Math 334: Final Exam Solutions

Northwestern University, Summer 2014

1. Give an example of each of the following. No justification is needed.

(a) An inner product on C? with respect to which (211’ QIi) is self-adjoint.

(b) A nonzero polynomial in Py(R) which is orthogonal to x with respect to the inner product
1
(p,q) = / p(z)q(r) dz.

1
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(¢) A nonzero generalized eigenvector of 020 which is not an ordinary eigenvector.

(d) An operator on C* with characteristic polynomial (z —2i)* and minimal polynoial (z — 2i)?.

Solutions. (a) This matrix is Hermitian—meaning that it equals its conjugate transpose—and so
is self adjoint with respect to the standard dot product (z1,w1) - (22, w2) = 2123 + w1 Wa.
(b) The constant polynomial 1 is orthogonal to x since f_ll 1-xdx = %xz}l_l =0.

(¢) The vector v = (g) satisfies (A — 2I)%v = (A — 2I) (é) = <§>, so v is a generalized

eigenvector corresponding to 2, but it is not an eigenvector since (A4 — 2I)v # 0.
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(d) The matrix < 02000 > works since the largest Jordan block is of size 2. O
000 2
2. Suppose V is an inner-product space and that 7" is an operator on V. Show that a subpsace U

of V is T-invariant if and only if its orthogonal complement U~ is T*-invariant.

Proof. Suppose that U is T-invariant and let v € UL. Then for any u € U, we have:
(u, T*v) = (T'u,v) .

Since U is T-invariant, Tu € U so (Tu,v) = 0 since v € UL. Thus (u, T*v) = 0 for all u € U,
which says that T*v € U+. Hence U~ is T*-invariant as required.

Conversely, if U~ is T*-invariant then the claim just proved shows that (U+)~ is (T*)*-invariant.
But (U+)* =U and (T*)* =T, so U is T-invariant as claimed. O

3. Suppose V is a complex inner-product space and that S is a self-adjoint operator on V with the
property that ||Sv|| = ||v|| for all v € V. Show that if —1 is not an eigenvalue of S, then Sv = v
for all v € V. Hint: First show that 1 is the only eigenvalue of S.

Proof. By the Spectral Theorem there exists an orthonormal basis e1, ..., e, of V where each e; is
an eigenvector of S; denote the corresponding eigenvalues by Ay, ..., \,. Since
leill = [1Sesll = [[Aesl| = [Adl fleill ,

we get that |lambda;| = 1, so each J; is either 1 or —1. We are given that —1 is not an eigenvalue
of S, so every \; must equal 1 and hence Se; = ¢; for all .
Thus:
Sv=S{v,e1)e1 + -+ (v,e) en)
= (v,e1)Se; + -+ (v,ep) Sey,
= (v,e1)er+ -+ (v,en) en

=0

for any v € V as claimed. O



4. Suppose that V is a complex vector space. If you get stuck in (a) below, assume it is true and
use it in (b).
(a) Show that for any nilpotent operator N and complex scalar a # —1/4, there exists an
operator S such that S%2 + 5 = al + N. Hint: S will be of the form S = agl + a1 N + - -- + a, N".
(b) Show that for any 7' € L£(V') for which —1/4 is not an eigenvalue, there exists K € L(V)
such that K2+ K =T.

Proof. (a) Let n be the smallest positive integer such that N"*! = 0, which exists since N is
nilpotent. We show that there are scalars ay, . .., a, such that S = agl + a1 N +- - - +a,, N" satisfies
5?2 + S =al + N. Indeed, for this we would need to have:

(apl + axN + -+ +a,N")(apl +a1N +---+a,N") + (aol + a1 N +--- + a,N") = al + N.
Expanding the left side and regrouping terms gives:
(ag+ag)I+(2apa1+a1)N +(2apas+a? +az) N+ - -+ (something involving ag, . .., a,)N™ = al+N.

Comparing coefficients of I on both sides we see that the scalar ag we want must first satisfy

—14++1+4a

a% 4+ ag = a, so we can take aqg = 5

Note that since a # —1/4, ag # —1/2 since the term under the square root is nonzero.
Then comparing coefficients of N on both sides we see that ag, a; must satisfy

1
2a0 + 1

2apa1 +a1 =1, so a1 =

where ag is the value we found above. Note that this fraction makes sense: the denominator is
nonzero since ag # —1/2, which is why the assumption that a # —1/4 is important.
Comparing coefficients of N2 gives the requirement that

2apa9 + (l% + ag = 0,

which we can then use to solve for as. Continuing on in this manner allows to determine ag, ..., a,,
so we conclude that there are scalars ag, ..., a, such that S = agl + a1 N +-- -+ a, IN" satisfies the
requirement that S + S = al + N.

(b) Let A1,..., A be the distinct eigenvalues of T and let Uy, ..., U,, be the corresponding
generalized eigenspaces. Then we have

V=U® - aUp,.
Now, for each 1,
Tly, =Nl + (T — NI)|v,-

The second piece on the right is nilpotent and \; # —1/4, so part (a) gives us an operator R; on
U; such that
R? + R; = T|Ui~

Define an operator S on V by
Sv=Riv1 + -+ Rpom



where v = vy + -+ 4+ v, is the expression for v according to the decomposition of V into the
generalized eigenspaces. For any v, we then have

(8% 4+ S)v = S%v + Sv
= (Rvy + -+ R2uy) + (Ryvs + -+ Ryvm)
= (R?2+R))vi+ -+ (R2, + Rpn)vm
= T’Ul’Ul —+ -+ T‘Um’l}m
=Tv.
Hence S%? + S =T as required. O

5. Suppose that an operator T' on a complex vector space V has characteristic polynomial (z +
2)3(z — 4)*(z + 3)® and minimal polynomial of the form

(z+2)%(z — 4)*(2 + 3)%, where k> 2 and £ > 1.
Moreover, suppose that dimrange(T — 47) < 10 and dimnull(7" 4 3I) = 3. Determine the possible

Jordan forms which T could have.

Solution. From the characteristic polynomial, the eigenvalues of T" are —2, 4, —3 with multiplicities
3,4,5 respectively. Note that V is thus 3 + 4 + 5 = 12 dimensional. Now, —2 appears 3 times on
the diagonal of the Jordan form of 1" and the largest Jordan block corresponding to 2 is of size 2
since the (z + 2) term in the minimal polynomial is of degree 2. Hence there must be two Jordan
blocks corresponding to 2: one of size 2 and one of size 1:

<§ ;) and (2).

12 = dim V = dimnull(T" — 47) 4+ dimrange(T" — 41)
by rank-nullity and dimrange(7" — 41) < 10, we get that

Next, since

dimnull(T" — 4I) = 12 — dimrange(T — 41) > 12 — 10 = 2.

Thus the eigenspace corresponding to 4 is at least 2-dimensional, so there are at least two Jordan
blocks corresponding to 4. Since 4 has multiplicity 4 and the largest block has size at least 2
because of the degree of the (z — 4) term in the minimal polynomial, we see that the possibilities
for Jordan blocks corresponding to 4 are: one block of size 3 and one of size 1, or two blocks of size
2, or one block of size 2 and two of size 1:

4 10

4 1 4 1 4 1
0 4 1] and (4),or <0 4> and (O 4),or (0 4> and (4) and (4)

0 0 4

The possibilities of having a single block of size 4 or four blocks of size 1 are ruled out by the
previous considerations.

Finally, since dimnull(T" + 3I) = 3, the eigenspace corresponding to —3 is 3 dimensional so
there are three Jordan blocks corresponding to —3. Since 3 has multiplicity 5, the possibilities are
thus: two blocks of size 2 and one of size 1, or one block of size 3 and two of size 1:

-3 1 0

-3 1 -3 1
(0 _3> and <0 _3> and (—3), or 8 —03 —13 and (—3) and (—3).



The possible Jordan forms of 1" are then obtained by writing out 12 x 12 matrices with blocks
of the above possibilities. We won’t list them all here, but there are 6 possible Jordan forms in
total: 1 possibility for the Jordan blocks corresponding to 2, times 3 possibilities for the blocks
corresponding to 4, times 2 for the blocks corresponding to —3. O

6. Find the Jordan form of the matrix

-1 -1 4 -5 9

0 -2 1 —4 5
A=]10 -1 0 -7 151,

0 0 0 -1 4

0 0 0 -1 3

whose characteristic polynomial is (z — 1)%(z 4 1)3.

Solution. From the characteristic polynomial, the eigenvalues of A are 1 and —1 with multiplicities
2 and 3 respectively. Since A — I reduces to:

2 -1 4 -5 9 2 -1 4 -5 9
0 -3 1 -4 5 0 -3 1 -4 5
A-I=10 -1 -1 -7 15|=|0 0 4 17 —40],
0 0 0 -2 4 0 0 0 -2 4
0 0 0 -1 2 0 0 0 0 0

the eigenspace null(A — I) corresponding to 1 is 1-dimensional, so there is only one Jordan block
corresponding to 1 and it must be of size 2.
Now, A + I reduces to:

0 -1 4 -5 9 0 -1 4 -5 9 0 -1 4 -5 9
0 -1 1 -4 5 0 0 3 -1 4 0 0 3 -1 4
A+I=|0 -1 1 -7 15| =0 O 3 2 —6|—=(0 0 0 -3 10
0O 0 0 0 4 0 0 0 -1 4 0 0 0 0 =2
0 0 0 -1 4 0 0 0 0 4 0 0 0o 0 O

Thus null(A + I) is 1-dimensional, so there is only one Jordan block corresponding to —1 and it
must be of size 3. The Jordan form of A is therefore:
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