1. Give an example of each of the following. No justification is needed.
 (a) A sum \(\mathbb{R}^5 = U + W \) which is not a direct sum.
 (b) A nonzero operator \(T \) and basis \((v_1, v_2)\) of \(\mathbb{R}^2 \) such that \((Tv_1, Tv_2)\) is not a basis of \(\mathbb{R}^2 \).
 (c) A direct sum \(\mathbb{R}^3 = U \oplus W \) and operator \(T \) such that \(U \) is \(T \)-invariant but \(W \) is not.
 (d) An operator on \(\mathbb{R}^4 \) with no real eigenvalues.

Solution. Here are some possible answers. Even though no justification was required, I’ll give some anyway.
 (a) Take \(U = \{(x_1, x_2, x_3, 0, 0) \mid x_i \in \mathbb{R}\} \) and \(W = \{(0, 0, y_3, y_4, y_5) \mid y_i \in \mathbb{R}\} \). Then \(\mathbb{R}^5 = U + W \) since
\[
(a, b, c, d, e) = (a, b, c, 0, 0) + (0, 0, 0, d, e)
\]
expresses an arbitrary element of \(\mathbb{R}^5 \) as a sum of an element of \(U \) and an element of \(W \), but the sum is not a direct sum since \((0, 0, 1, 0, 0)\) is in both \(U \) and \(W \), so \(U \cap W \neq \{0\} \).
 (b) Take \(v_1 = (1, 0) \) and \(v_2 = (0, 1) \) to be the standard basis and \(T(x, y) = (x, 0) \). Then \(Tv_1 = (1, 0) \) and \(Tv_2 = (0, 0) \) are linearly dependent, so they do not form a basis of \(\mathbb{R}^2 \).
 (c) Take \(U = \{(a, b, 0) \mid a, b \in \mathbb{R}\} \) and \(W = \{(0, 0, c) \mid c \in \mathbb{R}\} \). For the operator \(T(x, y, z) = (x, y + z, 0) \), we have \(T(a, b, 0) = (a, b, 0) \in U \), so \(U \) is \(T \)-invariant, but \(T(0, 0, 1) = (0, 1, 0) \notin W \) even though \((0, 0, 1) \in W \), so \(W \) is not \(T \)-invariant.
 (d) Take the operator defined by \(T(\vec{x}) = A\vec{x} \) where
\[
A = \begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]
This behaves as rotation by 90° on the \(x_1x_2 \)-plane and as rotation by 90° on the \(x_3x_4 \)-plane, and these rotations have no real eigenvalues. (\(A \) has eigenvalues ±i, each with multiplicity 2, when considered as an operator on \(\mathbb{C}^4 \).)

2. Recall that the trace of a square matrix is the sum of its diagonal entries:
\[
\text{tr} \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix} = a_{11} + a_{22} + \cdots + a_{nn}.
\]
Let \(U \) be the set of all 3 \times 3 matrices of trace zero:
\[
U = \{A \in M_3(\mathbb{R}) \mid \text{tr} A = 0\}.
\]
 (a) Show that \(U \) is a subspace of \(M_3(\mathbb{R}) \).
 (b) Find a basis of \(U \). Justify your answer.

Solution. (a) I only asked about \(M_3(\mathbb{R}) \) instead of \(M_n(\mathbb{R}) \) in general to keep the notation simpler, but I’ll give a solution which works for any \(n \).
First, the trace of the zero matrix is $0 + 0 + \cdots + 0 = 0$, so the zero matrix is in U. If $A, B \in U$, then $\text{tr} A = \text{tr} B = 0$, so (where we denote the entries of A by a_{ij} and those of B by b_{ij}):

$$
\text{tr}(A + B) = \text{tr} \begin{pmatrix}
 a_{11}b_{11} & \cdots & a_{1n} + b_{1n} \\
 \vdots & & \ddots \\
 a_{n1} + b_{n1} & \cdots & a_{nn} + b_{nn}
\end{pmatrix}
= (a_{11} + b_{11}) + \cdots + (a_{nn} + b_{nn})
= (a_{11} + \cdots + a_{nn}) + (b_{11} + \cdots + b_{nn})
= \text{tr} A + \text{tr} B
= 0,
$$

so $A + B \in U$ and hence U is closed under addition. If in addition $c \in \mathbb{R}$, then

$$
\text{tr}(cA) = \text{tr} \begin{pmatrix}
 ca_{11} & \cdots & ca_{1n} \\
 \vdots & & \ddots \\
 ca_{n1} & \cdots & ca_{nn}
\end{pmatrix}
= (ca_{11} + \cdots + ca_{nn})
= c(a_{11} + \cdots + a_{nn})
= c(0)
= 0,
$$

so $cA \in U$ and hence U is closed under scalar multiplication. Thus U is a subspace of $M_3(\mathbb{R})$.

(b) Note: The problem which was actually on the midterm asked for a basis of $M_3(\mathbb{R})$, but I meant to ask for a basis of U. I’ll give a solution to the problem I meant to ask instead.

For a 3×3 matrix

$$
\begin{pmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{pmatrix}
$$

to be in U means that $a + e + i = 0$, so $i = -a - e$. Thus a matrix in U looks like

$$
\begin{pmatrix}
 a & b & c \\
 d & e & f \\
 g & h & -a - e
\end{pmatrix},
$$

which can be written as the following linear combination:

$$
a \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & -1
\end{pmatrix} + b \begin{pmatrix}
 0 & 1 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix} + c \begin{pmatrix}
 0 & 0 & 1 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix} + d \begin{pmatrix}
 0 & 0 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix}
\quad e \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix} + f \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 0
\end{pmatrix} + g \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 1 & 0 & 0
\end{pmatrix} + e \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 1 & 0
\end{pmatrix}.
$$

These eight matrices thus span U. If such a linear combination equals the zero matrix we get

$$
\begin{pmatrix}
 a & b & c \\
 d & e & f \\
 g & h & -a - e
\end{pmatrix} = \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix},
$$
so we must have all entries be 0, which means
\[a = b = c = d = e = f = g = h = 0. \]

Thus the eight matrices above are linearly independent and hence form a basis of \(U \). \(\square \)

3. Suppose that \(U \) is a subspace of \(\mathcal{P}_n(\mathbb{R}) \) with the property that for any \(p(x) \) in \(U \), its derivative \(p'(x) \) is also in \(U \). Show that if \(x^n \in U \), then \(U = \mathcal{P}_n(\mathbb{R}) \).

Proof. By the given property which \(U \) is supposed to satisfy, since if \(x^n \in U \) then \(nx^{n-1} \in U \). Since \(U \) is closed under scalar multiplication, we then have
\[
\frac{1}{n}(nx^{n-1}) = x^{n-1} \in U.
\]
By the same reasoning, since \(x^{n-1} \in U \) we have \((n-1)x^{n-2} \in U \) so
\[
\frac{1}{n-1}[(n-1)x^{n-2}] = x^{n-2} \in U.
\]
And so on, repeating this argument repeatedly shows that
\[1, x, x^2, \ldots, x^n \text{ are all in } U. \]
But these vectors form a basis for \(\mathcal{P}_n(\mathbb{R}) \), so we must have \(U = \mathcal{P}_n(\mathbb{R}) \) as claimed. To be clearer, these vectors are linearly independent so \(\dim U \geq n + 1 \), but \(\dim U \leq \mathcal{P}_n(\mathbb{R}) = n + 1 \), so \(\dim U = \mathcal{P}_n(\mathbb{R}) = n + 1 \) and thus \(U = \mathcal{P}_n(\mathbb{R}) \). \(\square \)

4. Let \(T \in \mathcal{L}(V) \) and suppose that \(v \in V \) is a vector such that
\[T^3v = 0 \text{ but } T^2v \neq 0. \]
Show that \((v, Tv, T^2v) \) is linearly independent.

Proof. Suppose that
\[av + bTv + cT^2v = 0 \]
for some \(a, b, c \in \mathbb{F} \). Applying \(T \) to the left side gives
\[T(av + bTv + cT^2v) = aTv + bT^2v + cT^3v = aTv + bT^2v, \]
and applying \(T \) to the right side gives \(T(0) = 0 \), so we must have
\[aTv + bT^2v = 0. \]
Applying \(T \) to both sides again and using \(T^3v = 0 \) gives
\[aT^2v = 0. \]
Since \(T^2v \neq 0 \), this means that \(a = 0 \). Then \(aTv + bT^2v = 0 \) becomes
\[bT^2v = 0, \]
so \(b = 0 \) since \(T^2v \neq 0 \). Finally, the equation we started out with becomes

\[
av = 0,
\]

so \(a = 0 \) since \(v \neq 0 \) because otherwise \(T^2v \) would be zero. Hence \(a = b = c = 0 \), so \((v, Tv, T^2v)\) is linearly independent.

Notice that a similar reasoning works if we place the exponents 2 and 3 with \(n \) and \(n + 1 \): if

\[
T^{n+1}v = 0 \text{ but } T^n v \neq 0,
\]

then \((v, Tv, T^2v, \ldots, T^n v)\) is linearly independent. This is related to the notion of a Jordan chain, which we will see when talking about Jordan forms.

5. Suppose that \(V \) is an \(n \)-dimensional complex vector space and that \(T \in \mathcal{L}(V) \) only has 0 as an eigenvalue. Show that \(T^n v = 0 \) for all \(v \in V \).

Proof. Since \(V \) is a finite-dimensional complex vector space, there exists a basis relative to which the matrix of \(T \) is upper-triangular:

\[
\mathcal{M}(T) = \begin{pmatrix}
0 & * & \cdots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & * \\
& & & 0
\end{pmatrix}.
\]

The blank spaces denote 0’s, and the diagonal terms are all zero since the only eigenvalue of \(T \) is 0. Then we compute that \(\mathcal{M}(T)^2 \) has the form:

\[
\mathcal{M}(T)^2 = \begin{pmatrix}
0 & * & \cdots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & * \\
& & & 0
\end{pmatrix} \begin{pmatrix}
0 & * & \cdots & * \\
& 0 & \ddots & \vdots \\
& & \ddots & * \\
& & & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & * & \cdots & * \\
& 0 & 0 & \ddots & \vdots \\
& & \ddots & \ddots & * \\
& & & \ddots & 0 \\
& & & & 0
\end{pmatrix},
\]

where we have an additional diagonal containing all zeroes. And so on, in general taking an additional power of \(\mathcal{M}(T) \) will produce one more diagonal consisting of all zeroes; in particular \(\mathcal{M}(T)^{n-1} \) consists of all zeroes except for possibly a single nonzero term in the upper-right entry. Then \(\mathcal{M}(T)^n \) consists of all zeroes, so

\[
\mathcal{M}(T^n) = \mathcal{M}(T)^n = 0.
\]

Hence \(T^n \) is the zero operator, so \(T^n v = 0 \) for all \(v \in V \). □

6. Suppose that \(U \) and \(W \) are subspaces of \(V \) such that \(V = U \oplus W \). Suppose further that \(U \) and \(W \) are both invariant under an operator \(T \in \mathcal{L}(V) \). Show that if the restrictions \(T|_U \) and \(T|_W \) are both injective, then \(T \) is injective on all of \(V \).

Proof. Suppose that \(Tv = 0 \). We want to show that \(v = 0 \). Since \(V = U \oplus W \) we can write \(v \) as

\[
v = u + w \text{ for some } u \in U \text{ and } w \in W.
\]
Then $0 = T v = T u + T w$. Since U and W are each T-invariant, $Tu \in U$ and $Tv \in W$, so

$$0 = Tu + Tw$$

expresses 0 as a sum of an element of U with an element of W. Since $U \oplus W$ is a direct sum, we must thus have $Tu = 0$ and $Tw = 0$, so $u = 0$ and $w = 0$ since the restrictions $T|_U$ and $T|_W$ are injective. Thus $v = 0 + 0 = 0$ as desired, so since null $T = \{0\}$, T is injective on all of V. □