Warm-Up. A cubic over Q has either one real root and two non-real complex conjugate roots, or
three real roots since the non-real complex conjugate roots have to come in pairs. We show that the
three real root case occurs if and only if the discriminant is nonnegative. This is a straightforward
argument using only the square root of the discriminant and is not dependent on Cardano’s formulas
nor any Galois theory, but we will use it to highlight the types of numbers which Cardano’s formula
can produce.

If the roots θ1, θ2, θ3 of our cubic are all real, then

√
D = (α1 − α2)(α1 − α3)(α2 − α3)

is an element of R, which requires that D ≥ 0 since the square roots of a negative real number
are imaginary. (The D = 0 case only happens when there are repeated roots, so for a separable
polynomial with three real roots, we must have D > 0.) Conversely (or rather, the contrapositive
of the converse), if there is one real root θ and a pair of non-real complex conjugate roots c ± id,
then:

√
D = [θ − (c+ id)][θ − (c− id)][(c+ id)− (c− id)]

= [(θ − c)2 + d2]2id.

Since θ, c, d ∈ R, the expression for
√
D is purely imaginary, which thus requires that D < 0. Hence

there are three real roots if and only if D ≥ 0 as claimed.
The point is that, even though Cardano’s formulas explicitly use non-real complex numbers, as

in the primitive cube root of unity ζ used or in
√
−3D if D ≥ 0, at least one and potentially all

three of the resulting roots will be real. If D < 0, then
√
−3D is real and A and B in Cardano’s

formulas can be chosen to be real, so that A+B
3 will be the real root in this case while ζA+ζ2B

3 and
ζ2A+ζB

3 are the complex conjugate roots, whereas if D > 0,
√
−3D is imaginary and A and B are

non-real, but the resulting roots are in fact real. The moral is: it is a more subtle issue to determine
if a given expression is real than solely by seeing whether or not any non-real numbers are used.

Solvable by radicals. Recall that the underlying field theory behind Cardano’s formulas comes
from using the tower

F ⊆ F (
√
D) ⊆ K

to construct the roots of a cubic. We wrote down some element A = θ1 + ζθ2 + ζ2θ3 on which
our Galois group can act, argued that A3 would have to belong to F (

√
D) so that it would be

expressible in terms of
√
D, and then took a cube root to get A and eventually an expression for

the roots. Group theoretically, this all corresponds to having either the chain of subgroups

S3 D A3 D 1

or just A3 D 1 (either way F (
√
D) is the fixed field of A3) depending on whether the Galois group

is S3 or A3 (we will comment on the other possibilities later), where we note that in both cases
each successive quotient (such as S3/A3 or A3/1) is cyclic.

82



We now seek to generalize this picture to the quartic and higher-order cases, to the extent
possible. But for this we need some proper definitions. We say that a polynomial p(x) ∈ F [x]
is solvable by radicals over F if each of its roots can be written in terms of elements of F using
+,−, ·,÷ and root extractions. More formally, this means that each root lies in a field K obtained
via a sequence of extensions

F ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kt−1 ⊆ K

where Ki is of the form Ki = Ki−1(
ni
√
Di) for some Di ∈ Ki−1. (Set K0 = F and Kt = K.) This

is analogous to what we saw earlier for constructible numbers, only that we now allow arbitrary
roots and not simply 2k-th roots. So, we have for instance K1 = F ( n1

√
D1) for some D1 ∈ F , and

then
K2 = K1(

n2
√
D2) = F ( n1

√
D1,

n2
√
D2)

for some D2 ∈ K1, and so on until K = F ( n1
√
D1,

n2
√
D2, . . . ,

nt
√
Dt). We will call extensions of the

form Ki−1(
ni
√
Di) simple radical extensions, so p(x) is solvable by radicals if all its roots lie in fields

obtained via sequences of simple radical extensions. Our goal is to understand what this condition
corresponds to in term of the Galois group. (Spoiler alert: we already saw the relevant concept in
the fall, and hopefully the use of the term “solvable” gives it away.)

Quadratics and cubics. First up, quadratics and cubics are always solvable by radicals. In the
quadratic case, this comes exactly from the quadratic formula: the roots of x2 + bx+ c are

−b±
√
b2 − 4c

2
,

and so lie in the radical extension F (
√
D) of F . (Here, D = b2−4c is the discriminant. Also, let us

suppose F has characteristic zero throughout, so that division by any nonzero element is possible.)
The Galois group in this case is either trivial (when

√
D ∈ F so that F = F (

√
D)) or Z/2Z.

The fact that cubics are solvable by radicals comes from Cardano’s formulas, which, as we’ve
said, do express the roots in terms of radicals and elements of the base field. In the case where the
cubic is reducible, Cardano’s formulas do give the correct roots, but are not needed since in this
case we can make use of the quadratic formula (in the linear times irreducible quadratic case) or
nothing at all (three linear factors) to get the roots. So, we really only need Cardano’s formulas in
the irreducible cubic case, in which case we use one of the two towers

F ⊆ F (
√
D) ⊆ K or F = F (

√
D) ⊆ K

with Galois groups S3 or A3 respectively, as discussed previously. In particular, if A = θ1+ζθ2+ζ2θ3
is our “Lagrange resolvent”, with A3 ∈ F (

√
D), then if we set β = A3 ∈ F (

√
D), so that A = 3

√
β,

then our simple radical extensions look like

F ⊆ F (
√
D) ⊆ F (

√
D, 3
√
β) = K.

The corresponding sequence of Galois groups is, as stated before, either

S3 D A3 D 1 or A3 D 1

depending on whether F 6= F (
√
D) or F = F (

√
D). The fact that only a square root and cube

root is needed to get all the roots is encoded in the fact that the successive quotients in these two
chains are Z/2Z and Z/3Z in the S3 case, and just Z/3Z in the A3 case. (So, in the A3 case, the
square root used in Cardano’s formulas takes the square root a square, and so the square root “goes
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away” in the end.) This relation between the type of root needed and the type of (cyclic) quotient
appearing will be crucial to understanding the general situation.

We will note here that both the quadratic formula and Cardano’s formulas actually work for
the “general polynomials” of degree 2 and 3. In the degree 2 case, the general polynomial is

(x− x1)(x− x2) = x2 − s1x+ s2 ∈ F (s1, s2)

where s1, s2 are the elementary symmetric polynomials. The quadratic formula gives the roots as

s1 ±
√
s21 − 4s2
2

,

which, if you plug in s1 = x1 + x2 and s2 = x1x2 and simplify, become precisely x1 and x2. Thus,
the roots of the general polynomial of degree 2 can indeed be given in terms of the coefficients and
radicals, as expected. If you do the same for the general polynomial of degree 3:

(x− x1)(x− x2)(x− x3) = x3 − s1x2 + s2x− s3 ∈ F (s1, s2, s3),

Cardano’s formulas will boil down precisely to x1, x2, x3, again as expected. So, even these general
polynomials with indeterminate roots are indeed “solvable by radicals”.

The quartic case. In the quartic case, as we briefly discussed last time, the expression for the
roots α1, α2, α3, α4 can be derived from Cardano’s formula applied to the resolvent cubic, where
the roots θ1, θ2, θ3 of the resolvent cubic give, for example,

α1 =
1

2
(
√
−θ1 +

√
−θ2 +

√
−θ3)

and similar expressions for α2, α3, α4. The point is that this too shows that quartics are solvable
by radicals. In particular, to construct α1 as above, we need a square root and a cube root to get
the “A” and “B” needed in Cardano’s formula, then another square root to get

√
−θ1, and finally

another square root to get
√
−θ2 in the expression for α1. (It turns out the remaining

√
−θ3 can be

derived from the first two
√
−θi.) This then means that the roots of a quartic come from extensions

of the form
F ⊆ F (

√
D) ⊆ F (

√
D, 3
√
·) ⊆ F (

√
D, 3
√
·,
√
·) ⊆ F (

√
D, 3
√
·,
√
·,
√
·)

with the dots · indicating some unspecified elements of which to take roots. This is indeed a
sequence of simple radical extensions as desired.

But now let us think about the corresponding groups. Again let us focus on the case of irre-
ducible quartics, since the reducible quartics are handled by the quadratic and cubic cases after
factoring. The possible Galois groups of irreducible quartics are: S4, A4, D8,Z/2Z × Z/2Z,Z/4Z.
In the S4 case, we have the following chain of subgroups, each normal in the previous one:

S4 D A4 D Z/2Z× Z/2Z D Z/2Z D 1.

The fields in the tower of radical extensions above are precisely the fixed fields of these subgroups,
and the type of root we have to adjoin at each step comes from the type of cyclic group we get
as quotients in this subgroup chain: S4/A4

∼= Z/2Z is cyclic of order 2, hence why we first adjoint
a square root; A4/(Z/2Z × Z/2Z) ∼= Z/3Z has order 3, hence why we adjoin a cube root next;
(Z/2Z×Z/2Z)/(Z/2Z) ∼= Z/2Z has order 2, so we adjoin a square root next; and finally one more
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square root from (Z/2Z)/1 ∼= Z/2Z. If our Galois group was A4, we essentially start with the
second field in our tower since F = F (

√
D). For Galois group D8 with subgroup chain

D8 D Z/2Z× Z/2Z D Z/2Z D 1

and quotients Z/2Z, Z/2Z, and Z/2Z, we can in effect get way with only adjoining three successive
square roots, since essentially the cube root used in the “quartic formula” takes the cube root of a
cube and so isn’t really there. A similar process works for the other possible Galois groups.

