
MATH 110 - SOLUTIONS TO PRACTICE MIDTERM
LECTURE 1, SUMMER 2009

GSI: SANTIAGO CAÑEZ

1. Given vector spaces V and W , V ×W is the vector space given by

V ×W = {(v, w) | v ∈ V and w ∈W},

with addition and scalar multiplication defined componentwise; i.e.

(v, w) + (v′, w′) := (v + v′, w + w′) and a(v, w) := (av, aw).

Prove that a map T : V →W is linear if and only if its graph, defined by

graph T := {(v, Tv) ∈ V ×W | v ∈ V },

is a subspace of V ×W .

Proof. Suppose that T is linear. Since T (0) = 0, we know that

(0, 0) = (0, T (0)) ∈ graph T .

Now, let (u, Tu), (v, Tv) ∈ graph T . Then Tu+ Tv = T (u+ v), so

(u, Tu) + (v, Tv) = (u+ v, Tu+ Tv) = (u+ v, T (u+ v)) ∈ graph T ,

and thus graph T is closed under addition. Finally, let a ∈ F and let (u, Tu) ∈ graph T . Since
aTu = T (au), we have

a(u, Tu) = (au, aTu) = (au, T (au)) ∈ graph T ,

so graph T is closed under scalar multiplication. We conclude that the graph of T is a subspace
of V ×W .

Conversely, suppose that graph T is a subspace of V ×W . We must show that T preserves
addition and scalar multiplication. First, let u, v ∈ V . Then

(u, Tu) and (v, Tv) are in graph T .

Since the graph is closed under addition, we must have

(u, Tu) + (v, Tv) = (u+ v, Tu+ Tv) ∈ graph T .

But for this to be in the graph of T , we must have Tu + Tv = T (u + v) according to the
definition of the graph. Thus T preserves addition. Similarly, let a ∈ F and u ∈ V . Then

a(u, Tu) = (au, aTu) ∈ graph T

since graph T is closed under scalar multiplication. Again, this implies that aTu = T (au), so
we conclude that T preserves scalar multiplication and is hence linear. �

2. Let T ∈ L(V ) and suppose that U and W are T -invariant subspaces of V . Prove that
U ∩W and U +W are also T -invariant.
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Proof. First, let x ∈ U ∩W . Then x ∈ U and x ∈W . Since U and W are T -invariant, Tx ∈ U
and Tx ∈W . Thus Tx ∈ U ∩W so U ∩W is T -invariant.

Now, let x ∈ U +W . Then x = u+ w for some u ∈ U and w ∈W . Hence

Tx = T (u+ w) = Tu+ Tw.

Since U and W are T -invariant, Tu ∈ U and Tw ∈W . Thus Tx can be written as something
in U plus something in W , so Tx ∈ U +W and U +W is T -invariant. �

3. Axler, 2.7

Proof. Suppose first that V is infinite dimensional and let v1 be any nonzero element of V .
Then v1 does not span V since V is infinite dimensional, so there exists v2 ∈ V such that
v2 /∈ span(v1). Again, since V is infinite dimensional, (v1, v2) does not span V , so we can
pick v3 ∈ V such that v3 /∈ span(v1, v2). Continuing in this manner we construct a sequence
v1, v2, . . . which satisfies the required condition. Indeed, for each n, since

vn /∈ span(v1, . . . , vn−1),

the list (v1, . . . , vn) is linearly independent.
Conversely, suppose we have such a sequence of vectors. If V were finite dimensional, say of

dimension n, then any list of more than n vectors would be linearly dependent, contradicting
the existence of a sequence such as the one we have. Thus V is infinite dimensional �

4. Prove that C(R) is infinite-dimensional. (Hint: Use the previous problem)

Proof. By the previous problem, it suffices to construct a sequence of functions so that for any
n, the first n functions are linearly independent. Consider the functions

1, x, x2, x3, . . . ∈ C(R).

For any n, we claim (1, x, . . . , xn) are linearly independent. Indeed, suppose that

a0 + a1x+ · · ·+ anx
n = 0.

