
Math 344-1: Introduction to Topology
Northwestern University, Lecture Notes

Written by Santiago Cañez

These are notes which provide a basic summary of each lecture for Math 344-1, the first quarter
of “Introduction to Topology”, taught by the author at Northwestern University. The book used
as a reference is the 2nd edition of Topology by Munkres. Watch out for typos! Comments and
suggestions are welcome.
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Lecture 1: Topological Spaces

Why topology? Topology provides the most general setting in which we can talk about continuity,
which is good because continuous functions are amazing things to have available. Topology does
this by providing a general setting in which we can talk about the notion of “near” or “close”,
and it is this perspective which I hope to make more precise as we go on. In particular, at some
point we’ll come back and discuss why the properties which open sets are required to have in the
definition of a topology are the right ones to have if you want to capture the idea that open sets
should give a way to measure “nearness”.

For now we point out that “nearness” in this sense cannot depend on distance nor length,
since such things are not “topological” concepts. Imagine taking a sphere and stretching it out in
one direction to make it thinner and thinner; this procedure does not change the “topology” of
the sphere (whatever that means), but it does affect distance. Similarly, we would say that the
surface of a donut and a coffee mug are the same topologically since we can (continuously!) deform
one into the other, but such deformations will certainly affect distance and length. The need to
define “near” without making use of distance is what, in my mind, serves as a guide to the modern
definition of a topology.

Open in R2. open in R2, unions and intersections

Definition. defn of topology

Examples. R2, R, Rn standard
discrete, trivial
cofinite

Line with two origins. Take two “points” p and q and consider the set

(R− {0}) ∪ {p} ∪ {q}.

(The idea is that we replace the origin 0 in R with two new points.) The line with two origins is
this set equipped with the following topology. First, any ordinary open set in R which does not
contain 0 remains open in the line with two origins. For open sets U in R which do contain 0, we
introduce two copies of U , each containing one of the two new “origins” p and q; to be clear, for U
open in R with 0 ∈ U , we take

(U − {0}) ∪ {p} and (U − {0}) ∪ {q}

to be open sets in the line with two origins.
Picture this space as an ordinary line, only, as the name suggests, with two origins, usually

drawn with one on top of the other. These two origins in a sense share the same open sets. To get
another visualization, imagine taking two copies of R (so, two lines) and gluing each point in the
first to the corresponding point in the second except for the two origins; the space resulting from
this gluing procedure is the line with two origins. We’ll talk about such gluing constructions later
when we discuss quotient topologies.

Relation between “open’ and “near”. To start to give some intuition as to why open sets
are good things to consider, recall the definition of what it means for a subset of R2 to be open:
U ⊆ R2 is open if for any p ∈ U , there exists r > 0 such that Br(p) ⊆ U . This is saying that U is
open if any for any point p inside of it, points close enough to p (as measure by r) are still within
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U . The standard drawing of a subset of R2 which is not open since it contains part of its boundary
does not have this property, since we can have points get arbitrarily close to this boundary without
belonging to the set in question itself.

But to highlight that this notion of “near” does not depend on distance, consider two distinct
points in R2. Certainly if these points are drawn far enough apart we can easily surround each
by open disks which do not intersect each other. The point is that no matter how visually close
these points appear to be to one another (say the distance between them is the size of an electron),
this is still true: the open disks we need might be incredibly small, but they still exist. Thus such
points can still be “separated” in a topological sense, and so really aren’t that “near” each after all.
However, in the line with two origins something new happens: the two origins themselves cannot
be separated in this way. To be precise, the claim is that there do not exist open sets containing
the two origins which are disjoint, which is true since any open set containing one origin has to
intersect an open set containing the other by the way in which defined open sets in that topology.
Intuitively this says that the two origins are “arbitrarily close” to one another, even though there
is no notion of “distance” defined a priori in this space.

Lecture 2: More on Topologies

Warm-Up 1. For a set X, the cofinite topology (also called the finite complement topology) on
X is the one where we take as open sets ∅ and complements of finite sets. (Equivalently, we take
as closed sets X itself and finite sets.) We showed that this indeed gives a topology on X, but we’ll
omit the details here since this can be found in the book.

Closed sets. We introduced the term “closed set” earlier than the book does, so we record it here.
A subset of a topological space is closed if its complement is open. Note that the properties that
open sets have in the definition of a topology on X then give the corresponding properties of closed
sets: ∅ and X are closed, the intersection of arbitrarily many closed sets is closed, and the union
of finitely many closed sets is closed.

Warm-Up 2. The Zariski topology on R2 is the one whose closed sets are common zero sets
of polynomials in two variables. A problem on the first homework asks to show that this indeed
gives a topology on R2, and here we verify just two special cases: show that if f and g are each
polynomials in two variables, then V (f) ∩ V (g) and V (f) ∪ V (g) are closed, where V (h) denotes
the set of zeroes of h.

Indeed, a point in V (f) ∩ V (g) is one which is a zero of f and g simultaneously, meaning that
it is a common zero of the polynomials in the set {f, g}. Hence

V (f) ∩ V (g) = V ({f, g}),

so V (f) ∩ V (g) is closed. Now, a point in V (f) ∪ V (g) is one which is a zero either of f or g. But
to say that f(x, y) = 0 or g(x, y) = 0 is the same as saying that f(x, y)g(x, y) = 0 since a product
is zero when one factor is zero. Hence

V (f) ∪ V (g) = V (fg),

so V (f) ∪ V (g) is closed. (Think about why this fails if we try to do the same for the union of
infinitely many closed sets.)

Here is one last observation. Recall that the Zariski topology on R is defined in an analogous
way, where we take zero sets of polynomials in one variable. In this case, since a nonzero polynomial
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in one variable can only have finitely many roots (it has no more than the degree of the polynomial),
we see that any closed set in the Zariski topology on R is either R itself or consists of finitely many
points. But this is precisely the characterization of the cofinite topology on R, so we conclude that
the cofinite and Zariski topologies on R are one and the same. This is not true in Rn for n > 1,
where these two topologies are different.

Zariski vs Euclidean. As we’ve seen, the standard parabola y = x2 defines a closed subset of
R2 in the Zariski topology since it is the zero set of the polynomial y − x2. Now, this set is also
closed in the standard Euclidean topology on R2, which we can see either by convincing ourselves
that its complement is open (in the “drawing small open disks” sense) or by recalling some facts
from analysis, namely that the set of zeroes of any continuous function always defines a closed
set. Moreover, it is true that the set of common zeroes of any collection of polynomials is closed
in R2 in the standard topology for a similar reason. This implies in fact that any set which is
open (respectively closed) in the Zarisksi topology on R2 is also open (respectively closed) in the
standard topology, so the Zariski topology is coarser than the standard topology.

However, it is not true that any set which is closed in the standard topology is also closed in
the Zariski topology. For instance, the graph of y = ex is closed in the standard topology and yet
we claim that it is not closed in the Zariski topology. Now, y − ex is certainly not a polynomial in
two variables (infinite polynomials don’t count!), but this alone does not guarantee that its zero set
is not open in the Zariski topology since there could be a polynomial in two variables which had
the same zero set as y− ex; there isn’t, but this is somewhat difficult to prove, so take my word for
it. Thus, the Zariski topology is actually strictly coarser than the standard topology on R2.

Coarse/fine topologies. We will often resort to defining topologies by specifying that they should
be the coarsest ones in which some stated property should be true. To be precise, to say that T
is the coarsest topology satisfying some property means that if T ′ is any other topology satisfying
that same property, we should have T ⊆ T ′. In practice this means that we allow as open sets
whatever we need in order to guarantee that the stated property holds, and then we also take as
open sets anything else we need to include to ensure we get a topology, but no more. (So, the
coarsest topology in which a property holds is the one which has the fewest open sets needed to
ensure that property holds.) This should become clearer as we actually start using this terminology.
For now, notice that in the cofinite topology on a set, single points are always closed, and indeed
we can characterize the cofinite topology on a set as the coarsest one in which this is true.

Lecture 3: Bases

Warm-Up. We describe the coarsest topology on X = {a, b, c, d, e} in which {a, b} and {b, d} are
closed.***FINISH***

Motivation for bases. Wemotivated the definition of a basis for a topology on a set by considering
the case of open disks in R2. The point is the following: say we define U ⊆ R2 to be open if for
any p ∈ U there exists a disk Br(q) such that p ∈ Br(q) ⊆ U . The subtlety is that now we are no
longer requiring that the disk be centered at p itself; this is important, since the notion of “centered
at” has no meaning in a general topological setting since there is no such thing as “distance” in
general. The question is: if we use definition of open, how do we show that the intersection of two
open sets is still open? If you work through the details, this boils down to showing that if p is in
the intersection of two open disks

p ∈ Br(q) ∩Bs(m),
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there exists exists a third open disk Bt(n) containing p and contained in this intersection:

p ∈ Bt(n) ⊆ Br(q) ∩Bs(m).

This is precisely the second condition needed in the definition of a basis, and the point is that it is
essential in showing that the intersection of open things is still open.

Definition. defn of basis

Do we get a topology? actually get a topology

Examples of bases. Open disks form a basis for the standard topology on R2. Note that this
statement actually says two things: first that open disks form a basis for a topology, and second
that the topology they generated is the standard topology. Such considerations are important to
distinguish when we talk about a given collection of open sets forming a basis for a topology we
already have in mind. The fact that the topology generated by open disks is the standard topology
just comes from the fact that we defined “open” in the standard topology in terms of open disks.

But bases aren’t unique! For instance, the collection of all open squares (regions enclosed by
squares but excluding the boundary) also form a basis for the standard topology on R2, as does
the collection of all open diamonds. We’ll be able to see this more simply next time by noting that
these bases arise from certain metrics.

Examples on R. Rℓ, RK , compare

Lecture 4: Metric Spaces

Open in topology generated by a basis. By definition, an open set in a topology generated
by a basis is one which can be written as a union of basis elements. To make this condition simpler
to work with, here is an equivalent formulation: U is open in the topology generated by a basis B
if and only if for each p ∈ U , there exists B ∈ B such that p ∈ B ⊆ U . Indeed, picking such a basis
element Bp for each p ∈ U allows us to express U as

U =


p∈U
Bp,

which shows that U is open in the topology generated by B. This is meant to be the analog of how
we originally defined open sets in R2 using open disks.

Warm-Up. If T and T ′ are two topologies on a set generated by bases B and B′ respectively, we
showed that T ′ is finer than T if and only if for each B ∈ B and p ∈ B, there exists B′ ∈ B′ such
that p ∈ B′ ⊆ B. This allows us to characterize fineness/coarseness in terms of a basis. This is
proved in the book, so we omit the proof here.

Metric spaces. We introduced metric spaces earlier than the book does in order to have a large
class of examples of topological spaces. Indeed, metric spaces are the most intuitive topological
spaces we have available, and understanding their properties goes a long way towards making sense
of general topological notions. You can read about metric spaces and metric topologies in Section
20 of the book. That open balls with respect to a metric always form a basis for a topology (the
metric topology) is left to the homework, but it is also in the book.
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The one thing to keep in mind, however, is that metric spaces are very “nice” topological spaces,
and won’t illustrate on their own all the things that can happen in general. So, while they serve
to give good intuition, you should avoid getting the habit of thinking of all topological spaces as if
they were metric spaces.

Metrics on Rn. Here are three metrics on Rn, the so-called Euclidean metric dE , the box metric
dbox, and the taxicab metric dtaxi:

dE((x1, . . . , xn), (y1, . . . , yn)) =


(x1 − y1)2 + · · ·+ (xn − yn)2

dbox((x1, . . . , xn), (y1, . . . , yn)) = max{|x1 − y1|, . . . , |xn − yn|}
dtaxi(x1, . . . , xn), (y1, . . . , yn)) = |x1 − y1|+ · · ·+ |xn − yn|.

In R2, open balls with respect to the Euclidean metric are disks, open balls with respect to the box
metric are squares, and open balls with respect to the taxicab metric are diamonds.

The point is that, even though these metrics are different, they all generated the same topology
on Rn, which is the standard topology. As a consequence of the Warm-Up, this can be shown by
showing that an open ball with respect to the one metric always contains an open ball with respect
to any of the other metrics; this will be left to a discussion problem.

Uniform topology on Rω.

Metrizability. include discrete metric

Lecture 5: Product Topology

Warm-Up 1. open balls do give basis

Hausdorff spaces. For the sake of the Warm-Up today, we defined the notion of a Hausdorff
space, which the book does soon enough. We say that a topological space X is Hausdorff if for any
distinct p, q ∈ X, there exist open sets U containing p and V containing q such that U ∩ V = ∅.
(We say that p and q can be separated by open sets. We might also say that distinct points are
“topologically distinguishable”.)

Warm-Up 2. We show that metric spaces are always Hausdorff. Suppose X is a metric space
with metric d and that p, q ∈ X are distinct. Then d(p, q) > 0. We claim that Bd(p,q)/2(p) and
Bd(p,q)/2(q) are then disjoint open sets containing p and q respectively. Indeed, if there exists
x ∈ Bd(p,q)/2(p) ∩Bd(p,q)/2(q), then

d(x, p) <
d(p, q)

2
and d(x, q) <

d(p, q)

2
,

so the triangle inequality gives

d(p, q) ≤ d(p, x) + d(x, q) <
d(p, q)

2
+

d(p, q)

2
= d(p, q).

This is not possible, so there is not such x and hence Bd(p,q)/2(p) and Bd(p,q)/2(q) are disjoint as
claimed. Hence these are open sets separating p and q, so X is Hausdorff.