Revisiting solvable groups. The discussions above are meant to suggest that, indeed, there is
a strong relation between polynomials which are solvable by radicals and subgroup chains of their
Galois groups with cyclic quotients. We saw such chains in the fall, under the more general setting
of successive abelian quotients, when discussing solvable groups. To recall the definition, a group
G is solvable if there is a chain of subgroups

1 E G1 E G2 E . . . E Gn−1 E G,

each normal in the next, such that each quotient Gi/Gi−1 is abelian. (Set G0 = 1 and Gn = G.)
The types of Galois groups we’ve seen in the quadratic, cubic, and quartic cases are all solvable
since cyclic quotients are also abelian quotients. The big theorem we will prove this week is that
this relation holds in general:

A (separable) polynomial is solvable by radicals if and only if its Galois group is solvable.

(Indeed, this is where the term “solvable” for this group property comes from.) The reason why all
polynomials of degree less than 5 are solvable by radicals—and hence why there exist quadratic,
cubic (Cardano), and quartic (modified Cardano) formulas—is because S4 and all of its subgroups
are solvable groups. The smallest non-solvable group is A5 in the order 60 case, and we will discuss
what happens with quintics and solvability soon enough.

Now, there is one point of clarification here. The definition of “solvable” uses abelian quotients,
but the examples we’ve seen have quotients that are cyclic, and moreover we have alluded to the
idea that cyclic quotients are what are truly needed, since it is the cyclic structure which (as we’ll
see) gives rise to a simple radical extension. So, there might seem to be a mismatch at first in using
abelian vs cyclic quotients in the definition of solvable, but in fact there is no difference in the case
of finite groups: a finite group G is solvable if and only if there is a chain as in the definition but
with cyclic groups as the successive quotients. (This is not true for infinite groups in general. The
reason why the definition of “solvable” is phrased in terms of abelian and not cyclic quotients in
general has to do with other areas where solvable groups come up—in particular in the study of
what are called Lie groups—but this will be of no concern for us.)

To see why having abelian quotients is equivalent to having cyclic quotients in the finite group
case, suppose G is a finite solvable group with chain

1 E G1 E G2 E . . . E Gn−1 E G

where each quotient Gi/Gi−1 is abelian. (The cyclic quotient implies abelian quotient direction is
easy since cyclic groups are abelian.) Then Gi/Gi−1 is a finite abelian group, so it is a product of
finitely many finite cyclic groups. Take one such cyclic factor, which is a cyclic (normal) subgroup
of the form

Hi/Gi−1 E Gi/Gi−1 where Gi−1 E Hi E Gi.
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(This is something we saw in the fall: every subgroup of a quotient A/B is the quotient of a
subgroup C sitting between B and A.) Then in the chain

Gi−1 E Hi E Gi,

the first quotient Hi/Gi−1 is cyclic and the second Gi/Hi is still finite and abelian. We then repeat
this same process for Gi/Hi, to “break off” another cyclic piece, and so on until we’ve filled in
various subgroups between Gi−1 and Gi with now successive cyclic quotients. More formally, we
can use induction: the quotient Gi/Hi is isomorphic to

Gi/Hi
∼= (Gi/Gi−1)/(Hi/Gi−1)

by the third isomorphism theorem in group theory, and so its decomposition as a product of cyclic
groups uses one fewer factor than does the decomposition for Gi/Gi−1, since we are modding out
Gi/Gi−1 exactly by one such factor Hi/Gi−1. (This is like saying that Z/k1Z×Z/k2Z×· · ·×Z/ktZ
mod the first factor Z/k1Z leaves Z/k2Z× · · · × Z/ktZ.)

Thus, by induction of the number of cyclic factors in such a decomposition, we may assume
that the chain Hi E Gi has already been filled in with more subgroups

Hi E H
′
i E . . . E Gi

with cyclic successive quotients. This then gives a refinement of Gi E Hi E Gi into

Gi E Hi E H
′
i E . . . E Gi

with cyclic quotients all along the way. Doing this for each Gi−1 E Gi in our original abelian
quotient chain then gives a chain with cyclic quotients as desired.

No quintic formula. We will start working towards the proof that “solvable by radicals” is
the same as “solvable Galois group” next time, but for now we can give a definite example of a
polynomial that is not solvable by radicals, which then means that there is no “quintic formula”
for the roots of a quintic polynomial in general. Indeed, take the general polynomial of degree 5:

(x− x1)(x− x2)(x− x3)(x− x4)(x− x5) ∈ F (s1, s2, s3, s4, s5).

This has Galois group S5, which we saw in the fall is not solvable. (The point is that the only
possible “normal subgroup chain” one can have in this case is 1 E A5 E S5 since A5 is simple—
meaning it has no nontrivial proper normal subgroups—and this does not work as a “solvable
chain” since the first quotient is A5, which is not abelian/cyclic.) Thus, since the Galois group
of this general polynomial is not solvable, it is not solvable by radicals. (The same is true of the
general polynomial in higher degrees, since Sn is not solvable for n ≥ 5. So, there is no formula for
the roots of a general polynomial in any degree larger than 5 either.)

To be clear, we are not saying that the roots are not possible to write down explicitly—indeed,
they are simply x1, x2, x3, x4, x5—but rather that the roots cannot be expressed in terms of rad-
icals/root extractions and elements of the base field F (s1, s2, s3, s4, s5), which is what a “quintic
formula” would require. If we want a more concrete example of a polynomial involving actual
numbers (and not indeterminates) that is not solvable by radicals, we will show next time that
x5 − 4x4 + 2x+ 2 is one such example over Q.
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Lecture 23: Cyclic Extensions

Warm-Up. We show that the polynomial x5 − 4x4 + 2x + 2 is not solvable by radicals over Q.
This will come from the fact that its Galois group is S5, which is not solvable. The key properties
here are that x5 − 4x4 + 2x+ 2 is irreducible over Q (Eisenstein with the prime p = 2) and that it
has exactly three real roots. The argument we will give in fact applies to any irreducible quintic
with three real roots, giving more examples of polynomials with Galois group S5 and hence not
solvable by radicals.

To see that f(x) = x5−4x4+2x+2 has exactly three real roots we use some calculus. (Drawing
the graph should convince you that this is true, but we can be more precise.) First, we have

f(−1) = −5 f(0) = 2 f(2) = −26 f(4) = 10.

Since f(x) defines a continuous function and f(−1) < 0 < f(0), the intermediate value theorem
implies there exists r1 between −1 and 0 such that f(r1) = 0, so this is one root. In the same way,
there is a root r2 between 0 and 2, and one r3 between 2 and 4. Hence f(x) has at least three real
roots. Since non-real complex roots have to come in complex conjugate pairs, if there were more
than three real roots there would have to be five. But now the Mean Value Theorem would imply
that the derivative f ′(x) had at least four real roots, and then that the second derivative f ′′(x) had
at least three. But f ′′(x) = 20x3 − 48x2 = x2(20 − 48x) only has two roots, so f(x) cannot have
five real roots. Thus f(x) has exactly three real roots as claimed.

Now, since f(x) is irreducible, Q(r1) (where r1 is a real root) has degree 5 over Q. But
[Q(r1) : Q] = 5 divides the degree of the splitting field over Q by the tower law, and hence 5 divides
the order of the Galois group of f(x). By Cauchy’s theorem in group theory (a finite group has
an element of order p for any prime p dividing its order), this Galois group (a subgroup of S5) has
an element of order 5, which is thus a 5-cycle (abcde). But complex conjugation, i.e. the sending
one non-real complex root β to the other β, is also an element of this Galois group, so the Galois
group contains a 2-cycle. Label the non-real complex roots by 1 and 2, so that the 2-cycle is (12).
By relabeling the other elements if needed, we may assume our 5-cycle looks like (1bcde). But all
powers of this 5-cycle are also 5-cycles, and one of these powers will send 1 to 2, so we may assume
our 5-cycle looks like (12cde) after relabeling. Then label the real roots 3, 4, and 5, so that the
5-cycle is (12345). The upshot is that the Galois group of x5 − 4x4 + 2x + 2 is a subgroup of S5
containing (12345) and (12), but we showed in the fall that these two elements generate all of S5,
so we conclude that the Galois group must be all of S5 as claimed.

Thus x5 − 4x4 + 2x+ 2 is not solvable by radicals over Q. Take note of what this means: this
does not mean that this polynomial has no roots, nor that the roots aren’t expressible in some way,
but rather it means the roots are not expressible in terms of (possibly iterated) radical expressions
involving rational numbers and basic algebraic operations. (So, again, there can be no “quintic
formula” analogous to the quadratic formula.)

Cyclic extensions. We now start working towards the proof that solvable by radicals is equivalent
to solvable Galois group, focusing here on the forward direction. As alluded to last time, the key
idea is that simple radical extensions of fields should in some sense correspond to cyclic quotients
in a group solvability chain. Actually, this is not literally true as stated, but it will be “morally”
true and in fact literally true under a basic assumption we will soon clarify.

