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Lecture 1: Real Numbers

Real analysis is the study of functions defined on the set of real numbers, or subsets thereof. The
key concepts we care about this quarter are continuity and differentiability, which are properties
a function may or may not have. No doubt you’ve seen these concepts developed to some extent
in a single-variable calculus course, but our aim here is to focus on the underlying theory behind
these notions, and the role they play in modern mathematics. Fundamentally, this is a course which
comes down to grappling with the notion of growth and being able to control—using estimates—how
large or small a given quantity can be.

Many of the concepts which make analysis on R possible apply more broadly to metric spaces,
which are abstract type of spaces on which it makes sense to talk about “distance”. Essentially,
whenever we see a definition on R which uses the absolute value distance |x− a| between two real
numbers x and a, there will be an analogous definition for metric spaces. In particular, one of the
most important concepts we will see throughout the entire course—compactness—makes sense in
the setting of metric spaces and it is only through this more general point of view that we will be
truly able to see just what it actually means intuitively.

We start by highlighting some properties of real numbers which will be crucial going forward,
and are at the core of most everything we will do. The most important concepts we’ll see these
first few days are those of supremums/infimums and completeness, which are THE reasons why
analysis on R is even possible.

Ordered fields. The set R of real numbers comes equipped with two basic structures. The first is
its algebraic structure, by which we mean the properties it has under addition and multiplication
of real numbers. The key concept here is that of a field, of which R is a basic example. We will not
spell out the full definition of a field here since the precise definition will not be so important for
us, but will instead highlight that one of the most important aspects is that division by nonzero
numbers is possible.

In addition to its algebraic structure, R also comes equipped with an order, meaning that it
makes sense to say that one real number is less than another. The term “order” also has a precise
abstract definition we will not spell out, but at times later it will helpful to point out examples
where the notion of “order” does not make sense. Together with the algebraic structure, the order
thus turns R into what’s called an ordered field. The set of rational numbers Q is also an example of
an ordered field, and understanding what is different about this ordered field vs R will be important
in seeing why R is so important in analysis. We will spell this out in a few days.

Facts about absolute values. We will use absolute values a lot, since they give us a way to
measure “size”, so we should make a few things clear. Recall that the absolute value of x ∈ R is
defined to be the number

|x| :=

{
x if x ≥ 0

−x if x < 0.

A key observation is that |x− y| is precisely the distance between x and y.
For ε > 0, the inequality |x− a| < ε means that the distance (on a number line) between x and

a is less than ε. This can be rephrased as

−ε < x− a < ε.

After adding a to both sides, we see that this is the same as

a− ε < x < a+ ε.
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Finally, this in turn means that x is in the open interval from a− ε to a+ ε:

x ∈ (a− ε, a+ ε).

It will be incredibly useful to become comfortable manipulating inequalities involving absolute
values in this manner, and to interpret them visually in terms of intervals.

Triangle Inequality. Oftentimes we will want to estimate how large the absolute value of a sum
|a+b| or difference |a−b| can be. The key fact here is the following, known as the triangle inequality :

|a+ b| ≤ |a|+ |b| for all a, b ∈ R,

which says that taking the absolute value of each term in our sum individually can only result in a
larger or equal value. This can be verified by working through all possible cases: a, b both positive;
both negative; one positive and one negative; etc. You can see details in the book if interested. The
name “triangle inequality” comes from the analogous statement in higher dimensions, where we
can indeed interpret this as saying that the sum of the lengths of two sides of a triangle is greater
than or equal to the length of the third side; we’ll come back to this interpretation later.

Note that the addition used in |a+b| is not important and the same inequality works for |a−b|:

|a− b| ≤ |a|+ |b|.

This just comes from writing a− b as a+ (−b) and applying the previous triangle equality.

Archimedean Property of R. The Archimedean Property of R says:

For any x ∈ R, there exists N ∈ N such that x < N .

In words, given any real number we can find a positive integer larger than it. This is just saying that
positive integers can get larger and larger without restriction. But this phrasing of the Archimedean
Property is not the one will most often use. Rather, we will make more use of the following:

For any ε > 0, there exists N ∈ N such that 1
N < ε. In words, given any positive real

number (no matter how small), there is a positive fraction of the form 1
N , where N is a

positive integer, which is smaller than it.

To see that this follows from the first version, note that since ε 6= 0, 1
ε is a real number. By the

Archimedean Property of R, there exists N ∈ R such that 1
ε < N . Since ε and N are both positive,

multiplying by ε and dividing by N does not alter the inequality, so we get 1
N < ε as desired.

This version says that fractions of the form 1
N can be made arbitrarily small. Practically, the

point will be that we can use this to “fit” expressions involving integers “in between” other ones we
care about. We will often use the phrase “Archimedean Property” to refer to this second version
as well.

Q is dense in R. As a first use of the Archimedean Property, we prove the following theorem,
which is what it means to say that Q is dense in R. Visually, the point is that no matter what
nonempty interval we look at, even ones which are incredibly small, we will always find rational
numbers inside. This says that in some sense rationals are “spread” throughout all of R, and will
eventually give us a way to approximate arbitrary expressions via rational expressions. It turns
out that the set of irrational numbers is also dense in R in the same sense. Again, no matter what
nonempty interval we take, irrationals will be present inside.
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Theorem. Given x, y ∈ R with x < y, there exists a
b ∈ Q such that x < a

b < y. In words, given
any two numbers (no matter how close they are to each other) we can always find a rational number
strictly between them.

Proof. Since x < y, y − x is positive so 1
y−x is real. By the Archimedean Property, there exists

b ∈ N such that
1

y − x
< b.

Since y − x > 0, this implies that

1 < b(y − x), so 1 < by − bx.

Since the distance between by and bx is greater than 1, there must be an integer between them so
there exists a ∈ Z such that

bx < a < by.

Since b is positive, this gives

x <
a

b
< y,

so a
b is the rational we desire.

Lecture 2: Supremums

Warm-Up. Suppose x > 0 and x2 < 2. We show there exists n ∈ N such that(
x+ 1

n

)2
< 2.

The point of this statement is that it says whenever x is a positive number whose square is less than
2, then we can always increase x by a small amount to still get a positive number whose square is
less than 2. That is, we can always “fit in” a number of the form (x+ 1

n)2 between x2 and 2.
Now, one approach is to note that x2 < (x+ 1

n)2 < 2 is—since x is positive—the same as

x < x+
1

n
<
√

2.

Thus, all we really need to know is that if x <
√

2, we can increase x by a small amount 1
n and

remain less than 2. This can be achieved by choosing n ∈ N such that 1
n <
√

2−x, which is possible

by the Archimedean Property of R. But, this assumes beforehand that we know
√

2 exists! If
√

2
did not exist (i.e. if there was no real number x satisfying x2 = 2), it would not make sense to
turn x2 < 2 into x <

√
2. This might seem like a silly point since of course

√
2 exists—after all it

is something like √
2 = 1.4142135624 . . . .

But, how do we know that this particular decimal expansion should in fact describe a number
satisfying x2 = 2? This is highly non-obvious, and starts to highlight some of the subtleties we
face when working with R: there is certainly no rational number whose square is 2, so why should
there be such a real number?

We will come back to this next time where we will see how we can guarantee that a real number
satisfying x2 = 2 exists, but for now the point is that we should avoid using “

√
2” in our solution,

so we should avoid the approach given above. Rather, we argue for the existence of n ∈ N satisfying
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(x + 1
n)2 < 2 in a way which does not involve taking square roots. After expanding (x + 1

n)2, we
see that the inequality we want to obtain is the same as

x2 +
2x

n
+

1

n2
< 2.

After rearranging, we see that this is the same as

2x

n
+

1

n2
< 2− x2.

Now, since
2x

n
+

1

n2
≤ 2x

n
+

1

n
=

2x+ 1

n

because 1
n2 ≤ 1

n for n ≥ 1, we can make 2x
n + 1

n2 smaller than 2− x2 as desired by instead making
2x+1
n smaller than 2− x2. This we can do using the Archimedean Property: since 2−x2

2x+1 > 0 (recall

that x2 < 2 and x > 0), there exists n ∈ N large enough so that

1

n
<

2− x2

2x+ 1
,

and this is the n which then satisfies 2x+1
n < 2− x2 as desired.

After all that scratch work, here then is our final proof. Suppose x > 0 and x2 < 2. Pick n ∈ N
large enough such that

1

n
<

2− x2

2x+ 1
,

which is possible since the right side is a positive number. Then

2x

n
+

1

n2
≤ 2x

n
+

1

n
=

2x+ 1

n
≤ 2− x2,

so for this n we have (
x+

1

n

)2

= x2 +
2x

n
+

1

n2
< 2

as desired. (We will come back to this result next time to view it in the proper context.)

Supremums. Suppose that S ⊆ R is a nonempty set of real numbers. An upper bound of S is a
real number u such that s ≤ u for all s ∈ S. We say that S is bounded above if it has an upper
bound. When S is bounded above, the supremum of S is its “least upper bound”. To be precise,
b is the supremum of S when it satisfies the conditions: (i) b is an upper bound of S, and (ii) for
any other upper bound u of S, b ≤ u. We use the notation b = supS for supremums.

Remark. We referred above to “the” supremum of S, without actually justifying the fact that if
a set has a supremum, it has only one. This is proved in the book, and the argument comes down
to showing that if b and b′ both satisfy the definition of supS, then b ≤ b′ and b′ ≤ b (using only
characterizations of b and b′ as supremums of S), so that b = b′.

Example. We claim that the supremum of {x ∈ R | x2 ≤ 2} is
√

2. First, note that after
taking square roots of the inequality defining this set, we see that this set is just the closed interval
[−
√

2,
√

2]. To show that
√

2 is indeed the supremum of this, we must show that it is an upper
bound and that it is smaller than any other upper bound. First, any x ∈ [−

√
2,
√

2] certainly
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satisfies x ≤
√

2 simply due to the definition of closed intervals. Thus
√

2 is an upper bound for
this set.

To show that
√

2 is the least upper bound, suppose that u is another upper bound for [−
√

2,
√

2].
Then

s ≤ u for any s ∈ [−
√

2,
√

2].

But in particular,
√

2 itself is in [−
√

2,
√

2] so u, being an upper bound, is larger than or equal
to it:

√
2 ≤ u. This shows that

√
2 is an upper bound of [−

√
2,
√

2] which is ≤ any other upper
bound, so it is the supremum as claimed.

Alternative characterization of supremums. An upper bound b of S ⊆ R is the supremum of
S if and only if for any ε > 0, there exists s ∈ S such that b− ε < s.

The condition after the “if and only if” is a precise way of saying that nothing smaller than b
can possibly be an upper bound of S: as ε varies through all positive numbers, b− ε varies through
all possible numbers smaller than b, and no such number can be an upper bound of S since we can
always find something in S larger than it. Since b is an upper bound of S with the property that
nothing smaller than it can be an upper bound, b must be the least upper bound as claimed.

