
NOTES ON DUAL SPACES

SANTIAGO CAÑEZ

In these notes we introduce the notion of a dual space. Dual spaces are useful in that they
allow us to phrase many important concepts in linear algebra without the need to introduce
additional structure. In particular, we will see that we can formulate many notions involving
inner products in a way that does not require the use of an inner product.

Let V be a vector space over a field F. Recall the following definition:

Definition 1. A linear functional on V is a linear map V → F. In other words, a linear
functional on V is an element of L(V, F).

Being examples of linear maps, we can add linear functionals and multiply them by scalars.
Also, there is a unique linear functional on V , called the zero functional, which sends everything
in V to zero. All this gives the set of linear functionals the structure of a vector space.

Definition 2. The dual space of V , denoted by V ∗, is the space of all linear functionals on
V ; i.e. V ∗ := L(V, F).

Proposition 1. Suppose that V is finite-dimensional and let (v1, . . . , vn) be a basis of V . For
each i = 1, . . . , n, define a linear functional fi : V → F by setting

fi(vj) =
{ 1 if i = j

0 if i 6= j

and then extending fi linearly to all of V . Then (f1, . . . , fn) is a basis of V ∗, called the dual
basis of (v1, . . . , vn). Hence, V ∗ is finite-dimensional and dim V ∗ = dim V .

Proof. First we check that (f1, . . . , fn) is linearly independent. Suppose that a1, . . . , an ∈ F
are scalars so that

a1f1 + · · ·+ anfn = 0.

Note that the 0 on the right denotes the zero functional; i.e. the functional which sends
everything in V to 0 ∈ F. The above equality above is an equality of maps, which should hold
or any v we evaluate either side on. In particular, evaluating both sides on vi, we have

(a1f1 + · · ·+ anfn)(vi) = a1f1(vi) + · · ·+ anfn(vi) = ai

on the left (by the definition of the fi) and 0 on the right. Thus we see that ai = 0 for each i,
so (f1, . . . , fn) is linearly independent.

Now we show that (f1, . . . , fn) spans V ∗. Let f ∈ V ∗. For each i, let bi denote the scalar
f(vi). We claim that

f = b1f1 + · · ·+ bnfn.

Again, this means that both sides should give the same result when evaluating on any v ∈ V .
By linearity, it suffices to check that this is true on the basis (v1, . . . , vn). Indeed, for each i
we have

(b1f1 + · · ·+ bnfn)(vi) = b1f1(vi) + · · ·+ bnfn(vi) = bi = f(vi),
again by the definition of the fi and the bi. Thus, f and b1f1 + · · ·+bnfn agree on the basis, so
we conclude that they are equal as elements of V ∗. Hence (f1, . . . , fn) spans V ∗ and therefore
forms a basis of V ∗. �
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Note in particular the following consequence of the above construction of the dual basis. If
v ∈ V is an element such that f(v) = 0 for all f ∈ V ∗, then v = 0. To see this, let (v1, . . . , vn)
be a basis of V and let (f1, . . . , fn) be the dual basis. Write v as

v = a1v1 + · · ·+ anvn.

By assumption, we have that fi(v) = 0 for all i. But by the definition of fi, fi(v) = ai. Thus
ai = 0 for all i and so v = 0 as claimed.

Let V ∗∗ denote (V ∗)∗ — i.e. the dual space of the dual space of V , often called the double
dual of V . If V is finite-dimensional, then we know that V and V ∗ are isomorphic since they
have the same dimension. However, in general writing down an actual isomorphism between
V and V ∗ requires choosing a basis of V and constructing the dual basis of V ∗ — the required
isomorphism the sends the ith basis vector of V to the corresponding dual basis vector of V ∗.
Similarly, since dim V ∗ also equals dim V ∗∗, we know that V and V ∗∗ are isomorphic. In this
case however, there is an isomorphism between V and V ∗∗ which can be written down without
the choice of a basis — such an isomorphism is said to be natural.

Proposition 2. Suppose that V is finite-dimensional. The map ev : V → V ∗∗ defined by

ev(v)(f) := f(v)

is an isomorphism.

Let us emphasize the definition of ev given above. For v ∈ V , ev(v) should be an element of
V ∗∗, meaning that it should take as input an element of V ∗ and output a scalar. The definition
says that ev(v) takes an element f ∈ V ∗ and spits out the scalar f(v); the name of this map,
ev, stands for “evaluation” since it sends v ∈ V to the element of V ∗∗ which is “evaluation on
v”.

Proof of Proposition. We omit checking that ev is linear — this follows simply from the defi-
nition of addition and scalar multiplication in V ∗. Since V and V ∗∗ have the same dimension,
to show that ev is an isomorphism it is enough to show that ev is injective. Let v ∈ null ev.
Then ev(v) is the zero element of V ∗∗, meaning that

ev(v)(f) = 0 for all f ∈ V ∗.

Unwinding the definition of ev(v), this means that

f(v) = 0 for all f ∈ V ∗.

Thus v has the property that evaluating any linear functional on it gives zero; the only element
of V with this property is 0, so we conclude that v = 0. Hence null ev = {0}, so ev is injective
and is thus an isomorphism. �

If V is infinite-dimensional, then ev : V → V ∗∗ is still injective but is no longer surjective.
Indeed, not every infinite-dimensional vector space is in fact isomorphic to its double dual.