Non-metric spaces. If the topology on a topological space arises from a metric, we say that
that space is metrizable. The Warm-Up says that any metrizable space must be Hausdorff, so we
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can now give examples of topologies which do not arise from metrics. For instance, the cofinite
topology on an infinite set is not Hausdorff (any nonempty set open set in such a topology only
excludes finitely many points, so any two such open sets will always have infinitely many points in
common and so are not disjoint) and so cannot be given by a metric. The Zariski topology on Rn

is also non-Hausdorff (we’ll come back to this later), and so is also not given by a metric.
However, note that we can also have Hausdroff spaces which are not metrizable. For instance,

Rℓ (R with the lower limit topology) is actually Hausdroff, but it turns out not metrizable. Showing
that there is no metric on R which gives the lower limit topology is not something we can do just
yet, but will follow from some other properties of metric spaces we’ll look at later. (If you want
to hear the buzzwords now, the key fact is that a metric space is “separable” if and only if it is
“second countable”; Rℓ is separable but is not second countable, so it can’t be metrizable.)

Finite products. The product topology is introduced in the finite case in Section 15 of the book,
and in the infinite case in Section 19. In the finite case the product and box topologies are one and
the same, but are crucially different in the infinite case.

Here we single out one aspect of the product topology in the finite case we looked at in class,
which is essentially in the book if you read between the lines but is not made explicit. The claim is
that the product topology on X1 × · · ·×Xn is the coarsest one in which the preimage of any open
set under any project is itself open, i.e. for any i = 1, . . . , n

pr−1
i (U) is open in X1 × · · ·×Xn whenever U is open in Xi.

Here, the i-th projection pri : X1 × · · ·Xn → Xi is the function which picks out i-th components:

pri(x1, . . . , xn) = xi.

The condition given above in terms of preimages is (as we’ll soon see) precisely what it means to
say that each projection is continuous, so the claim is that the product topology is the coarsest one
relative to which all projections are continuous.

To prove this, suppose T is any topology on X1×· · ·×Xn having the property that the preimage
of any open set under any projection is open in X1× · · ·×Xn. We want to show that T is finer than
the product topology. To this end, suppose U ⊆ X1 × · · · × Xn is open in the product topology.
Then U can be written as the union of open sets of the form U1α × · · ·× Unα:

U =


α∈I
(U1α × · · ·× Unα)

for α in some indexing set I and where Uiα is open in Xi for each α. The preimage of such a Uiα

under the projection pri is

pr−1
i (Uiα) = X1 × · · ·× Uiα

i-th location

× · · ·Xn,

which we can write using product notation more succinctly as

pr−1
i (Uiα) =

n

j=1

Uj , where Ui = Uiα and Uj = Xj for i ∕= j.

By the assumption on T this preimage is open in T . But then the intersection of finitely many
such preimages is also open in T , and such an intersection is precisely of the form

U1α × · · ·× Unα = pr−1
1 (U1α) ∩ · · · ∩ pr−1

n (Unα).

7



Thus
U =



α∈I
(U1α × · · ·× Unα)

is open in T as well, and hence T is finer than the product topology as claimed.

What goes wrong in Rω? We finished with illustrating why we have to careful when trying to
define the “product topology” in the case of infinite products. First, we can attempt to generalize
the case we had for finite product as is and declare that the topology we want is the one generated
by products of open sets. In the case of Rω (the space of infinite sequences of real numbers), this
would say that the topology we want is the one generated by the basis consisting of things of the
form

U1 × U2 × U3 × · · ·

where each Ui is open in R. The topology arising in this way is the box topology on Rω, which
is now distinguished from the product topology we’ll define next time. For instance, the infinite
product

(−1, 1)×

−1

2 ,
1
2


×


−1

3 ,
1
3


× · · · ,

where the i-th term is (−1
i ,

1
i ), is open in the box topology on Rω.

To see why the box topology is in some sense the “wrong” one to consider, take the sequence
of elements in Rω given by 

1
n ,

1
n ,

1
n , . . .


.

To be clear, the first term in this sequence is (1, 1, 1, . . .), the second term is (12 ,
1
2 ,

1
2 , . . .), and

so on. (So we are taking a “sequence of sequences”.) The question is: does this sequence in Rω

converge? We’ll define what convergence means in an arbitrary topological space next time, but
for now we’re just thinking about it in an intuitive sense. You would hope that since the sequence
1
n in R converges to 0, the sequence we’re looking at in Rω should converge to

(0, 0, 0, . . .) ∈ Rω.

However, this is NOT true in the box topology! In fact, the sequence


1
n ,

1
n ,

1
n , . . .



in Rω does not converge at all with respect to the box topology, the problem being that in a sense
the box topology has “too many” open sets. However, this sequence WILL converge as we expect
it to with respect to the product topology. We’ll elaborate on all this next time, but is essentially
the key distinguishing feature of the product topology vs the box topology.

Lecture 6: More on Products

Warm-Up. Denote Rn with the Zariski topology by Rn
Zar. We will determine the relation between

R2
Zar and the product topology on RZar × RZar. (Of course, as sets both of these spaces are just

R × R = R2.) First, recalling that the Zariski topology on R is the same as the cofinite topology,
we note that closed sets in RZar × RZar (apart from R× R itself) are of the form

{finite set}× R, R× {finite set}, {finite set}× {finite set},
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or finite unions of such things. (In general, if A is closed in X and B is closed in Y , then A × B
is closed in X × Y under the product topology, which I encourage you to justify on your own.)
Furthermore, these three types of closed subsets are finite unions of closed sets of the form

{point}× R, R× {point}, {point}× {point},

so if each of these is open in R2
Zar we will be able to conclude that anything open in RZar × RZar

is open in R2
Zar, meaning that R2

Zar is finer than RZar × RZar. The set

{a}× R

is the vertical line x = a, which is the zero set of the polynomial x− a and hence is closed in R2
Zar;

the set
R× {b}

is the horizontal line y = b, and hence is closed in R2
Zar since it is the zero set of y− b; and a single

point {(a, b)} is the common zero set of the collection of polynomials given by {x− a, y − b}, so is
also closed in R2

Zar. Thus R2
Zar is finer than RZar × RZar.

But we claim that the opposite inclusion does not hold: RZar × RZar is not finer than R2
Zar.

Indeed, the parabola y = x2 is closed in R2
Zar since it is the zero set of y−x2, but this is not closed

in RZar ×RZar. Indeed, note that the types of closed sets in RZar ×RZar mentioned above are all
finite or collections of lines, and the parabola y = x2 is none of these forms.

Convergence. We introduced the notion of convergence for sequences in a different spot than
when the book does, so we record it here. A sequence (pn) in a space X converges to p ∈ X if for
any open set U containing p, there exists N ∈ N such that pn ∈ U for n ≥ N . This is precisely
the same notion of convergence you would have seen for sequences in R in an analysis course if you
replace the arbitrary open set U with one of the form (p− , p+ ). One key difference, as we’ll see
later, is that in general topological spaces limits of sequences are NOT necessarily unique, in that
a sequence can converge to possibly more than one point.

With this we can now justify the claim we finished with last time, namely that the sequence


1
n ,

1
n ,

1
n , . . .



in Rω does not converge to (0, 0, 0, . . .) with respect to the box topology. The set

(−1, 1)×

−1

2 ,
1
2


×


−1

3 ,
1
3


× · · ·

is open in the box topology and contains (0, 0, 0, . . .). Thus if the given sequence did converge to
(0, 0, 0, . . .), there would have to exist N ∈ N such that


1
n ,

1
n ,

1
n , . . .


∈ (−1, 1)×


−1

2 ,
1
2


×


−1

3 ,
1
3


× · · ·

for n ≥ N . But since all terms in this sequence are the same, this would require that

1
n ∈


−1

i ,
1
i


for n ≥ N

for all i ∈ N. In particular, all of these intervals would have 1
N in their intersection, which is

nonsense because the intersection only consists of 0:

∞

i=1


−1

i ,
1
i


= {0}.
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Thus ( 1n ,
1
n ,

1
n , . . .) does not converge to (0, 0, 0, . . .) with respect to the box topology as claimed.

Product topology on Rω. We motivated the definition of the product topology on Rω via the
characterization of the product topology in the finite case as being the coarsest one satisfying some
property. To be clear, the question is: what is the coarsest topology on Rω with the property that

pr−1
i (U) is open in Rω whenever U is open in R

for every projection pri : Rω → R? First, note that such a preimage concretely looks like

pr−1
i (U) = R× · · ·× R× U

i-th location

×R× · · · .

Such a set would have to be open in the coarsest topology we are looking for. But then the
intersection of finitely many such sets would also have to be open, and such intersections look like

pr−1
i1

(Ui1) ∩ · · · ∩ pr−1
ik

(Uik) = product with Uit in the it-th location and R’s elsewhere.

Such products form a basis, and the topology they generated is what we call the product topology
on Rω. To emphasize again, this is the coarsest topology on Rω satisfying the condition given above
in terms of preimages. (Later we will see that this condition in terms of preimages is precisely what
it means to say that each projection map pri : Rω → R is continuous, so this is saying that the
product topology is the coarsest one relative to which all projections are continuous.)

The key difference between this and the box topology is that, while in the box topology anything
product of the form

U1 × U2 × U3 × · · · ,
where each Ui is open in R, is open, in the product topology such products are open only when all
but finitely many factors are actually R itself (or, only finitely many factors are not all of R). In
the case of Rω, this can also be phrased as saying that

U1 × U2 × U3 × · · · ,

is open if there exists N such that Un = R for n ≥ N . Thus,

(−1, 1)×

−1

2 ,
1
2


×


−1

3 ,
1
3


× · · ·

is not open in the product topology on Rω, so the argument we gave for why ( 1n ,
1
n ,

1
n , . . .) does not

converge to (0, 0, 0, . . .) does not work here. In fact, this sequence does converge to (0, 0, 0, . . .) in
the product topology, which will be shown on a discussion problem. The thing which makes this
work is that having only finitely many Ui’s in a product

U1 × U2 × U3 × · · · ,

be not all of R makes it possible to take a maximum of indices. More generally, the fact (which
will be on a homework) is that convergence in the product topology is the same as component-wise
convergence: a sequence x1,x2,x3, . . . in Rω, where each xi denotes a sequence of real numbers,
converges to y = (y1, y2, y2, . . .) ∈ Rω if and only if for each i, the sequence xni (where xni denotes
the i-th component of xn) converges to yi in R as n varies. This is analogous to saying that, for
instance in R3, the sequence

(an, bn, cn) converges to (a, b, c)

if and only if an → a, bn → b, and cn → c. The product topology is the finest one in which
convergence is the same as component-wise convergence in this sense.

Note that the requirement that “all but finitely many Ui are R itself” automatically holds in
the case of finite products, since there are only finitely many factors to begin with in that case.
Thus, the box and product topologies on finite products are the same.
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Lecture 7: Arbitrary Products, Closed Sets

Warm-Up. Denote by R∞ the set of elements in Rω which are eventually zero, meaning that past
a certain index all terms are 0:

R∞ = {(x1, x2, x3, . . .) ∈ Rω | there exists N ∈ N such that xn = 0 for n ≥ N}.

We show that R∞ is closed in Rω under the box topology but not under the product topology. We
do so by showing that its complement

Rω − R∞ = {x ∈ Rω | x is not eventually zero}

is or is not open. To be clear, to say that x = (x1, x2, . . .) is not eventually zero means that it
contains infinitely many nonzero terms, since if there were only finitely many nonzero terms going
beyond all of these would put you in a spot where all remaining terms were zero.

To show that Rω −R∞ is open in the box topology, we show that any point in this complement
is contained in an open set which remains fully within this complement. (The complement will
then be the union of these open sets, and so will be open itself.) Let x ∈ Rω − R∞. Since x is not
eventually zero, it contains infinitely many nonzero terms, say

xik ∕= 0 for k = 1, 2, 3, . . . .

For each of these nonzero terms, we can find an interval (aik , bik) in R containing it which excludes
zero:

xik ∈ (aik , bik) but 0 /∈ (aik , bik).

Take the open sets Un which are these intervals for n equal to one of the ik, and R otherwise:

Uik = (aik , bik) and Un = R for n not equal to any ik.

The product
U1 × U2 × · · ·

is then open in the box topology and contains x. However, since any element in this product contains
infinitely many nonzero terms, since in particular the terms coming from one of the Uik = (aik , bik)
is nonzero. Thus any such element is not eventually zero, so U ⊆ Rω − R∞. Hence Rω − R∞ is
open in Rω under the box topology, so R∞ is closed.

Now, the argument given above does not apply when we have the product topology, since the
product

U1 × U2 × · · ·
defined above is not open in the product topology since infinitely many factors are strictly smaller
than R itself. Indeed, for x ∈ Rω − R∞, let

V1 × V2 × · · ·

be a basic open set under the product topology containing it. Then only finitely many Vi are not
R, so

Vn = R for n past some index N.

Define the element y ∈ Rω by taking any terms from V1, . . . , VN as the first N components, but
then taking 0 as the component in Vn for n > N . (Here we use the fact that Vn = R for n > N to
guarantee that Vn contains zero.) Then

y ∈ V1 × V2 × · · ·

11



and y is eventually zero, so the basic open set V1 × V2 × · · · is not contained in the complement
Rω − R∞. Since any open set must contain one of these basic ones, we conclude that no open set
around U under the product topology is contained fully within Rω − R∞. Hence Rω − R∞ is not
open, so R∞ is not closed in the product topology on Rω.

Arbitrary products. An arbitrary product


α∈I Xα (so the product of the sets Xα indexed by
α in some index set I) should intuitively consist of tuples (xα)α∈I of elements, one from each Xα.
(Concretely, xα ∈ Xα.) Thinking about an arbitrary product in this way is fine, and is what we’ll
do for most purposes, but note that there is subtlety we should be aware of: just how exactly
do you make the notion of an arbitrary “tuple” indexed by elements of I precise? This might be
clearer in the case of finite products (like Rn), or maybe even products indexed by N (like Rω), but
is not so clear when I is some random (uncountable) index set.

Here is the way this is usually made precise, based on the function approach to defining RR we
mentioned last time. An element (xα)α∈I of


Xα should be a choice of an element xα ∈ Xα for

each α ∈ I, which we can think of as characterizing a function from I to the Xα’s, namely the
function sending α ∈ I to xα ∈ I. Concretely, this gives a function

f : I →


α

Xα

where α ∈ I is specifically sent to an element of Xα, as opposed to a function which might send
α ∈ I to something in a differently-indexed Xβ . This says that the function f should have the
property that

f(α) ∈ Xα for each α ∈ I,

so that the element of


αXα which corresponds to α comes from Xα itself. Thus, we can define
the given product to the be the set of all such functions:



α∈I
Xα =


f : I →



α∈I
Xα

 f(α) ∈ Xα for each α ∈ I


.

This gives a precise way of thinking of a tuple (xα)α∈I , which is then just the tuple encoding the
values of a function f as above: the “α-th” element in the tuple is xα = f(α), which is the element
in Xα which f assigns to α.

Let’s make sure that this definition makes sense in the settings with which we’re already familiar.
First, how do we view Rn from this perspective? Rn is a product n many copies of R, which we
can think of as a product indexed by the finite set {1, 2, . . . , n}, where the set occurring at each
index i is just R itself. Elements of this product should thus correspond to functions

f : {1, 2, . . . , n} →
n

i=1

R

satisfying f(i) ∈ R for each i. To simplify this, we note that the union on the right is simply R in
this case, so all we are looking at are functions

f : {1, 2, . . . , n} → R.

Such a function is fully characterized by the values f(1), f(2), . . . , f(n), which thus describe an
n-tuple of the form (f(1), f(2), . . . , f(n)), which is how we normally view an element of Rn. Thus
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our definition of an arbitrary product reduces to the one we’re already used to in the case of Rn.
More generally, an element in a finite product

X1 ×X2 × · · ·×Xn,

viewed as product indexed by {1, . . . , n}, corresponds to a function

f : {1, . . . , n} →
n

i=1

Xi

such that f(i) ∈ Xi. This condition just says that in the n-tuple (f(1), f(2), . . . , f(n)) encoding
the values of f , the i-th component f(i) should come from Xi itself, as opposed to having, for
instance, the first component f(1) comes from X2. Hence again, the definition of a product given
above reduces to the one we expect in the finite case.

For any X and Y , an element of Y X =


x∈X Y , which is the product of “X-many” copies of
Y , is formally defined as a function

f : X →


x∈X
Y = Y,

which is how we get that Y X is just the set of functions from X to Y . In particular, Rω is the
same as RN, which is the set of functions from N to R; a function N → R is indeed a precise way
of defining the notion of a sequence in R.

But, in the end, thinking of an element of an arbitrary product


α∈I Xα as a tuple (xα)α∈ of
elements of the various Xα’s indexed by elements of I will do us no harm, and is what we’ll usually
do. The box topology on this product is then the one generated by the basis consisting of sets of
the form 

α

Uα where Uα is open in Xα,

and the product topology is generated by similar things only with the additional stipulation that

Uα = Xα for all but finitely many α,

so that you can’t have infinitely many of the Uα be unequal to the corresponding Xα. Concretely,
in the RR case, thinking of this set as the set of functions f : R → R, a basic open set in the
product topology is one consisting of functions such that for some fixed finitely many open subsets
Ux1 , . . . , Uxn of R, we require that

f(xi) ∈ Uxi for each i = 1, . . . , n

with no additional constraints on the values of f at points that aren’t among x1, . . . , xn. (So, for
some finite numbers of points, f should send these points into some specified open sets.) Here, the
values f(x) of f are the “components” of the tuple (f(x))x∈R, which is what leads to the realization
that convergence in the product topology is the same as pointwise convergence in this setting; i.e.
here “pointwise” means “componentwise”.

Function Spaces. We’ll consider more general infinite products next time, but for now we consider
the space RR, which we think of as being the product of “R-many” copies of R. An element of this
space consists of a collection of real numbers indexed by the real numbers themselves:

(xα)α∈R ∈ RR,
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so in particular each such element consists of uncountably many real numbers. (As opposed to an
element of Rω, which consists of countably many real numbers.) The question is how to make this
notion of “a collection of real numbers indexed by real numbers” precise. The key is to rephrase
this concept in terms of another we’re more familiar with, namely that of a function. To specify
an element (xα)α∈R of RR intuitively as above requires that we associate to each real number α
(the index) a real number xα (the term occurring at the given index), but such an association
precisely describes a function from R to R. Indeed, such a function gives for each α ∈ R a number
f(α), which we interpret as the term xα = f(α) occurring at index α. Thus, we can make the
uncountably infinite product RR precise by defining it to be the set of all functions from R → R:

RR = {f : R → R | f is a function}.

More generally, Y X denotes the set of functions from X to Y , which we can thus think of
as the product of “X-many” copies of Y ; an element of Y X can be thought of as a collection
(yα)α∈X of elements yα of Y indexed by elements α of X, which can be more precisely viewed as
defining the function from X to Y which associates to α ∈ X the element xα ∈ Y . Thus, once
we define the product topology on infinite products in general next time, we’ll immediately have a
topology we can put on a set of functions. For instance, the product topology on RR will be one
in which the notion of convergence corresponds to what is normally called pointwise convergence
of a sequence of functions: a sequence of functions fn : R → R defines a sequence (fn(α))α∈R in
RR, and convergence of this latter sequence in the product topology on RR corresponds precisely to
pointwise convergence of fn. If you haven’t seen pointwise convergence before, here is the definition:
to say that a sequence of functions fn converges pointwise to the function f means that for each
α ∈ R, the sequence of real numbers fn(α) (with n varying) converges to the real number f(α).

Why do we care about topologies? Up until this point in the course we’ve given many examples
of topologies, but so far they might have seemed esoteric or constructed only to illustrate a certain
property and not really things which would show up in “practice”. I hope that at least it might be
clearer why we should care about metric spaces in general (metric spaces are essentially the types
of spaces where analysis takes place), but we have not given a reason why we should care about
topological spaces which aren’t metrizable yet.

Here is the example which first convinced me as an undergrad why we should care about such
things: there is no metric on the set of functions from R to R with respect to which convergence
means the same thing as pointwise convergence, but now we’re saying that there is a topology on
this set of functions relative to which this is true, namely the product topology. Indeed, much of
the practical uses of topology in other areas of mathematics come from wanting “good” topologies
on sets of functions, where what counts as “good” depends on what application you have in mind.
We’ll look at various other examples of such topologies later on.

Definition. closure, interior

Characterization of elements in closure.

Closure example. The Warm-Up showed that R∞ was closed in Rω under the box topology, so
the closure of R∞ in Rω under the box topology is R∞ itself. We left the question as to what this
closure should be under the product topology unanswered, but we’ll come back to this next time.
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Lecture 8: Hausdorff Spaces

Warm-Up 1. We claim that the closure of R∞ in Rω under the product topology is all of Rω.
Indeed, this is essentially what we proved in the Warm-Up last time when showing that R∞ was not
closed in Rω under the product topology, only we didn’t phrase it at the time in terms of closures.
Let y ∈ Rω and let

U1 × U2 × · · ·

be a basic neighborhood of y with respect to the product topology. Since this is open in the product
topology, there exists N such that Ui = R for i ≥ N . But now define x ∈ Rω by taking any possible
elements from U1, . . . , UN−1 as the first N − 1 components of x and setting

xi = 0 for i ≥ N.

Then x ∈ U1 × U2 × · · · and x is eventually 0, so x ∈ R∞. Hence any neighborhood of y contains
an element of R∞, so y is in the closure of R∞ under the product topology.

Denseness. We record here the definition of “dense” since we introduced it earlier than the book
does: a subset A of a space X is dense in X if A = X. This is saying that any open subset
whatsoever of X contains an element of A. The Warm-Up above shows that R∞ is dense in Rω

under the product topology; it is not dense under the box topology as the Warm-Up from last
time now shows. The most common example of a dense subset is no doubt Q in R, which plays an
important role in analysis. We’ll see later why denseness is important.

Warm-Up 2. Suppose A is a subset of X and B a subset of Y . We show that

A×B = A×B,

so that the closure of a product is the product of closures. (In fact, this is true for more general
products as well, and the argument in general is very similar to the argument we’ll give here.)
First, note that the set on the right contains A×B and is closed in X × Y since it is the product
of closed sets. Hence

A×B ⊆ A×B

simply because A×B is the one of the things being intersected when constructing A×B.
Now, let (p, q) ∈ A× B. Then p ∈ A and q ∈ B. Let U × V be a basic neighborhood of (p, q).

Since U is a neighborhood of p and p belongs to the closure of A, U contains an element of A, say
a ∈ A. Similarly, V is a neighborhood of q and q belongs to the closure of B, so V contains an
element b of B. Thus (a, b) is an element of A× B contained in U × V , so every neighborhood of
(p, q) intersects A× B, meaning that (p, q) ∈ A×B. Hence A× B ⊆ A×B, so we conclude that
A×B = A×B as claimed.

Definition. defn of Hausdorff

Uniqueness of limits.

Definition.

Cofinite is coarsest T1.

Example. T1 but not Hausdorff
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T1 but non-unique limits. We started with the following example. The cofinite topology on
R gives an example of a T1-space which is not Hausdorff: it is T1 since given x ∕= y, R − {x} is
a neighborhood of y which contains x (implying that {x} is closed), and it is not Hausdorff since
any two nonempty open sets intersect in infinitely many points because open sets can only exclude
finitely many points. The observation is that the sequence

1, 2, 3, 4, 5, . . .

in this space converges to every x ∈ R, so limits of sequences in a T1-space need not be unique.
To see that any possible x ∈ R can serve as a limit of this sequence, fix x ∈ R and consider any
neighborhood U of x in the cofinite topology. Then U is not empty and only excludes finitely many
points of R, so it can only exclude finitely many terms from the given sequence. Thus for n large
enough (i.e. past some index), n ∈ U , showing that the given sequence converges to x.

Separation axioms. To put the notion of a T1-space (i.e. a space satisfying the T1-axiom) and
that of a Hausdorff space into the right context, we note that we will eventually consider other so-
called separation axioms, which describe the extent to which objects in a space can be “separated”
from one another. The Hausdorff axiom is also known as the T2-axiom, and later we will discuss
the T3-axiom (what it means for a space to be regular) and the T4-axiom (what it means for a
space to be normal). We might also talk about the “T3 1

2
”-axiom! The T1-condition says that “any

point can be separated from any other point” and the Hausdorff (T2) condition says that “points
can be separated from one another”.

Lecture 9: Continuous Functions

Warm-Up. We claim that R2
Zar (i.e. R2 with the Zariski topology) is not Hausdorff. In fact, we

show that any two nonempty open sets must always intersect, so the types of disjoint open sets
required in the Hausdorff condition cannot exist. Since any open set contains a basic open set of
the form

D(f) = R2 − V (f),

where f is a single polynomial in two variables, it is enough to show that such basic open sets
always intersect. Suppose f and g are nonzero (otherwise D(f), D(g) are empty) polynomials and
recall from Homework 1 that

D(f) ∩D(g) = D(fg).

Since f and g are not the zero polynomials, neither is fg. Hence there exists (x, y) ∈ R2 such that

f(x, y)g(x, y) ∕= 0.

This point is then in D(f) ∩D(g) = D(fg), so this intersection is not empty as required.

Motivating continuity. Recall that -δ definition of continuity for a function f : R → R: f is
continuous if for every a ∈ R and every  > 0, there exists δ > 0 such that

|x− a| < δ implies |f(x)− f(a)| < .

Intuitively, this says “given a measure of how close we want to end up near f(a), there exists a
measure of how close we should get to a in order to guarantee we end up within the prescribed
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measure of closeness to f(a)”. The point is that this definition can be phrased solely in terms of
open sets. First, in terms of intervals we get the condition

x ∈ (a− δ, a+ δ) implies f(x) ∈ (f(a)− , f(a) + ).

Second, in terms of preimages we get the condition

x ∈ (a− δ, a+ δ) implies x ∈ f−1((f(a)− , f(a) + )).

Finally, in terms of subsets we get the condition

x ∈ (a− δ, a+ δ) ⊆ f−1((f(a)− , f(a) + ).

Thus, the -δ definition says that given x in the preimage of (f(a) − , f(a) + ), there exists an
open set around it which remains within the preimage. Since (f(a) − , f(a) + ) is open and any
open subset of R is a union of such intervals, we get the condition that the preimage of any open
subset of R is itself open in R, which is the sought-after characterization of “continuous” in terms
of open sets.

Thus it makes sense to define continuity in the setting of arbitrary topological spaces as the
book does: f : X → Y is continuous if for every U open in Y , the preimage f−1(U) is open in
X. (You can also find a topological definition of “continuous at a point” in the book, but the
global notion of continuous without reference to a specific point is the one we’ll find most useful.)
To give some intuition in general behind this definition, compare again to the -δ definition: if we
interpret an open set in an arbitrary topological space as providing its own measure of “closeness”
(i.e. saying that p, q ∈ U means that p and q are “near” each other “relative” to U), the definition
of continuous indeed says that “given a measure U of how close we want to end up in Y , there
exists a measure f−1(U) of how close we have to be in X in order to guarantee we end up within
the prescribed measure of closeness U in Y ”.

Definition.

Product topology in terms of continuity.

Maps from discrete, or into trivial.

Maps into a discrete space. As some examples we looked at (and which are in the book)
show, whether or not a function is continuous depends heavily on the topologies in question. To
emphasize this, we asked the question as to which functions R → Rd were continuous, where the
domain has the standard topology and where Rd denotes R with the discrete topology. First, any
constant function is continuous. (The book proves a general version of fact.)

Now, suppose f : R → Rd is continuous and that f(p), f(q) are distinct points in the image, so
that f is not constant. Then {f(p)} and R− {f(p)} are both open (since everything is open in the
discrete topology), so

Rd = {f(p)} ∪ (R− {f(p)})

expresses Rd as the union of disjoint nonempty (note that f(q) is in the latter) sets. Since f is
continuous, the preimages of each of these are open in R, so

R = f−1(f(p)) ∪ f−1(R− {f(p)})

expresses R as the union of two disjoint nonempty open sets. You may recall from an analysis course
that this is not possible since R is connected. (We’ll talk about connected spaces soon enough, so
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no worries if this is not a notion you recall all the details about.) Thus it is not possible to have
two distinct points in the image of f , so f is constant and we conclude that the only continuous
functions R → Rd are the constant ones. (In general, the only continuous functions into a discrete
space are the “locally constant” ones, which is a notion we’ll look at later. By contrast, any function
from a discrete space into something else is always continuous.)

Jump discontinuities. Consider a map f : R → R with a “jump discontinuity”. We pointed out
that such a function indeed became continuous if we changed the topology on the domain to that
of the lower limit topology. This, and the consideration of one-sided limits, is how the lower limit
topology shows up in certain applications.

Equivalent characterizations of continuity. We gave the following equivalent formulations
of continuity, which can also be found in the book: f : X → Y is continuous if and only if the
preimage of any closed set in Y is closed in X, and also f : X → Y is continuous if and only if

f(A) ⊆ f(A) for any A ⊆ X.

We proved the forward direction of this latter claim in class, and will prove the other direction
next time. (Both of these are good exercises in getting accustomed to unwinding definitions.) For
now, we point out that the characterization in terms of closures is the topological analog of the
characterization of continuous given in terms of sequences you would have seen in analysis.

Indeed, in the case of R, saying that f(p) ∈ f(A) means f(p) is obtained by applying f to
the limit p of a sequence pn in A; if it is true that f(p) ∈ f(A) as the closure-characterization
would imply, then f(p) should also be the limit of the sequence f(pn) in A, so f “sends convergent
sequences to convergent sequences”, agreeing with the sequential definition of continuity given in
analysis. To say it another way, continuous means that points which are “arbitrarily” close to A
are sent to points which are “arbitrarily” close to f(A).

The issue is that in the general topological setting we must phrase this in terms of closures
instead of sequences since there may not be “enough” sequences available to accurately capture
continuity; to be precise, is it NOT true in general that a function f : X → Y with the property
that f(pn) → f(p) in Y whenever pn → p in X must be continuous. This is one of the instances in
which thinking about topological concepts solely in terms of sequences is not enough—the notion
of compactness will give us another such instance. (There is a generalization of the notion of a
sequence known as a net, and a corresponding notion of convergence for nets. In that setting it is
true that a function is continuous if and only if it sends convergent nets to convergent nets, but
this is not something we’ll explore in this course.)

Lecture 10: More on Continuity

Warm-Up. A map Y →


Xα is given by a collection of maps Y → Xα, one for each α. We
proved as a Warm-Up that Y →


Xα is continuous with respect to the product topology if and

only if each component map Y → Xα is continuous. This is proved in the book, and provides
another characterization of the product topology: the product topology is the finest one relative to
which this is true.

Restrictions and extensions. Given a continuous functions f : X → Y , restricting the domain
to a subset A of X still gives a continuous functions (this restriction is usually denoted by f |A :
A → Y ), and restricting the codomain to a smaller subset of Y which still contains the image of X
also gives a continuous functions. So, restrictions never alter continuity. Similarly, extending the
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codomain does not alter continuity, meaning that if f : X → Y is continuous where Y ⊆ Z has the
subspace topology, then f : X → Z is still continuous.

The question as to when a given continuous function can be extended to one on a larger domain
is subtle, and is one we’ll come back to later on. Extensions are not always possible, but it turns out
that it will be possible under some mild topological assumptions; this is the content of Urysohn’s
lemma and the Tietze extension theorem.

Homeomorphisms. We finished with defining the notion of a homeomorphism, and gave an
example of a continuous bijection whose inverse was not continuous, which explains why we need
to assume both a function and its inverse are continuous in the definition of homeomorphism. This
example can be found in the book as well. This is different than other types of “isomorphisms”
you night have seen in an abstract algebra of linear algebra course, where the inverse of a group
homomorphism in the former case is automatically a homomorphism, and the inverse of a linear
transformation in the latter case is automatically linear.

Examples. spheres, ellipsoids, square, circle

Cantor space.

Lecture 11: Quotient Spaces

Warm-Up 1. Suppose f, g : X → Y are continuous and agree on a dense subset A of X, meaning
that the restrictions f |A and g|A are equal. (Recall that A being dense in X means that A = X.) If
Y is Hausdorff, we show that f = g on all of X, so that continuous functions into Hausdorff spaces
are completely determined by their behavior on a dense subset of the domain. This is something you
likely saw in an analysis course, where continuous functions R → R are determined by their action
on Q for instance, but in the general topological setting we need the codomain to be Hausdorff.
For an example of where this doesn’t work if the codomain isn’t Hausdorff, let L denote the line
with two origins and consider the functions f, g : R → L defined by f(x) = g(x) = x for x ∕= 0 but
with f(0) being one origin in L and g(0) the other; these two functions are continuous and agree
on the dense subset R− {0} of R, but are not the same on all of R.

Suppose p ∈ X. We want to show that f(p) = g(p). If instead f(p) ∕= g(p), we can find disjoint
open sets U and V of Y which separate them since Y is Hausdorff. Then f−1(U) and g−1(V ) are
both open in X, so f−1(U) ∩ g−1(V ) is open as well. This intersection thus contains an element
a ∈ A since A is dense in X. But this gives

f(a) ∈ U and g(a) ∈ V,

which, since f(a) = g(a) because f |A = g|A, contradicts the fact that U and V were supposed to
be disjoint. Hence f(p) = g(p) as claimed, so f and g agree on all of X.

Warm-Up 2. Cantor space

Spaces obtained by gluing. For our purposes, thinking of an equivalence relation on a space X
as a way of specifying which elements should be thought of as being the “same” will be good enough,
meaning we won’t need to recall the formal definition of an equivalence relation as a relation which
is reflexive, symmetric, and transitive. Given an equivalence relation ∼ on X, the quotient space
X/∼ is the set of equivalence classes, where the equivalence class containing p ∈ X is by definition
of the set of all elements of X which are equivalent to p; this quotient space is, intuitively, the space
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obtained after gluing elements in an equivalence class to one another. We are interested in putting
a natural topology on this quotient space which reflects this intuitive “gluing” idea.

Example. Consider the equivalence relation on R defined by saying x ∼ y if x − y ∈ Z. Thus, x
and y are equivalent if and only if they have the same “decimal part”. For instance, all integers are
equivalent to one another, 2.32345 if equivalent to 0.32345 and −7.32345, and so on. The upshot
is that any element of R is equivalent to a unique element of [0, 1), so that we can think of the
quotient as being this interval, only that we should consider the endpoints 0 and 1 to be the “same”
since they belong to the same equivalence class. Thus, after gluing, we again should get a circle.

Quotient topology. Finally we define the quotient topology on X/∼. If there is any justice in
the world this should be a topology which makes the obvious map

π : X → X/∼,

sending a point to the equivalence class containing it, continuous. We define the quotient topology
on X/∼ to be the finest topology we can put on X/∼ to make this true. Concretely, a subset U of
X/∼ is open in the quotient topology if and only if its preimage π−1(U) under the quotient map π
is open in X. This preimage concretely is the union of all equivalence classes contained in U .

Example 2. Take X to be the union of the lines y = 0 and y = 1 in R2 equipped with the
subspace topology and define an equivalence relation on X by saying (x, 0) ∼ (x, 1) for x ∕= 0. The
quotient space X/∼ is the line with two origins. Indeed, as a set this quotient is just a line only
with (0, 0) and (0, 1) representing different points since these were not declared to be equivalent.
If (a, b) in this quotient does not contain 0, its preimage under the quotient map is the union of
the corresponding intervals on the lines y = 0 and y = 1, which is open in X. If (a, b) contains one
origin, its preimage is an open on one of the lines y = 0 or y = 1, which is still open. Thus such
subsets of X/∼ are open, which gives the topology one the line with two origins we’ve described
previously.

Lecture 12: More on Quotients

Warm-Up. Consider the quotient space obtained from R by declaring all integers to be equivalent
to one another. Give R/∼ the quotient topology and let π : R → R/∼ denote the natural map
sending a point to its equivalence class. We show that this map is not open, meaning that it does
not send open sets to open sets. Concretely, we can visualize R/∼ as a “bouquet” of countably
many circles; indeed, this quotient is obtained by gluing the endpoints of each interval [n, n+1] to
get a circle, and then gluing all of these circles together at a common point corresponding to all
integers.

Recall that the quotient topology on R/∼ is defined by declaring U ⊆ R/∼ to be open if and
only if π−1(U) is open in R. We claim the the image of (−1/2, 1/2) under π is not open in R/∼. To
see that this image π((−1/2, 1/2)) is not open, we determine its preimage under π. This preimage
consists of the same interval (−1/2, 1/2), but also all things which get mapped to the same thing
as 0, meaning all integers since all integers map to the same thing under π. Thus

π−1(π((−1/2, 1/2))) = (−1/2, 1/2) ∪ Z,

which is not open in R. By definition of the quotient topology, this means that π((−1/2, 1/2)) is
not open in R/∼, so π is not an open map.
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Hawaiian Earring. compare with Hawaiian earring

Real Projective Line. The real projective line is the set RP 1 of lines in R2 which pass through
the origin. (The idea is that in “projective geometry” we replace “points” by “directions”.) Let
p : S1 → RP 1 (where S1 is the unit circle in R2) be the map which sends a point on S1 to the line
passing through it and the origin. Then p is surjective, and we give RP 1 the resulting quotient
topology.

We claim that under this quotient topology the map p : S1 → RP 1 is open. Indeed, suppose
U is open in S1. (So, U is the intersection of S1 with an open subset of R2.) Then p(U) ⊆ RP 1

consists of all lines in R2 passing through the origin and an element of U . To see that this is open
we must consider p−1(p(U)). The map p : S1 → RP 1 is 2-to-1, where a point p ∈ S1 and its
corresponding antipodal point a(p) (a : S1 → S1 is the map (x, y) → (−x,−y)) get sent to the
same thing, so we get that

p−1(p(U)) = U ∪ a(U),

which is a union of open sets in S1. Hence this preimage is open, so p(U) is open in RP 1 by
definition of the quotient topology. Thus p is an open map.

Also Hausdorff and homeomorphic to S1.

Other Projective Lines.

Lecture 13: Connected Spaces

Warm-Up. Suppose f : X → Y is continuous. Restricting to the image gives a continuous
surjective map f : X → f(X), and we can thus consider the quotient topology on f(X). On
the other hand, f(X) ⊆ Y can be given the subspace topology. We are interested in how these
topologies on f(X) relate to one another.

We claim that the subspace topology is coarser than the quotient topology. Indeed, if U ⊆ f(X)
is open in the subspace topology, then f−1(U) is open in X since f : X → f(X) is continuous. But
saying that f−1(U) is open in X is precisely what it means for U to be open in f(X) under the
quotient topology, which shows that the subspace topology is coarser than the quotient topology.

In general, the quotient topology is not coarser than the subspace topology. For instance, take
f : [0, 1) ∪ (1, 2] → R to be the map defined by

f(x) =


x 0 ≤ x < 1

−x+ 3 1 < x ≤ 2.

This is continuous and has image [0, 2). The set [1, 2) is not open in the image under the subspace
topology, but its preimage under f is (1, 2], which is open in [0, 1) ∪ (1, 2], meaning that [1, 2) is
open in [0, 2) under the subspace topology.

Fun example. As described on the homework, the quotient of the unit square [0, 1] × [0, 1]
under the equivalence relation where we identify (x, 0) with (1 − x, 1) and (0, y) with (1, 1 − y)
is homeomorphic to the real projective plane, which is the space of lines through the origin in R3

equipped with the quotient topology arising from the map S2 → RP 2 sending a point on the unit
sphere to the line passing through it and the origin. We can take another quotient of the unit
square by identifying (x, 0) with (1− x, 1) and (0, y) with (1, y). (Visually the difference is that in
this new quotient we only twist one edge when gluing as opposed to two edges as in the case of
RP 2.) The resulting quotient is known as the Klein bottle.
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We claim that the Klein bottle really is a new space, in the sense that it is not homeomorphic
to RP 2. Up to this point we don’t have good ways of showing that spaces aren’t homeomorphic,
apart from being to identify some specific property one space has (T1, Hausdorff, etc.) that the
other one doesn’t. The point of introducing this example now is to give a brief glimpse into the
subject of algebraic topology, which gives us new ways of studying spaces using algebra. Consider
a triangulation of RP 2, which is, as the name suggests, a way of breaking RP 2 up into a collection
of triangular regions. Under a possible homeomorphism between RP 2 and the Klein bottle, this
triangulation would get sent to a triangulation of the Klein bottle, and the number of triangles,
edges, and vertices in such a triangulation would be preserved. The problem is that in RP 2, it
turns out that taking

#(vertices)−#(edges) + #(triangles)

always gives the value 1, whereas in the Klein bottle it gives the value 0, and a homeomorphism
would in fact have to preserve this value. Thus RP 2 and the Klein bottle cannot be homeomorphic.
The value described above is known as the Euler characteristic of a space, and is a concept which
would be defined more precisely in a course in algebraic topology. The spring quarter of this course
would touch on this a bit.