Example. We claim that the supremum of the open interval (−
√

2,
√

2) is also
√

2. This should
hopefully be intuitively clear, but proving it is a little different than we did above for the closed
interval. The difference is that in this case, the claimed supremum is no longer in the set in question,
so the argument we gave before will no longer work. (Make sure you understand why not.)

Instead we use the alternate characterization of supremums given above. First, again it should
be simple enough to see that

√
2 is an upper bound of (−

√
2,
√

2). To show that nothing smaller
can be an upper bound, let ε > 0. Our goal is to find some s ∈ (−

√
2,
√

2) such that
√

2− ε < s. If
you draw a picture of

√
2− ε and

√
2 on a number line, all we need is some number between; their

midpoint, which is explicitly given by
√

2 − ε
2 , works. This should be the number in (−

√
2,
√

2)

which is larger than
√

2− ε, showing that
√

2− ε cannot be an upper bound.
There is one slight issue with this, in that if ε is too large then

√
2 − ε

2 won’t actually be in

(−
√

2,
√

2). In particular, this happens if ε ≥ 4
√

2 since in this case

√
2− ε

2
≤
√

2− 2
√

2 = −
√

2.

We get around this by restricting our values of ε to those which are < 4
√

2. We’ll see why this is
enough in the proof below.

Proof that sup(−
√

2,
√

2) =
√

2. Anything in (−
√

2,
√

2) is stricly less than
√

2, so
√

2 is an upper
bound for (−

√
2,
√

2). Now, let 0 < ε < 4
√

2. Then

−
√

2 =
√

2− 2
√

2 <
√

2− ε

2
<
√

2

so s =
√

2− ε
2 is in (−

√
2,
√

2). This s also satisfies

√
2− ε < s

so for 0 < ε < 4
√

2 we have found an element of (−
√

2,
√

2) which is larger than
√

2 − ε. For
ε ≥ 4

√
2, 0 is an element of (−

√
2,
√

2) which is larger than
√

2 − ε since in this case
√

2 − ε is
negative. Thus, this shows that for any ε > 0,

√
2− ε is not an upper bound of (−

√
2,
√

2), so
√

2
is the least upper bound as claimed.
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Example. We claim that the supremum of (−
√

2,
√

2) ∩Q is also
√

2. Here, our set consists only
of the rational numbers between −

√
2 and

√
2. We use the same idea as above, only now that the

choice s =
√

2 − ε
2 no longer necessarily works since this might not be rational, as we need it to

be in order to be in the set in question. We are saved this time by the fact that Q is dense in R,
which says that for any ε > 0 we can for sure find a rational s such that

√
2− ε < s <

√
2.

There is the same issue as above that we have to be careful if ε ≥ 4
√

2, but the same way we got
around that before works here. I’ll leave it to you to write out a precise proof, mimicking the one
for (−

√
2,
√

2).

Example. Denote the set
{

n
n+1

∣∣∣ n ∈ N
}

by A. We claim that supA = 1, which we can guess

based on the fact that the fractions above appear to be getting closer and closer to 1 as we plug in
larger and larger values of n, or by considering the limit of the given expression as n→∞. (We’ll
talk about the relation between limits and supremums soon enough.)

All fractions we are looking at are positive and the numerator is always smaller than the
denominator, so all such fractions are certainly smaller than 1. To show that 1 is the least upper
bound, again take ε > 0. We want a number of the form n

n+1 such that

1− ε < n

n+ 1
.

Moving some terms around, we can rewrite this as

1− n

n+ 1
< ε, or

1

n+ 1
< ε.

This last expression just comes from writing the left-hand side as a single fraction. Again, we are
looking for a value n which makes this true, but now we see that the Archimedean Property of R
precisely says that we can find such a value. Here is our proof.

Proof that supA = 1. For any n ∈ N, we have n < n + 1, so n
n+1 < 1 and hence 1 is an upper

bound of S. To show that 1 is the least upper bound, let ε > 0. By the Archimedean Property of
R there exists N ∈ N such that 1

N < ε. But then also

1

N + 1
<

1

N
< ε.

Since 1
N+1 = 1− N

N+1 , this gives

1− N

N + 1
< ε, or 1− ε < N

N + 1
.

Thus N
N+1 is an element of S which is larger than 1−ε, so we conclude that supA = 1 as claimed.

Lecture 3: Completeness of R

Warm-Up. We claim that the supremum of{
3n2

n2 + n− 1

∣∣∣∣ n ∈ N and n ≥ 2

}
7



is 3. We come up with this value as a result of the fact that the given fraction is always smaller
than or equal to 3 (as we will justify in a bit) and if you plug in larger and larger values of 3 the
fraction appears to get closer and closer to 3, or by taking the limit of the given fraction as n→∞.
(Again, we will talk about the relation between supremums and limits shortly.)

First, since n2 + n− 1 > n2 for n ≥ 2, 1
n2+n−1 <

1
n2 so

3n2

n2 + n− 1
<

3n2

n2
= 3 for n ≥ 2.

Thus 3 is an upper bound of the given set. Now, let ε > 0; we must show there is something in the
given set which is larger than 3− ε. That is, we want N ≥ 2 such that

3− ε < 3N2

N2 +N − 1
.

Rearranging terms, this is the same as

3− 3N2

N2 +N − 1
< ε, or

3N − 3

N2 +N − 1
< ε.

Since
3N − 3

N2 +N − 1
≤ 3N

N2 +N − 1
≤ 3N

N2
=

3

N
,

choosing N such that 3
N < ε (which we can do by the Archimedean Property) gives us what we

want. That is, for N such that 1
N < ε

3 , we have

3− 3N2

N2 +N − 1
=

3N − 3

N2 +N − 1
≤ 3N

N2
=

3

N
< ε,

so 3− ε < 3N2

N2+N−1 as required.

Example. For nonempty subsets A and B of R, define A+B to be the set

A+B = {a+ b | a ∈ A and b ∈ B}.

We claim that if A and B have supremums, sup(A + B) = supA + supB. We give two proofs of
this: one using the definition of supremum and one using the alternate characterization in terms
of ε.

Proof 1. For any a ∈ A and b ∈ B, we have a ≤ supA and b ≤ supB so

a+ b ≤ supA+ supB.

This shows that anything in A + B is ≤ supA + supB, so supA + supB is an upper bound of
A+B. Now, suppose that u is any upper bound of A+B. Then

a+ b ≤ u for any a ∈ A and b ∈ B.

For a fixed b ∈ B, this means that

a ≤ u− b for any a ∈ A.
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Hence for a fixed b ∈ B, u− b is an upper bound of A and thus

supA ≤ u− b for all b ∈ B.

Rearranging terms, this gives
b ≤ u− supA for any b ∈ B.

Thus u− supA is an upper bound of B so supB ≤ u− supA. Therefore supA+ supB ≤ u and we
conclude that supA+ supB is the supremum of A+B since it is an upper bound which is smaller
than any other upper bound.

Proof 2. As above, supA + supB is an upper bound of A + B. Let ε > 0. By the alternate
characterization of supremums, there exists a ∈ A such that

supA− ε

2
< a

and there exists b ∈ B such that
supB − ε

2
< b.

Then
supA+ supB − ε =

(
supA− ε

2

)
+
(

supB − ε

2

)
< a+ b,

so a + b is an element of A + B which is larger than supA + supB. Hence nothing smaller than
supA+ supB can be an upper bound for A+B, so supA+ supB is sup(A+B) as claimed.

Infimums. Suppose that A is a nonempty subset of R. We say that a real number t is a lower
bound of A if

t ≤ a for all a ∈ A.

We say that A is bounded below if it has a lower bound, and A is bounded if it is both bounded
above and below.

The infimum (or “greatest lower bound”) of A is a lower bound ` of A such that t ≤ ` for any
other lower bound t of A. We use the notation inf A for infimums. As with supremums, if a set
has an infimum it only has one, so infimums are unique.

Also, a lower bound ` of A is the infimum of A if and only if for any ε > 0 there exists a ∈ A
such that a < `+ ε. This is an analog of the alternative characterization of supremums. The part
after “if and only if” says that nothing larger than ` can be a lower bound of A since we can find
something in A smaller than it.

Completeness Axiom. The completeness axiom of R, also called the least upper bound property
of R, says that any nonempty set of real numbers which is bounded above has a supremum. So,
to show that a set of a real numbers has a supremum all we need to do is show that it is bounded
above and not empty. We say that R is “complete”. Similarly, any set which is bounded below will
have an infimum—I encourage you to think about how this follows directly from the corresponding
fact for supremums.

The fact that R is complete is a crucially important property, and will underlie many things we
do in this course. (In fact, it turns out that R is the only complete ordered field.) In particular,
it is this property which allows us to visualize R as a continuous line with no “gaps”. We will
take this property as a given, but it is natural to think about why it should be true. To justify
it precisely, we would have to start with a precise definition (or construction) of R. We will say
something about this in a bit.
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Q is not complete. Contrast the completeness property of R with the following example, which
shows that Q is not complete. The set S = sup{r ∈ Q | r2 < 2} of rational numbers is bounded
above by the rational number 2 but has no supremum in Q. Of course,

√
2 is also an upper bound

of S in R but it is not an upper bound of S “in” Q since
√

2 is not rational; this is why I used
2 as an upper bound above. Similarly, of course S has a supremum in R (which is

√
2), but the

point is that this supremum does not exist in Q itself, which is what it means to say that Q is not
complete. If you try to “draw” Q as a line you will find “gaps” all over the place, which must be
filled in with non-rational real numbers.

Even if we didn’t know ahead of time that the supremum of the set above is
√

2, or if we didn’t
assume beforehand that a number like

√
2 even exists, we can still show that this set does not have

a rational supremum using the Warm-Up from last time, or something like it. Suppose s ∈ Q was a
rational supremum of the set in question. Since there is no rational satisfying r2 = 2 (i.e. since

√
2

is irrational), s2 6= 2. Thus either s2 < 2 or 2 < s2. But the Warm-Up from last time shows that if
s2 < 2, then (s+ 1

n)2 < 2 for some n ∈ N, meaning that s+ 1
n would also be in the set in question

and hence s could not have been an upper bound. While if instead 2 < s2, an argument very
similar (which we omit) to the Warm-Up from last time shows that we can find n ∈ N satisfying
2 < (s − 1

n)2, which will imply that s − 1
n is larger than all things in the given set, and hence s

would not have been the least upper bound of that set. Hence the given set cannot have a rational
supremum, even if we didn’t know anything about the existence of

√
2.

Dedekind cuts. As mentioned above, in order to give a reason as to why R indeed has the least
upper bound property, we essentially need a definition of what a real number actually is. The
tricky part is to formulate a definition which uses only rational numbers, and nothing like decimal
expansions since the existence of decimal expansions for real numbers depends on the existence of
R and the completeness property.

