
Math 334: Midterm Solutions
Northwestern University, Summer 2014

1. Give an example of each of the following. No justification is needed.
(a) A sum R5 = U + W which is not a direct sum.
(b) A nonzero operator T and basis (v1, v2) of R2 such that (Tv1, T v2) is not a basis of R2.
(c) A direct sum R3 = U ⊕W and operator T such that U is T -invariant but W is not.
(d) An operator on R4 with no real eigenvalues.

Solution. Here are some possible answers. Even though no justification was required, I’ll give some
anyway.

(a) Take U = {(x1, x2, x3, 0, 0) | xi ∈ R} and W = {(0, 0, y3, y4, y5) | yi ∈ R}. Then R5 = U +W
since

(a, b, c, d, e) = (a, b, c, 0, 0) + (0, 0, 0, d, e)

expresses an arbitrary element of R5 as a sum of an element of U and an element of W , but the
sum is not a direct sum since (0, 0, 1, 0, 0) is in both U and W , so U ∩W 6= {0}.

(b) Take v1 = (1, 0) and v2 = (0, 1) to be the standard basis and T (x, y) = (x, 0). Then
Tv1 = (1, 0) and Tv2 = (0, 0) are linearly dependent, so they do not form a basis of R2.

(c) Take U = {(a, b, 0) | a, b ∈ R} and W = {(0, 0, c) | c ∈ R}. For the operator T (x, y, z) =
(x, y + z, 0), we have T (a, b, 0) = (a, b, 0) ∈ U , so U is T -invariant, but T (0, 0, 1) = (0, 1, 0) /∈ W
even though (0, 0, 1) ∈W , so W is not T -invariant.

(d) Take the operator defined by T (~x) = A~x where

A =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

This behaves as rotation by 90◦ on the x1x2-plane and as rotation by 90◦ on the x3x4-plane, and
these rotations have no real eigenvalues. (A has eigenvalues ±i, each with multiplicity 2, when
considered as an operator on C4.)

2. Recall that the trace of a square matrix is the sum of its diagonal entries:

tr

a11 · · · a1n
...

. . .
...

an1 · · · ann

 = a11 + a22 + · · ·+ ann.

Let U be the set of all 3× 3 matrices of trace zero:

U = {A ∈M3(R) | trA = 0}.

(a) Show that U is a subspace of M3(R).
(b) Find a basis of U . Justify your answer.

Solution. (a) I only asked about M3(R) instead of Mn(R) in general to keep the notation simpler,
but I’ll give a solution which works for any n.



First, the trace of the zero matrix is 0 + 0 + · · ·+ 0 = 0, so the zero matrix is in U . If A,B ∈ U ,
then trA = trB = 0, so (where we denote the entries of A by aij and those of B by bij):

tr(A + B) = tr

 a11b11 · · · a1n + b1n
. . .

an1 + bn1 · · · ann + bnn


= (a11 + b11) + · · ·+ (ann + bnn)

= (a11 + · · ·+ ann) + (b11 + · · ·+ bnn)

= trA + trB

= 0,

so A + B ∈ U and hence U is closed under addition. If in addition c ∈ R, then

tr(cA) =

ca11 · · · ca1n
. . .

can1 · · · cann


= (ca11 + · · ·+ cann)

= c(a11 + · · ·+ ann)

= c(0)

= 0,

so cA ∈ U and hence U is closed under scalar multiplication. Thus U is a subspace of M3(R).
(b) Note: The problem which was actually on the midterm asked for a basis of M3(R), but I

meant to ask for a basis of U . I’ll give a solution to the problem I meant to ask instead.
For a 3× 3 matrix a b c

d e f
g h i


to be in U means that a + e + i = 0, so i = −a− e. Thus a matrix in U looks likea b c

d e f
g h −a− e

 ,

which can be written as the following linear combination:

a

1 0 0
0 0 0
0 0 −1

 + b

0 1 0
0 0 0
0 0 0

 + c

0 0 1
0 0 0
0 0 0

 + d

0 0 0
1 0 0
0 0 0



e

0 0 0
0 1 0
0 0 −1

 + f

0 0 0
0 0 1
0 0 0

 + g

0 0 0
0 0 0
1 0 0

 + e

0 0 0
0 0 0
0 1 0

 .

These eight matrices thus span U . If such a linear combination equals the zero matrix we geta b c
d e f
g h −a− e

 =

0 0 0
0 0 0
0 0 0

 ,

2



so we must have all entries be 0, which means

a = b = c = d = e = f = g = h = 0.