Since we are considering both sides as functions, this equation must hold for every possible
value of x. In particular, setting x = 0 shows that a0 = 0. Then, taking a derivative and again
setting x = 0 shows that a1 = 0. Similarly, it follows that all ai are zero, so that (1, x, . . . , xn)
is linearly independent for each n. �

5. Axler, 3.8

Proof. By Proposition 2.13 of Axler (every subspace has a complimentary subspace), there
exists a subspace U such that

V = nullT ⊕ U.
We claim that this is the U that works. First, U ∩ nullT = {0} since the above is a direct
sum. Now, let w ∈ rangeT . Then there is some v ∈ V so that Tv = w. Because of the above
direct sum, we can write

v = x+ u

for some x ∈ nullT and u ∈ U . Note that then

w = Tv = T (x+ u) = Tx+ Tu = Tu

since x ∈ nullT . Thus w ∈ {Tu | u ∈ U}, showing that rangeT ⊆ {Tu | u ∈ U}. But the
opposite containment is just follows from the definition of range, so these two sets are equal
as required. �
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6*. Axler, 5.13 (Hint: By problem 5.12, it is enough to show that every vector in V is an
eigenvector of T . Say dimV = n. Let v ∈ V be nonzero and show that span(v) can be written
as the intersection of some number of (n−1)-dimensional subspaces of V , then use the second
problem)

Proof. Let dimV = n and let v ∈ V be nonzero. Then we can extend to get a basis

(v, v1, . . . , vn−1)

of V . Let Ui denote the span of these vectors, excluding vi. Then Ui is (n − 1)-dimensional
since the vectors used to form these spans are linearly independent, so they form a basis of
their own span. Thus by the assumption, each Ui is T -invariant. By the second problem then,
their intersection is T -invariant. Note: The second problem only deals with two subspaces at
a time, but it is easy to extend the result to any number of subspaces.

We claim that this intersection is span(v). If so, then span(v) is T -invariant, implying that
v is an eigenvector of T since then Tv would be a multiple of v. Thus problem 5.12 implies
that T is a scalar multiple of the identity. Clearly,

span(v) ⊆ U1 ∩ · · · ∩ Un−1

since v itself is in each of the Ui. The tricky part is to show the opposite containment.
Let x ∈ U1 ∩ · · · ∩ Un−1. Since v and the vi’s together form a basis of V , we know there is

a unique way of writing x as

x = av + a1v1 + · · ·+ anvn.

Since x ∈ U1, we can write x in a unique way as a linear combination of v and v2, . . . , vn−1.
This implies that in the expression we have above for x, a1 must be zero or else we would
have more than one way of writing x in terms of the given basis of V . Also, since x ∈ U2, we
can write x in a unique way as a linear combination of v and v1, v3, . . . , vn−1, implying that
a2 above is zero. Similarly, we conclude that

a1 = · · · = an−1 = 0,

so that x = av ∈ span(v). This shows that

U1 ∩ · · · ∩ Un−1 ⊆ span(v),

so the intersection of the Ui is span(v) as claimed. (Whew!) �

7. Axler, 2.3

Proof. Since (v1 + w, . . . , vn + w) is linearly dependent, there exists scalars a1, . . . , an, not all
zero, such that

a1(v1 + w) + · · ·+ an(vn + w) = 0.

Rewriting this, we have

a1v1 + · · ·+ anvn = −(a1 + · · ·+ an)w.

Now, a1 + · · · + an 6= 0 since otherwise, the right side above would be zero and hence all the
ai would be zero by the linear independence of the vi. Thus we can multiply both sides by
(a1 + · · ·+ an)−1, showing that w is a linear combination of the vi’s as required. �

8. Axler, 2.10
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Proof. Let (v1, . . . , vn) be a basis of V , and let Ui = span(vi). Clearly each Ui is one-
dimensional. Since any vector in V can be written in a unique way as a sum of elements
from the Ui, i.e. as a linear combination of the vi, V is the direct sum of the Ui according
to the definition of direct sum given in the book, which is equivalent to the definition we
introduced in class. �

9. Let T : V → W be a linear map and let v1, . . . , vk ∈ V . Prove that if (Tv1, . . . , T vk) is
linearly independent in W , then (v1, . . . , vk) is linearly independent in V .