To get a sense for how we can characterize real numbers solely in terms of rational numbers,
consider for any a ∈ R the set

{r ∈ Q | r < a}.

This is a set consisting solely of rational numbers, and in fact has supremum (in R) equal to a itself.
In this way we can then associate to a real number a specific set of rational numbers, namely the
set of those rationals which are smaller than it. Different real numbers will correspond to different
sets of rationals, so we can say that this particular set of rationals completely characterizes that
specific real number. The idea is then to define a real number as being a particular type of subset
of Q, and with this definition at hand to then show that the set R thus constructed has all the
properties you expect the set of real numbers to have.

To see what types of subsets of Q we should consider, note that the set

{r ∈ Q | r < a}

has the following three properties. First, it is not empty and is not all of Q. Second, it has the
property that if r is inside of it, then any rational smaller than r is also inside of it. (So this set
is something like an “interval” of rational numbers extending to −∞ on the left.) And finally,
this set has no maximum element: if r is a rational in this set, we can always find another larger
rational in this set. These three properties characterize what is called a Dedekind cut of Q. So,
the upshot is that we can try to define the set of real numbers as being the set of Dedeking cuts of
Q! This is a pretty abstract characterization of what a real number is, but is one built up only out
of rationals without a predetermined notion of “real number” needed beforehand. One can then
go on to define what it means to “add” two Dedekind cuts together in a way which mimics what
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it should mean to add two real numbers, and similarly we can define “multiplication” of Dedekind
cuts and what it means for one Dedekind cut to be “smaller” than another. The set of Dedekind
cuts constructed in this way can then be shown to be a complete ordered field, so it does provide
a valid “construction” of the set of real numbers.

Although we will not return to this perspective of what a real number is—indeed, from now
we will simply work with real numbers in the way we always have before—it is an important
foundational core behind all that we will do. In particular, let us briefly say something about
where the completeness property of R comes from from this perspective. Given a nonempty set of
real numbers which is bounded above, we want to show that there is a real number which is its
supremum. A set of real numbers here is a set of Dedekind cuts, so something like

S = {x ⊆ Q | x is a Dedekind cut of Q}.

To say that one Dedekind cut is “less than” another simply means that the it is contained in the
other (i.e. the notation x < y when x and y are Dedekind cuts means that x ⊆ y). Thus, we define
the Dedekind cut b which we claim will be the supremum of S to be the union of all the Dedekind
cuts making up S:

b =
⋃
y∈S

y.

The fact that S has an upper bound guarantees that this b defined in this way is not all of Q, and
one can then show that this is b is indeed a Dedekind cut of Q itself, and satisfies the properties
needed to be called supS. So, again, a fairly abstract point of view on what real numbers are, but
one which can be made fully rigorous and from which all properties we will care about follow.

Lecture 4: Cardinality

Warm-Up. Given a > 1 and n ∈ N, we show that n
√
a exists: i.e., there is a positive y ∈ R such

that yn = a. This is not obvious, since again there is not necessarily going to be a rational number
which has this property, so how do we know that if we enlarge our set to R, we do get such a
number? Again, we can’t just simply plug in n

√
a into our calculator and see what it equals, since

this process assumes that such a number already exists. (This is the same issue we mentioned with√
2 previously.) The goal is to show that such a y exists using only rationals and the completeness

property of R. (In more abstract language, the goal is to show this using only the “Dedekind cut”
definition of R.)

So, consider the set A = {r ∈ Q | rn < a}. This set is nonempty since 1 ∈ A (recall that a > 1),
and it is bounded above since if rn < a, then r < a as well, again because a > 1, so that a is an
upper bound of A. (This part of the argument requires some modification for 0 < a < 1, but the
claim is still true for such a as well.) Thus by completeness, A has a supremum in R—call it y.
We claim that this is the y we want, namely that it satisfies yn = a. (This y is certainly positive
since it is larger than 1 ∈ A.) To show that yn = a we will show that neither yn < a nor yn > a
are possible. To do so, we use the following fact, which we take for granted for the time being:

For all ε > 0, there exists δ > 0 such that if |x− y| < δ, then |xn − yn| < ε.

This is the precise definition of what it means for the function f(x) = xn to be continous at y, and
we will prove that this is indeed true later when we discuss continuity, but we go ahead and use
this fact without justification for now. (The book has an alternative way of showing that yn = a
using the Archimedean Property, but here we are doing it differently in order to give a different
perspective and not simply repeat what the book does.)
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Suppose for a contradiction that yn < a. Then a − yn > 0, so for this positive choice of ε the
fact we are taking for granted above says that there exists δ > 0 such that

if |x− y| < δ, then |xn − yn| < a− yn.

In particular, |x− y| < δ means that x ∈ (y − δ, y + δ), and xn − yn ≤ |xn − yn|, so we get that

for x ∈ (y − δ, y + δ), xn − yn < a− yn.

Thus any x ∈ (y− δ, y+ δ) satisfies xn < a. But in particular (by the denseness of Q in R), we can
take a rational r in (y, y + δ), which then satisfies rn < a. This rational r is then an element of A
which is larger than y, which contradicts the fact that y was supposed to be an upper bound of A.
Thus yn < a is not possible.

Similarly, suppose yn > a. Then yn − a > 0, so there exists δ > 0 such that

if |x− y| < δ, then |xn − yn| < yn − a.

But |xn − yn| = |yn − xn| ≥ yn − xn, so this implies that

if |x− y| < δ, then yn − xn < yn − a.

Hence any x ∈ (y − δ, y + δ) satisfies a < xn. In particular, for a rational s ∈ (y − δ, y) we have
a < sn. For any r ∈ A we then have

rn < a < sn,

so r < s. Thus s is an upper bound of A which is smaller than y (since s ∈ (y−δ, y)), contradicting
the fact that y was meant to be the least upper bound of A. Hence it is not possible that yn > a,
so we conclude that yn = a as desired. The point, again, is that we can show n

√
a exists as a real

number by constructing it as the supremum of an appropriate set.

Countable vs uncountable. There is one more important property the set of real numbers has:
it is uncountable. This notion belongs to the topic of cardinality, which seeks to solve the problem
of determining when two sets have the same “number” of elements. This is an easy question when
dealing with finite sets (just count the number of elements in each!), but more subtle for infinite
sets. The basic definition is that two sets A and B have the same cardinality if there exists a
bijection A→ B between them. The point is that such a bijection gives a way to “match” elements
of A with elements of B so that no elements from either set are used twice, and no elements of
either are left unused. Intuitively, this says that there should be as many things in A as there are
in B, so that they should have the same “number” of elements, even if that number is infinite. The
surprising part is that, according to this definition, it is possible for one infinite set to have “more”
elements than another infinite set, as we will see.

We say that a set S is countable either if it is finite or if there exists a bijection N→ S. (This
latter condition says that N and S have the same cardinality, so that there are as many things in
S has there are positive integers.) We say that S is uncountable if it is not countable. The basic
intuition is that countable infinite sets are in some sense the “smallest” possible infinite sets, and
uncountable ones have “more” elements than countably infinite ones.

Z and Q are countable. N is countable since there does exist a bijection N → N, namely the
identity function that sends every positive integer to itself. We also claim that Z is countable.
(This might seem surprising, since after all N is a proper subset of Z, so that at first glance you
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might think Z has “more” elements than N does, but this is not so!) To see this, write the elements
of Z in the following way in list form:

0 1 − 1 2 − 2 3 − 3 . . .

where after the initial 0, we alternate between a positive integer and its negative. This infinite
list will contain every single integer exactly once. But from this we can define a bijection function
N → Z: send n ∈ N to the n-th integer in this list. So, 1 is sent to 0, 2 to 1, 3 to −1, 4 to 2, and
so on. The function defined in this way will be bijective precisely because every integer appears
exactly once in this list. So, as claimed, Z is countable.

This argument gives the basic intuition behind countable sets: they are precisely the sets whose
elements we can “list”, or “count”, in either a finite or infinite list. Given an infinite listing of the
elements of a set A as

a1 a2 a3 a4 . . . ,

the list gives a way to define bijection N → A, by sending n ∈ N to the n-th thing in the list.
Uncountable sets, then, are intuitively sets with so many elements that it is not possible to give all
of them in one single infinitely long list.

Thus to show that Q is countable, all we need to do is come up with a way of creating a list of
all elements of Q. The standard approach is to take the following grid:

where in each spot we give the rational number whose numerator is in the integer in the top row
and whose deminator the positive integer in the lefthand column. This grid will contain every
single rational, in fact more than once since there will be dupclitates such as 0/1 = 0/2 = 0/3,
1/2 = 2/4 = 3/6, and so on. Nonetheless, from this grid we can create a single list that will contain
all rational numbers: start with listing the element in the upper-left corner of the grid, then move
down to the next diagonal (as drawn), and list the elements along that diagonal, skipping over
any duplicates we’ve already listed before. So, we first list 0/1, then in the next diagonal we skip
0/2 = 0 since it was already listed, so next we list 1/1. Then we move down a a diagonal again
and do the same thing: skip 0/3, list 1/2, and list −1/1. Continuing in this way will produce our
desired list containing every rational exactly once:

0 1 1/2 − 1 1/3 − 1/2 2 1/4 − 1/3 . . . .

This shows that Q is countable. (The same type of grid can be used to show that union of
countably many countable sets is itself countable: that, if A1, A2, A3, A4, . . . is a collection of a
countable number of sets, each of which is countable, then

⋃
nAn is countable as well. We will not
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give a proof of this here, but it is in the book or various other places you can find, such as my
MATH 300 lecture notes.)

R is uncountable. And now we come to main example of an uncountable set: R. Actually, we
will instead show that the interval (0, 1) is uncountable, but this implies that R is uncountable too.
One reason is that it can be shown that any subset of a countable set is also countable, so if R
were countalbe, (0, 1) would be as well. Alternatively, we can take a bijection (0, 1) → R, such as
the one given by the function

f(x) = tan(πx− π
2 ),

and argue that if there did exist a bijection N → R, composing with the inverse of the function f
above would give a bijection N → (0, 1), which we will show cannot exist. In generak, if Y ⊆ X
and Y is uncountable, X must be uncountable.

To show that (0, 1) is uncountable we show that there does not exist a bijection N→ (0, 1). To
this end, let f : N→ (0, 1) be any function. We claim that f is not surjective, which immediately
implies that f is not bijective, thereby showing that no function N → (0, 1) can be bijective as
required. To show that f is not surjective we will come up with an explicit element of (0, 1) which
is not in the image of f . The following argument is known as “Cantor’s diagonalization argument”,
and is a key tool for showing that given sets are uncountable. List the elements in the image of f
in terms of their decimal expansions:

f(1) = 0.x11x12x13 . . .

f(2) = 0.x21x22x23 . . .

f(3) = 0.x31x32x33 . . .

...
...

