
MATH 110 - SOLUTIONS TO FINAL
LECTURE 1, SUMMER 2009

GSI: SANTIAGO CAÑEZ

1. (10 points) Give two equivalent definitions (or characterizations) of each of the following.
(a) A normal operator on an inner-product space V .
(b) A generalized eigenvector of an operator T .
(c) A positive operator on an inner-product space V .
(d) An isometry on an inner-product space V .

Solution. Here are some possible answers.
(a) An operator T such that TT ∗ = T ∗T ; or, an operator T such that ‖Tv‖ = ‖T ∗v‖ for all

v ∈ V .
(b) A vector v such that for some eigenvalue λ of T there exists k ≥ 1 such that (T−λI)kv =

0; or, a vector v such that for some eigenvalue λ of T , (T − λI)dim V v = 0.
(c) A self-adjoint operator T such that 〈Tv, v〉 ≥ 0 for all v ∈ V ; or, an operator T so that

there exists S ∈ L(V ) such that T = S∗S.
(d) An operator T such that ‖Tv‖ = ‖v‖ for all v ∈ V ; or, an operator T such that

T ∗T = I. �

2. (15 points) Give examples, with brief justification, of each of the following.
(a) An operator on R2 which is not self-adjoint with respect to the standard inner product.
(b) An isometry on R4 with no (real) eigenvalues.
(c) An operator on C4 whose characteristic polynomial equals the square of its minimal

polynomial.

Solution. Here are some possible answers.
(a) With respect to the standard inner product, the adjoint of a matrix is just its tranpose,

so any non-symmetric matrix would work — say(
1 1
0 1

)
.

(b) First note that the rotation by 90◦ operator on R2:(
0 −1
1 0

)
,

is an isometry and has no eigenvalues. So, the following analog of this on R4:
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


is an isometry on R4 with no eigenvalues.
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(c) The following matrix in Jordan form:
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


works. The characteristic polynomial is (z− 1)4, and the minimal polynomial is (z− 1)2 since
the largest Jordan block is of size 2. �

3. (20 points) Suppose that P is an operator on a finite-dimensional inner-product space V
such that P 2 = P . Prove that P is an orthogonal projection if and only if it is self-adjoint.

Proof. This was on the sixth homework. For completeness sake, here is a proof.
Suppose that P is an orthogonal projection, so that V = rangeP ⊕ nullP and these two

subspaces are the orthogonal complements of each other. We must show that

〈Pv, u〉 = 〈v, Pu〉 for any v, u ∈ V .
Let v, u ∈ V and write them as

v = v1 + w1, u = v2 + w2 with v1, v2 ∈ rangeP and w1, w2 ∈ nullP.

Then using the fact that nullP and rangeP are orthogonal to each other, and the fact that
P |range P = I (since P 2 = P ), we have

〈Pv, u〉 = 〈P (v1 + w1), v2 + w2〉 = 〈v1, v2 + w2〉 = 〈v1, v2〉
and

〈v, Pu〉 = 〈v1 + w1, P (v2 + w2)〉 = 〈v1 + w1, v2〉 = 〈v1, v2〉.
Thus 〈Pv, u〉 = 〈v, Pu〉 for any v, u ∈ V , so P = P ∗.

Conversely, suppose that P is self-adjoint. To show that P is an orthogonal projection, it is
enough to show by problem 6.17 of an earlier homework that anything in nullP is orthogonal
to anything in rangeP . To this end, let u ∈ nullP and w = Pw′ ∈ rangeP . Then, since P is
self-adjoint, we have

〈u,w〉 = 〈u, Pw′〉 = 〈Pu,w′〉 = 〈0, w′〉 = 0.
We conclude that P is an orthogonal projection.

Here is another proof of the backwards direction. Since P = P ∗, we have

nullP = (rangeP ∗)⊥ = (rangeP )⊥,

so V = rangeP ⊕ nullP is exactly a decomposition of the form subspace direct sum its
orthogonal complement, so P is an orthogonal projection. �

4. (20 points) Suppose that T is a self-adjoint operator on a inner-product space V such that
there exists v ∈ V with ‖v‖ = 1 such that 〈Tv, v〉 > 1. Prove that there exists an eigenvalue
of T which is larger than 1.

Proof. By the Spectral Theorem, there exists an orthonormal basis (e1, . . . , en) of V consisting
of eigenvectors of T — let λ1, . . . , λn be the corresponding eigenvalues. Note that since T is
self-adjoint, all of these are real. We then have

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en
and

Tv = λ1〈v, e1〉e1 + · · ·+ λn〈v, en〉en.
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Thus
〈Tv, v〉 = λ1|〈v, e1〉|2 + · · ·+ λn|〈v, en〉|2 > 1.