Proof. Suppose that
a1v1 + · · ·+ akvk = 0

for some scalars a1, . . . , ak ∈ F. We must show that all ai are zero. Applying T to both sides
gives

a1Tv1 + · · ·+ akTvk = T (0) = 0.
Thus since the Tvi are linearly independent, all the ai are zero as was to be shown. �

10. Axler, 3.12

Proof. Suppose that T : V →W is a surjective linear map. Then rangeT = W , so dim rangeT =
dimW . Thus from

dimV = dim nullT + dim rangeT = dim nullT + dimW,

it follows that dimV ≥ dimW .
Conversely, suppose that dimV ≥ dimW . We must construct a surjective linear map T

from V to W . Let (v1, . . . , vn) be a basis of V and let (w1, . . . , wm) be a basis of W . Since
m ≤ n, we can define the map T by setting

Tvi = wi for i = 1, . . . ,m, and Tvj = 0 for j = m+ 1, . . . , n,

then using the fact that a linear map is determined by what it does to a basis to extend the
definition of T linearly to all of V . We claim that this T is then surjective. Indeed, note that
(Tv1 = w1, . . . , T vm = wm) spans W , so rangeT = W as desired. �

11. Let S : L(V )→ L(V ) be the map defined by

S(T ) =

{
T−1 if T is invertible
0 if T is not invertible.

Prove or disprove that S is linear. (Hint: Try to figure out a simple case first, say V = R2)

Proof. First, for the case of V = R2, note that

A =
(

1 0
0 0

)
and B =

(
0 0
0 1

)
are not invertible, but their sum I is. Hence

S(A+B) = S(I) = I 6= 0 + 0 = S(A) + S(B),

so S is not linear.
For the general case, we can either pick an isomorphism of V with Fn and reduce the problem

to that of n × n matrices, in which case something similar to the above will work, or we can
proceed as follows. Let (v1, . . . , vn) be a basis of V . Define a linear map A by setting

Av1 = v1 and Avi = 0 for all other i,
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and a linear map B by setting

Bv1 = 0 and Bvi = vi for all other i.

It may help to see where these come from by figuring out what their matrices with respect
to the given basis would be. Then neither A nor B are injective, since their null spaces are
non-trivial, so neither is invertible. Thus

S(A) + S(B) = 0 + 0 = 0.

However, one can see that A + B is in fact the identity operator since (A + B)vi = vi for all
i, so S(A+B) = S(I) = I. Thus again, S is not linear. �

12. Axler, 5.10

Proof. Without loss of generality, it is enough to show that if λ is a nonzero eigenvalue of T ,
then λ−1 is an eigenvalue of T−1. For the converse, we can simply apply the forward direction
to T−1 and use the fact that (T−1)−1 = T .

Let v be a nonzero eigenvector of T corresponding to λ. Then

Tv = λv.

Applying T−1 to both sides yields

v = T−1(λv) = λT−1v.

Thus multiplying through by 1/λ gives
1
λ
v = T−1v,

showing that 1/λ is an eigenvalue of T−1. �

13. Recall that T ∈ L(V ) is nilpotent if T k = 0 for some positive integer k. Suppose that
V is a complex vector space. Prove that T ∈ L(V ) is nilpotent if and only if 0 is the only
eigenvalue of T . (Hint for the backwards direction: There exists a basis of V with respect to
which M(T ) is upper- triangular. What can you say about the diagonal entries of M(T )?)

Proof. Suppose that T is nilpotent. Since T acts on a finite-dimensional complex vector space,
we know that T has an eigenvalue. We claim that this eigenvalue must be 0. Indeed, let λ be
an arbitrary eigenvalue of T and let v be a nonzero eigenvector corresponding to λ. Let k be
a positive integer so that T k = 0. Then

0 = T kv = T k−1(Tv) = T k−1(λv) = λT k−1v = λT k−2(Tv) = λ2T k−2v = · · · = λkv.