Define the number y = 0.y1y2y3 . . . ∈ (0, 1) by taking the digit yi to be anything different from xii;
to be concrete, take

yi =

{
3 if xii 6= 3

7 if xii = 3.

(Note that the use of 3 and 7 here is not important—all we need to do is guarantee that yi and xii
are different. The name “diagonalization argument” comes from the use of the “diagonal” terms
x11, x22, x33, etc.) Now, this number y differs from f(1) in the first decimal digit (since y1 6= x11),
so y 6= f(1). Also, y differs from f(2) in the second decimal digit (since y2 6= x22), so y 6= f(2).
In general, y 6= f(n) since y and f(n) differ in the n-th decimal digit. Thus y is not equal to any
element in the image of f , so it is not in the image of f and hence f is not surjective. As explained
above, this shows that (0, 1), and hence R, is uncountable.

Lecture 5: Metric Spaces

Warm-Up. Set C0 = [0, 1]. Then take C1 to be the set obtained by removing the “middle third”
portion of C0:

C1 =
[
0, 13
]
∪
[
2
3 , 1
]
.

Define C2 be the set obtained by removing the middle third portion of each interval making up C1:

C2 =
[
0, 19
]
∪
[
2
9 ,

3
9

]
∪
[
6
9 ,

7
9

]
∪
[
8
9 , 1
]
,
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and continuing in this manner define Cn in general to be the set obtained by removing the middle
portion of each interval making up Cn−1. The Cantor set is the set C consisting of what remains
after we continue this process indefinitely, or equivalently the intersection of all the Cn’s:

C =
⋂
n

Cn.

We show that the Cantor set is uncountable. This can seem surprising at first, since it seems
to be challenging to specify precisely what real numbers belong to the Cantor set. For sure, all
endpoints of all intervals in each step of the construction of C remain throughout the entire process,
so all such endpoints belong to C. (So, for instance, 0, 1, 13 ,

2
3 ,

1
9 ,

2
9 ,

7
9 , and 8

9 are all in C.) However,
all such endpoints are rational, so there are only countably many of them, and yet we are saying
that C is uncountable, meaning that there are way more elements of C that aren’t among these
endpoints than there are endpoints. We’ll take a second after the proof that C is uncountable to
say more precisely what the Cantor set consists of.

Let x ∈ C. We construct an element of {0, 2}∞ associated to this as follows, where {0, 2}∞ is
the set of infinite binary sequences, instead we use a 2 instead of a 1. (We’ll see why I’m using {0, 2}
instead of {0, 1} afterwards. The same proof that showed {0, 1}∞ is uncountable in the discussion
section problem also shows that {0, 2}∞ is uncountable.) Since C =

⋂
Cn, x ∈ Cn for all n. In

particular, x ∈ C1 so x is in one of the two intervals making up C1; take the first element in our
sequence to be 0 if x is in the “left” interval [0, 1/3] and take the first element in our sequence to
be 2 if x is in the “right” interval [2/3, 1]. Now, whichever of these intervals x is in will itself split
into two smaller intervals in the construction of C2. Since x ∈ C2, x will be in one of these smaller
intervals; take the next element in our sequence to be 0 if it is the “left” interval x is in and take
it to be 2 if x is in the “right” interval. For instance, the interval [0, 1/3] splits into [0, 1/9] and
[2/9, 1/3]. If x ∈ [0, 1/9] the first two terms in the sequence we are constructing will be 0, 0, while if
x ∈ [2/9, 1/3] we have 0, 2 as the beginning of our sequence. Continuing in this manner, whichever
interval making up C2 that x is in will split into two smaller pieces; take 0 as the third term in
our sequence if x is in the left piece and 2 if x is in the right piece, and so on. By keeping track
of which interval x is in at each step in the construction of the Cantor set in this manner we get a
sequence of 0’s and 2’s.

For instance, if we get the sequence (0, 2, 2, 2, 0, 0, 0, . . .), x is in the “left” interval of C1, then in
the “right” smaller interval which this interval splits into, then in the “right” smaller interval this
splits into, then “right” again, then in the “left” smaller interval that this splits into, and so on.
(This is easier to imagine if you draw a picture of this splitting into smaller and smaller intervals
as we did in class. In general, a 0 means “go left” in the next step of the construction and 2 means
“go right”.)

This assignment of a sequence of 0’s and 2’s to an element x ∈ C defines a function C → {0, 2}∞.
It is injective since different elements in the Cantor set produces different sequences (at some point
in the construction, two different numbers in the Cantor set will belong to two different “smaller”
intervals since the lengths of these smaller intervals are getting closer and closer to zero), and it is
surjective since given any sequence we can use it to single out an element of the Cantor set. (This
actually requires more than we currently have available to prove formally—we’ll come back to this
after we discuss compactness.) Thus C and {0, 2}∞ have the same cardinality, so we conclude
that C is uncountable as well. (If. there was a bijection N → C, composing with the bijection
C → {0, 2}∞ described above would give a bijection from N to the set of binary sequences, which
is not possible.)

What’s in the Cantor set? Just for fun, let’s clarify what the Cantor set actually consists of.
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Any real number in [0, 1] has a decimal expansion, where the notation

0.x1x2x3 . . .

really denotes the result of the infinite summation given by

x1
10

+
x2
102

+
x3
103

+ · · · .

By changing the “base” 10 used here, we can come up with decimal expansions with respect to
other bases. In particular, any such number has a “base 3” decimal expansion

0.y1y2y3 . . .

where each digit yi is 0, 1, or 2; this comes from expressing the given number as “base 3” infinite
sum of the form:

y1
3

+
y2
32

+
y3
33

+ · · · .

If you think about how these digits relate to splitting an interval up into thirds, you can see that
they precisely keep track of which third of an interval a given number belongs to when splitting it
up further and further. For instance, a digit of 1 indicates that your given number should belong to
the “middle third” portion of an interval. Since these middle thirds are removed in the construction
of the Cantor set, we see that the Cantor set precisely consists of those numbers in [0, 1] whose
base 3 decimal expansions contains only 0’s and 2’s. For instance, the base 3 decimal expansion of
1
4 looks like

0.0202020202020 . . .

with 0’s and 2’s alternating, so 1
4 is a non-endpoint element of the Cantor set. Note, however,

that 1
4 is still rational, and yet it follows from what we showed before that the Cantor set contains

uncountably many irrational numbers.

Metric spaces. A metric space is essentially a space where we have a notion of distance between
points defined; no more, no less. The point is that many of the concepts we’ll see this quarter—
sequence convergence, continuity, limits—will work just fine in any setting where we have a notion
of “distance”. Thus we take the point of view that it is better to phrase things in as a general a
way as possible at the start, and then specialize to specific examples when needed.

Let X be a set. A metric on X is a function d : X ×X → R such that

• d(p, q) ≥ 0 for all p, q ∈ X and d(p, q) = 0 if and only if p = q,

• d(p, q) = d(q, p) for all p, q ∈ X,

• d(p, q) ≤ d(p, r) + d(r, q) for all p, q, r ∈ X.

(X × X denotes the set of all pairs (p, q) where p, q ∈ X.) A metric space is X together with
a chosen metric d; we often use the notation (X, d) to denote a metric space, or simply X if the
metric is clear from context. (But don’t forget that the metric is part of required data.)

The intuition is simple: d should be thought of as a “distance function” which gives the distance
d(p, q) between two points p, q ∈ X. The first condition in the definition says that these “distances”
are always nonnegative and equal 0 only when we are computing the distance from a point to itself
and the second condition says that the distance from p to q should be the same as the distance
from q to p, both of which are clearly properties which “distance” should satisfy.
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The third property is called the triangle inequality and is the most important one: it says that
the “distance” from p to q should give the shortest way of going from p to q in the sense that
going through some “intermediate” point r can only increase the overall distance. Again, it makes
intuitive sense that a notion of “distance” should satisfy this. We’ll see what this looks like for R2

below, which will explain where the name “triangle inequality” comes from.

Example. The Euclidean metric on Rn is defined by the usual notion of distance in these spaces:

d((x1, . . . , xn), (y1, . . . , yn)) =
√
|x1 − y1|2 + · · ·+ |xn − yn|2.

In particular, on R1 this gives the distance d(x, y) = |x − y| we’ve been using all along. Verifying
that this is a metric is fairly straightforward, although the triangle inequality takes some work to
establish. Instead of doing this thoroughly in general, let us point out why the triangle inequality
is true in R2. In this case, we have a picture like:

in which case the triangle inequality says that the length of one side of this triangle is smaller than
or equal to the sum of the lengths of the other two sides, which is clear from what we know about
triangles. As alluded to earlier, this is where the name “triangle inequality” comes from.

The case of R2 with the Euclidean metric is probably the most important example of a metric
space to keep in mind as far as intuition goes; in particular, whenever we draw a picture meant to
illustrate some general property of metric spaces, it will be a picture in R2.

Other examples. To emphasize the role which the metric plays in all this, note that in addition to
the Euclidean metric we have other possible metrics we can put on R2. (These definitions generalize
to Rn but we’ll state them only for R2 to keep things simpler.)

The taxicab metric on R2 is defined by adding together the distance between the x-coordinates
of two points to the distance between their y-coordinates:

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|,

and the box metric on R2 is defined by taking the maximum of the distance between the x-
coordinates of two points and the distance between their y-coordinates:

d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.

The names of these two metrics come from the following picture:
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The distance between two points with respect to the taxicab metric is the distance you have to
travel to get from point to the other if you can only move vertically and horizontally but not
“diagonally” (as if you were driving a taxicab on grid-like streets), and the distance between two
points with respect to the box metric is the length of the largest side of the rectangle (i.e. “box”)
with one corner at the first point and opposite corner at the other.

Discrete spaces. For any set X, the discrete metric on X is defined by setting the distance
between distinct points to always be 1:

d(p, q) =

{
1 p 6= q

0 p = q.

The first two requirements in the definition of a metric are straightforward to check, and the triangle
inequality comes from looking at the possible values the terms in the expression

d(p, q) ≤ d(p, r) + d(r, q)

can have: if the left side is 0 then the inequality holds no matter what the right side is, while if the
left side is 1, meaning p 6= q, then at least one of the term on the right is also 1 (since either p 6= r
or q 6= r or both), so again the inequality holds.

This will be a useful example to keep in mind, as it can give some insight as to what the various
definitions we will be seeing mean. The name comes from the fact that distinct points are always
separated by a minimum fixed positive distance, which is not true for “continuous” spaces like R
with the Euclidean metric where distances can get arbitrarily small.

Subspaces and balls. Let (X, d) be a metric space and Y ⊆ X. Then restricting the metric on
X to only allow ourselves to plug in points of Y gives a metric on Y , and in this case we call Y a
subspace of X. So, a subspace of a metric space is nothing but a subset, but with the same metric
as on the larger space. (For instance, Q with the usual Euclidean distance is a subspace of R with
the usual Euclidean distance, but Q with the discrete metric is not.)

For p ∈ X and ε > 0, the ball of radius ε (or the ε-ball) in X centered at p is the set Bε(p) of
points of X whose distance to p is less than r:

Bε(p) = {q ∈ X | d(p, q) < ε}.

(The book also calls this the ε-neighborhood of p, and denotes it by Nε(p).) The name comes from
the picture of what these sets look like in R2 or R3 with the standard Euclidean metrics: in R2 the
ball of radius ε around a point is the (open) disk of radius ε centered at that point, and in R3 these
ε-balls look like honest solid spheres (without boundary):
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Examples. Consider R2 with the taxicab metric. The ball of radius 1 centered at the origin is
defined by

B1((0, 0)) = {(x, y) ∈ R2 | d((0, 0), (x, y)) < 1} = {(x, y) ∈ R2 | |x|+ |y| < 1}.

The inequality |x| + |y| < 1 in R2 describes a diamond-shaped region, which is thus the “ball” of
radius 1 around the origin origin with respect to the taxicab metric. Each of the points on the
diamond itself (the boundary) are at a distance 1 from (0, 0) and so are not in this ball.

With respect to the box metric, the ball of radius 1 centered at the origin is

B1((0, 0)) = {(x, y) ∈ R2 | max{|x|, |y|} < 1.

The condition max{|x|, |y|} < 1 describes a square (i.e. box) centered at the origin of width and
length equal to 2. The points on the boundary square are not included in the ball of radius 1 since
they are at a distance 1 from the origin.

Back to discrete. Let (X, d) be a discrete metric space. For any 0 < r ≤ 1 and a fixed p ∈ X,
the only possible distance d(p, q) which satisfies d(q, p) < r is d(p, q) = 0 since the only possible
values for d(p, q) are 0 or 1 in this case. Since d(p, q) = 0 if and only if p = q, the r-ball around
p for 0 < r ≤ 1 consists only of p. For any r > 1, any q ∈ X satisfies d(q, p) < r, so any ball of
radius larger than 1 in this case consists of the entire space X. To summarize:

Br(p) =

{
{p} 0 < r ≤ 1

X r > 1.
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Lecture 6: Open Sets

Warm-Up. Let E ⊆ R and define Cb(E) to be the set of bounded real-valued functions on E:

Cb(E) := {f : E → R | f is bounded}.

(To say that f is bounded means that its image, which is the set of all values f(x) as x ∈ E varies,
is a bounded subset of R.) Define a potential metric d on Cb(E) by setting

d(f, g) = sup
x∈E
|f(x)− g(x)|,

so d(f, g) is the supremum of the set of all values |f(x) − g(x)| as x ranges throughout E. (The
fact that we are considering only bounded functions guarantees that this supremum exists.) We
show that d is indeed a metric on Cb(E), which we call the “sup metric”.

First, since |f(x) − g(x)| ≥ 0 for all x ∈ E, the supremum d(f, g) of these values is also
nonnegative. If d(f, g) = 0 then we must have

|f(x)− g(x)| = 0 so f(x) = g(x) for all x ∈ E.

This verifies the first property in the definition of a metric. Since |f(x)− g(x)| = |g(x)− f(x)| for
all x ∈ E,

d(f, g) = sup
x∈E
|f(x)− g(x)| = sup

x∈E
|g(x)− f(x)| = d(g, f),

which is the second property.
Finally we verify the triangle inequality. Let f, g, h ∈ Cb(E). For any x ∈ E we have

|f(x)− h(x) ≤ d(f, h) and |h(x)− g(x)| ≤ d(h, g)

since the values on the left of each inequality are among the values the right side is the supremum
of. Thus for all x ∈ E,

|f(x)− g(x)| = |f(x)− h(x) + h(x)− g(x)| ≤ |f(x)− h(x)|+ |h(x)− g(x)| ≤ d(f, h) + d(h, g).

Hence d(f, h) + d(h, g) is an upper bound for the set of all values |f(x) − g(x)| for x ∈ E, and so
is bigger than or equal to the least upper bound of such values, which is d(f, g). Thus

d(f, g) ≤ d(f, h) + d(h, g)

as required, so we conclude that d is a metric on Cb(E).
We can visualize the distance d(f, g) as follows. Draw the graphs of f and g and consider, for

all x ∈ E, the vertical distance between f(x) and g(x):
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The supremum distance d(f, g) is the “largest” of these vertical distance, and so measures the
maximal extent to which f and g can differ. (I have “largest” in quotation marks since there might
not actually be points which literally give this supremum vertical distance, since it is in general
only a supremum and not a maximum.) Intuitively, the smaller d(f, g) is, the “closer” the graph
of f is to the graph of g.

Using this, we can also visualize what a ball looks like in this metric space. For f ∈ Cb(E) and
ε > 0, draw the “ε-tube” around the graph of f , which is the “tube” made up by shifting the graph
of f up by ε and down by ε. Then Bε(f) almost consists of those functions g whose graphs lie fully
within this tube:

The point being that the requirement d(f, g) < ε says that all vertical distances |f(x) − g(x)| as
x ranges throughout E should be less than ε. However, note that a function g whose graph gets
arbitrarily close to the boundary of the ε-tube will in fact have d(f, g) = ε, and so such a function
is not in the ε-ball centered at f . Thus Bε(f) more precisely consists of those functions g whose
graphs are contained within the ε-tube around the graph of f and do not come arbitrarily close
the boundary of this tube.

Open sets. Most concepts we will see in this course are ones that can be phrased using the notion
of an open subset of a metric space. This is because, as we’ll seen, “openness” give a way to discuss
the idea of things being “close”, or more precisely “close enough”. Compactness, convergence of
sequences, limits of functions, and continuity are all concepts that can be phrased in this way.

Let X be a metric space and U ⊆ X a subset. We say p ∈ U is an interior point of U if there
exists r > 0 such that Br(p) ⊆ U . We say that U is open in X if every point of U is an interior
point of U . The intuition is as follows: If U is open and p ∈ U , the definition says that we can
surround p by an entire ball which remains fully contained in U ; thus, this says that points which
are “close enough” to an element of an open set are themselves also in that open set, so that an
open set in a sense “surrounds” all of its points, or “absorbs” all elements “close enough” to one of
its points. This notion will be useful for example when discussing limits of functions, since it will
guarantee that points “close enough” to one in the domain of a function will also be in that same
domain, so that it will make sense to evaluate the function on those points.

Example 1. An open interval (a, b) is an open subset of R. Indeed, given x ∈ (a, b) we can imagine
visually that there is an open interval we can draw around x which is fully contained in (a, b). To
be precise, take r to be whichever of |x − a| and |x − b| is smaller. Then the entire open interval
(x−r, x+r) will lie within (a, b), since x−r and x+r extend no further than one or both endpoints
of (a, b). Thus (a, b) is open in R as claimed. (This fact is just a special case of the fact that any
ball Br(p) in any metric space is always open, which we will prove later.)
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More generally, it is easy to picture what open of R2 look like, which gives a lot of good intuition
for this concept in general. Consider the following subsets of R2, where dotted curves indicate that
those points are not in the subset in question while solid curves indicate that they are:

In the first picture, given a point p ∈ U we have drawn a ball around it which is fully contained
inside of U , showing that U is open in R2. In the second picture, for a point on the “boundary”
of E we can see that any ball we draw around it will contain something not in E, so no such ball
will be fully contained in E and hence E is not open in R2. In general, a subset of R2 is open if
it contains none of its “boundary”. (We’ll make the notion of “boundary” precise later on.) The
interior points in the second set drawn above are those in E but not on the “boundary” of E.

Example 2. We claim that the set E of rational numbers between −
√

2 and
√

2:

E := {r ∈ Q | −
√

2 < r <
√

2}

is open in Q, even though it is not open R. It is not open in R since it has no interior points at
all, and thus it is certainly not true that every element of E is an interior point of E: given any
rational r and any s > 0, (r − s, r + s) contains irrationals since the irrationals are dense in R, so
no such interval can be fully contained in E.

Now, if x ∈ E, the open interval U in R of radius r = min{
√

2−x, x− (−
√

2)} is fully contained
in (−

√
2,
√

2). Then the ball in Q of radius r around x consists of only the rational numbers in U ,
and this ball is fully contained in E. (As in the previous example, the irrational numbers in U do
not exist in the “larger” space Q we are considering, so they do not appear in the ball of radius r
centered at x in the metric space Q.) This shows that E is open in Q. (The point is the notion of
being “open” is a relative one, in that it matter what metric space we are considering our set to be
a subset of. A certain set might be open in one metric space while not being open in another..)

Example 3. Consider R2 with the discrete metric, so the distance between two different points is
declared to be zero. We claim that the set {(1, 1)} containing only the single point (1, 1) is open.
Indeed, we have that B1/2((1, 1)) = {(1, 1)} since the only point whose distance to (1, 1) is smaller

than 1
2 is (1, 1) itself because every other point has distance 1 from (1, 1). Thus, B1/2((1, 1)) is a

ball around (1, 1) that is fully contained in {(1, 1)}, so {(1, 1)} is open in R2 with respect to the
discrete metric.

In fact, the same reasoning shows that if X is any discrete metric space, then every subset of
X is open in X. Indeed, let U ⊆ X and pick p ∈ U . Then B1/2(p) = {p}, which is contained in U ,
so every element of U is an interior point of U and thus U is open in X.

Lecture 7: Closed Sets

Warm-Up. We show that the interval [−1, 2) is not open in R, but is open in [−1, 5). First [−1, 2)
is not open in R since−1 ∈ [−1, 2) is not an interior point: given any ε > 0, Bε(−1) = (−1−ε,−1+ε)
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contains an element of R, say −1− ε
2 , which is not in [−1, 2), so no such interval is fully contained

in [−1, 2).
Now we show that [−1, 2) is open in the metric space [1−, 5) with the Euclidean metric. Surely,

for x ∈ (−1, 2) we can draw an open interval around it which is fully contained in [−1, 2). So, the
only point we have to worry about when asking if [−1, 2) is open in [−1, 5) is x = −1. We claim
that the ball in [−1, 5) of radius 1 centered at −1 is contained in [−1, 2). The key point is that
when we take a ball around a point, this ball by definition only contains points from our “larger”
metric space, which is [−1, 5) in this scenario. The ball in the metric space [−1, 5) of radius 1
centered at −1 is

B1(−1) = {x ∈ [−1, 5) | |x+ 1| < 1} = [−1, 0),

since the elements of [−1, 0) are the only numbers satisfying this inequality among the points of
[−1, 5). (The ball in R of radius 1 centered at −1 is (−2, 0), but the points in (−2,−1) do not exist
in the “larger” metric space [−1, 5) we are considering here.) Thus the ball in [−1, 5) of radius 1
around −1 is indeed contained in [−1, 2), so [−1, 2) is open in [−1, 5).

