Math 334: Midterm Northwestern University, Summer 2014 July 24, 2014

Name: _

- 1. (15 points) Give an example of each of the following. No justification is needed.
 - (a) A sum $\mathbb{R}^5 = U + W$ which is not a direct sum.
 - (b) A nonzero operator T and basis (v_1, v_2) of \mathbb{R}^2 such that (Tv_1, Tv_2) is not a basis of \mathbb{R}^2 . (c) A direct sum $\mathbb{R}^3 = U \oplus W$ and operator T such that U is T-invariant but W is not.

 - (d) An operator on \mathbb{R}^4 with no real eigenvalues.

2. (20 points) Recall that the trace of a square matrix is the sum of its diagonal entries:

$$\operatorname{tr}\begin{pmatrix}a_{11} & \cdots & a_{1n}\\ \vdots & \ddots & \vdots\\ a_{n1} & \cdots & a_{nn}\end{pmatrix} = a_{11} + a_{22} + \cdots + a_{nn}.$$

Let U be the set of all 3×3 matrices of trace zero:

$$U = \{ A \in M_3(\mathbb{R}) \mid \operatorname{tr} A = 0 \}.$$

- (a) Show that U is a subspace of $M_3(\mathbb{R})$.
- (b) Find a basis of U. Justify your answer.

3. (15 points) Suppose that U is a subspace of $\mathcal{P}_n(\mathbb{R})$ with the property that for any p(x) in U, its derivative p'(x) is also in U. Show that if $x^n \in U$, then $U = \mathcal{P}_n(\mathbb{R})$.

4. (15 points) Let $T \in \mathcal{L}(V)$ and suppose that $v \in V$ is a vector such that

$$T^3v = 0$$
 but $T^2v \neq 0$.

Show that (v, Tv, T^2v) is linearly independent.

5. (20 points) Suppose that V is an n-dimensional complex vector space and that $T \in \mathcal{L}(V)$ only has 0 as an eigenvalue. Show that $T^n v = 0$ for all $v \in V$.

6. (15 points) Suppose that U and W are subspaces of V such that $V = U \oplus W$. Suppose further that U and W are both invariant under an operator $T \in \mathcal{L}(V)$. Show that if the restrictions $T|_U$ and $T|_W$ are both injective, then T is injective on all of V.