Even though V and V ∗ are in general not naturally isomorphic, there is a nice situation in
which they are; indeed, the following is exactly the statement of Theorem 6.45 in the book,
now rephrased using the language of dual spaces:

Theorem 1. Let V be an inner product space. Define a map T : V → V ∗ by

Tv = 〈v, ·〉,

i.e. Tv is the linear functional on V whose value on w ∈ V is 〈v, w〉. Then T is an isomor-
phism.
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This is one of the main conceptual uses of inner products — they allow us to identity a
vector space with its dual in a natural way, where again natural means “without the choice of
a basis”.

Now we look at maps between dual spaces.

Definition 3. Let T : V → W be linear. The dual map (or transpose) of T is the map
T ∗ : W ∗ → V ∗ defined by

T ∗g = gT for all g ∈W ∗.

In other words, T ∗ sends a linear functional g on W to the composition gT , which is a linear
functional on V .

Proposition 3. Suppose that V is finite-dimensional and let (v1, . . . , vn) be a basis of V . Let
(f1, . . . , fn) be the corresponding dual basis of V ∗. For T ∈ L(V ), the matrix of T ∗ ∈ L(V ∗)
with respect to (f1, . . . , fn) is the transpose of the matrix of T with respect to (v1, . . . , vn); i.e.

M(T ∗) =M(T )t.

This gives the “true” meaning of taking the transpose of the matrix: if a matrix represents
an operator on some finite-dimensional space, then its tranpose represents the dual operator.
Note that under the identification of V with V ∗ given by an inner product, the dual map
corresponds exactly to the adjoint of T with respect to that inner product; indeed, this is why
the dual map and adjoint use the same notation.

Finally, we give one last useful construction. Note again that under the identification of a
vector space with its dual given by an inner product, the following corresponds to taking the
orthogonal complement of a subspace. As above, this is why the following construction uses
the same notation as the orthogonal complement.

Definition 4. Let U be a subspace of V . The annihilator of U in V ∗, denoted by U⊥, is the
set of linear functionals on V which vanish on U ; i.e.

U⊥ = {f ∈ V ∗ | f(u) = 0 for all u ∈ U}.

Note that U⊥ is a subspace of V ∗. Indeed, the zero functional sends everything in U to zero
and so is in U⊥, if f(u) = 0 and g(u) = 0, then (f + g)(u) = f(u) + g(u) = 0 + 0 = 0 so U⊥

is closed under addition, and finally if also a ∈ F, then (af)(u) = af(u) = a0 = 0 so U⊥ is
closed under scalar multiplication.

Using annihilators, we can give a nice description of the dual space to a quotient space.

Proposition 4. There exists a natural isomorphism between U⊥ and (V/U)∗. Hence we can
identify linear functionals on V/U with elements of U⊥.

Proof. Let f ∈ U⊥. Again, this means that f is a linear functional on V which vanishes on
the subspace U . Define a linear functional Tf on V/U by

(Tf)(v + U) = f(v);

in other words, Tf sends the coset v + U to the scalar f(v). First we need to know that this
definition of Tf is well-defined. Suppose that v + U = v′+ U . We must check that evaluating
Tf on either one gives the same result. Since v+U = v′+U , v−v′ ∈ U . Thus since f vanishes
on U , we have

0 = f(v − v′) = f(v)− f(v′),
so f(v) = f(v′), showing that Tf is well-defined.

This then defines a map T : U⊥ → (V/U)∗. From the definition of addition and scalar
multiplication of linear functionals, it follows that T is linear. We claim that T is invertible.
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To show that T is injective, suppose that f ∈ null T . Then Tf is the zero functional on V/U
so

0 = (Tf)(v + U) = f(v) for all v ∈ V .

Thus f is the zero functional on V (i.e. the zero element of U⊥) so null T = {0} and T is
injective.

Finally, to show that T is surjective (note that we are not assuming V is finite-dimensional),
let g ∈ (V/U)∗. Define an element f ∈ V ∗ by

f(v) = g(v + U) for all v ∈ V.

We claim that f is actually in U⊥. Indeed, if u ∈ U , then g(u + U) = g(U) = 0 since U is the
zero element of V/U and g is linear. Thus f(v) = 0, so f ∈ U⊥. By definition of T , it follows
that Tf = g so that T is surjective and thus invertible. �

These last few results in particular show the sense in which dual spaces can be used to
rephrase many notions coming from inner products without actually using inner products.
This can be quite useful for the following reason: choosing an inner product involves making
a choice and putting yet more structure on a vector space, however, the dual space always
exists without any additional choices so using it instead of an inner product can make certain
things easier to keep track of.

We finish with one motivation for dual spaces coming from physics. A force in physics is
usually represented by a vector F . The main thing we are interested in is what a force does
when moving an object from point A to point B. If q is the position vector of the object, then
F acts on it to produce a number called “work”; that is, F can be thought of us a linear
functional

F : q 7→ F (q).
Thus from this point of view, force should actually be thought of as an element of the dual space
since it took a vector and produced a scalar. Thinking of forces in terms of dual spaces turns
out to be incredibly useful and helps simplify many other concepts in physics. In particular,
if you’ve taken a course in electromagnetism before, we finish by mentioning that Maxwell’s
equations are much simpler to express from this point of view.