Here is a key definition: we say that K/F is a cyclic extension if it is Galois and Gal(K/F ) is a
cyclic group. These are the types of extension we will need to make our correspondence work. But,
it is not true that simple radical extensions F ( n

√
a) are always cyclic in this sense. For example,

we have seen before that Q( 3
√

2) (which is a simple radical extension) is not Galois over Q, so it is
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certainly not cyclic. Here the issue comes down to the fact that 3
√

2 is a root of x3 − 2 but Q( 3
√

2)
is not the full splitting field of this polynomial. To get the full splitting field we have to adjoin the
cube roots unity, so that we can get all the roots. It turns out that this the only thing preventing
a simple radical extension from being cyclic in general, and that as soon as we adjoin appropriate
roots of unity the trouble goes away. This is not an issue we see with quadratic extensions Q(

√
D)

of Q, which are cyclic, precisely because Q does contain the square roots of unity ±1.
The precise claim we want is that if F contains the n-th roots of unity (suppose the characteristic

is zero for our purposes, but more generally the claim holds as long as the characteristic does not
divide n), then any simple radical extension F ( n

√
a) is cyclic over F . (We will see next time that the

converse is also true: if F contains all n-th roots of unity and K is cyclic over F , then K is of the
form F ( n

√
a).) First, if F contains all n-th roots of unity, then it contains all roots of xn − a since

these roots are of the form ζ n
√
a for ζ an n-th root of unity. Thus F ( n

√
a) is the splitting field of

xn−a over F , so it is a Galois extension. Second, an element σ of the Galois group Gal(F ( n
√
a)/F )

is fully characterized by its value on n
√
a, and this value must be some other root of xn − a:

σ( n
√
a) = ζσ

n
√
a

for some n-th root of unity ζσ. We thus have a map

Gal(F ( n
√
a)/F )→ µn defined by ζ 7→ ζσ

where µn denotes the cyclic group of n-th roots of unity. To see that this is a homomorphism, take
another Galois group element τ and compute:

(στ)( n
√
a) = σ(ζτ

n
√
a) = σ(ζτ )σ( n

√
a) = ζτζσ

n
√
a,

where σ(ζτ ) = ζτ because ζτ is in the fixed field F of the full Galois group. Thus composition in the
Galois group corresponds to multiplication in µn. Finally, the map Gal(F ( n

√
a)/F )→ µn is injective

since an element σ in the kernel satisfies ζσ = 1, so that σ( n
√
a) = 1 n

√
a = n

√
a, which forces σ to

be the identity. Hence we can identity Gal(F ( n
√
a)/F ) with a subgroup of µn, so Gal(F ( n

√
a)/F )

is cyclic because subgroups of cyclic groups are cyclic.

Manipulating root extensions. In order to be able to apply the result above, we are forced to
work with fields containing roots of unity. But if we take the type of extension used in the definition
of “solvable by radicals”, namely one obtained via a sequence of simple radical extensions:

F ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kt−1 ⊆ K,

there is no assumption that any of these fields contain roots of unity, apart from ±1. (Let us use the
term root extension for an extension K/F of this form.) In particular then, there is no guarantee
that each Ki/Ki−1 will be cyclic. The way around this is to essentially force these fields to contain
the required roots of unity by simply adjoining them. We will come back to the details of doing so
next time, where the upshot is that adjoining these roots does not in fact alter “sovability”, either
of the polynomial or of the Galois group. It is in this way that we will still be able relate arbitrary
simple radical extensions on the field side to cyclic quotients on the group side. The main technical
fact we’ll need, which we state without proof for the time being, is that any root extension K/F
as above can be turned into one where K is Galois over F and where each extension Ki/Ki−1 is
in fact cyclic. So, we may as well assume that all root extensions we work with are of this form
already, at least when it comes to questions dealing with solvability.
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A key observation we’ll need in order to be able to prove this next time is that composites of
root extensions are also root extensions. To see this, suppose

F ⊆ F ( n1
√
a1) ⊆ F ( n1

√
a1, n2
√
a2) ⊆ . . . ⊆ F ( n1

√
a1, n2
√
a2, . . . , nt

√
at)

and
F ⊆ F ( m1

√
b1) ⊆ F ( m1

√
b1,

m2
√
b2) ⊆ . . . ⊆ F ( m1

√
b1,

m2
√
b2 . . . ,

ms
√
bs)

are two root extensions. Then we can adjoin m1
√
b1 to the end of the first chain, then m2

√
b2 to that,

and so until we adjoin ms
√
bs:

F ⊆ . . . ⊆ F ( n1
√
a1, . . . , nt

√
at) ⊆ F ( n1

√
a1, . . . , nt

√
at,

m1
√
b1) ⊆ F ( n1

√
a1, . . . , nt

√
at,

m1
√
b1, . . . ,

ms
√
bs).

The final field is the composite of the original root extensions, obtained itself via a sequence of
simple radical extensions. Inductively we get that the same is true for composites of any (finite)
number of root extensions, and after we prove that arbitrary root extensions can be turned into
Galois ones with cyclic intermediate extensions, we will have that composites of these types of root
extensions are also of the same type—namely Galois with cyclic intermediate extensions.

Solvable by radicals implies solvable. With the technical fact outlined above, we can now
prove that if a polynomial is solvable by radicals, then its Galois group is solvable. Suppose p(x)
is solvable by radicals over F . Then each root αi of p(x) lies in a root extension Li of F , which we
can assume is Galois with cyclic intermediate extensions. Set L be the composite of all these Li,
which then is also a Galois root extension of F with cyclic intermediate extensions. Note that L
contains all αi since αi ∈ Ki, so L contains the splitting field of p(x). (In general L will be larger
than the splitting field, but we’ll see that this does not matter!)

Suppose concretely that
F ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kt−1 ⊆ L

is the sequence of simple radical (and cyclic!) extensions which get us from F to L. Taking
automorphism groups over F gives the following sequence of groups:

Gal(L/F ) D Gt−1 D Gt−2 D . . . D G1 D 1.

(So, Ki is the fixed field of Gt−i. The difference in how we write the indices comes from the fact
that taking automorphisms groups reverses containments. Each subgroup here is normal in the
previous one because each intermediate extension in our field tower is Galois.) The Galois group
of Ki over Ki−1 is cyclic since Ki/Ki−1 is a cyclic extension. But this Galois group is also the
quotient of Gal(L/Ki−1) by Gal(L/Ki), which are what we are calling Gt−i−1 and Gt−i above:

Gal(Ki/Ki−1) ∼= Gal(L/Ki−1)/Gal(L/Ki) = Gt−(i−1)/Gt−i.

Thus each successive quotient (working right to left) in

Gal(L/F ) D Gt−1 D Gt−2 D . . . D G1 D 1

is cyclic, so Gal(L/F ) is solvable.
As said above, L is in general larger than the splitting field K of p(x), but we do have the tower

F ⊆ K ⊆ L.

Since K/F is Galois (it is a splitting field extension after all), the Galois group Gal(K/F ) is a
quotient of Gal(L/F ). But quotients of solvable groups are solvable, so the Galois group Gal(K/F )
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of p(x) is solvable as claimed. (The fact that quotients of solvable groups are solvable is from the
fall, but here’s the argument, modulo some group-theoretic claims you can check on your own.
Take a “solvability chain” for G:

1 E G1 E G2 E . . . E G

with cyclic/abelian quotients. If H is normal in G, then H is normal in GiH and Gi−1H is normal
in GiH, so we have the normal subgroup chain

1 = H/H E G1H/H E G2H/H E . . . E GH/H = G/H.

The successive quotients are

(GiH/H)/(Gi−1H/H) ∼= GiH/Gi−1H

by the third isomorphism theorem for groups, and GiH/Gi−1H is isomorphic to Gi/(Gi ∩Gi−1H)
by the second isomorphism theorem, which is a quotient of Gi/Gi−1 and is hence cyclic/abelian.)

Lecture 24: More on Cyclic Extensions

Warm-Up 1. We show that if a simple radical extension F ( n
√
a)/F is Galois, then F ( n

√
a) must

contain the n-th roots of unity. Since F ( n
√
a) is Galois over F , it is normal. Thus since xn − a has

a root in F ( n
√
a), it must split completely in this extension, so F ( n

√
a) contains all roots of xn − a.

These roots are
n
√
a, ζ n
√
a, ζ2 n

√
a, . . . , ζn−1 n

√
a

where ζ is a primitive n-th root of unity, so in particular F ( n
√
a) contains

ζ =
ζ n
√
a

n
√
a
.

Thus F ( n
√
a) contains all n-th roots of unity as claimed.

Warm-Up 2. If θ is a root of x3 − 3x − 1 over Q, we show that Q(θ) is an example of a cyclic
extension of Q that is not a simple radical extension. We will show in a bit that cyclic always
implies simple radical if our base field contains the appropriate roots of unity, so this highlights
what goes wrong if this is not the case. The Galois group of x3 − 3x − 1 is A3

∼= Z/3Z, so this
is a cyclic extension, and moreover all roots of x3 − 3x− 1 are real since the existence of non-real
complex conjugate roots would imply that complex conjugation would be an element of order 2 in
the Galois group, which Z/3Z does not have.

If Q(θ) is a simple radical extension Q(θ) = Q( n
√
a) of Q, then the first Warm-Up implies that

Q(θ) contains the n-th roots of unity. Here n > 2 (we don’t know yet that it would necessarily
have to be 3), since n = 2 only gives a degree 2 extension and Q(θ) is degree 3 over Q. But for
n > 2, the primitive n-th root of unity in particular is not real, so Q(θ) = Q( n

√
a) would contain a

non-real complex number. This is not possible since θ is real (as are all roots of x3 − 3x − 1), so
Q(θ) could not have been simple radical over Q.