Definition. disconnected, connected

Examples. first examples

Union of connected sets. union of connected with point in common

Finite products of connected sets.

Example. Rω in product topology (using closure properties)

Example. Rω in box topology

Lecture 14: More on Connectedness

Warm-Up 1. intervals connected, R

Warm-Up 2. closure of connected

Rn for different n. Using the fact that continuous maps send connected sets to connected sets, we
can show that R is not homeomorphic to Rn for n > 1. Suppose f : R → Rn was a homeomorphism.
This would then give a homeomorphism R − {0} → Rn − {f(0)}, which is not possible since the
inverse of this would have to send the connected space Rn − {f(0)} to the disconnected space
R− {0}.

The same argument does not work for showing that higher dimensional Euclidean spaces are
not homeomorphism to others of different dimensions. In the case of R2 vs R3 you could try to look
at a similar argument where you remove a line from R2 instead of a single point, but the problem
is that it is in fact possible for a line to be sent under a homeomorphism to a 2-dimensional region,
so the same trick does not work here. Indeed, showing that Rn is not homeomorphic to Rm for
m ∕= n in general is a much harder problem and requires deeper techniques; you’ll see one using
the notion of homology in the spring quarter.
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More examples. The line with two origins Y is connected. Indeed, suppose Y = U ∪ V were a
valid separation. Since any open set containing one origin intersects any open set containing the
other origin, it must be that both origins belong to U or both belong to V . This implies that U
and V (or rather their analogs in R) would then give a valid separation of R with the standard
topology, which is not possible since R is connected. (The fact that the line with two origins is
connected also follows from the fact that it is path connected, which is a notion we’ll look at next
time.)

The space GLn(R) is invertible n × n matrices is disconnected. Indeed, the subsets GL+
n and

GL−
n of matrices with positive and negative determinant respectively form a separation. Note that

these sets are open since they are preimages of (0,∞) and (−∞, 0) respectively under the map
GLn(R) → R sending a matrix to its determinant.

Image of connected under continuous. include examples of RPn

Topologist’s Sine Curve.

Definition. path connected, path connected implies connected

Examples. The line with two origins Y is path connected. Indeed, for points p and q, at least one
of which is not an origin, the same type of line segment which connects them in R will still connect
them in Y . To connect one origin to the other, we can take a segment which starts at one origin
and moves to the right, and then moves back left only ending at the other origin.

Lecture 15: Local Connectedness

Warm-Up. We showed that the topologist’s sine curve S is not path connected. This is in the
book, although we gave a slightly different argument. Suppose γ : [a, b] → S is a continuous path
connecting (0, 0) to (1, sin1). As in the book, we may assume that γ(t) has positive x-coordinate
for a < t, so that γ(a) = (0, 0) is the only point on this curve which is on the y-axis. For any
basic neighborhood [a, ) around a in [a, b], its image under the composition π1 ◦ γ, where π1 is
projection onto the x-coordinate, is a connected subset of the x-axis since continuous functions
send connected sets to connected sets. Thus this image must be an interval [0, d), meaning that all
points in [0, d) arise as x-coordinates of points along γ. This implies that γ cannot be continuous:
for any small open ball (say of radius 1/2) around the origin, there is no open neighborhood [a, )
around a which remains in the preimage since there is always a value in such a neighborhood which
maps to a point with y-coordinate equal to 1, which thus falls outside the given open ball. Hence
there is no continuous path connecting (0, 0) to (1, sin 1).

Components. The book defines the notion of a (connected) component in terms of an equivalence
relation. Here is an alternate definition: a connected component of a space X is a maximally
connected subset, meaning a connected subset C such that if S is any connected subset of X
containing C, then S = C. In other words, a connected component is a connected subset which
is not contained in any larger connected subset. The equivalence between this definition and the
book’s definition comes from the fact that, in the book’s definition, connected components are
always disjoint. This property also follows from our definition: if C1 and C2 are two components
which are not disjoint, then C1 ∪ C2 is connected as well, so that C1 and C2 would not have been
maximally connected.
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Examples. The components are Q are the singleton sets. Indeed, if S is a subset of Q with at
least two elements p < q, pick an irrational x such that p < x < q. Then

S = [S ∩ (−∞, x)] ∪ [S ∩ (x,∞)]

is a separation of S, so that S is not connected. Hence no subset of Q with more than one element
is connected, but one element sets are certainly connected. This means that Q is what’s called
totally disconnected, meaning precisely that the only connected subsets are singletons.

The space GLn(R) of invertible n×n matrices has two components: the subset of matrices with
positive determinant and the subset of matrices with positive determinant. Showing that these two
subsets are indeed connected takes a bit of work and requires some linear algebra, so we’ll skip
the proof here. But here is another important observation, which applies to other “groups” (in the
sense of abstract algebra) of matrices as well: the connected component of the identity matrix is
precisely the set of matrices which can be written as products of exponentials of other matrices.
This fact and its generalization to other groups is a crucial fact in various applications of matrix
group to geometry and physics.

Locally connected spaces. The definition of what it means for a space to be locally connected
(or locally path connected) can be found in the book. Here we just give a succinct way of stating
this definition using the notion of a “local basis”, which is a concept will see coming up a few times
going forward. A local basis at x ∈ X is a collection {Uα} of neighborhoods of x such that for any
other neighborhood V of x, there exists Uα contained in V . In a sense, the sets in a local basis at
x “generate” all other neighborhoods of x. Then, we can say that X is locally connected if each
point has a local basis of connected neighborhoods. Intuitively, a space is locally connected if it
appears connected when zooming in closely enough on any given point.

Example. As a final example, Rℓ is totally disconnected. For any subset S with two elements
x < y,

S = [S ∩ (−∞, y)] ∪ [S ∩ [y,∞)]

is a separation of S, so S is not connected. Hence only singleton sets are connected in Rℓ. This then
implies that Rℓ is nowhere locally connected, since no neighborhood of any point can be connected.

Lecture 16: Compact spaces

Warm-Up 1. A map f : X → Y is said to be locally constant if any point of X has a neighborhood
on which f is constant. We claim that if f : X → Y is locally constant, then f is actually constant
on each component of X. Let C be a component of X and fix p ∈ C. Let S be the subset of C
consisting of all q ∈ C for which f(q) = f(p). First, if s ∈ S, pick a neighborhood U of s on which
f is constant. For any x ∈ U , we then have f(x) = f(s) = f(p), so x ∈ S. Hence s ∈ U ⊆ S,
showing that S is open in C. Similarly, if c ∈ C − S, pick a neighborhood V of c on which f is
constant. Then f(x) = f(c) ∕= f(p) for any x ∈ V , so V ⊂ C − S and hence C − S is open, so S is
closed in C. Thus S is clopen in C, so S = C since C is connected, showing that f is constant on
C as claimed.

The converse of the result above holds when X is locally connected, which follows from the
fact that components in a locally connected space are actually open. For an example showing the
converse fails when X is not locally connected, consider the identity map Q → Q where Q has the
standard topology. This map is constant on each component since each component only contains
a single point, but it is not locally constant since it is not constant on any (a, b) ∩Q.
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Warm-Up 2. We give an example of a surjective continuous map from a locally connected space
to one which is not locally connected, which shows that “local connectedness” is not preserved
by continuity. The identity map Q → Q, where the domain has the discrete topology and the
codomain the standard topology, works. Indeed, Q is locally connected in the discrete topology
since for any r ∈ Q, {r} is itself a connected neighborhood of r, but Q is not locally connected in
the standard topology as explained at the end of the previous Warm-Up.

Further topics. Just to illustrate how some of these definitions show up in practice, we briefly
introduce the idea of a universal cover. A covering space of X is a space C with a continuous
surjection p : C → X such that every p ∈ X has a neighborhood U for which p−1(U) is a disjoint
union of open sets in C which are each mapped homeomorphically onto U by p. The idea is
that U is “covered” by multiple copies of itself up in the covering space C. A universal cover
of X is a covering space from which, in a sense we won’t define, all other covers can be derived.
It turns out that in order to guarantee a universal cover exists we must assume X has various
levels of connectedness, for instance that it is connected, locally path connected, and what’s called
“semi-locally simply connected”. These are concepts you will learn about in the spring quarter of
topology, where you’ll see that covering spaces are fundamental tools in algebraic topology.

Compactness. The definition of compact can be found in the book, as can all properties we
saw: closed subspaces of compact spaces are compact, continuous images of compact spaces are
compact, and that compact subsets of Hausdorff spaces are closed. Note that this final property is
not necessarily true without the Hausdorff condition: the set [−1, 1] containing one of the origins
is compact in the line with two origins but not closed, since its complement contains the singleton
non-open set containing the other origin. As the book states in a lemma, the real takeaway in the
proof that compact subsets of Hausdorff spaces are closed is the result that compact sets and points
in Hausdorff spaces can be separated by open sets, meaning that for any compact K and x /∈ K,
there exists disjoint open sets U and V containing K and x respectively. We’ll see other types of
a “separation properties” soon.

The intuition is that compactness allows one to replace an infinite amount of data with a finite
amount of data; in a vague sense, compactness is an infinite analog of finiteness. The proof that
closed intervals [a, b] in R are compact is in the solutions to the Discussion 5 Problems. Note that
this proof using only open covers, and not sequences; in general topological spaces, sequences are
not enough to characterize compactness.

Lecture 17: More on Compactness

Warm-Up 1. We showed that a continuous bijection from a compact space to a Hausdorff space is
always a homeomorphism, a result which can be found in the book. Note that this doesn’t require
assuming the domain if Hausdorff nor that the codomain is compact ahead of time, but both of
these facts are consequences. This gives at least one instance in which we don’t have to think about
whether an inverse is continuous separately.

Warm-Up 2. The Cantor set (or to be precise, the standard middle-thirds Cantor set), is the
subset C of R defined as follows. Set C0 = [0, 1], then

C1 = [0, 1/3] ∪ [2/3, 1], C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],

and in general Cn is obtained by removing from each interval making up Cn−1 its middle third
portion. Then C =


nCn is the Cantor set.
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We claim that with the subspace topology inherited from R, C is homeomorphic to the product
space {0, 2}ω, where {0, 2} has the discrete topology. The key point is that elements of C can be
also be characterized as those elements of [0, 1] whose base-3 decimal expansions only consist of
0’s and 2’s, a fact we will take for granted. (This is why I’m using {0, 2}ω instead of {0, 1}ω; of
course, C is also then homeomorphic to {0, 1}ω.) The 0’s and 2’s in the base-3 expansion of an
element of C then tell you whether to move to the left or to the right at each step in the Cantor set
construction: a 0 in the n-th decimal location means to take the interval in Cn−1 containing the
given element and then go into the left interval obtained after removing the middle third, and a 2
means to go into the right interval, which in the end describes which interval among those making
up Cn the given element is in.

The map C → {0, 2}ω defined by

0.x1x2x3 . . . → (x1, x2, x3, . . .)

is then the required homeomorphism. This is clearly surjective, and since C is compact (it is a
closed subset of the compact set [0, 1]) and {0, 2}ω is Hausdorff, showing that it is continuous is
enough to show that it is a homeomorphism by the first Warm-Up. To see that it is continuous
take a basic nonempty open subset

U1 × U2 × · · ·× Un × {0, 2}× {0, 2}× · · ·

of {0, 2}ω in the product topology. Then each Ui is either {0}, {2}, or {0, 2}. The preimage of
this consists of the elements of C contained in Cn (there is no restriction on the decimal digits
after the n-th one since the sets in the product above are {0, 2} after the n-th term) belonging to
those intervals determined by moving left and right in the manner described above; if Ui = {0}
you move left, if it is {2} you move right, and if it is {0, 2} you consider both possibilities. Hence
this preimage is just C intersect a union of some (or all) of the closed intervals making up Cn, and
each of such intersections are open in C since these closed intervals can all be surrounded by an
open interval which intersects none of the other closed intervals. Thus this preimage is open, so
the given map is indeed continuous.

Heine-Borel. Using the fact finite products of compact spaces are compact, we gave a proof of
the Heine-Borel Theorem, which says that a subset of Rn is compact if and only if it is closed and
bounded. For the forward direction, if K ⊆ Rn is compact, it is certainly closed and can be covered
by finitely many balls centered at 0 (since the open balls of radius n, with n varying, centered at
0 form an open cover), which implies that K is bounded.

Conversely, suppose K ⊆ Rn is closed and bounded. Since it is bounded, it is contained in some
box

[a1, b1]× · · ·× [an, bn].

Such a box is the product of compact sets, so it is compact itself, and thus K, being a closed subset
of this compact set, is compact as claimed.

Variations on compactness. We finished by commenting on some variations of the definition
of compactness. A space is Lindelöf if every open cover of it has a countable subcover. (Thus,
Lindelöf spaces are ones where one can replace an uncountable amount of data with a countable
amount.) Any compact space is Lindelöf, as is Rn. We’ll briefly touch on Lindelöf spaces later
when discussing the countability axioms.

The other variation on compactness worth mentioning here is the notion of a space being
paracompact. The precise definition is a little technical, but essentially it says that given any open
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cover, any point has a neighborhood which intersects only finitely many of the sets in that open
cover, or in other words, any point has a neighborhood which is covered by finitely many elements
of the given open cover. Thus, paracompactness is a type of local variation of compactness. One
of the most important consequences of a space being paracompact is the existence of “partitions
of unity”, which provide a key tool in various aspects of geometry and analysis. We won’t look at
such things in this course, but you can check later sections in the book for more details.

Lecture 18: Local Compactness

Warm-Up. We say that a function f : X → R is locally bounded if every point of x has a
neighborhood on which f is bounded. We claim that ifX is compact, any locally bounded function is
actually bounded. Indeed, for p ∈ X let Up be a neighborhood on which f is bounded, so there exists
Mp > 0 such that |f(x)| ≤ Mp for all x ∈ Up. The sets {Up}p∈X form an open cover of X, so since
X is compact finitely many of them, say U1, . . . , Un, still cover X. Then M = max{M1, . . . ,Mn}
is global bound on X, for if x ∈ X, x belongs to some Ui so that |f(x)| ≤ Mi ≤ M , showing that
M bounds on f on all of X.

Local compactness. We are now interested in the question as to when a space X sits inside of
a compact Hausdorff space. If this is the case, then X must itself be Hausdorff. It turns out that
the only additional condition we need in order to guarantee that X sits inside of such space is that
X be locally compact, which means for any p ∈ X is contained in a compact set which contains
a neighborhood of p. ONLY EQUIVALENT IN HAUSDORFF CASE Equivalently, X is locally
compact if every point has a neighborhood with compact closure; the equivalence comes from the
fact that if U is open inside a compact K, then U ⊂ K is closed in a compact set, so it is itself
compact. Intuitively, X is locally compact if appears compact when you zoom in closely enough
on a given point.

One point compactifications. To motivate the construction of a compact space containing a
given space, we first considered the case of R. Of course, R is not compact, but by taking the
“ends” of R, bringing them together, and gluing these ends at a single point, we can imagine R as
being a subspace of S1. To be concrete, R is homeomorphic to the space obtained by deleting the
“north pole” of S1, where the required homeomorphism is given by stereographic projection: for
p ∈ S1 which is not the north pole, the stereographic projection of p onto R is the point on the
x-axis where the line through p and the north pole intersects the x-axis. The north pole is then
regarded as a “point at infinity”, and is the additional point we need to include in R in order to
construct the “one point compactification” S1.

The topology on S1 = R ∪ {∞} can be described as follows. First, any set which is open in R
to begin with is still open in S1. Now, an open set around the point at infinity (i.e. the north pole
of S1) is one which under stereographic projection corresponds to a subset of R of the form

(−∞,−m) ∪ (m,∞).

(Intuitively, as you go to ∞ in either direction of R you approach the point at infinity.) The key
observation is that such a set is simply the complement of a compact subset of R, namely [−m,m].
Thus, the neighborhood of the point at infinity are complements of compact sets in R.

Similarly, we can imagine R2 as sitting inside the compact space S2. In this case, the higher-
dimensional analog of stereographic projection gives a homeomorphism between S2 with the north
pole excluded and R2, viewed as the xy-plane in R3. We again think of the north pole as thus
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being a “point at infinity” in relation to R2 and call S2 = R2 ∪ {∞} the one point compactification
of R2. As in the case of R, neighborhoods of ∞ correspond to complements of compact sets in R2

under stereographic projection.
In general, given a locally compact space X, the one point compactification of X is Y = X∪{∞}

equipped with the topology where open sets not containing ∞ are simply open subsets of X and
neighborhoods of ∞ are complements of compact subsets of X. As the book shows, Y is then
compact and Hausdorff. To be clear, X being locally compact is required in order to show that Y
is Hausdorff; for non-locally compact spaces, Y will still be compact, but it won’t be Hausdorff.

Lecture 19: More on Local Compactness

Warm-Up 1. We showed that one point compactifications are unique, in the sense that if Y and
Y ′ are two compact Hausdorff spaces containing X such that Y −X and Y ′ −X are both single
points, then Y and Y ′ are homeomorphic. This can be found in the book.

Warm-Up 2. We claim that if X is locally compact and Hausdorff, then for any closed subset
A and x ∈ X − A, there exist disjoint open sets U and V such that x ∈ U and A ⊆ V . (This
property is what it means to say that X is regular, so the point of this Warm-Up is to show that
locally compact Hausdorff spaces are always regular. We will look at the notion of regularity in
more detail later on.)

Let Y denote the one point compactification of X. Let A denote the closure of A in Y , which
is compact since Y is compact. Since X − A is a neighborhood of x which does not contain an
element of A, x /∈ A. Thus {x} and A are disjoint compact sets in Y , so since Y is Hausdorff by a
problem on the homework there disjoint open sets U ′ and V ′ in Y containing x and A respectively,
and then U = X ∩ U ′ and V = X ∩ V ′ are the required sets in the stated problem.

Compactifications. In general, a compactification of a locally compact Hausdorff space X is a
compact Hausdorff Y having X as a dense subspace. The one point compactification of X is the
simplest compactification, but there are others. Perhaps the most important compactification is
the Stone-Cech compactification. We won’t study this compactification in this course, but you can
more information about it later on in the book. Essentially, this is the compactification from which
all other compactifications can be derived.

Examples of non-locally compact spaces. Both Q with its standard topology and Rℓ are not
locally compact. To see that Q is not locally compact, we note that no compact subset of Q can
contain an open set of the form (a, b) ∩ Q with a, b irrational, which it would have to if it where
to contain an open subset of Q. If so, this would imply that any [a, b] ∩ Q was compact, which is
not true: intervals (c, d) with rational endpoints approaching a and b give (after intersecting with
Q) an open cover of [a, b]∩Q (recall that a, b are irrational), but no finite number of these can still
cover [a, b] ∩Q.

To see that Rℓ is not locally compact, we show that any compact subset of Rℓ must be countable.
This will then imply that no neighborhood of the form (a, b) can be contained in a compact set, so
Rℓ is not locally compact. Suppose C is a compact subset of Rℓ. For each x ∈ C, the sets

(−∞, x− 1

n
) ∪ [x,∞)

cover C, so we get a finite subcover; the right endpoints x− 1
n of the first portions making up the

sets in this finite cover have a maximum, so we can find a rational ax such that (ax, x] contains no
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point of C apart from X. For different x ∈ C these (ax, x] are thus disjoint, so the map C → Q
defined by x → ax is an injection, showing that C is countable.

Local compactness revisited. As the book shows, for a Hausdorff space local compactness can
be rephrased as the property that for any point p and for every neighborhood U of that point, there
exists a neighborhood V of p whose closure is compact and contained in U . This phrasing of local
compactness for Hausdorff spaces is closer to the form the definition of “locally connected” takes.
Indeed, using the notion of a local basis we mentioned previously. in a locally compact Hausdorff
space, every point has a local basis of neighborhoods with compact closure.

Lecture 20: Countability Axioms

Warm-Up. We give an example of a continuous map from a locally compact space whose image
is not locally compact, thus showing that local compactness (as opposed to compactness) is not
a property preserved by continuous functions. Consider the identity function Qd → Q, where Qd

denotes Q with the discrete topology and where the codomain has the standard topology. This
map is continuous (as all maps with discrete domain are), and Qd is locally compact since for any
r ∈ Q, {r} is a compact neighborhood of r. However, the image Q is not locally compact as shown
last time.

To guarantee that the image of a locally compact space is locally compact we have to assume
that the map, in addition to being continuous, is also open. Indeed, suppose f : X → Y is
continuous and open where X is locally compact. Pick y ∈ f(X) and x ∈ X such that f(x) = y.
Since X is locally compact, there exists a compact set K ⊆ X containing a neighborhood U of x.
Since f is open f(U) is then a neighborhood of y = f(x) contained in the compact set f(K), so Y
is locally compact.

First countability and sequences. We proved the following properties of first countable spaces
mentioned in the book without proof. These properties show that sequences are enough to charac-
terize limit points and continuity when a space is first countable, generalizing properties of R seen
in an analysis course.

Suppose X is first countable. Then:
(i) For any A ⊆ X, x ∈ A if and only if there is a sequence of points in A converging to x.
(ii) A function f : X → Y (where Y is any space) is continuous if and only if whenever xn → x

in X, we have f(xn) → f(x) in Y .

Proof of (a). The backwards direction of (a) is true in any topological space, since if an → x where
each an ∈ A, then any neighborhood of x will contain all an past some index, so any neighborhood
of x contains a point of A and hence x ∈ A. For the forward direction suppose x ∈ A and let {Un}
be a local basis at x. For each n, U1 ∩ · · · ∩ Un is a neighborhood of x so there exists an ∈ A such
that

an ∈ U1 ∩ · · · ∩ Un.

We claim that an → x. To see this, let V be any neighborhood of x. Since the Un form a local
basis at x, there exists N such that x ∈ UN ⊆ V . Then for n ≥ N we have

an ∈ U1 ∩ · · · ∩ Un = U1 ∩ · · · ∩ UN ∩ · · · ∩ Un ⊆ Un ⊆ V,

so an → x as claimed.
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Proof of (b). The forward direction is true in general without the assumption that X is first count-
able. Indeed, suppose xn → x and let V be a neighborhood of f(x). Then f−1(V ) is a neighborhood
of x, so since xn → x there exists N such that xn ∈ f−1(V ) for n ≥ N , which implies that f(xn) ∈ V
for n ≥ N as well. Hence f(xn) → f(x).

Conversely suppose f(xn) → f(x) in Y whenever xn → x in X. To show that f is continuous
it is equivalent to show that for any A ⊆ X, we have

f(A) ⊆ f(A).

Let A ⊆ X and let y ∈ f(A). Pick x ∈ A such that f(x) = y. By (a) there exists a sequence an in
A such that an → x. By our assumption we then have f(an) → f(x) = y. Since f(an) ∈ f(A), this
implies that y ∈ f(A) as claimed.

Compact metric spaces are second countable. We showed that any compact metric space X
is second countable. Fix n ∈ N and consider the collection {B1/n(p)}p∈X of all open balls in X of

radius 1
n . These cover X since, in particular, p ∈ B1/n(p), so by compactness of X there exist some

B1/n(pn,1), . . . , B1/n(pn,kn)

covering X.
Let B = {B1/n(pn,kj )} be the collection of all such finite covers with varying n. This is countable

since it is a countable union of finite sets, and we claim that it is a countable basis of X. To see
this, let q ∈ X and pick any neighborhood V of q. Then there exists some Br(q) contained in V .
Pick n ∈ N such that 1

n < r
2 . Since the sets

B1/n(pn,1), . . . , B1/n(pn,kn)

cover X, one, say B1/n(pn,kj ) contains q. If x ∈ B1/n(pn,kj ), we have:

d(x, q) ≤ d(x, pn,kj ) + d(pn,kj , q) <
1

n
+

1

n
<

r

2
+

r

2
= r.

Thus x ∈ Br(q), so q ∈ B1/n(pn,kh) ⊆ Br(q) ⊆ V , showing that the sets B1/n(pn,kj ) form a basis
for X as claimed.

Lecture 21: Regular Spaces

Warm-Up. We showed that any second countable space is separable and Lindelöf, which is a
result proved in the book.

Rℓ is not metrizable. For metric spaces, being second countable is equivalent to being separable.
The forward implication was in the Warm-Up, and the backwards implication is on the homework.
We thus have another way of showing that certain spaces are not metrizable, meaning having
topologies which are not induced by a metric. For instance, Rℓ is separable (since Q is dense) but
not second countable, so it is not metrizable.

To see that Rℓ is not second countable, suppose B is any basis for Rℓ. For each x ∈ Rℓ, pick a
basis element Bx ∈ B such that

x ∈ Bx ⊆ [x, x+ 1).

Note that this implies inf Bx = x, since Bx must contain its minimum. Thus if x ∕= y, Bx ∕= By,
showing that there are uncountably many such Bx, so B cannot be a countable basis.
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Examples of regularity. We point out there that we showed locally compact Hausdorff spaces
are regular in the second Warm-Up of Lecture 19. The book shows, as we did, that Rℓ is regular
as well. (Actually, the book shows more, in that it shows Rℓ is normal, whereas we only did the
regular case in class.) Also, the book contains the example that RK is not regular. Note that
this argument is essentially the same as the argument given in a homework problem that RK is
connected.

Lecture 22: Normal spaces

Warm-Up. A space X is completely regular if for any closed set A and any x ∈ X − A, there
exists a continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = {1}. We show that
any completely regular space is regular. (Complete regularity is known as the T3 1

2
-axiom since it

sits between T3, regular, and T4, normal. The fact that normal spaces are completely regular will
follow from Urysohn’s lemma.)

Let A, x, and f be as in the definition of completely regular. Then f−1([0, 1/2)) is a neighbor-
hood of x and f−1((1/2, 1]) is an open set in X containing A. These two open sets are disjoint
since [0, 1/2) and (1/2, 1] are disjoint, so they give the required sets in the definition of regular.

Foreshadowing Urysohn’s Lemma. It is not true that a regular space must be completely
regular, but examples showing this are difficult to describe. (A starred homework problem in the
book goes through a description of one example.) If in the definition of completely regular above
we place x by a closed set B disjoint from A, the analogous property will show that X must then
be normal. The amazing fact is that in this case the converse is true, a result which is known as
Urysohn’s lemma, and which we’ll look at next time.

Warning. As the book states, subspaces and products are not well-behaved with respect to
normality, in that a subspace of a normal space need not be normal and the product of normal
spaces need not be normal either. The book shows that Rℓ × Rℓ is not normal, even though Rℓ is
normal. Examples of non-normal subspaces of normal spaces are harder to find, but here is one: the
space [0, 1]R is normal since it is compact and Hausdorff (compactness will follow from Tychonoff’s
theorem that products of compact spaces are always compact), and such spaces, as the book shows,
are always normal, but the subspace (0, 1)R is normal. The book has a difficult homework problem
showing that RR is not normal, and the fact that (0, 1)R is not normal then follows from the fact
that (0, 1) and R are homeomorphic.

Spaces which are normal. As the book shows, there are various types of spaces which are always
normal: metric spaces, compact Hausdorff spaces, and regular second countable spaces. The proofs
of these facts can be found in the book, but show that many spaces which show up in practice are
indeed normal.

Lecture 23: Urysohn’s Lemma

Warm-Up. Suppose X has the property that any closed sets A,B such that A ∩ B = ∅ and
A ∩ B = ∅ can be separated by disjoint open sets. We showed that then any subspace of X is
normal. In fact, if any subspace of X is normal, X will have this given property. This was Problem
1 on Homework 8, so we omit the proof here.

A space with this property is said to be completely normal, which is known as the T5-axiom.
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Urysohn’s lemma. The statement of Urysohn’s lemma is the following: if X is normal and A,B
are disjoint closed subsets of X, then there exists a continuous function f : X → [0, 1] which is 0 on
A and 1 on B. We say that A and B can be separated by a function. Think of this as an extension
problem: the constant zero function on A and the constant function 1 on B describe a real-valued
continuous function on A∪B, and Urysohn’s lemma says that this can be extended to a continuous
function on all of X. Indeed, Urysohn’s lemma is at the core of the Tietze extension theorem we’ll
soon look at, which considers the question of extending an arbitrary (i.e. non-constant) continuous
function on a closed subset of a normal space.

The proof of Urysohn’s lemma can be found in the book.

Lecture 24: More on Urysohn

Warm-Up. As a Warm-Up we proved the forward direction of Exercise 33.4 in the book, which is
part of Problem 3 on Homework 8, so we omit the proof here. The property based on this given in
Exercise 33.5 of the book (which was also on Homework 8) is what it means for X to be perfectly
normal, which is known as the T6-axiom.

Complete regularity. We showed that products of completely regular spaces are completely
regular, a proof which can be found in the book.

Urysohn metrization theorem. Urysohn’s metrization theorem states that any second countable
regular space is metrizable. The proof can be found in the book; in class we did not give the full
proof, but only described the use of Urysohn’s lemma in the proof and gave the idea behind the
rest of the proof.

Manifold imbeddings. An n-dimensional manifold is a second countable Hausdorff space where
every point has a neighborhood homeomorphic to Rn. Manifolds are fundamental objects of study
in geometry and topology, and a key fact is that they can always be realized as subsets of some
Euclidean space of large enough dimension. The proof of this in the case of compact manifolds is
in the book; again, in class we did not look at the actual proof but only briefly spoke about where
Urysohn’s lemma comes up.

Lecture 25: Tietze Extension Theorem

Warm-Up. Our Warm-Up this day dealt with the existence of so-called partitions of unity, at
least in the case of finite covers. Showing the existence of such things is where Urysohn’s lemma
shows up in the construction of the manifold imbeddings mentioned at the end of last time. None
of this will be on our final exam, so I’ll omit all the details for now. The existence of partitions of
unity in the case of infinite covers depends on the notion of paracompactness, which is something
we mentioned a while back and which manifolds always possess. Again, we’ll omit this all for now.

Tietze extension theorem. The Tieteze extension theorem says that if X is normal and A a
closed subset, then any continuous function f : A → R can be extended to a continuous function
f̃ : X → A. The proof, of course, uses Urysohn’s lemma in a nice way and can be found in the
book.
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Lecture 26: Tychonoff ’s Theorem

Our final goal is to prove Tychonoff’s Theorem, which states that the product of an arbitrary
number of compact spaces is compact in the product topology. We’ll prove this using what’s
known as Alexander’s Subbase Theorem; the proof of Tychonoff’s Theorem itself is then a fairly
short consequence, although it is easy to get lost in the notation. Proving Alexander’s Subbase
Theorem is where the real difficulty lies, and this is where we’ll need to use some hardcore set
theory; we’ll come back to this next time.

Subbases. To setup Alexander’s Subbase Theorem, we need to briefly review the notion of a
subbasis of a topology, which is step below the notion of a basis. Subbases were introduced in the
book back when bases where, but we didn’t need them until now. A subbasis for a topology on X
is a collection of sets B whose union is X. From this we get a basis (in the sense we’ve been using
all along) by taking intersections of finitely many things in the subbasis; that is, a basic open set
is defined to be one of the form

V1 ∩ · · · ∩ Vn

where each Vi ∈ B is a subbasis element. An arbitrary open set in the topology generated by this
subbasis is then a union of these basic open sets, so is of the form



α

(Vα,1 ∩ · · · ∩ Vα,nα) where each Vα,i ∈ B.

Key for us is that a subbasis for the product topology on


αXα is given by preimages of the
form

pr−1
β (Uβ) =



α

Uα where Uα = Xα for α ∕= β

and where Uβ is open in Xβ . Back when deriving the characterization of the product topology as
the coarsest one relative to which all projections were continuous, we indeed showed that a basic
open set is one which can be written as the intersection of finitely many such preimages, so these
preimages do form a subbasis.

Alexander’s Subbase Theorem. The statement is:

Suppose X is a topological space with subbasis B. If every open cover of X by subbase
elements has a finite subcover, then X is compact.

The point is that when checking compactness, we need only consider open covers consisting of
subbasis elements: if such open covers always have finite subcovers, it turns out that all open
covers will as well. This is good, since usually subbasic open sets are simpler to work with than
arbitrary open sets, as we’ll now see in Tychonoff’s Theorem.

Tychonoff ’s Theorem. Suppose {Xα} is a collection of compact spaces. Then


αXα is compact
with respect to the product topology.

Proof. By Alexander’s Subbase Theorem, it is enough to show that any open cover of


Xα con-
sisting of sets of the form pr−1

β (Uβ) for some β, where Uβ ⊆ Xβ is open, has a finite subcover.
Thus, suppose U is an open cover consisting of such sets. For each α, set

Uα =

Uα open in Xα

 pr−1
α (Uα) ∈ U


.
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Note that each element of U is the preimage under some projection of a set in some Uα. The point
is that we are grouping all the Uβ ’s whose preimages show up in U according the space Xβ from
which they come.

Now, we claim that for at least one β, Uβ is an open cover of Xβ . If not, then for any α the union
Uα of all the sets in Uα is a proper subset of Xα, so there exists xα ∈ Xα such that xα /∈


Uα.

But then the element (xα) of


Xα cannot be in any element of U since, if so, we would have
(xα) ∈ pr−1

γ (Uγ) for some γ and Uγ ⊆ Xγ , meaning that xγ ∈ Uγ ⊆

Uγ , contradicting the choice

of xγ . Hence for some β, Uβ covers Xβ .
Since Xβ is compact, we then get a finite subcover {Uβ,1, . . . , Uβ,n} of Uβ . The preimages

pr−1
β (Uβ,1), . . . , pr

−1
β (Uβ,n)

then give a finite subcover of U ; indeed, each such preimage looks like

pr−1
β (Uβ,i) =


Vα where Vβ = Uβ,i and Vα = Xα for α ∕= β,

so their union is


Wα where Wα = Xα for α ∕= β and Wβ = Uβ,1 ∪ · · · ∪ Uβ,n = Xβ , and is thus
all of


Xα. Hence we conclude that


Xα is compact as claimed.

Axiom of Choice. So, Tychonoff’s Theorem is actually quick to prove, at least assuming Alexan-
der’s Theorem and once we wrap our head around the notation. Again, the point is that by focusing
solely on subbasic open sets, we can direct our focus to only one index (the final β used in the
proof above), use compactness in this index to get a finite cover for the corresponding space, and
then take preimages to get a finite cover of the entire product. But now what remains is to prove
Alexander’s Theorem, and this is more involved. We’ll do this next time, where we’ll have to make
use of the Axiom of Choice in a novel way.

Recall that the Axiom of Choice says that the product of nonempty sets is always nonempty:
if {Xα} is a collection of nonempty sets, then


αXα is nonempty. This might seem like such an

obvious fact that it’s not worth mentioning, but let’s think about what it actually means for this
product to be nonempty. In the simpler case of a product of two nonempty sets X1 and X2, to
show that X1 ×X2 is nonempty all we do is say:

Pick x1 ∈ X1, which can be done since X1 ∕= ∅, and pick x2 ∈ X2, which can be done
since X2 ∕= ∅. Then (x1, x2) is in X1 ×X2, so X1 ×X2 ∕= ∅.

In a similar way, it is easy to show that the product of n nonempty sets is nonempty: we just
sit down and pick one element from each of our finitely many nonempty sets, and use them as
components for an element of the product. Of course, as the number of sets increases it “takes
longer” to pick an element from each set, but it can be done.

The issue arises when we try to do the same thing for the product of infinitely many sets. The
point is that we cannot literally sit down and pick an element from each of component set as would
be needed to describe an element of the product since it would take an infinite amount of time!
This is whole crux of the matter: choosing finitely many things at a time is always doable with the
Axiom of Choice, but making an infinite number of choices simultaneously is where the Axiom of
Choice is required. Now, this is not to say that choice is always needed when showing that certain
products are nonempty; for instance, Rω is nonempty since we can write down (0, 0, 0, 0, . . .) as an
explicit element. The point here is that we have explicitly written down the element we want from
each component, namely 0 in this case. The Axiom of Choice would be needed if we didn’t have
a set way of choosing these components, which is the issue we have when dealing with an infinite
number of random sets we have no information about.
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Tychonoff implies choice. To give a sense of the relation between the Axiom of Choice and
Tychnoff’s Theorem, we now show that Tychonoff’s Theorem implies the Axiom Choice. The fact
that the Axiom of Choice implies Tychonoff’s Theorem, so that the two are actually equivalent,
follows from the proof of Tychonoff’s Theorem we gave above and from what we will do next
time; the logic is “Axiom of Choice implies Zorn’s Lemma, which implies the Alexander Subbasis
Theorem, which implies Tychonoff’s Theorem”.

Suppose Tychonoff’s Theorem holds. For the sake of clean notation, we’ll only prove the Axiom
of Choice in the case of a countably infinite collection (usually called the “Axiom of Countable
Choice”), but the general case follows the same reasoning with a slight modification. So, suppose
{X1, X2, X3, . . .} is a collection of countably many nonempty sets. We aim to show there exists
something in the product X1×X2× · · · . For each n set Yn = Xn ∪ {∞n}, where ∞n denotes some
new point, and give Yn the topology whose open sets are

∅, Yn, Xn, {∞n}.

Since there are only finitely many open sets, any open cover of Yn is automatically finite so each
Yn is compact. By Tychonoff’s Theorem, Y1 × Y2 × Y3 × · · · is compact as well.

Now, define the open subsets Un of Y1 × Y2 × Y3 × · · · by:

U1 = {∞1}× Y2 × Y3 × · · ·
U2 = Y1 × {∞2}× Y3 × · · ·
U3 = Y1 × Y2 × {∞3}× · · ·

and so on. We claim that these sets do not cover all of Y1 × Y2 × Y3 × · · · . Before showing this,
note what this means: we get that


n Un is a proper subset of


n Yn, meaning that there must

exist some y = (y1, y2, y3, . . .) ∈ Y1 × Y2 × Y3 × · · · which is not in this union. But to say that
this element is not in this union means that y1 ∕= ∞1 (since y /∈ U1), y2 ∕= ∞2 (since y /∈ U2),
and so on. Thus it must be the case that each yn comes from the Xn part of Yn = Xn ∪ {∞n}, so
y = (y1, y2, . . .) ∈ X1 ×X2 × · · · is the element we are trying to show exists in order to say that
the product X1 ×X2 × · · · is nonempty.

To show that the Un’s all together do not cover


n Yn, we show that no finite number among
them can cover


n Yn; since we know


n Yn is compact, this suffices since if the Un’s did cover the

product, they would necessarily need to have a finite subcover. For any N we take, pick elements
xi ∈ Xi for each 1 ≤ i ≤ N . Then

x = (x1, x2, . . . , xN ,∞N+1,∞N+2,∞N+3, . . .)

is in Y1 × Y2 × · · · but is not in U1 ∪ · · ·UN since for 1 ≤ i ≤ N , x has an i-th component which is
not ∞i. Thus U1 ∪ · · · ∪ UN ∕= Y for all N , so {U1, U2, . . .} has no finite subcover of


n Yn among

it, so this collection itself is not a cover of


n Yn as required.
One important point: in order to make the above proof work, we needed to know that we can

pick elements from X1, . . . , XN all at once for any N , but since this just requires making a finite
number of choices at a time, the Axiom of Choice is not required. Specifying all the remaining
elements of x to be ∞N+1,∞N+2, . . . also does not require choice since we are explicitly saying here
which elements from YN+1, YN+2, . . . should be chosen.

Towards Zorn. The Axiom of Choice takes on many equivalent forms, and the one we’ll actually
need is called Zorn’s Lemma. We’ll save the statement for next time, but be prepared to see a
statement which will take a bit of effort to digest. The amazing fact is that, while Zorn’s Lemma
will seem to be fairly complicated at first, it is actually equivalent to the more obvious Axiom of
Choice and has some quite powerful applications.
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Lecture 27: Alexander Subbase Theorem

Our final goal is to prove the Alexander Subbase Theorem, on which our proof of Tychnoff’s
Theorem relied. As mentioned last time, the proof requires an equivalent form of the Axiom of
Choice known as Zorn’s Lemma, so we begin by explaining what goes into this result. Even though
this is called a “lemma”, Zorn’s Lemma is an incredibly important and useful result in mathematics,
mainly because it gives a way to show that various objects exist in situations where constructing
them explicitly would be impossible.

Zorn’s Lemma. Suppose P is a nonempty, partially-ordered set in which every chain has an
upper bound. Then P has a maximal element.

Partial orders. There are various possibly unfamiliar terms in the statement of Zorn’s Lemma,
so we first clarify the statement itself. A partial order on a set P is a relation ≤ satisfying:

• a ≤ a for all a ∈ P ,

• if a ≤ b and b ≤ c, then a ≤ c, and

• if a ≤ b and b ≤ a, then a = b.

Here, ≤ is purely a symbol we use to denote the given relation, but the point is that these properties
suggest ≤ behaves as it if was an actual “ordering” on elements of P : anything should be “less
than or equal to” itself, the “less than or equal to” relation should be transitive, and the only way
in which two things can be “less than or equal to” each other is if they are the actually the same.
We also use the strict notation a < b to mean that a ≤ b and a ∕= b.

Two key examples are the usual “less than or equal to” relation on R, where x ≤ y literally
means that x is less than or equal to y, and the partial order on a collection of subsets of a set
given by ⊆, where we interpret A ⊆ B as saying that A is “less than or equal to” B. However,
these examples have one important difference: in the case of R, all elements are comparable to
one another in the sense that given any x, y ∈ R, it is true that x ≤ y or y ≤ x, but this is not
necessarily true when considering collections of subsets. A chain in P is a subset whose elements are
all comparable to one another in this way. (A partial order in which all elements are comparable is
called a total order, so a chain in P is then a totally-ordered subset of P .) The term “chain” comes
from the idea that you can order all elements from “smaller” to “larger”, which in the countable
case looks like:

. . . ≤ a ≤ b ≤ c ≤ . . . .

An upper bound of a subset S of P is an element u ∈ P such that s ≤ u for all s ∈ S, which is
the same way the term “upper bound” is used, say, in analysis. Finally, a maximal element of P is
one for which there is nothing strictly larger: a ∈ P is maximal if whenever a ≤ b for some b ∈ P ,
we have a = b. The usual (total) ordering on all of R has no maximal elements, but subsets of R
might have maximal elements; if we take all subsets of a set S, then under ⊆ the only maximal
element is S itself, but a collection of only certain subsets might have none, one, or more maximal
elements.

Zorn’s Lemma thus says that as long we know that any totally-ordered subset can be bounded
above by something, then we can conclude that at least one maximal element exists. In the type
of situation we care about, Zorn’s Lemma will be applied in the following way. Take P to be a
collection of subsets of some set. Suppose further P has the property that for any subcollection
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C ⊆ P of sets such that any two are comparable via ⊆, meaning that given A and B in C it is
always true that either A ⊆ B or B ⊆ A, we have that the union


C of all things in C also belongs

to P . Then we can conclude that there is a set S in P which is not strictly contained within any
larger element of P . Here, the partial ordering on P is given by ⊆, C describes a chain in P with

C being its upper bound in P , and the resulting S is a maximal element of P . Such maximal
elements, as we’ll see, often have important properties we care about.

Choice implies Zorn. We now give a sense as to where Zorn’s Lemma comes from, and how
it relates to the Axiom of Choice. Specifically, we give a very rough sketch of the proof that the
Axiom of Choice implies Zorn’s Lemma. Zorn’s Lemma is actually equivalent to the Axiom of
Choice, but the direction we look at there (choice implies Zorn) is the one we need to take us from
the Axiom of Choice to Tychonoff’s Theorem. Our proof sketch is quite rough since we will get to
a point where we would need to know much more advanced set theory—in particular properties of
cardinal and ordinal numbers—to make it precise, but the basic idea will come across.

Suppose P is a nonempty, partially-ordered set in which every chain has an upper bound, and
aiming for a contradiction suppose P did not contain any maximal elements. Then for any a ∈ P ,
we can always find some b ∈ B such that a < b. Using the Axiom of Choice we can thus pick such
an element f(a) for any a ∈ P . (Using the “nonempty product” interpretation of the Axiom of
Choice, this comes form considering, for any a ∈ P , the nonempty set Ua of all elements of P which
are strictly larger than a and picking an element (f(a))a from the nonempty product


a Ua.) Fix

a ∈ P , so that a < f(a). But by this construction we also have f(a) < f(f(a)), and so on we get:

a < f(a) < f(f(a)) < f(f(f(a))) < · · · .

This list gives a chain in P , so by the assumption of Zorn’s Lemma this chain has an upper bound,
call it a1:

a < f(a) < f(f(a)) < f(f(f(a))) < · · · ≤ a1.

But now we can consider the chain

a1 < f(a1) < f(f(a1)) < f(f(f(a1))) < · · · ,

which itself has an upper bound a2:

a1 < f(a1) < f(f(a1)) < f(f(f(a1))) < · · · ≤ a2.

Continuing in this way over and over (and over and over!) again gives a bunch of elements of P :

a < f(a) < · · · ≤ a1 < · · · ≤ a2 < · · · ≤ a3 < · · · ≤ a4 < · · · .

In fact, there would be so many elements of P listed here that this would imply (and this is the
part which requires some pretty deep stuff which we will in no way attempt to make precise here)
that the cardinality of P would be larger than that of any other set, and in particular P would
have cardinality (strictly) larger that of P itself (or also of its power set), which is nonsense. Thus
we conclude that P must have had a maximal element after all.

The big three. As stated above, the Axiom of Choice not only implies but is actually implied
by Zorn’s Lemma, so that they are equivalent. Just for the sake of interest, we give the statement
of one more equivalent form of either of these: the Well-Ordering Theorem. A well-ordering on
a set P is a total order in which every nonempty subset of P has a least (i.e. smallest) element.
For instance, the usual ordering on N is a well-ordering, whereas the usual ordering on R is not.
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The Well-Ordering Theorem says that every set can in fact be well-ordered. In the case of R, the
point is that the usual order is not the one which works, but that there is some way to “order” the
elements of R so that every nonempty subset does have a least element.

This is pretty surprising indeed, and the well-ordering on R which works would actually have
no relation to the usual ordering. An explicit such well-ordering on R is not possible to write
down, but nonetheless we know it must exist (if we accept the Axiom of Choice) since the Axiom
of Choice, the Well-Ordering Theorem, and Zorn’s Lemma are all equivalent to one another. These
types of surprising results are the main reason why the Axiom of Choice—as obvious as it may
seem—is viewed as quite controversial by many mathematics: it has some seemingly paradoxical
consequences which often say that a certain objects exists without giving any sense as to how to
actually construct said object. There’s an old joke that says: the Axiom of Choice is clearly true,
the Well-Ordering Theorem is clearly false, and who knows about Zorn’s Lemma? The joke, of
course, is that the first of these seems obvious, the second seems like it could not possibly be true
(since we cannot even imagine what a well-ordering of R would actually look like), and the third
(Zorn) is such a complicated looking statement that no one really has any idea what it even means,
and yet all three are actually saying the same thing in the end.

Rω has a basis. Before proving the Alexander Subbase Theorem, we give one application of Zorn’s
Lemma in linear algebra. Consider Rω equipped with vector addition and scalar multiplication
defined as one would expect:

(x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .) and r(x1, x2, . . .) = (rx1, rx2, . . .).

We aim to show that Rω has a basis in the sense of linear algebra: a linearly independent subset
of Rω which spans all of Rω. Now, the trouble is that it is not actually possible to write down
an explicit basis (!), so our proof is non-constructive. This is in stark contrast to the case of Rn,
where bases are easy to write down. Note that the obvious candidate of taking the vectors ei which
have a 1 in the i-th location and 0 everywhere else (which work in the Rn case) do not work in
Rω, since it is not true that anything in Rω can be written as a linear combination of finitely many
of these ei, which is a technical requirement in the definition of “span” in the setting of infinite
dimensions; the issue is that any linear combination of finitely many of the ei’s must eventually
end in all zeroes! So in fact, the ei vectors only span the subspace R∞ of Rω.

Let I denote the collection of all linearly independent subsets of vectors in Rω. Take any chain
C ⊆ I. Then


C is still a collection of linearly independent vectors in Rω, and so is an upper

bound for this chain in I. To see that


C is still linearly independent, take any finite number of
vectors v1, . . . ,vn ∈


C. (To say that a set of vectors is “linearly independent” technically means

that any finite number of vectors taken from that set are linearly independent.) Each vi comes
from some Ci ∈ C. The fact that C is a chain implies that there exists C0 ∈ C which contains
each of C1, . . . , Cn, so v1, . . . ,vn ∈ C0 ⊆ I must be linearly independent. Hence


C is a linearly

independent collection of vectors as claimed.
By Zorn’s Lemma there thus exists a maximally linearly independent set B of vectors in Rω.

If these vectors did not span Rω, picking x ∈ Rω not in their span gives a linearly independent
collection B ∪ {x} which is strictly larger than B, contradicting maximality of B. Thus B must
span Rω, so that B is a basis of Rω as desired.

In general, the same reasoning shows that any vector space, even an infinite dimensional one,
has a basis—a fact which is actually equivalent to the Axiom of Choice. Many other facts you
might have seen elsewhere turn out to also be applications of the same idea: the fact that any
ideal in a nontrivial ring with unity is contained in a maximal ideal, the fact that any field has an
algebraic closure, etc.
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Alexander’s Subbase Theorem. Finally we prove the Alexander Subbase Theorem, thereby
completing the proof of Tychonoff’s Theorem. Recall the statement: suppose X is a topological
space with subbasis B; if every open cover of X by subbase elements has a finite subcover, then
X is compact. The proof works by contradiction: use Zorn’s Lemma to get a maximal open cover
with some given property, and then use the maximality itself to show that this could not actually
exist after all.

Proof. Aiming for a contradiction, suppose X is not compact, so that there exists an open cover of
X with no finite subcover. Let

F = {open covers of X with no finite subcover}

be the nonempty collection of all such things. Equip F with the partial order ⊆ given by set
containment. We claim that F satisfies the assumptions of Zorn’s Lemma. Indeed, suppose {Eα}
is a chain in F and let E =


αEα denote the union of everything in this chain. Clearly E will

be an upper bound for this chain once we know that E is actually in F . Since any Eα is already
an open cover of X, E is as well. Take any finite number of things U1, . . . , Un in E. Then each Ui

is an element of some Eαi . Since {Eα} is totally ordered, there is some Eβ which contains all of
Eα1 , . . . , Eαn . Then U1, . . . , Un are all in Eβ , so U1, . . . , Un cannot cover of all X because if they
did they would make up a finite subcover of Eβ , contradicting the fact that Eβ ∈ F . Thus no finite
number of things in E =


αEα can cover X, so E ∈ F as required.

Thus F satisfies the assumptions of Zorn’s Lemma, so there exists a maximal element M in F ;
that is, M is a open cover of X with no finite subcover which is maximal among such open covers.
The contradiction we are after will arise from showing that M must actually have a finite subcover
after all. Consider M ∩ B, which is made up of the open sets in the cover M which are actually
subbasis elements. This collection cannot cover all of X since, if so, it would necessarily have a
finite subcover by the assumption of the Alexander Subbase Theorem, which would then also be a
finite subcover of M, contradicting M ∈ F . Thus there exists x ∈ M such that x /∈


(M ∩ B),

which denotes the union of all things in M∩B. But M does cover all of X, so there exists U ∈ M
such that x ∈ U , and hence by the definition of a subbasis there exists a basic open set V1∩ . . .∩Vn,
where each Vi ∈ B, such that

x ∈ V1 ∩ · · · ∩ Vn ⊆ U.

Now, none of the Vi can be in M, since x ∈ V1 ∩ · · ·∩Vn ⊆ Vi would then imply that x was already
covered by the elements of M ∩B, but we chose x to not be in


(M ∩B).

Thus for each i, M∪ {Vi} is a cover of X which is strictly larger than M. Since M is meant to
be maximal with respect to those open covers with no finite subcover, this larger cover must then
have a finite subcover, say

Ui,1, . . . , Ui,ni , Vi ∈ M ∪ {Vi},

where concretely each Ui,j comes from M. (Note that Vi must be included in this subcover since
M alone does not have a finite subcover.) Thus for each i we have

X ⊆


j

Ui,j ∪ Vi

and hence:

X ⊆


i






j

Ui,j ∪ Vi



 ⊆


i,j

Ui,j ∪ (V1 ∩ · · · ∩ Vn) ⊆


i,j

Ui,j ∪ U,
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which says that the sets Ui,j and U all together cover X. Since each of these sets comes from M
and there are finitely many (there are finitely many i = 1, . . . , n and then for each of these finitely
many j = 1, . . . , ni), these would give a finite subcover of M, again contradicting the fact that
M ∈ F was meant to have no finite subcover.

Thus no maximal open cover of X with no finite subcover can exist after all, so this final
contradiction shows that our original assumption that F is nonempty must have been false, so F is
indeed empty, meaning that there does not exist an open cover of X without a finite subcover, or
equivalently that every open cover of X has a finite subcover. Hence X is compact as claimed.

Hallelujah! Thanks for reading!
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