Since v 6= 0, this implies that λk = 0, and thus λ = 0. Hence 0 is the only eigenvalue of T .
Conversely, suppose that 0 is the only eigenvalue of T and say dimV = n. Let (v1, . . . , vn)

be a basis of V with respect to which T has an upper-triangular matrix, which exists by
Theorem 5.13 in the book. Since the diagonal entries of this matrix are then the eigenvalues
of T , we see that this matrix has zeroes all along the diagonal. Thus M(T ) looks like

0 ∗ · · · ∗

0
. . .

...
. . . ∗

0

 ,

where we have omitted writing the zeroes below the main diagonal. Note that if you multiply
this matrix by itself, you get a similar looking matrix, but now with zeroes also above the
main diagonal; taking a cubed power gives you yet another diagonal of zeroes above that, and
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so on. In other words, each consecutive power of such a matrix has fewer nonzero entries than
the power before it. (To get an idea as to why this works, work out the cases of 2 × 2 and
3× 3 matrices of the above form.) It follows that if this is an n× n matrix, then

M(T )n = 0,

where the 0 on the right denotes the matrix with all its entries equal to zero. By properties
of the matrix of a linear map, we have

M(Tn) =M(T )n = 0.

But the only operator whose matrix with respect to (v1, . . . , vn) is 0 is the zero operator itself,
so we conclude that Tn = 0, showing that T is nilpotent. �

14. Suppose that U , W , and W ′ are subspaces of V such that

U ⊕W = U ⊕W ′.

For each w ∈W , since w is then also in U ⊕W , this implies that we can write

w = u+ w′

in a unique way with u ∈ U and w′ ∈W ′. Define a linear map T : W →W ′ by setting

Tw = w′ as constructed above.

Prove that T is an isomorphism. (Hint: First show that dimW = dimW ′; then it suffices to
show that T is injective)

Proof. Since U ⊕W = U ⊕W ′, we have

dimU + dimW = dim(U ⊕W ) = dim(U ⊕W ′) = dimU + dimW ′,

so dimW = dimW ′. Thus, to show T is invertible, it suffices to show that T is injective. So,
let w ∈ nullT . Then Tw = 0. By the definition of T , this means that to write w as an element
of U ⊕W ′, the piece in W ′ is zero; i.e. we can write

w = u+ 0 for some u ∈ U.

Thus w = u ∈ W . But U and W form a direct sum, meaning that U ∩W = {0}. Hence
w ∈ U ∩W must be zero, showing that nullT = {0} and thus that T is injective.

We are done, but let us also show that T is surjective directly for completeness sake. Let
w′ ∈W . Since then w′ ∈ U ⊕W ′ = U ⊕W , we can write

w′ = u+ w for some u ∈ U and w ∈W.

We claim that Tw = w′. To see what Tw is, we must first determine how to write w as an
element of U plus and element of W ′. But the above equation tells us that

w = −u+ w′,

so to write w in the required form, we must use w′ ∈ W ′. This shows that Tw = w′, so T is
surjective. �

15*. Recall that an operator T ∈ L(V ) is diagonalizable if there exists a basis of V consisting
of eigenvectors of T . Suppose that T ∈ L(V ) is diagonalizable and that U is a nonzero, T -
invariant subspace of V . Prove that T |U ∈ L(U) is diagonalizable. [Hint: First show that if
v1, . . . , vk are eigenvectors which correspond to distinct eigenvalues of T and v1 + · · ·+vk ∈ U ,
then vi ∈ U for each i. (Hint for the hint: first do the case k = 2)]
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Proof. To start, suppose that v1, . . . , vk are eigenvectors corresponding to distinct eigenvalues
λ1, . . . , λk of T and suppose that v1 + · · · + vk ∈ U . We claim that each vi ∈ U . Since U is
T -invariant, we also have

T (v1 + · · ·+ vk) = Tv1 + · · ·+ Tvk = λ1v1 + · · ·+ λkvk ∈ U.

Thus,

T (v1 + · · ·+ vk)− λk(v1 + · · ·+ vk) = (λ1 − λk)v1 + · · ·+ (λk−1 − λk)vk−1,

being the sum of two elements of U , is also in U . Call this vector u. Again, T -invariance
implies that T applied to this now, which is

Tu = (λ1 − λk)λ1v1 + · · ·+ (λk−1 − λk)λk−1vk−1,

is in U . Hence

Tu− λk−1u = (λ1 − λk)(λ1 − λk−1)v1 + · · ·+ (λk−2 − λk)(λk−2 − λk−1)vk−2

is in U . Notice that after each such step, we get a linear combination involving one less vi.
Continuing in this manner, we can show that

(λ1 − λk)(λ1 − λk−1) · · · (λ1 − λ2)v1 ∈ U.

Since the eigenvalues are distinct, none of these scalars is zero. Thus, dividing by this scalar,
we conclude that v1 ∈ U since U is closed under scalar multiplication. Note that at the step
before we ended up with the above expression only involving v1, we would have had

(λ1 − λk) · · · (λ1 − λ3)v1 + (λ2 − λk) · · · (λ2 − λ3)v2 ∈ U.

Since we now know v1 ∈ U , this and the fact that again all the scalars involved are nonzero
implies that v2 ∈ U . Similarly, working our way backwards, we conclude that all vi are in U .

Now, since T is diagonalizable, there exists a basis of V consisting of eigenvectors of T .
By Proposition 5.21, this is equivalent to saying that we decompose V into a direct sum of
eigenspaces:

V = null(T − λ1I)⊕ · · · ⊕ null(T − λtI),

where λ1, . . . , λt are the distinct eigenvalues of T . To show that T |U is diagonalizable, we must
construct a basis of U consisting of eigenvectors of T . The point is that these eigenvectors
should actually be elements of U themselves. This is where the claim we proved above will
help.

Let (u1, . . . , um) be any basis of U . Then for each i, we can write

ui = vi1 + · · ·+ vit

for some vectors vij ∈ null(T − λjI) because of the existence of the above direct sum. Note
that then vi1, . . . , vit are eigenvectors of T corresponding to distinct eigenvalues of T ; by the
first part of the proof, this implies that each vij is in U since their sum ui is. Since the ui

span U and each ui is a linear combination of the vij , this means that the collection of the vij

are elements of U which span U . Since there are finitely many of the vij , we can reduce this
list to a basis of U , and this is the basis consisting of eigenvectors of T |U we are looking for.
Thus T |U is diagonalizable.

(As you can see, this is not an easy result. However, going through the proof and trying to
understand it will be very useful in your preparation as it uses many of the ideas and notions
we have been covering. Try going through step by step, and, as always, ask if something is
unclear.) �
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16. Let p(z) ∈ P (F) be a polynomial and let T ∈ L(V ). Prove that nullT and rangeT are
invariant under p(T ).

Proof. Write p(z) as p(z) = a0 + a1z+ · · ·+ anz
n. We first show that nullT is p(T )-invariant.

To this end, let x ∈ nullT . We must show that p(T )x ∈ nullT . Hence we compute:

T (p(T )x) = T (a0x+ a1Tx+ · · ·+ anT
nx) = T (a0x) = a0Tx = 0,

where the second and last equalities from the fact that Tx = 0 since x ∈ nullT . Thus
p(T )x ∈ nullT so nullT is p(T )-invariant.

Now, let w ∈ rangeT . Again, we want to show that p(T )w ∈ rangeT . Since w ∈ rangeT ,
there exists v ∈ V so that Tv = w. We then have

p(T )w = (a0I + a1T + · · ·+ anT
n)(Tv)

= a0Tv + a1T
2v + · · ·+ anT

n+1v

= T (a0v + a1Tv + · · ·+ anT
nv)

= T (p(T )v).

Thus, there exists an element, namely p(T )v, in V so that applying T to it gives p(T )w. This
means that p(T )w ∈ rangeT , as was to be shown. �


