
MATH 110 - PRACTICE MIDTERM
LECTURE 1, SUMMER 2009

July 10, 2009

The midterm will of course consist of fewer problems than the number given here (maybe 7
or 8), but these all should give a good indication of what to expect. The starred problems are
more difficult than the rest, and the midterm will only contain possibly one such problem. You
should definitely make sure you understand the rest of the problems before worrying about
the starred ones. For the record, I would consider problems 2, 4, 7, 8, 9, and 12 to be on the
“easy”-ish side (meaning, these mostly follow from just playing around with definitions), and
all the rest (except for the starred problems) to be in the middle of the difficulty scale (meaning
they require a bit more thought than just working with definitions). Happy studying!

Unless otherwise stated, all vector spaces can be assumed to be nonzero and finite-dimensional
over a field F.

1. Given vector spaces V and W , V ×W is the vector space given by

V ×W = {(v, w) | v ∈ V and w ∈W},

with addition and scalar multiplication defined componentwise; i.e.

(v, w) + (v′, w′) := (v + v′, w + w′) and a(v, w) := (av, aw).

Prove that a map T : V →W is linear if and only if its graph, defined by

graph T := {(v, Tv) ∈ V ×W | v ∈ V },

is a subspace of V ×W .

2. Let T ∈ L(V ) and suppose that U and W are T -invariant subspaces of V . Prove that
U ∩W and U + W are also T -invariant.

3. Axler, 2.7

4. Prove that C(R) is infinite-dimensional. (Hint: Use the previous problem)

5. Axler, 3.8

6*. Axler, 5.13 (Hint: By problem 5.12, it is enough to show that every vector in V is an
eigenvector of T . Say dim V = n. Let v ∈ V be nonzero and show that span(v) can be written
as the intersection of some number of (n−1)-dimensional subspaces of V , then use the second
problem)

7. Axler, 2.3

8. Axler, 2.10

9. Let T : V → W be a linear map and let v1, . . . , vk ∈ V . Prove that if (Tv1, . . . , T vk) is
linearly independent in W , then (v1, . . . , vk) is linearly independent in V .

10. Axler, 3.12
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11. Let S : L(V )→ L(V ) be the map defined by

S(T ) =

{
T−1 if T is invertible
0 if T is not invertible.

Prove or disprove that S is linear. (Hint: Try to figure out a simple case first, say V = R2)

12. Axler, 5.10

13. Recall that T ∈ L(V ) is nilpotent if T k = 0 for some positive integer k. Suppose that
V is a complex vector space. Prove that T ∈ L(V ) is nilpotent if and only if 0 is the only
eigenvalue of T . (Hint for the backwards direction: There exists a basis of V with respect to
which M(T ) is upper- triangular. What can you say about the diagonal entries of M(T )?)

14. Suppose that U , W , and W ′ are subspaces of V such that

U ⊕W = U ⊕W ′.

For each w ∈W , since w is then also in U ⊕W , this implies that we can write

w = u + w′

in a unique way with u ∈ U and w′ ∈W ′. Define a linear map T : W →W ′ by setting

Tw = w′ as constructed above.

Prove that T is an isomorphism. (Hint: First show that dim W = dim W ′; then it suffices to
show that T is injective)

15*. Recall that an operator T ∈ L(V ) is diagonalizable if there exists a basis of V consisting
of eigenvectors of T . Suppose that T ∈ L(V ) is diagonalizable and that U is a nonzero, T -
invariant subspace of V . Prove that T |U ∈ L(U) is diagonalizable. [Hint: First show that if
v1, . . . , vk are eigenvectors which correspond to distinct eigenvalues of T and v1 + · · ·+vk ∈ U ,
then vi ∈ U for each i. (Hint for the hint: first do the case k = 2)]

16. Let p(z) ∈ P (F) be a polynomial and let T ∈ L(V ). Prove that null T and range T are
invariant under p(T ).