Now, since ‖v‖ = 1,
‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2 = 1.

Let µ denote the largest eigenvalue of T . Then

µ = µ(|〈v, e1〉|2 + · · ·+ |〈v, en〉|2)

≥ λ1|〈v, e1〉|2 + · · ·+ λn|〈v, en〉|2

> 1,

so µ > 1 as required.
Here’s another way of doing this last step. If all eigenvalues satisfied λi ≤ 1, then

〈Tv, v〉 = λ1|〈v, e1〉|2 + · · ·+ λn|〈v, en〉|2

≤ |〈v, e1〉|2 + · · ·+ |〈v, en〉|2 = 1,

so 〈Tv, v〉 ≤ 1, a contradiction. Thus at least one eigenvalue of T must be larger than 1. �

5. (20 points) Let V be a finite-dimensional complex vector space. If you get stuck on part
(a) below, assume it is true and use it in part (b).

(a) Prove that if N is a nilpotent operator on V , then N + I has a square root.
(b) Prove that any invertible operator T on V has a square root.

Proof. (a) This is in the book. For completeness sake, here is a proof.
We guess that there is a square root of N + I of the form

I + a1N + a2N
2 + · · ·+ anN

n.

Note that such a guess comes from thinking about a series expansion of
√

1 + x and from the
fact that N is nilpotent, so that high enough powers of it are zero. We claim that there do
exist scalars a1, . . . , an such that

N + I = (I + a1N + a2N
2 + · · ·+ anN

n)2.

Expanding the right hand side gives

I + 2a1N + (a2
1 + 2a2)N2 + · · ·+ (something)Nn

since higher powers of N are zero.
Now, we first see that a choice of a1 = 1/2 will work. Next, the coefficient of N2 would

have to be zero, so
a2

1 + 2a2 = 0.
Since we’ve already solved for a1, this allows us to find a2. In general, if we’ve found
a1, . . . , ak−1, then setting the coefficient of Nk equal to zero will let us solve for ak. Hence
there do exist scalars with the required property, so N + I has a square root.

(b) This is in the book. For completeness sake, here is a proof.
Let λ1, . . . , λm be the eigenvalues of T and let U1, . . . , Um be the corresponding generalized

eigenspaces. Then
V = U1 ⊕ · · · ⊕ Um.

Note that since T is invertible, no eigenvalue is zero.
Now, for each i, setting Ni = (T − λiI)|Ui , we have

T |Ui = Ni + λiI = λi

(
N

λi
+ I

)
.
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The operator N/λi is nilpotent, so by part (a) there exists an operator Si on Ui so that

S2
i =

Ni

λi
+ I.

Define an operator S on V by setting

Sv =
√
λ1S1u1 + · · ·+

√
λmSmum,

where v = u1 + · · · + um is the unique way to express v according to the decomposition
V = U1 ⊕ · · · ⊕ Um. Then

S2v = λ1S
2
1u1 + · · ·+ λmS

2
mum = T |U1u1 + · · ·+ T |Umum = Tv,

so S is a square root of T . �

6. (15 points) Suppose that an operator T on a complex vector space has characteristic
polynomial z3(z − 2)5(z + 1)2 and minimal polynomial of the form

z2(z − 2)k(z + 1)` where k > 2 and ` ≥ 1.

Suppose further that dim range(T − 2I) = 7 and that the eigenspace corresponding to −1 is
1-dimensional. Find, with justification, the Jordan blocks which make up the Jordan form of
T . You do not have to write out the full Jordan form itself.

Proof. First, the eigenvalues of T are 0, 2,−1 with multiplicities 3, 5, 2. From the minimal
polynomial, we see that the largest Jordan block for 0 is of size 2, so there must be one Jordan
block for 0 of size 2 and one of size 1. Since the dimension of the eigenspace corresponding to
−1 is 1, there is one Jordan block corresponding to −1 and it must hence be of size 2.

Now, the dimension of the eigenspace corresponding to 2 is

dim (T − 2I) = dimV − dim range(T − 2I) = 10− 7 = 3,

so there are three Jordan blocks corresponding to 2. From the minimal polynomial, the size
of the largest Jordan block corresponding to 2 is larger than 2. Thus since 2 has multiplicity
5, to get three blocks we need one of size 3, and two of size 1. Hence the Jordan blocks in the
Jordan form of T are (

0 1
0 0

)
,
(
0
)
,

(
−1 1
0 −1

)
,

2 1 0
0 2 1
0 0 2

 ,
(
2
)
,
(
2
)
.

�


