
Math 334: Final Exam Solutions
Northwestern University, Summer 2014

1. Give an example of each of the following. No justification is needed.
(a) An inner product on C2 with respect to which

(
4 2−i

2+i 1

)
is self-adjoint.

(b) A nonzero polynomial in P2(R) which is orthogonal to x with respect to the inner product

〈p, q〉 =

∫ 1

−1
p(x)q(x) dx.

(c) A nonzero generalized eigenvector of
(

2 1 0
0 2 0
0 0 1

)
which is not an ordinary eigenvector.

(d) An operator on C4 with characteristic polynomial (z−2i)4 and minimal polynoial (z−2i)2.

Solutions. (a) This matrix is Hermitian—meaning that it equals its conjugate transpose—and so
is self adjoint with respect to the standard dot product (z1, w1) · (z2, w2) = z1z2 + w1w2.

(b) The constant polynomial 1 is orthogonal to x since
∫ 1
−1 1 · x dx = 1

2x
2
∣∣1
−1 = 0.

(c) The vector v =
(

0
1
0

)
satisfies (A − 2I)2v = (A − 2I)

(
1
0
0

)
=
(

0
0
0

)
, so v is a generalized

eigenvector corresponding to 2, but it is not an eigenvector since (A− 2I)v 6= 0.

(d) The matrix

(
2i 1 0 0
0 2i 0 0
0 0 2i 1
0 0 0 2i

)
works since the largest Jordan block is of size 2.

2. Suppose V is an inner-product space and that T is an operator on V . Show that a subpsace U
of V is T -invariant if and only if its orthogonal complement U⊥ is T ∗-invariant.

Proof. Suppose that U is T -invariant and let v ∈ U⊥. Then for any u ∈ U , we have:

〈u, T ∗v〉 = 〈Tu, v〉 .

Since U is T -invariant, Tu ∈ U so 〈Tu, v〉 = 0 since v ∈ U⊥. Thus 〈u, T ∗v〉 = 0 for all u ∈ U ,
which says that T ∗v ∈ U⊥. Hence U⊥ is T ∗-invariant as required.

Conversely, if U⊥ is T ∗-invariant then the claim just proved shows that (U⊥)⊥ is (T ∗)∗-invariant.
But (U⊥)⊥ = U and (T ∗)∗ = T , so U is T -invariant as claimed.

3. Suppose V is a complex inner-product space and that S is a self-adjoint operator on V with the
property that ‖Sv‖ = ‖v‖ for all v ∈ V . Show that if −1 is not an eigenvalue of S, then Sv = v
for all v ∈ V . Hint: First show that 1 is the only eigenvalue of S.

Proof. By the Spectral Theorem there exists an orthonormal basis e1, . . . , en of V where each ei is
an eigenvector of S; denote the corresponding eigenvalues by λ1, . . . , λn. Since

‖ei‖ = ‖Sei‖ = ‖λiei‖ = |λi| ‖ei‖ ,

we get that |lambdai| = 1, so each λi is either 1 or −1. We are given that −1 is not an eigenvalue
of S, so every λi must equal 1 and hence Sei = ei for all i.

Thus:

Sv = S(〈v, e1〉 e1 + · · ·+ 〈v, en〉 en)

= 〈v, e1〉Se1 + · · ·+ 〈v, en〉Sen
= 〈v, e1〉 e1 + · · ·+ 〈v, en〉 en
= v

for any v ∈ V as claimed.



4. Suppose that V is a complex vector space. If you get stuck in (a) below, assume it is true and
use it in (b).

(a) Show that for any nilpotent operator N and complex scalar a 6= −1/4, there exists an
operator S such that S2 + S = aI +N . Hint: S will be of the form S = a0I + a1N + · · ·+ anN

n.
(b) Show that for any T ∈ L(V ) for which −1/4 is not an eigenvalue, there exists K ∈ L(V )

such that K2 +K = T .

Proof. (a) Let n be the smallest positive integer such that Nn+1 = 0, which exists since N is
nilpotent. We show that there are scalars a0, . . . , an such that S = a0I+a1N + · · ·+anN

n satisfies
S2 + S = aI +N . Indeed, for this we would need to have:

(a0I + a1N + · · ·+ anN
n)(a0I + a1N + · · ·+ anN

n) + (a0I + a1N + · · ·+ anN
n) = aI +N.

Expanding the left side and regrouping terms gives:

(a20+a0)I+(2a0a1+a1)N+(2a0a2+a21+a2)N
2+· · ·+(something involving a0, . . . , an)Nn = aI+N.

Comparing coefficients of I on both sides we see that the scalar a0 we want must first satisfy

a20 + a0 = a, so we can take a0 =
−1 +

√
1 + 4a

2
.

Note that since a 6= −1/4, a0 6= −1/2 since the term under the square root is nonzero.
Then comparing coefficients of N on both sides we see that a0, a1 must satisfy

2a0a1 + a1 = 1, so a1 =
1

2a0 + 1

where a0 is the value we found above. Note that this fraction makes sense: the denominator is
nonzero since a0 6= −1/2, which is why the assumption that a 6= −1/4 is important.

Comparing coefficients of N2 gives the requirement that

2a0a2 + a21 + a2 = 0,

which we can then use to solve for a2. Continuing on in this manner allows to determine a3, . . . , an,
so we conclude that there are scalars a0, . . . , an such that S = a0I + a1N + · · ·+ anN

n satisfies the
requirement that S2 + S = aI +N .

(b) Let λ1, . . . , λm be the distinct eigenvalues of T and let U1, . . . , Um be the corresponding
generalized eigenspaces. Then we have

V = U1 ⊕ · · · ⊕ Um.

Now, for each i,
T |Ui = λiI + (T − λiI)|Ui .

The second piece on the right is nilpotent and λi 6= −1/4, so part (a) gives us an operator Ri on
Ui such that

R2
i +Ri = T |Ui .

Define an operator S on V by
Sv = R1v1 + · · ·+Rmvm



where v = v1 + · · · + vm is the expression for v according to the decomposition of V into the
generalized eigenspaces. For any v, we then have

(S2 + S)v = S2v + Sv

= (R2
1v1 + · · ·+R2

mvm) + (R1v1 + · · ·+Rmvm)

= (R2
1 +R1)v1 + · · ·+ (R2

m +Rm)vm

= T |U1v1 + · · ·+ T |Umvm

= Tv.

Hence S2 + S = T as required.

5. Suppose that an operator T on a complex vector space V has characteristic polynomial (z +
2)3(z − 4)4(z + 3)5 and minimal polynomial of the form

(z + 2)2(z − 4)k(z + 3)`, where k ≥ 2 and ` ≥ 1.

Moreover, suppose that dim range(T − 4I) ≤ 10 and dim null(T + 3I) = 3. Determine the possible
Jordan forms which T could have.

Solution. From the characteristic polynomial, the eigenvalues of T are −2, 4,−3 with multiplicities
3, 4, 5 respectively. Note that V is thus 3 + 4 + 5 = 12 dimensional. Now, −2 appears 3 times on
the diagonal of the Jordan form of T and the largest Jordan block corresponding to 2 is of size 2
since the (z + 2) term in the minimal polynomial is of degree 2. Hence there must be two Jordan
blocks corresponding to 2: one of size 2 and one of size 1:(

2 1
0 2

)
and

(
2
)
.

Next, since
12 = dimV = dim null(T − 4I) + dim range(T − 4I)

by rank-nullity and dim range(T − 4I) ≤ 10, we get that

dim null(T − 4I) = 12− dim range(T − 4I) ≥ 12− 10 = 2.

Thus the eigenspace corresponding to 4 is at least 2-dimensional, so there are at least two Jordan
blocks corresponding to 4. Since 4 has multiplicity 4 and the largest block has size at least 2
because of the degree of the (z − 4) term in the minimal polynomial, we see that the possibilities
for Jordan blocks corresponding to 4 are: one block of size 3 and one of size 1, or two blocks of size
2, or one block of size 2 and two of size 1:4 1 0

0 4 1
0 0 4

 and
(
4
)
, or

(
4 1
0 4

)
and

(
4 1
0 4

)
, or

(
4 1
0 4

)
and

(
4
)

and
(
4
)
.

The possibilities of having a single block of size 4 or four blocks of size 1 are ruled out by the
previous considerations.

Finally, since dim null(T + 3I) = 3, the eigenspace corresponding to −3 is 3 dimensional so
there are three Jordan blocks corresponding to −3. Since 3 has multiplicity 5, the possibilities are
thus: two blocks of size 2 and one of size 1, or one block of size 3 and two of size 1:(

−3 1
0 −3

)
and

(
−3 1
0 −3

)
and

(
−3
)
, or

−3 1 0
0 −3 1
0 0 −3

 and
(
−3
)

and
(
−3
)
.



The possible Jordan forms of T are then obtained by writing out 12× 12 matrices with blocks
of the above possibilities. We won’t list them all here, but there are 6 possible Jordan forms in
total: 1 possibility for the Jordan blocks corresponding to 2, times 3 possibilities for the blocks
corresponding to 4, times 2 for the blocks corresponding to −3.

6. Find the Jordan form of the matrix

A =


−1 −1 4 −5 9
0 −2 1 −4 5
0 −1 0 −7 15
0 0 0 −1 4
0 0 0 −1 3

 ,

whose characteristic polynomial is (z − 1)2(z + 1)3.

Solution. From the characteristic polynomial, the eigenvalues of A are 1 and −1 with multiplicities
2 and 3 respectively. Since A− I reduces to:

A− I =


−2 −1 4 −5 9
0 −3 1 −4 5
0 −1 −1 −7 15
0 0 0 −2 4
0 0 0 −1 2

→

−2 −1 4 −5 9
0 −3 1 −4 5
0 0 4 17 −40
0 0 0 −2 4
0 0 0 0 0

 ,

the eigenspace null(A − I) corresponding to 1 is 1-dimensional, so there is only one Jordan block
corresponding to 1 and it must be of size 2.

Now, A+ I reduces to:

A+ I =


0 −1 4 −5 9
0 −1 1 −4 5
0 −1 1 −7 15
0 0 0 0 4
0 0 0 −1 4

→


0 −1 4 −5 9
0 0 3 −1 4
0 0 3 2 −6
0 0 0 −1 4
0 0 0 0 4

→


0 −1 4 −5 9
0 0 3 −1 4
0 0 0 −3 10
0 0 0 0 −2
0 0 0 0 0

 .

Thus null(A + I) is 1-dimensional, so there is only one Jordan block corresponding to −1 and it
must be of size 3. The Jordan form of A is therefore:

1 1 0 0 0
0 1 0 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1

 .