Thus the eight matrices above are linearly independent and hence form a basis of U .

3. Suppose that U is a subspace of Pn(R) with the property that for any p(x) in U , its derivative
p′(x) is also in U . Show that if xn ∈ U , then U = Pn(R).

Proof. By the given property which U is supposed to satisfy, since if xn ∈ U then nxn−1 ∈ U .
Since U is closed under scalar multiplication, we then have

1

n
(nxn−1) = xn−1 ∈ U.

By the same reasoning, since xn−1 ∈ U we have (n− 1)xn−2 ∈ U so

1

n− 1
[(n− 1)xn−2] = xn−2inU.

And so on, repeating this argument repeatedly shows that

1, x, x2, . . . , xn are all in U.

But these vectors form a basis for Pn(R), so we must have U = Pn(R) as claimed. To be clearer,
these vectors are linearly independent so dimU ≥ n + 1, but dimU ≤ Pn(R) = n + 1, so dimU =
Pn(R) = n + 1 and thus U = Pn(R).

4. Let T ∈ L(V ) and suppose that v ∈ V is a vector such that

T 3v = 0 but T 2v 6= 0.

Show that (v, Tv, T 2v) is linearly independent.

Proof. Suppose that
av + bTv + cT 2v = 0

for some a, b, c ∈ F. Applying T to the left side gives

T (av + bTv + cT 2v) = aTv + bT 2v + cT 3v = aTv + bT 2v,

and applying T to the right side gives T (0) = 0, so we must have

aTv + bT 2v = 0.

Applying T to both sides again and using T 3v = 0 gives

aT 2v = 0.

Since T 2v 6= 0, this means that a = 0. Then aTv + bT 2v = 0 becomes

bT 2v = 0,
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so b = 0 since T 2v 6= 0. Finally, the equation we started out with becomes

av = 0,

so a = 0 since v 6= 0 because otherwise T 2v would be zero. Hence a = b = c = 0, so (v, Tv, T 2v) is
linearly independent.

Notice that a similar reasoning works if we place the exponents 2 and 3 with n and n + 1: if

Tn+1v = 0 but Tnv 6= 0,

then (v, Tv, T 2v, . . . , Tnv) is linearly independent. This is related to the notion of a Jordan chain,
which we will see when talking about Jordan forms.

5. Suppose that V is an n-dimensional complex vector space and that T ∈ L(V ) only has 0 as an
eigenvalue. Show that Tnv = 0 for all v ∈ V .

Proof. Since V is a finite-dimensional complex vector space, there exists a basis relative to which
the matrix of T is upper-triangular:

M(T ) =


0 ∗ · · · ∗

0
. . .

...
. . . ∗

0

 .

The blank spaces denote 0’s, and the diagonal terms are all zero since the only eigenvalue of T is
0. Then we compute that M(T )2 has the form:

M(T )2 =


0 ∗ · · · ∗

0
. . .

...
. . . ∗

0




0 ∗ · · · ∗

0
. . .

...
. . . ∗

0

 =



0 0 ∗ · · · ∗

0 0
. . .

...
. . .

. . . ∗

. . . 0
0


,

where we have an additional diagonal containing all zeroes. And so on, in general taking an
additional power of M(T ) will produce one more diagonal consisting of all zeroes; in particular
M(T )n−1 consists of all zeroes except for possibly a single nonzero term in the upper-right entry.
Then M(T )n consists of all zeroes, so

M(Tn) =M(T )n = 0.

Hence Tn is the zero operator, so Tnv = 0 for all v ∈ V .

6. Suppose that U and W are subspaces of V such that V = U ⊕W . Suppose further that U and
W are both invariant under an operator T ∈ L(V ). Show that if the restrictions T |U and T |W are
both injective, then T is injective on all of V .

Proof. Suppose that Tv = 0. We want to show that v = 0. Since V = U ⊕W we can write v as

v = u + w for some u ∈ U and w ∈W.
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Then 0 = Tv = Tu + Tw. Since U and W are each T -invariant, Tu ∈ U and Tv ∈W , so

0 = Tu + Tw

expresses 0 as a sum of an element of U with an element of W . Since U ⊕W is a direct sum, we
must thus have Tu = 0 and Tw = 0, so u = 0 and w = 0 since the restrictions T |U and T |W are
injective. Thus v = 0 + 0 = 0 as desired, so since nullT = {0}, T is injective on all of V .
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