Note that if we adjoin ζ3 (primitive third root of unity) to our fields Q ⊆ Q(θ) all of this trouble
goes away: Q(θ, ζ3) is in fact still cyclic over Q(ζ3) (we will see next time that adjoining the same
element to both fields does not affect whether the Galois group is cyclic), and, since Q(ζ3) does
contain the third roots of unity, what we will prove next shows that Q(θ, ζ3) is simple radical
over Q(ζ3): Q(θ, ζ3) can be obtained from Q(ζ3) by adjoining a single cube root, as indicated by
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Cardano’s formulas. (The discriminant of x3 − 3x − 1 is 81, which is a square in Q, so no square
root term is needed in the expression for the roots.)

Cyclic implies radical. We now show that if F contains the n-th roots of unity (either F has
charF zero or not dividing n), then any cyclic extension K/F is of the form K = F ( n

√
a). This

is the converse of something we showed last time, and finishes the “cyclic corresponds to radical”
idea we’ve hoped for, at least when our fields contain appropriate roots of unity.

To get a feel for where this proof comes from, let us recall the derivation of Cardano’s formulas.
When looking at the splitting field K/F of, say, an irreducible cubic with Galois group S3, the
point was to consider the intermediate field F (

√
D) (D the discriminant), which is the fixed field

of A3 ≤ S3:
F ⊆ F (

√
D) ⊆ K.

The first extension has Galois group Z/2Z (or trivial in the case where the Galois group is A3,
so that F = F (

√
D)), and the second has Galois group A3

∼= Z/3Z. The fact that K is cyclic
over F (

√
D) (with Galois group of order 3) suggests that K should be obtainable from F (

√
D) via

adjoining a single cube root, so that it should be simple radical. (Again, not literally true until we
introduce cube roots of unity, which we’ll discuss afterwards.) To obtain a generator, we took the
element

A = θ1 + ζθ2 + ζ2θ3

where θi were the roots of the cubic and ζ a primitive third root of unity, and argued that A3 had
to be fixed by A3, so that A3 ∈ F (

√
D). Then for β = A3, we have A = 3

√
β and K = F (

√
D)( 3
√
β),

giving K as a radical extension of F (
√
D) as desired.

We wish to mimic the same idea in the case K/F at hand, by finding an element A of K whose
n-th power is in F , where n is order of the cyclic Galois group Gal(K/F ) = 〈σ〉. To this end, take
the roots θi of a polynomial of degree n over F for which K is the splitting field (such a thing exists
since K is Galois over F ), and set

A = θ1 + ζθ2 + ζ2θ3 + · · ·+ ζn−1θn

where ζ is a primitive n-th root of unity. (Such an element is called a Lagrange resolvent for the
extension. Another way of expressing this is as

A = θ1 + ζσ(θ1) + · · ·+ ζn−1σn−1(θ1)

where σ generates the cyclic Galois group, since applying σ repeatedly cycles through the roots
θi = σi−1(θ1).) Then we can compute that

σ(A) = σ(θ1) + ζσ(θ2) + · · ·+ ζn−1σ(θn) = θ2 + ζθ3 + · · ·+ ζn−1θ1 = ζn−1A,

which uses the fact that σ(ζ) = ζ because ζ ∈ F . This gives σ(An) = (ζn−1)nA = A since ζn−1 is
an n-th root of unity, so An is fixed by σ and hence by the full Galois group Gal(K/F ) = 〈σ〉. We
then have A = n

√
An, or A = n

√
β where β = An ∈ F , and we claim that K = F (A) = F ( n

√
β) is

the simple radical extension we want. To see that K = F (A), we can argue that if F (A) were a
proper subfield of K, it would be fixed by some nontrivial subgroup of Gal(K/F ) = 〈σ〉, but

σk(A) = (ζn−1)kA

shows that no power of σ smaller than n will fix A, since the smallest power such that (ζn−1)k = 1
is k = n because ζn−1 = ζ−1 is a primitive n-th root of unity. Thus F (A) is only fixed by the trivial
subgroup of Gal(K/F ), so F ( n

√
β) = F (A) = K as claimed.
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Thus K/F being cyclic implies K/F being a simple radical extension when F contains the
appropriate roots of unity, except for one subtle point we ignored above! The issue is that if the
Lagrange resolvent A used is actually zero, then A is already in F , so that F (A) = F is in fact a
proper subfield of K and does not equal K. The argument above breaks down here because any
σk does fix A = 0, regardless of what (ζn−1)k is. So, we need to guarantee that we use a nonzero
Lagrange resolvent to make this work. But this should be possible: the Lagrange resolvent we
wrote down is not the only one we could have written down, since for example we can relabel the
θi in a different way and maybe use

θ4 + ζθ1 + ζ2θn + · · ·+ ζn−1θn−2,

for example, instead, or maybe use the roots θi of some different polynomial altogether. All we
need is some Lagrange resolvent constructed in this way that is nonzero. The book justifies that
this is possible using linear independence of the σi, which is not a concept we looked at previously.
(This is what the book used to prove the equality [K : KH ] = |H| in the setup of the Fundamental
Theorem of Galois Theory, but we took a different approach.)

Back to Cardano. Let us revisit Cardano’s formulas once again. As stated before, we would like
to apply the “cyclic implies radical” idea to a tower like

F ⊆ F (
√
D) ⊆ K,

but this doesn’t quite work as is since F might not contain a primitive third root of unity. The
Lagrange resolvent A = θ1 + ζθ2 + ζ2θ3 isn’t even guaranteed to belong to K then! But the fix is
easy: we simply adjoin the required root of unity ζ to each, so that the tower are really using is

F (ζ) ⊆ F (
√
D, ζ) ⊆ K(ζ).

We will show soon enough that doing so does not alter the cyclic nature of Galois groups, so that
F (
√
D, ζ) over F (ζ) still has a cyclic Galois group since Gal(F (

√
D)/F ) is cyclic (which is either

Z/2Z or trivial depending on whether or not F = F (
√
D)), and K(ζ) over F (

√
D, ζ) still has a

cyclic Galois group since Gal(K/F (
√
D)) = A3 is cyclic. Each intermediate extension is thus cyclic,

and thus a radical extension since the base field F (ζ) does contain the third roots of unity.
In the definition of a polynomial being solvable by radicals we really should be using extensions

of F , and not of F (ζ), but this we fix by tacking F on at the start:

F ⊆ F (ζ) ⊆ F (
√
D, ζ) ⊆ K(ζ).

This is then the full sequence of extensions used in the derivation of Cardano’s formulas: the first

extension introduces ζ = 1
2 +i

√
3
2 , or equivalently introduces

√
3; the second introduces

√
D, so that

now we have
√
−3D; and the third introduces the cube root needed to get the A and B (Lagrange

resolvents) used in Cardano’s formulas.

Galois root extensions. We now justify the lingering fact from last time, used in the proof
that solvable by radicals implies solvable Galois group, that any root extension K/F (i.e. one
obtained via a sequence of simple radical extensions) can be turned into one that is Galois with
each intermediate extension cyclic. Thus, defining “solvable by radicals” using only such Galois
extensions loses nothing.

Suppose that we have a root extension

F ⊆ K1 ⊆ . . . ⊆ Kt−1 ⊆ K.
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The first step is to produce a Galois root extension. Pick a Galois closure L of K/F , and take
σ` ∈ Gal(L/F ). Applying σ` to each term in our tower, and noting that σ` fixes F , gives

F ⊆ σ`(K1) ⊆ . . . ⊆ σ`(Kt−1) ⊆ σ`(K).

Each extension here is still simple radical: if Ki is obtained from Ki−1 by adjoining ni
√
ai, then

σ`(Ki) is obtained from σ`(Ki−1) by adjoining σ( ni
√
ai) = ni

√
σ`(ai), where ni

√
σ`(ai) is a root of

the polynomial xn−σ`(ai) obtained by applying σ` to xn−ai. Now, take the composite of all such
extensions σ`(K):

σ1(K) · · ·σn(K).

This composite is still a root extension, as we showed last time, and now it is also Galois over F
since it is invariant under the action of Gal(L/F ): multiplication by any σ permutes the σ`, so

σ(σ1(K) · · ·σn(K)) = σ1(K) · · ·σn(K).

(Recall when proving the “Galois ⇐⇒ normal subgroup” part of the Fundamental Theorem of
Galois Theory that we showed Galois is equivalent to being invariant under embeddings, which here
we can take to be embeddings into the Galois closure L, which all extend to elements of Gal(L/F ).)
Thus this composite is a Galois root extension of F as desired.

Let us thus just assume that our original root extension K/F was Galois. The second step is
to obtain cyclic intermediate extensions. Since each intermediate extension is simple radical, we
get cyclic extensions as soon as we have the required roots of unity in our base field. Suppose that
n1, . . . , nt are the orders of the roots needed in our root extension tower (i.e. the ni in Ki−1( ni

√
ai)),

and take ζ to be a primitive n1 · · ·nt-th root of unity. (Then all ni-th roots of unity are also n-th
roots of unity.) We then adjoin ζ to the fields in our tower to get:

F (ζ) ⊆ K1(ζ) ⊆ . . . ⊆ Kt−1(ζ) ⊆ K(ζ).

Each extension here is still simple radical, obtained by adjoining the same ni
√
ai as before, and since

the base field F (ζ) now contains all appropriate roots of unity, each extension here is cyclic.
So, we have a Galois root extension K(ζ)/F (ζ) with intermediate cyclic extensions. But, we

want a Galois root extension of F , so we simply tack on F at the start:

F ⊆ F (ζ) ⊆ K1(ζ) ⊆ . . . ⊆ Kt−1(ζ) ⊆ K(ζ).

We already know that each intermediate extension here is cyclic, except for the initial one F ⊆ F (ζ).
This does not have to be cyclic, but the point is that it can be broken down further:

F ⊆ F1 ⊆ F2 ⊆ . . . ⊆ F (ζ)

into ones which are cyclic. This will come from the fact that the Galois group of F (ζ) over F is
abelian, which we will prove next time. Once we have this, we use the fact that abelian groups are
solvable to come up with a chain

Gal(F (ζ)/F ) D . . . D G1 D 1

with cyclic quotients, and then take fixed fields to get the intermediate fields Fi we want. Putting
this entire extended tower between F and F (ζ) in

F ⊆ F (ζ) ⊆ K1(ζ) ⊆ . . . ⊆ Kt−1(ζ) ⊆ K(ζ)
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then gives a Galois root extension of F with intermediate cyclic extensions, as desired.

Solvable implies solvable by radicals. We finally prove, modulo one detail we will get to
next time, that if the Galois group of a polynomial is solvable, then the polynomial is solvable by
radicals. Suppose p(x) is our polynomial over F and K is its splitting field. Take a solvability chain
for Gal(K/F ):

Gal(K/F ) D . . . D G1 D 1

with each quotient cyclic. Then take fixed fields to get a tower

F ⊆ K1 ⊆ . . . ⊆ K

with each intermediate extension cyclc. We want to get a tower with radical intermediate exten-
sions, so we adjoin an appropriate primitive root of unity ζ (using the same n1 · · ·nt root of unity
as above, where the ni now are the orders of the intermediate cyclic Galois groups), to get

F (ζ) ⊆ K1(ζ) ⊆ . . . ⊆ K(ζ).

The fact we will prove next time is that each intermediate extension Ki(ζ)/Ki−1(ζ) is still cyclic.
(We also mentioned this fact earlier when discussing the “real” way to derive Cardano’s formula.)
Taking this for granted for now, we now have that each cyclic extension Ki(ζ)/Ki−1(ζ) is a radical
extension since the base field F (ζ) contains the required roots of unity, so the tower above is a root
extension of F (ζ).

Finally, as with Cardano’s formulas, we tack on F at the start:

F ⊆ F (ζ) ⊆ K1(ζ) ⊆ . . . ⊆ K(ζ),

and note that the first extension F ⊆ F (ζ) is already a simple radical extension since it is obtained
by adjoining a root ζ of 1. Thus, K(ζ) is a root extension of F that contains all roots of p(x), so
p(x) is solvable by radicals.

Lecture 25: More on Solvability

Warm-Up 1. Suppose F is a field of characteristic zero and that ζ is a primitive n-th root of
unity. We prove that F (ζ) is an abelian extension of F , which verifies a claim we made last time.
This showed up in the proof that arbitrary root extensions can always be replaced by ones which
are Galois and have cyclic intermediate extensions, namely in justifying the fact that the first step
F ⊆ F (ζ) of the resulting tower could be enlarged to one with cyclic intermediate extensions. Once
we know that Gal(F (ζ)/F ) is abelian, hence solvable, we can take a solvability chain

Gal(F (ζ)/F ) D . . . D 1

with cyclic quotients, and then take fixed fields to get the enlargement

F ⊆ F1 ⊆ . . . ⊆ F (ζ)

we want with cyclic intermediate extensions. Note that F (ζ) is Galois over F since we can view it
as the splitting field of xn − 1 ∈ F [x].

To see that Gal(F (ζ)/F ) is abelian, we note (as we did in the case F = Q) that any element σ
of the Galois group is determined by its action on ζ, and that σ(ζ) has to be some other primitive
n-th root of unity, so that σ(ζ) = ζa for some (n, a) = 1. This then gives a map

Gal(F (ζ)/F )→ (Z/nZ)× defined by σ 7→ the a such that σ(ζ) = ζa.
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This map is a homomorphism by the same argument we gave in the case where F = Q. Moreover,
it is injective since if σ 7→ 1, then σ(ζ) = ζ, which forces σ to be the identity on all of F (ζ), so that
the map above has trivial kernel. Thus Gal(F (ζ)/F ) is isomorphic to a subgroup of (Z/nZ)×, and
so is in particular abelian.

This is all we need to get a tower from F to F (ζ) with cyclic intermediate extensions, but let
us comment on how this general case is different from F = Q. In the case of Gal(Q(ζ)/Q), we
actually got the full multiplicative group (Z/nZ)× as the Galois group, but this is not necessarily
the case for general F . The issue is that, although with Q the map Gal(Q(ζ)/Q) → (Z/nZ)× is
surjective since any a ∈ (Z/nZ)× gives rise to a Galois group element via ζ 7→ ζa, the requirement
that elements of Gal(F (ζ)/F ) fix elements of F in general places restrictions on the values of a
we can actually get. For example, consider R(ζ7) over R. Then Gal(R(ζ7)/R) is a subgroup of
(Z/7Z)×. But for 2 ∈ (Z/7Z)×, we claim that ζ 7→ ζ2 does not give a valid element of the Galois
group. Indeed, we have

ζ = cos(2π7 ) + i sin(2π7 ) and ζ2 = cos(4π7 ) + i sin(4π7 ).

But cos(2π/7), sin(2π/7) ∈ R are in the base field, so any Galois group element sends these two to
themselves. Also, i sin(2π/7) = ζ − cos(2π/7) is in R(ζ7), and thus so is i = i sin(2π/7)/ sin(2π/7),
and i must be sent to a root of x2 + 1 under the Galois group, so i 7→ ±i. Altogether this gives

ζ = cos(2π/7) + i sin(2π/7) 7→ cos(2π/7)± i sin(2π/7),

which cannot equal ζ2. (A more succinct way of saying this is that R(ζ7) is actually C because C is
the only non-trivial algebraic extension of R since C is algebraically closed, and the only nontrivial
element of Gal(C/R) is complex conjugation, and so cannot be all of (Z/nZ)× when n ≥ 5.) In the
case where F = Q this does not apply because Galois group elements do not have to fix cos(2π/7)
and sin(2π/7).

Warm-Up 2. We show that if K/F is Galois, then for any α we have that K(α) is Galois over
F (α) and that

Gal(K(α)/F (α)) ∼= Gal(K/K ∩ F (α)).

In particular, and what is relevant to what we did last time, if Gal(K/F ) is cyclic, this implies that
Gal(K(α)/F (α)) is cyclic since Gal(K/K ∩ F (α)) is a subgroup of Gal(K/F ) via the tower

F ⊆ K ∩ F (α) ⊆ K.

This was used in the proof that solvable Galois group implies solvable by radicals, where after
adjoining an appropriate root of unity to a given tower we needed to know that doing so did not
affect the fact that we had intermediate extensions which were cyclic.

First, if K is the splitting field of p(x) over F , then K(α) is the splitting field of p(x)(x−α) (we
can remove any repeated factors of x−α if need be in order to get something separable) over F (α),
so that K(α) is Galois over F (α). We have a homomorphism Gal(K(α)/F (α))→ Gal(K/K∩F (α))
given by restriction: σ 7→ σ|K . If σ|K is the identity on K, then since σ is also meant to fix F (α)
(the base field of K(α)/F (α)), we have that σ fixes anything of the form

b0 + b1α+ · · ·+ bnα
n

c0 + c1α+ · · ·+ cmαm
,

which make up all the elements of K(α). This shows that the kernel of the restriction map above is
trivial, so it is injective. Moreover, given τ ∈ Gal(K/K ∩ F (α)), we can construct a corresponding

95



σ ∈ Gal(K(α)/F (α)) which restricts to τ simply by applying τ to elements of K:

b0 + b1α+ · · ·+ bnα
n

c0 + c1α+ · · ·+ cmαm
7→ τ(b0) + τ(b1)α+ · · ·+ τ(bn)αn

τ(c0) + τ(c1)α+ · · ·+ τ(cm)αm
.

This says that Gal(K(α)/F (α)) → Gal(K/K ∩ F (α)) is surjective, so it is an isomorphism. As
explained above, this completes the proof that a polynomial is solvable by radicals if and only if
its Galois group is solvable.

Back to the quartic formula. When first introducing solvability, we briefly discussed the process
of deriving the quartic formula (for the roots of a quartic) from Cardano’s formulas from the
“solvable by radicals” perspective. What we said back then wasn’t quite completely true, because
at no point did we adjoin roots of unity, which we’ve now seen is actually necessary. So, let us
briefly revisit this from the correct point of view.

Suppose we have a quartic with Galois group S4. Since S4 is solvable, this quartic should be
solvable by radicals. The chain that gives us solvability of S4 is:

S4 D A4 D Z/2Z× Z/2Z D Z/2Z D 1,

where Z/2Z× Z/2Z is {(1), (12)(34), (13)(24), (14)(23)}. Taking fixed fields gives

F ⊆ F (
√
D) ⊆ K1 ⊆ K2 ⊆ K

where K is the full splitting field. The new step is that, in order to get simple radical extensions, we
must adjoint an appropriate root of unity. In this case, the quotients in the chain for S4 above are
Z/2Z, Z/3Z, Z/2Z, and Z/2Z, so via the proof that solvable groups implies solvable by radicals, we
should adjoin an n-th root of unity where n = 2 ·3 ·2 ·2, given by the orders of the cyclic quotients.
But actually, we can do a bit better here, since in fact the second roots of unity ±1 are already
present and don’t need to be adjoined. The only new root of unity needed is ζ3, so it is enough to
adjoin this to get:

F ⊆ F (ζ3) ⊆ F (
√
D, ζ3) ⊆ K1(ζ3) ⊆ K2(ζ3) ⊆ K(ζ3)

with tacked on at the start. Each extension here is cyclic, since by the second Warm-Up the Galois
group of each extension is a subgroup of the corresponding cyclic one in the original tower. (Some
of these extensions might now be trivial: for example, originally Gal(K1/F (

√
D) had order 3, so

the new Gal(K1(ζ3)/F (
√
D, ζ3)) either has order 3 or 1, and in the latter case K1(ζ3) = F (

√
D, ζ3).

This is fine, since all that matters is that we still have cyclic extensions.) The existence of this
tower then says that all roots of the quartic can be expressed in terms of elements of F , ζ3,

√
D,

some cube root to get to K1(ζ3), then two more square roots to get to K2(ζ3) and finally K(ζ3).
These radicals are precisely the ones showing up in the roots of the quartic based off of Cardano’s
formulas we outlined earlier.

Some more examples. Let us finish by looking at a few more solvable examples, and see what
form we expect the roots to take. A problem on the fourth homework asked for the Galois group
of x6 − 2 over Q, where the answer turns out to be D12. This is solvable (recall that the smallest
non-solvable group is A5 of order 60, so all smaller groups are solvable), and in particular we have

D12 D 〈r〉 D 〈r3〉 E 1

where r denotes the basic rotation of order 6. The quotients here are Z/2Z, Z/3Z, and Z/2Z. Let
us thus adjoin primitive sixth (6 = 2 · 3) root of unity to the fixed fields, so that

Q ⊆ K1 ⊆ K2 ⊆ K
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becomes
Q ⊆ Q(ζ6) ⊆ K1(ζ6) ⊆ K2(ζ6) ⊆ K(ζ6).

The second extension is cyclic of degree dividing 2, the third cyclic of degree dividing 3, and the
final one cyclic of degree dividing 2, so at worst (when the degrees are as large as possible) we can
express our roots using Q, ζ6, a square root, a cube root, and another square root. But for this
polynomial we already know what the roots are:

6
√

2, ζ6
6
√

2, ζ26
6
√

2, ζ36
6
√

2, ζ46
6
√

2, ζ56
6
√

2.

So it’s not so much that we need solvability to actually find the roots, but more to notice that the

roots we have match what we expect: we need ζ6, and the sixth root 6
√

2 =
3
√√

2 we need can be
interpreted as a cube root of a square root. (It seems that the remaining square root isn’t actually
needed! This solvability idea is not meant to give the most “efficient” way of expressing the roots,
just a way that will work.)

Next, the polynomial x5− 2 over Q is also one that was covered on the homework, as the p = 5
case of xp−2 for p prime in general. The Galois group turned out to be of order 5 ·4 = 20, realizable
as either the group of 2× 2 matrices[

a b
0 1

]
with a ∈ F×5 and b ∈ F5,

or as the semi-direct product Z/5ZoZ/5Z× given the action of Z/5Z× on Z/5Z by multiplication.
(This group is called the Frobenius group of order 20.) This group is solvable, since

Z/5Z o Z/5Z× D Z/5Z o 1

has quotients Z/5Z× ∼= Z/4Z and Z/5Z. Thus we can adjoin a primitive 20-th root of unity to the
fixed fields to get

Q ⊆ Q(ζ20) ⊆ K1(ζ20) ⊆ K(ζ20).

The second extension is cyclic with order dividing 4 (it could be 2!) and the final cyclic of order
dividing 5. Thus at worst we can express the roots of x5 − 2 using Q, ζ20, a fourth root, and a
fifth root. (Note that if the order of the second extension was in fact 2, we can deal with this with
what we already have since squaring a fourth root gives a square root: ( 4

√
a)2 =

√
a.) Now again,

we do in fact know what the roots are in this case: ζi5
5
√

2. So, we don’t actually need a fourth (nor
square) root after all, and the ζ5 comes from ζ420.

Finally, consider x5 − 5x+ 12 over Q. This has Galois group D10. (We won’t justify this here,
but will look at some similar examples on the homework and at the start of next time.) We have

D10 D Z/5Z D 1,

where Z/5Z is the subgroup of rotations, with successive quotients Z/2Z and Z/5Z. Thus we need
only adjoin a fifth root of unity to the fixed fields:

Q ⊆ Q(ζ5) ⊆ K1(ζ5) ⊆ K(ζ5).

The roots should thus be expressible in terms of Q, ζ5, a square root, and a fifth root. Now, I don’t
know what the roots actually are here, and how to actually express them in this way, but we know
for sure that it is possible to do so!
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Lecture 26: Infinite Galois Theory

Warm-Up. We show that the Galois group of x5+20x+16 over Q is A5. Doing so will require the
following new result: if the prime p does not divide the discriminant of f(x) (monic and separable
with integer coefficients), then the Galois group of f(x) mod p over Fp is isomorphic to a subgroup
of the Galois group of f(x) over Q, and moreover if f(x) mod p factors into irreducible polynomials
of degrees n1, . . . , nk, then the Galois group of f(x) over Q contains an element of cycle type
(n1, . . . , nk). This is known as Dedekind’s theorem, and we will say a bit about it and its proof
afterwards. The point is that we can deduce information about the Galois group of f(x) over Q,
and the types of elements it can contain, by reducing f(x) mod various primes.

We will rely on WolframAlpha to do our computations mod p for us. First, the discriminant
of f(x) = x5 + 20x + 16 (via WolframAlpha) is 21656 = 1.024 billion, which is a square in Q and
so we know that the Galois group of f(x) is at least a subgroup of A5. Now, reducing mod 3 and
factoring into irreducibles (WolframAlpha) gives

x5 + 20x+ 16 ≡ x5 + 2x+ 1 mod 3,

so that f(x) remains irreducible over F3. The splitting field of this reduction is thus F35 , so that
the Galois group of the reduction is Gal(F35/F3) ∼= Z/5Z. (Recall that all Galois groups of finite
fields are cyclic and generated by Frobenius.) Thus the Galois group of f(x) over Q contains a copy
of Z/5Z, and so contains a 5-cycle. The existence of a 5-cycle also comes from the second part of
Dedekind’s theorem, where based on the degree 5 of the factorization of f(x) into irreducibles mod
3, the Galois group contains an element of cycle type (5), meaning a single 5-cycle.

Reducing instead mod 7 give

x5 + 20x+ 16 ≡ (x+ 2)(x+ 3)(x3 + 2x2 + 5x+ 5) mod 7,

so the Galois group of f(x) over Q contains an element of cycle type (1, 1, 3), which means a
3-cycle. (Alternatively, the splitting field of f(x) mod 7 is F33 , so the reduced Galois group is
Gal(F33/F3) ∼= Z/3Z. This is then a subgroup of our desired Galois group, so the Galois group
contains an element of order 3, which is necessarily a 3-cycle.) Actually, knowing now that the
Galois group over Q contains a 5-cycle and a 3-cycle is enough to deduce that it is A5, but let us
see what happens for a few more primes anyway. Reducing mod 11 also gives a factorization into
two irreducible linear terms and one cubic, which also gives an element of cycle type (1, 1, 3), so
nothing new. Reducing mod 13 gives an irreducible quintic, which gives a 5-cycle, so nothing new
again. If we keep trying more primes we eventually find that mod 23 we get

x5 + 20x+ 16 ≡ (x+ 17)(x2 + 12x+ 14)(x2 + 17x+ 2) mod 23,

so our Galois group contains an element of cycle type (1, 2, 2), which is the product of two 2-cycles,
consistent with the expectation that our group should be A5. We could keep going, trying more
primes and deducing the cycle types of more elements, but this is not necessary in this example.

Since our Galois group G contains a 3-cycle and a 5-cycle, of orders 3 and 5 respectively, its
order must be divisible by both 3 and 5 and hence by 15. Thus |G| ≥ 15, so the index of G inside
A5 is at most 4:

[A5 : G] =
|A5|
|G|
≤ 60

15
= 4.

The action of A5 on the cosets of G then gives a homomorphism from A5 → Sn, where n is 1, 2, 3,
or 4. Since A5 has more elements than Sn in these cases, this map is not injective, so it has a
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non-trivial kernel. But A5 is simple, so this kernel must be all of A5, and hence the action of A5

on the cosets of G is trivial. This means that σG = G for all σ ∈ A5, which requires that σ ∈ G,
and hence we conclude that G = A5 as claimed.

Dedekind’s theorem. The new result used above is an important tool in the determination
of Galois groups over Q. Such new tools are needed because, as it is hopefully becoming clear,
computing Galois groups in the quintic and higher degree cases is not as straightforward as in the
cubic and quartic cases. There is no nice algorithm that works for all quintic polynomials, and
methods become more ad-hoc. Even Dedekind’s theorem can’t give us all the answers, since it
is often the case that knowing cycle types of elements is still not enough to determine the group
precisely. So, we will not dwell on computing Galois groups of polynomials beyond what we’ve
already done, and will take the “solvable by radicals ⇐⇒ solvable Galois group” fact as our final
main result. This is fitting, since this addresses the main motivation for group theory we proposed
back on the first day of the fall quarter. In our remaining time we will instead push Galois theory
in a different direction, and highlight some key uses elsewhere.

But, we should say a bit about the proof of Dedekind’s theorem anyway for the sake of com-
pleteness. The idea of reducing mod different primes, one-at-a-time, is a cornerstone of modern
number theory, and indeed it is number theory that provides the proper context behind Dedekind’s
theorem, where the key notion is that of a decomposition group. We can nonetheless give a proof
of Dedekind’s theorem that avoids the full machinery of number theory, and this is what the final
set of discussion problems will be concerned with.

Here is the basic idea. Take K := Q(α1, . . . , αn) to be the splitting field of our polynomial, with
α1, . . . , αn the roots. Then we can find a prime ideal P of the ring Z[α1, . . . , αn] which “lifts” p in
the sense that P ∩ Z = pZ. It is this prime ideal that allows us to turn results over Fp into results
over Q. Define the group DP to be the set of elements of the Galois group Gal(K/Q) which fix P :

DP := {σ ∈ Gal(K/Q) | σ(P ) = P}.

This is a subgroup of Gal(K/Q), called the decomposition subgroup at P . It is this subgroup which
is isomorphic to the Galois group of the reduction of our polynomial mod p, and which will contain
the element (something analogous to a “Frobenius” element) of the desired cycle type. (See the
final discussion problems for the details behind all this.) In the end, Dedekind’s theorem is really
a result about lifting primes, which is a big deal in number theory.

Infinite Galois extensions. For the end of our course, we will delve into the topic of infinite
Galois theory, which is concerned with infinite field extensions. Most of the theory mimics the
finite degree case we have been considering thus far pretty well, but with one important difference
we will get to fairly soon. The ultimate goal for us to understand the Galois group of the algebraic
closure of Q, to the extent possible.

To start, we can define the notion of an infinite Galois extension in the same way as in the
finite case, with a slight difference when it comes to the splitting field definition. We say that an
infinite algebraic extension K is Galois over F if it is normal and separable over F , using the same
definitions of normality and separability we had before. This is equivalent to saying that the fixed
field of the automorphism group Aut(K/F ) is F , and is also equivalent to saying that K is the
splitting field of an infinite collection of separable polynomials over F . (We cannot require that
it be the splitting field of a single polynomial or even a finite set only, since such splitting fields
are necessarily of finite degree.) When K is Galois over F , the Galois group Gal(K/F ) is just the
group Aut(K/F ) of automorphisms of K fixing F , as it was before. If F is any field, its algebraic
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closure F is an example of an infinite Galois extension, and the Galois group Gal(F/F ) is called
the absolute Galois group of F .

The main question to ask is whether, as in the finite case, we have a bijective correspondence
between intermediate subfields of K/F and subgroups of Gal(K/F ). The answer in the infinite
case is actually “no”, but we can get around this and make the answer “yes” by slightly restricting
the types of subgroups we consider, as we will discuss shortly.

Example. To see why the answer to the question above is “no”, consider the following example.
Take K to be the composite of all quadratic extensions of Q inside the algebraic closure Q. In fact,
it is enough to consider only extensions of the form Q(

√
±p) for p prime, since if D = ±pk11 · · · pknn

then Q(
√
D) is the composite of Q(

√
±pi) for those pi with ki odd. There are thus countably many

such quadratic extensions, all contained in K.
For any σ ∈ Gal(K/Q), σ must permute the roots x2±p for each prime p, so σ either fixes

√
±p

or sends it to its negative. This implies that σ2 will fix each
√
±p, so that σ2 is the identity. Hence

every element of Gal(K/Q) has order dividing 2. From this one can show that Gal(K/Q) will have
uncountably many subgroups of index 2. But the fixed field of such a subgroup is then quadratic
over Q, and we said above there are only countably many such quadratic extensions. Hence there
can be no bijective correspondence between the countably many intermediate quadratic extensions
Q ⊆ Q(

√
D) ⊆ K and the uncountably many subgroups of Gal(K/Q) of index 2. There will in

fact be many subgroups with the same fixed field, so that the subgroup is not recoverable from the
field. This is indicative of what happens in general: the mapping from subgroups to fixed fields
will not be injective, and the mapping from fields to subgroups will not be surjective.

Topology to the rescue. So, the statement of the Fundamental Theorem of Galois Theory
does not hold as cleanly in the infinite case as it did in the finite case. To get an actual bijective
correspondence that relates all the things we expect (normality, degrees, etc), we have to restrict the
types of subgroups we consider. It turns out that there is a topology one can define on Gal(K/F )
which fixes everything. In particular, there is a sense in which we can talk about open and closed
subsets and subgroups of Gal(K/F ). (No worries if you haven’t seen “topology”, “open”, or
“closed” elsewhere. The precise definitions will not be important for our purposes.)

The main result is that the Fundamental Theorem holds as we would expect as long as we only
consider closed (in the topological sense) subgroups of the Galois group. It turns out that the fixed
fields of these are precisely the intermediate extensions of K/F that are finite over F , and here is
where we get the bijective correspondence we want:

{F ⊆ E ⊆ K | E/F finite} ←→ {closed proper subgroups of Gal(K/F )}.

The (finite) degree of E/F corresponds to the (finite) index of Aut(K/E) in Gal(K/F ), and E/F is
Galois if and only if Aut(K/E) is normal in Gal(K/F ), which case Gal(E/F ) is the corresponding
quotient of Gal(K/F ) by Aut(K/E).

Limits. Ultimately, our goal is to understand not only finite intermediate extensions E/F , but
the full infinite algebraic extension K/F . Note that any element α ∈ K does actually lie in a finite
intermediate extension, since α being algebraic over F implies that F (α) is finite over F . Thus we
can think of K as the union of all of its intermediate finite extensions.

On the group side, this suggests that it should be possible to characterize Gal(K/F ) using only
those finite quotients Gal(E/F ) which correspond to finite intermediate extensions F ⊆ E ⊆ K. In-
deed, we can certainly take any σ ∈ Gal(K/F ) and restrict it to to get an element σ|E ∈ Gal(E/F ),
and moreover these restrictions altogether should completely characterize σ itself, precisely because
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any element α on which σ can act is contained in a finite extension. Thus, we can describe σ by
specifying an infinite collection of elements from the various finite Galois groups Gal(E/F ) with E
ranging over finite intermediate extensions:

σ ←→ (σ|E)E .

(The object on the right is a “tuple” of elements indexed by the E’s.) But these elements satisfy
some compatibilities, since if one finite extension E is contained in another E′, restricting the
element σ|E′ occurring at index E′ to E ⊆ E′ will produce the element σ|E occurring at index E.

The resulting set of tuples is called the inverse limit of the finite groups Gal(E/F ), and so the
conclusion is that we can recover our infinite Galois group Gal(K/F ) as a type of “limit” of its
finite quotients:

Gal(K/F ) = lim←−Gal(E/F ).

We will not go into the definition of “inverse limit” (denoted by lim with an “inverse arrow” as
above) in too much detail in general, and will instead focus on some concrete examples. The inverse
limit is a subgroup of the direct product of all the Gal(E/F ), where the elements in the limit are
those which satisfy appropriate compatibilities. Thus we get, for example, that the absolute Galois
group Gal(Q/Q) of Q is the limit of the finite Galois groups Gal(E/Q) as E ranges over all finite
extensions of Q. This is actually an incredibly complicated group, but we will say something
interesting about it next time.

The finite field case. To see a first example of the discussion above, consider the union Kq (or
composite) of all extensions of Fp of the form Fpqn with q prime. So, we are looking at

Fp ⊆ Fp2 ⊆ Fp4 ⊆ Fp8 ⊆ . . . when q = 2,

or
Fp ⊆ Fp3 ⊆ Fp9 ⊆ Fp27 ⊆ . . . when q = 3,

for example. Each finite Galois group Gal(Fpqn/Fp) ∼= Z/qnZ is cyclic and generated by Frobenius,
so we get that

Gal(Kq/Fp) = lim←−Z/qnZ.

This inverse limit is actually one we briefly considered last quarter: it is the additive group of q-
adic integers Zq! Indeed, we define the q-adics first using a power series approach, but a homework
problem from back then described the q-adics as this inverse limit, only without using the phrase
“inverse limit”. This inverse limit consists of infinite tuples

(a1, a2, a3, . . .) ∈ Z/qZ× Z/q2Z× Z/q3Z× · · · ,

where the desired “compatibility” is that reducing the j-th coordinate mod qi produces the i-th
coordinate:

aj ≡ ai mod qi when j > i.

(Check that old homework problem to see how this matches up with the “power series” approach
to defining Zq.)

Going further, we argued earlier in this course that the algebraic closure of Fp could be charac-
terized as the union of all finite extensions of Fp: F =

⋃
n Fpn . This is then then union/composite

of all Kq above, and in fact it turns out that

Gal(Fp/Fp) ∼=
∏
q

Gal(Kq/Fp) ∼=
∏
q

Zq.

101



This (additive) group is called the profinite completion of Z and is usually denoted by Ẑ. Its
elements can concretely be described as infinite tuples

(x2, x3, x4, . . .) ∈ Z/2Z× Z/3Z× Z/4Z× · · · =
∏
n

Z/nZ

satisfying the compatibility that whenever d divides n, xn should be congruent to xd mod d. This
is precisely the inverse limit of the finite groups Z/nZ:

Gal(Fp,Fp) ∼= Ẑ = lim←−Z/nZ.

(In general, the profinite completion Ĝ of a group G is the inverse limit of all its finite quotients
G/N , as N ranges among the normal subgroups of finite index.)

Lecture 27: Absolute Galois Groups

Roots of unity. Let us consider another example of an infinite Galois extension. For p prime, let
µp∞ denote the set of all p-power roots of unity, so

µp∞ = µp ∪ µp2 ∪ µp3 ∪ . . .

where µn is the group of n-th roots of unity. The field Q(µp∞) generated by all p-power roots of
unity is an infinite Galois extension of Q since it is the splitting field of the infinite collection of
polynomials {xpn −1}n∈N. The p-power cyclotomic fields Q(ζpn) are finite intermediate extensions,
and we get that the infinite Galois group of Q(µp∞) over Q is

Gal(Q(µp∞)/Q) = lim←−Gal(Q(ζpn)/Q) = lim←−(Z/pnZ)× = Z×p ,

where Z×p is the multiplicative group of p-adic integers—i.e. the group of units of the ring Zp.
Now take the extension Qab of Q generated by all roots of unity, regardless of their degree.

(The reason for the Qab notation will be explained below.) This extension contains all Q(µp∞)

from above, and is in fact the composite of these since the n-th roots of unity for n = pk11 · · · pkmm
are contained in Q(ζ

p
k1
1

) · · ·Q(ζ
pkmm

). This implies that

Gal(Qab/Q) ∼=
∏
p

Gal(Q(µp∞)/Q) =
∏
p

Z×p ,

which is then the group of units Ẑ× of the ring of profinite integers Ẑ we introduced last time.
(Side remark. We saw in the fall on a homework problem that the group of all roots of unity

in C was isomorphic to the quotient Q/Z. It is true that the group of automorhpisms of Q/Z is
actually the same Ẑ× as above, which is essentially another way of phrasing the result above about
the Galois group of Qab. (The ring of endomorphisms of Q/Z is Ẑ.)

Abelianization. The field Qab generated by all roots of unity over Q is actually the maximal
abelian extension of Q, hence the notation Qab for this field. This is essentially the statement of
the Kronecker-Weber Theorem we mentioned back when discussing cyclotomic extensions, which
says that any abelian extension Q is contained in a cyclotomic extension. This one field then
encodes all finite abelian extensions of Q.

By the Fundamental Theorem of (Infinite) Galois Theory, we can rephrase saying that Qab is the
maximal abelian extension of Q as saying that the Galois group Gal(Qab/Q) is the maximal abelian

102



quotient of Gal(Q/Q). The maximal abelian quotient of a group G is known as its abelianization,
and is the quotient of G by its commutator subgroup [G,G], which we briefly introduced in the fall
on a discussion problem: [G,G] is the subgroup of G generated by all comutators xyx−1y−1, and
the quotient G/[G,G] measures the extent to which G fails to be abelian, where G is abelian if and
only if [G,G] is trivial if and only if G/[G,G] ∼= G. The upshot is that, although the absolute Galois
group Gal(Q/Q) is a fairly complicated group, is maximal abelian quotient is possible to describe
explicitly as Gal(Qab/Q) = Ẑ×. In general, if F is a finite extension of Q, the abelianization of the
absolute Galois group Gal(F/F ) can also be described explicitly in number-theoretic terms.

Absolute Galois group of Q. The algebraic closure Q of Q contains all finite extensions of Q.
Hence the absolute Galois group of Q also encodes all finite extensions of Q; in particular, if K
is finite over Q, the Galois group of the Galois closure of K/Q occurs as a quotient of Gal(Q/Q).
Finite extensions of Q, called algebraic number fields, are the central object of study in much of
modern number theory and related areas of algebraic geometry. Thus, Gal(Q/Q) is an important
object of study in number theory and geometry as well.

(Speaking of geometry, let us just mention the following. Back in Lecture 15, we briefly spoke
about a “Galois corrspondence” in topology using the notion of a fundamental group, that was in
some sense analogous to the correspondence between fields and groups in Galois theory. We vaguely
alluded to the idea that these two “Galois correspondences” can actually be viewed as literally the
same from the correct point of view, and that there is a way to study Galois field extensions in
a “topological” way via algebraic geometry. If we take Q and turn it into a “space” by using is
spectrum—i.e. its set of prime ideals—as we briefly outlined last quarter, it turns out that the
“fundamental group” of the spectrum of Q is actually Gal(Q/Q). This generalizes to other fields
in place of Q. We will say no more about his here, but it is truly a fascinating story.)

Fermat’s Last Theorem. We will finish our course by giving two ways in which this absolute
Galois group is useful for understanding number theoretic questions, both related to Fermat’s Last
Theorem. We will say will be quite abrupt and vague since we do not have the tools needed to
make any of this really precise, but that’s ok since our goal is merely to illustrate the types of
problems where this Galois group pops up. First let us give some context. If F is a finite extension
of Q, which is meant to be viewed as a “souped-up” version of Q, then, as we briefly mentioned
earlier this quarter, F contains a “ring of integers”, which is a “souped-up” version of Z inside F .
For example, the ring of integers of the number field Q(

√
2) is Z[

√
2]; the ring of integers of Q( 3

√
2)

is Z[ 3
√

2]; and the ring of integers of the cyclotomic field Q(ζn) is Z[ζn].
We spoke last quarter when motivating the idea of “unique factorization” about how one can

approach Fermat’s Last Theorem from this perspective. To recall, the equation xn + yn = zn of
Fermat’s Last Theorem can be written as xn = zn − yn, and using ζn we can factor the right side
as

xn = zn − yn = (z − y)(z − ζny)(z − ζ2ny) · · · (z − ζn−1n y),

which is a factorization valid in the cyclotomic ring Z[ζn]. The idea is that since the left side is
an n-th power, any prime occurring in the factorization of a potential value of x has to occur n
times overall in the prime factorization of the entire right side, and by studying the possible prime
factors of each z − ζiny one can try to show that this is not possible. But, as we said last quarter,
this argument only works if we can compare prime factorizations on both sides, which requires
something like unique factorization in Z[ζn]. Not all such rings are UFDs, so this approach to
Fermat’s Last Theorem does not work for all values of n.

The problem of determing which Z[ζn] are actually UFDs can be approached using the absolute
Galois group Gal(Q/Q). One can construct a certain group made up out of the ideals of Z[ζn],
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called the ideal class group of Q(ζn), which essentially controls how close to being a UFD the ring
Z[ζn] is, since this class group is trivial if and only if Z[ζn] is a UFD. (This group takes the product
IJ of ideals I, J we defined last quarter and turns into an honest group operation by introducing
a certain equivalence relation and taking equivalence classes.) It turns out that there is a natural
action of the absolute Galois group Gal(Q/Q) on this ideal class group, and that this action can be
used to determine when the class group is in fact trivial. (The details are beyond our reach, but the
idea comes from “decomposing” the ideal class group into something analogous to “eigenspaces”
for this Galois action, and studying the resulting pieces.) Thus, the structure of Gal(Q/Q) gives
one way of understanding this approach to Fermat’s Last Theorem.

Galois representations. In the cases of Fermat’s Last Theroem where the approach above does
not work, the absolute Galois group of Q is still essential to making progress. If you’ve ever read
anything about the history of Fermat’s Last Theorem (which you should as it is quite fascinating),
you no doubt would have seen that one of the key ingredients which finally led to a proof in the
1990’s was the notion of a Galois representation. This is nothing but a certain type of action of
the absolute Galois group of Q.

To give a sense for what a Galois representation is, we must say something about the subject of
elliptic curves, which we will do via a single example. The curve defined by y2 = x(x− 1)(x+ 1),
an example of an elliptic curve, looks like:

Consider the following operation on the points of the curve. Take two points P and Q such as those
drawn here:

The line passing through P and Q will intersect the curve at a third point, and we then denote the
reflection of this point across the x-axis by P + Q. The reason why we use this additive notation
for this resulting point is because this actually defines a group operation on the set of points of this
curve! (This is one of properties that makes elliptic curves of great importance in number theory.
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The identity of this group operation is actually not drawn in the picture above, as it is a “point at
infinity” and should be visualized as being in some sense infinitely far away from all other points
on the curve. The correct setting in which to view the curve then is in the context of projective
geometry.)

With this group operation, we can talk about points of finite order on the curve, i.e. its torsion
points. By looking at the p-tortion points (p prime), then the p2-torsion points, p3-torsion points,
and so on we get a whole sequence of points on the curve. It turns out that there is a natural way
in which Gal(Q/Q) can act on this sequence of torsion points, and all of this data can then be
arranged into a map

Gal(Q/Q)→ GL2(Zp)

where Zp is the ring of p-adic integers. (The GL2 comes from viewing the action as acting on a
2-dimensional vector whose coordinates are elements of Zp, which itself arises by taking some kind
of inverse limit of pi-torsion points.) This map/action is what constitutes a Galois represenation.

The modern approach to Fermat’s Last Theorem using Galois representations thus proceeds as
follows: assume xn + yn = zn had a nontrivial solution; use it to construct a certain elliptic curve;
use the elliptic curve to construct Galois representations of Gal(Q/Q); and finally use the structure
of Gal(Q/Q) to show that such Galois representations cannot actually exist, and thus the proposed
solution of x+yn = zn does not exist either. This is by now far beyond the scope of our course
and leads to incredibly deep and complicated mathematics, but hopefully gives a sense for how the
infinite Galois group Gal(Q/Q) shows up in important ways in mathematics. Thanks for reading!
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