Closed sets. For a subset E of a metric space X, we say that p ∈ X is a limit point of E if for
all r > 0, the ball Br(p) contains an element of E different from p. The intuition is that a limit
point of E is a point for which we can find elements of E which come arbitrarily close to it: we can
find an element of E within a distance 1 from p (pick an element of E in B1(p)); we can find an
element of E within a distance 1/2 from p (pick an element of E in B1/2(p)); we find an element
of E within a distance 1/3 from p, and so on and and so on for ever-shrinking radii. In this sense,
a limit point of E can be obtained via some type of “limiting” process applied to elements of E.
(We will make this point of view precise when we discuss sequences.)

We that E ⊆ X is closed in X if it contains all of its limit points. Thus, intuitively, a closed
set is one for which points which are “arbitrarily close” to that subset are actually in that subset.
(Open and closed sets belong to the subject of topology, which is the study of concepts that can be
characterized solely in terms of open and closed sets.)

Example 1. Closed intervals [a, b] are closed in R with respect to the Euclidean metric. Indeed,
the limits points of [a, b] are the points of [a, b] itself, since any interval drawn around an element
of [a, b] always contains other elements of [a, b]. No other element of R is a limit point of [a, b]: if
x < a, then for the radius r = |x− a|/2 the ball Br(x) = (x− r, x+ r) contains no element of [a, b],
so x < a is not a limit point of [a, b], and similar argument works for b < x.

More generally, it is easy to picture what closed subsets of R2 look like. Consider the following
subsets of R2, where dotted curves indicate that those points are not in the subset in question while
solid curves indicate that they are:

For the first picture, the limit points of A ⊆ R2 are precisely the elements of A: any ball around
any element p of A contains an element of A (in fact infinitely many of them!) different from p.
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The point drawn in the upper right is not a limit point of A since there is a ball around it (the one
drawn) containing no element of A. Hence the set A in the first picture is closed in R2.

But the set in the second picture is not closed in R2. A point on the dotted “boundary”, which
is not in B, is a limit point of B since any ball around it contains an element of B, so B does
not contain all of its limit points. In general, a subset of R2 is closed in R2 if it contains all of its
“boundary”.

Example 2. The set of integers Z is closed in R with respect to the Euclidean metric. Indeed, we
claim that Z has no limit points in R, so it is true that Z contains all of its limit points, simply
because there are none! First, given any integer n, the interval of radius 1/2 around n contains no
other integer apart from n itself, so n is not a limit point of Z. (The definition of a limit point p
requires that every ball contains an element of the subset different from p.) And for any non-integer
real number y, there is an interval around y containing no integers at all (take the radius to be half
of the distance from y to the nearest integer), so no such y ∈ R is a limit point of Z either.

Example 3. As with the notion “open”, the notion of being closed is also a relative one, in that it
matters what our “larger” metric space is. For example, the interval (1, 2] is not closed in R since
1 ∈ R is a limit point of (1, 2], so (1, 2] does not contain all of its limit points in R.

But, we claim that (1, 2] is closed in (1, 5], viewed as a metric space with the Euclidean metric.
The difference here is that 1 ∈ R does not exist in the metric space (1, 5], so it is not a candidate
limit point when asking whether (1, 2] is closed in (1, 5]. The only thing that matters now is whether
every limit point of (1, 2] in the metric space (1, 5] is in (1, 2], and this is in fact true.

Example 4. We showed last time that the set E of rationals between −
√

2 and
√

2 was open in
Q, and now we claim that is also closed in Q. (Here’s some great terminology: a subset of a metric
space which is both closed and open is said to be clopen!) Note that E is not closed in R since, for
example,

√
2 ∈ R is a limit point of E and is not contained in E, but when asking if E is closed

in Q only care about whether rational limits points of E are in E. And this is true: no rational
smaller than −

√
2 nor larger than

√
2 can be a limit point of E since around any such rational we

can find a small enough interval containing no element of E, so any possible rational limit point of
E must come from E itself.

Example 5. Suppose X is a discrete metric space. We claim that every subset E ⊆ X is closed.
(We argued last time that every subset was open, so every subset is in fact clopen.) Indeed, the
point is that no subset has any limit points at all, so any E ⊆ X does contain all of its limit points.
For any p ∈ X, the ball B1/2(p) consists only of p since p is the only element of X with distance
from p less than 1, so B1/2(p) = {p} does not contain an element of E different from p. Hence p is
not a limit point of E ⊆ X.

Lecture 8: More Topology

Warm-Up. Suppose X is a metric space. Let p ∈ X and r > 0. Recall that the open ball of
radius r around p in X is

Br(p) = {q ∈ X | d(q, p) < r}.

Define the closed ball of radius r around p in X to be

Mr(p) = {q ∈ X | d(q, p) ≤ r}.
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(Note that the notation Mr(p) for “closed balls” is not standard, and that there really is no widely
common notation for this.) We show that Br(p) is open in X and Mr(p) is closed, so that “open
balls are always open” and “closed balls are always closed”.

First, to show that Br(p) is open in X, let q ∈ Br(p) and set s := r − d(p, q). Note that s > 0
since d(p, q) < r because q ∈ Br(p). If x ∈ Bs(q), then d(x, q) < s and the triangle inequality gives

d(x, p) ≤ d(x, q) + d(q, p)) < s+ d(q, p) = (r − d(p, q)) + d(p, q) = r,

so x ∈ Br(p). Thus Bs(q) ⊆ Br(p), so that q is an interior point of Br(p) and hence Br(p) is open
in X. (Draw a picture of what Bs(q) looks like to see that it makes sense visually that Bs(q) should
be contained in Br(p)!)

Now, to show that Mr(p) is closed in X, we need to know that every limit point of Mr(p) in X
is in Mr(p). But this is equivalent to saying that if q /∈Mr(p), then q is not a limit point of Mr(p).
(Take the contrapositive of “if q ∈ X is a limit point of Mr(p), then q ∈ Mr(p)”.) So, suppose
q ∈ X is not in Mr(p). To show that q is not a limit point of Mr(p) we need an open ball around q
that does not contain any element of Mr(p), or in other words an open ball around q that remains
in the complement of Mr(p). We claim that Bs(q) for s := d(q, p)− r works. (Note that s > 0 since
r < d(q, p) because q /∈Mr(p).) Let x ∈ Bs(q), so that d(x, q) < s. Then

d(x, p) ≥ d(p, q)− d(q, x) > d(p, q)− s = d(p, q)− (d(q, p)− r) = r.

(The first inequality here is often called the reverse triangle inequality, and follows from rearranging
terms in the usual triangle inequality d(p, q) ≤ d(p, x) + d(x, q).) Thus we have that x /∈Mr(p), so
Bs(q) ⊆ Mr(p)

c. (The c denotes the complement.) This shows that no element outside of Mr(p)
can be a limit point of Mr(p), so Mr(p) contains all of its limit points and is thus closed in X.

Open/closed and complements. The proof that Mr(p) is closed above actually shows that
Mr(p)

c is open in X: for any q ∈ Mr(p)
c, there exists a ball Bs(q) fully contained in Mr(p)

c, so
any such q is an interior point of the complement. Along the same lines, the proof that Br(p) is
open in X can be interpreted as showing that its complement Br(p)

c is closed in X. Indeed, the
proof shows that any q ∈ Br(p) is an interior point of Br(p), so that no q ∈ Br(p) can be a limit
point of Br(p)

c, so Br(p)
c contains all of its limit points.

These facts generalize to all open and closed sets, with the result being that E ⊆ X is open
in X if and only if Ec is closed in X, and E is closed in X if and only if Ec is open in X. The
proofs, as in the Warm-Up, just rely on taking the contrapositives of “if p is a limit point of E,
then p ∈ E” and “if p ∈ E, then p is an interior point of E”. Note that this matches the intuition
we have of what “open” and “closed” look like in R2 with respect to the Euclidean metric: a set
which contains none its “boundary” has a complement that contains all of its “boundary”, and a
set containing all of its boundary has a complement that contains none of its boundary.

Unions and intersections. The facts above gives a new way of producing open sets by taking
the complement of closed sets, and a way of producing closed sets by taking complements of open
sets. Another way to produce new open sets is by taking unions of other ones. The claim is that
if {Uα}α is a collection of open subsets of X (indexed by α belonging to some indexing set), then
the union ⋃

α

Uα

is also open in X. (Note here that there is no restriction on how many open sets we are considering:
it could be a finite number, an infinite number, an uncountable number, it doesn’t matter.) To see
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this, let p ∈
⋃
α Uα. Then p ∈ Uβ for some β. Since Uβ is open in X, there exists r > 0 such that

Br(p) ⊆ Uβ. But Uβ ⊆
⋃
α Uα, so we also have Br(p) ⊆

⋃
α Uα. Hence p is an interior point of⋃

α Uα, so
⋃
α Uα is open in X.

But, care must be taken when taking intersections of open sets. It is not true that intersecting
open sets necessarily produces open sets. For example, take the intervals (− 1

n ,
1
n) in R. Each of

these is open in R, but their intersection (as n varies among all positive integers) is {0}, which is
not open in R. We can only guarantee that we get an open set when intersecting finitely many open
sets: if U1, . . . , Un are open in X, then U1 ∩ · · · ∩Un is open in X. To see this, let p ∈ U1 ∩ · · · ∩Un.
Then p ∈ Uk for all 1 ≤ k ≤ n. Since each Uk is open in X, there exists, for each 1 ≤ k ≤ n,
some rk > 0 such that Brk(p) ⊆ Uk. Now take r = min{r1, . . . , rn}, which is positive since it is the
minimum of finitely many positive numbers. For this minimum we have

Br(p) ⊆ Brk(p) ⊆ Uk

for all 1 ≤ k ≤ n, so Br(p) ⊆ U1 ∩ · · · ∩ Un. This shows that U1 ∩ · · · ∩ Un is open in X. (This
argument does not necessarily work if we consider an infinite number of open sets, since then we
get infinitely many radii ri, which might not have a minimum; they will instead have an infimum,
but this infimum might not be positive, and so does not give a valid radius for a ball.)

By taking complements, we get immediately that the intersection of an arbitrary number of
closed sets is closed and that the union of a finite number of closed sets is closed. For example, if
{Aα}α is a collection of closed sets, then(⋂

α

Aα

)c
=
⋃
α

Acα

is a union of open sets since the complement of a closed set is open, and so is itself open. Thus
the complement of

⋂
αAα is open, so

⋂
αAα is closed. A similar argument works for the union of

finitely many closed sets.

Lecture 9: Compact Sets

Warm-Up. We say that E ⊆ X is dense in X if E, the closure of E (defined as the union of E
and its set of limit points), is equal to all of X. For example, both Q and Qc (the set of irrationals)
is dense in R according to this definition, which is just a rephrasing in R of the previous notion
of “dense” we considered. We show that Q2, the set of points in R2 with rational coordinates, is
dense in R2. All we need to show to verify this is that every open ball in R2, no matter the radius
and no matter the center, contains an element of Q2. (This characterization is true in general: E
is dense in X if every Br(p) for r > 0 and p ∈ X contains an element of E, since if p /∈ E and this
property holds, then p is a limit point of E.)

Thus let Br((a, b)) be any open ball in R2. We use a fact from discussion, that “open” with
respect to the Euclidean metric means that same thing as “open” with respect to the box metric.
Since Br((a, b)) is open in R2 with respect to the Euclidean metric, it is also open with respect to
the box metric so there exists s > 0 such that

(a− s, a+ s)× (b− s, b+ s) ⊆ Br((a, b)).

(The left side is the open ball of radius s centered at (a, b) with respect to the box metric.) Since
Q is dense in R, (a − s, a + s) contains a rational p ∈ Q, and (b − s, b + s) contains a rational q.
Then

(p, q) ∈ (a− s, a+ s)× (b− s, b+ s) ⊆ Br((a, b)),
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so Br((a, b)) contains an element of Q2, and hence Q2 is dense in R2.

Compact sets. We now come to one of the most important concepts in all of analysis and topology,
that of compactness. This is a tough concept to grasp at first, and it will likely not be clear until
later when we discuss continuity why such a notion is even useful. We will give a first glimpse as
to why this might be a useful concept shortly, but the main intuition is that compact sets are ones
which are not too “large”, in a certain sense.

Let K be a subset of a metric space X. By an open cover of K we mean a collection {Uα}α of
open subsets of X which cover K in the sense that K is contained in their union:

K ⊆
⋃
α

Uα.

We say that K is compact if every open cover of K has a finite subcover, where by finite subcover
we mean finitely many of the Uα’s which still cover K:

K ⊆ Uα1 ∪ · · · ∪ Uαn .

Thus, compactness of K means that every open cover can be reduced to a finite subcover. Intu-
itively, any possibly “infinite amount of data” {Uα}α on K can be replaced by a “finite amount of
data” Uα1 , . . . , Uαn . (If K was too “large”, something like this would not be possible.)

One point of possible confusion: the definition does not say that K has a finite open cover, but
rather that any open cover and be reduced to a finite one. Indeed, we can always view X itself as
a one-element open cover of any of its subsets so that any possible subset always has a finite cover;
the key is that whether or not we can always find such finite subcovers no matter what arbitrary
open cover we start with.

Examples. The collection of open intervals {(−n, n)}n∈N is an open cover of R with no finite
subcover, so R is not compact. Indeed, any finite number of these open intervals

(−n1, n1), . . . , (−n`, n`)

will have as their union the interval (−N,N) where N = max{n1, . . . , n`}, so no finite number
of these intervals can cover all of R. Also, the interval (0, 1) is not compact since the intervals
( 1
n , 1) together form an open cover with no finite subcover; again, the union of any finite number

( 1
n1
, 1), . . . , ( 1

nk
, 1) of such intervals is the one with the largest value of ni, so no such union can

cover all of (0, 1).
The main and most important examples of compact sets are the closed intervals [a, b] in R. The

proof that this is compact will be left to discussion section, and uses very nicely the properties of
a supremums. Many of the special properties that continuous functions defined on closed intervals
have come from the fact that these sets are compact, as we will see.

Compact implies bounded. As a first step towards gaining a better understanding of compact-
ness, we show that compact sets are always bounded. (Recall that K ⊆ X is bounded if there exists
some ball Br(p) of finite radius containing all of K.) Thus, immediately, any unbounded subset of
Rn for example is not compact.

Suppose K ⊆ X is compact. Let p ∈ K and consider the collection {Br(p)}r>0 of all opens
balls centered at p of any radii. These together cover all of K since eventually any point of K will
be in one of these balls once r is large enough, so since K is compact this open cover has a finite
subcover, say

Br1(p), . . . , Brn(p).
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Setting s = max{r1, . . . , rn} > 0, we then have that Bri(p) ⊆ Bs(p) for each 1 ≤ i ≤ n, so

K ⊆ Br1(p) ∪ · · · ∪Brn(p) = Bs(p),

and thus K is bounded as claimed. (Note: replacing an infinite number of radii with finitely many
allows us to take their maximum. This is not necessarily possible if have an infinite number of
radii to work with—in this case we would need to take their supremum instead, but this supremum
could be “infinite”.)

This proof gives an example of the idea of “turning an infinite amount of data“—in this case
radii—into a finite amount”, which we alluded to previously. This truly is the key intuition to have
in mind when considering compactness.

Lecture 10: More on Compactness

Warm-Up. Suppose X is a discrete metric space. We show that K ⊆ X is compact if and only
if K is finite. The backwards direction is actually true in any metric space: finite always implies
compact. Indeed, suppose K = {p1, . . . , pn} is finite and let {Uα}α be an open cover of K. For
each 1 ≤ i ≤ n pick αi such that piinUαi , which is possible since K is contained in the union of
the Uα. Then Uα1 ∪ · · · ∪ Uαn contains all pi, and so is finite subcover of the original open cover.
Hence K is compact.

Now, for the forward direction suppose K ⊆ X is compact. (Recall that X is now discrete.)
For each p ∈ K, the open ball B1/2(p) = {p} has p as its only element, since all other elements are
a distance of 1 away from p. Thus the collection of all such open balls of radius 1/2 cover K, so
since K is compact there are a finite number of these open balls that still cover K:

K ⊆ {p1} ∪ · · · ∪ {pn}.

But then K = {p1, . . . , pn} is finite, as claimed.

Compact implies closed. We continue to build up more properties of compact sets, now by
showing that a compact subset K of a metric space X is always closed. Note in the proof how
compactness allows us to replace an infinite amount of data with a finite amount of data.

We show that K is closed by showing that Kc is open. Let p ∈ Kc. Our goal is to show there
is a ball around p which is contained in Kc. For any x ∈ K, we can find open balls Ux and Vx
around x and p respectively which do not intersect each other, say by taking their common radius
to be r = d(x,p)

2 . (Draw a picture!) As x ∈ K varies through all possible points, we then get an
open cover {Ux}x of K. Since K is compact, this has a finite subcover, say:

K ⊆ Ux1 ∪ · · · ∪ Uxn .

The corresponding V ’s then all contain p and we claim that their intersection:

Vx1 ∩ · · · ∩ Vxn

is fully contained in Kc. Indeed, Vxi is contained in the complement of Uxi , so

Vx1 ∩ · · · ∩ Vxn ⊆ (Ux1)c ∩ · · · ∩ (Uxn)c = (Ux1 ∪ · · · ∪ Uxn)c ⊆ Kc

as desired. But Vx1∩· · ·∩Vxn is the intersection of finitely many open sets, so is itself and open and
hence since p ∈ Vx1 ∩ · · · ∩ Vxn , there exists a ball Bs(p) contained in this intersection, and hence
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contained in Kc. (In fact, this intersection is simply the ball among the Vxi of smallest radius.)
Thus Kc is open in X, so K is closed.

This is a tricky proof to follow at first, but drawing a picture helps to see what the rationale
behind the U ’s and V ’s are. Again, note the fact that compactness of K allowed us to replace an
infinite amount of data (the Ux’s in general) by a finite amount (the Uxi ’s), and hence we were able
to take their intersection and guarantee that the resulting set is still open.

So far we thus know that compact sets are always closed and bounded in any metric space in
which they sit inside. In fact, in Rn (Euclidean metric) it turns out that the converse is true: a
closed and bounded subset of Rn is compact! This is called the Heine-Borel theorem, which we will
prove next time. Compact subsets of Rn are thus simple to describe, but take care that this converse
is not true in an arbitrary metric space, where “closed and bounded” does not necessarily imply
compact. For example, (−

√
2,
√

2) ∩ Q is closed and bounded in Q, but is actually not compact
since the open cover consisting of sets of the form (−

√
2 + 1

n ,
√

2) ∩Q has no finite subcover.

Closed in compact is compact. We finish by giving one more way to justify that certain sets
are compact. We show if K is closed in X and X is compact, then K is compact as well. Take an
arbitrary open over {Uα}α of K. Since K is closed in X, Kc is open so then

{Uα}α ∪ {Kc}

is an open cover of X. (The first collection covers all of K and Kc covers the rest of X.) Since X
is compact, this has a finite subcover, say

U1 ∪ . . . ∪ Un ∪Kc.

Then the sets U1, . . . , Un cover K since any element in K is also in X and hence is in one of the
sets U1, . . . , Un,K

c, but certainly does not belong to Kc. Thus U1, . . . , Un is a finite subcover of
the open cover {Uα}α of K, so K is compact.

Lecture 11: Yet More Compactness

Warm-Up. The fact that closed intervals [a, b] are compact was proved in discussion section. We
now use this to show that closed rectangles [a, b]×[c, d] in R2 are also compact. To this end, suppose
we cover [a, b]×[c, d] by some open sets Uα. Since each Uα is open in R2, for any (x, y) ∈ [a, b]×[c, d]
we can find an open ball around (x, y) contained in some Uα. Even better: since we know that
“open” with respect to the Euclidean metric means the same thing as open with respect to the box
metric, for any (x, y) ∈ [a, b] × [c, d] there exist open intervals (p(x,y), q(x,y)) ⊆ R containing x and
(s(x,y), t(x,y)) ⊆ R containing y such that

(x, y) ∈ (p(x,y), q(x,y))× (s(x,y), t(x,y)) ⊆ some Uα.

Now, for fixed x ∈ [a, b], the intervals (s(x,y), t(x,y)) with y ∈ [c, d] varying form an open cover
of [c, d]. Since [c, d] is compact, there are finitely many intervals among these, say

(s(x,yx1), t(x,yx1)), . . . , (s(x,yxnx )
, t(x,yxnx )

)

that still cover [c, d]. (The notation on the y-coordinates emphasizes that they depend on the x we
pick, and the number nx of them also depends on x.) The picture to have in mind is the following,
where we end up with finitely many open rectangles that cover the vertical segment in [a, b]× [c, d]
occurring at a fixed x:
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We have such a picture no matter which x we take, so that in any “vertical direction” we have
finitely many open rectangles.

Now we seek to vary x ∈ [a, b]. Consider all the intervals (p(x,y), q(x,y)) corresponding to the
specific vertical intervals constructed above, so in other words consider the intervals of the form

(p(x,yxi), q(x,yxi)) where 1 ≤ i ≤ nx.

The collection of all such intervals as x ∈ [a, b] varies form an open cover of [a, b], since each x in
particular belongs to any (p(x,yxi), q(x,yxi)) corresponding to that x. Since [a, b] is compact, there
are finitely intervals among these, say

(p(x1,yx1i), q(x1,yx1i)), . . . , (p(xm,yxmi), q(xm,yxmi))

where 1 ≤ i ≤ nxj , that still cover [a, b]. Taking the product of these with the corresponding
vertical intervals gives a finite number of open rectangles

(p(xj ,yxji), q(xj ,yxji))× (s(xj ,yxji), t(xj ,yxji))

that cover all of [a, b] × [c, d], since the vertical portions where chosen, for each xj , to cover [c, d],
and the horizontal portions to cover [a, b]. (The notation is quite cumbersome since we have to
keep track of x-coordinates and also y-coordinates that depend on the choice of x-coordinates, but
the idea is simply that we get a finite number of rectangles in any “vertical” direction, and then a
“finite number of a finite number” as we move “horizontally”:

producing a finite number covering all of [a, b]× [c, d].)
But each of these open rectangles was initially chosen to be contained in some Uα, so if we

take such a Uα for each of this finite number of rectangles, we get a finite number of Uα covering
[a, b]× [c, d], so this is the finite subcover of our original cover, as required.

Boxes/n-cells. A similar argument, only applied to more directions, shows that the product of
any n closed intervals

[a1, b1]× · · · × [an, bn]
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is compact in Rn. Such a product looks like an n-dimensional “rectangular box”, and is what the
book calls a n-cell. (I like the term “box” better.) When n = 3, this is literally a box in R3 with
rectangular sides, hence the name.

Heine-Borel. With the compactness of boxes (or n-cells) at hand, we can now give a complete
description of all compact subsets of Rn with respect to the Euclidean metric. The Heine-Borel
theorem states that K ⊆ Rn is compact if and only if K is closed and bounded. The forward
direction is, as we’ve said previously, true in any metric space: compact always implies closed and
bounded in any metric space. The backwards direction is the new one, and the proof is quick:
Suppose K is closed and bounded. Since K is bounded, it is contained in some rectangular box:

K ⊆ [a1, b1]× · · · × [an, bn].

But [a1, b1] × · · · × [an, bn] is compact, so K is a closed subset of a compact space and is thus
compact itself. Boom!

The upshot is that compact subsets of Euclidean space are easy to visualize:

We emphasize once again, however, that this characterization of compactness so far only holds in
Rn, and that in general a closed and bounded space does not have to be compact.

Back to Cantor. We now revisit the Cantor set, and justify some claims we made earlier. Recall
that the construction of the Cantor set begins with the set C0 = [0, 1], then C1 = [0, 13 ]∪ [23 , 1], and
so on removing the middle third of each interval making up Cn−1 to produce the intervals making
up Cn. The Cantor set is the intersection C =

⋂
nCn of all Cn produced in this way. Note that

the Cantor set is in fact compact. Indeed, it is bounded since it sits inside of [0, 1], and it is closed
since it is the intersection of closed intervals. Hence by the Heine-Borel theorem (which applies
since the Cantor set is a subset of R), it is compact.

Now, back when discussing the Cardinality of the Cantor set, we argued that elements of the
Cantor set correspond bijectively to infinite binary sequences. That is, we have a map

C → {0, 1}∞

which we hand-waived our way through showing was bijective. This map associated to each element
of the Cantor set the string of 0’s and 1’s which characterized whether that element went into the
“left” or “right” interval at each step in the construction. We can now prove that this map is in
fact bijective. Actually, injectivity requires nothing new and is something we could have justified
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earlier: If x, y ∈ C produce the same binary sequence, then x, y belong to the same interval at each
step of the construction of C. For example, either both belong to [0, 1/3] or both to [2/3, 1], and
then either both to [0, 1/9], or both to [2/9, 1/3], or both to [2/3, 7/9], or both to [8/9, 1], and so
on. But the intervals at the C1 state each of length 1

3 , those at the C2 state have length 1
32

, and
in general those at the Cn stage have length 1

3n . If x, y belong to the same interval at each stage,
then the distance between them is at most 1

3n for all n:

|x− y| < 1

3n
for all n ∈ N.

Since the numbers 1
3n get arbitrarily small, we must have |x− y| = 0, so x = y as desired.

To see that the map C → {0, 1}∞ is surjective, take an arbitrary binary sequence. The claim is
that there is an element of the Cantor set which follows this given pattern of left/right movements.
Denote by In the closed interval corresponding to the 0’s and 1’s in the binary sequence up to the
n-th stage; so I1 is [0, 1/3] or [2/3, 1] depending on whether the first term in our sequence is 0; if
the first two terms in our sequence are 0, 0 then I2 = [0, 1/3] (i.e. move left and then left again),
while if the first two terms are 0, 1 then I2 = [2/3, 1] (move left then right); etc. An element in the
Cantor set corresponding to the specific binary sequence we take should be an element common to
all the In. But each of these intervals is compact, and a problem from discussion showed that the
intersection of nested (meaning In ⊇ In+1 for all n) compact sets is not empty, meaning that there
is indeed an element of the Cantor set which corresponds to our given sequence. Hence the map
C → {0, 1}∞ is surjective, so it is a valid bijection. Huzzah!

Lecture 12: Sequences

Warm-Up. We show that an infinite subset E of a compact set K ⊆ X always has a limit point.
By way of contrapositive, suppose that E is a subset of K which does not have a limit point. Then
for any p ∈ K, p is not a limit point of E so there exists a ball Brp(p) around p which either contains
no element of E or in which the only element of E is p if p happened to belong to E. Either way
the key takeaway is that Brp(p) contains at most one element of E. The collection of all such open
balls as p ∈ K varies is then an open cover of K, so by compactness there are finitely many balls
among these which also cover K, say

Brp1 (p1), . . . , Brpn (pn).

But each of these balls only contain at most one element of E, so their union contains only finitely
many elements of E. Since E ⊆ K is supposed to be fully contained in this union, we thus get that
E is finite as desired. (The fact that infinite subsets of a compact set always have a limit point will
lead to a way to characterize compactness in terms of sequences, as we will see.)

Here is the practical point of this. Imagine we have a closed and bounded subset of R2, for
example, such as one of the ones we drew last time. Take any random collection of infinite points
in that set. Since our set is compact (Heine-Borel), this random collection of infinite points will
have a limit point, with the idea being that this is a point around which points of our infinite set
“cluster” near. Thus, even if we begin with a completely random sample of points, among them
there will be some that behave in a “controlled” way since they must “cluser” near something. This
is essentially how compactness will be used later on, to extract “order” from “chaos”.

Connected sets. There is one more basic topological concept which the book mentions at this
point, that of connectedness. This notion will not be very useful until we discuss continuity, so we
will postpone going into the details for now. But, here is the basic definition:
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A metric space X is disconnected if it can be written as the union of two disjoint
nonempty open subsets: there exist nonempty open sets U, V ⊆ X such that U ∩V = ∅
and X = U ∪V . A space which is not disconnected is called connected. In other words,
X is connected if whenever X = U ∪ V with U and V disjoint and open in X, it must
be true that one of U or V is empty.

(This version of the definition of connected is slightly different than the one the book gives, but the
two versions are in fact equivalent.) The intuition behind this definition can be seen by drawing
some pictures:

In the first picture, the space X is the one consisting of the union of the two open balls drawn, and
is disconnected. The point is that connected spaces are ones which consist of a single “piece”, while
disconnected ones consist of multiple “pieces”. Essentially, in a disconnected space what happens
in one “piece” has no effect on what happens in another.

The most basic examples of connected spaces are intervals in R and (open or closed) balls in
Rn. We will prove all this later.

Sequences. Let X be a metric space. A sequence in X is an infinite list (pn) of elements of X:

p1, p2, p3, p4, . . . .

We say that the sequence (pn) converges to p ∈ X if for any ε > 0 there exists N ∈ N such that

d(pn, p) < ε for n ≥ N.

We call p the limit of the sequence (pn), and often denote it by p = limn→∞ pn. (Note that we need
to know limits are unique in order for the use of word “the” here to make sense; we will prove that
limits—when they exist—are indeed unique next time.)

The intuition is as follows: the condition d(pn, p) < ε says that pn ∈ Bε(p), so the definition says
that given any ball around p, no matter how small its radius, eventually all terms in the sequence
(pn) are in that ball. This captures the idea that the terms pn are getting closer and closer to p:
give me any small bound on how close we want to end up to p, and we can guarantee that we do
in fact eventually end up that close. If a sequence converges in X we say it is convergent, and if
not we say it is divergent, or that it diverges in X.

Sequences give an essential way to capture the idea of things being “close” to one another.
We will see that all of the topological notions we have seen before—open, closed, dense, compact,
etc—all have equivalent characterizations in terms of sequences. Later on, the notion of a con-
tinuous function will also have a characterization in terms of sequences, which will be crucial to
understanding the intuition behind continuity.

Remark. Note that the specific metric space in question matters. For instance, take a sequence
(rn) of rationals converging to

√
2 with respect to the Euclidean metric; for example

r1 = 1, r2 = 1.4, r3 = 1.41, r4 = 1.414, . . .
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and so on where we take one more digit at a time in the decimal expansion of
√

2. This sequence
is convergent in R but it is considered to be divergent in Q since the thing to which it converges
does not exist in the metric space Q. (We’ll soon see that this is an example of a Cauchy sequence
in Q that does not converge in Q.)

Example. Consider the sequence (xn) in R defined by

xn =
2n2

n2 + 1
.

So, the first few terms are

x1 = 1, x2 =
8

5
, x3 =

9

5
, . . . .

We claim that this sequence converges to 2 in R, assuming the Euclidean metric. This is nothing
but the precise statement of the fact that

lim
n→∞

2n2

n2 + 1
= 2

you would have learned how to compute in a calculus course, but here we will prove this using only
the definition of convergence.

First some scratch work. Let ε > 0. We need to come up with some index N ∈ N beyond which

|xn − 2| =
∣∣∣∣ 2n2

n2 + 1
− 2

∣∣∣∣ < ε

holds. We can compute the expression inside the absolute value directly to see that the inequality
we need is ∣∣∣∣ −2

n2 + 1

∣∣∣∣ < ε.

To make this happen, we seek to bound the term on the left by intermediate expressions in terms of
things whose growth as n increases we already know how to control. By controlling how large these
bounds are, we can force our original expression to indeed be smaller than ε. (This is precisely how
all such “ε-arguments” will work in analysis, and is something we already saw glimpses of in some
supremum examples.) In this case, we can note that∣∣∣∣ −2

n2 + 1

∣∣∣∣ ≤ 2

n2
≤ 2

n

by making the denominator smaller at each step. Thus, if we can force the final 2
n to be smaller

than ε (which we can do in this case using the Archimedean Property), that in turn will make our
original |xn − 2| smaller than ε as well.

Here then is our actual proof. Let ε > 0 and pick N ∈ N large enough so that

1

N
<
ε

2
, or equivalently

2

N
< ε.

Then if n ≥ N , we have

|xn − 2| =
∣∣∣∣ 2n2

n2 + 1
− 2

∣∣∣∣ =

∣∣∣∣ −2

n2 + 1

∣∣∣∣ ≤ 2

n2
≤ 2

n
≤ 2

N
< ε.

This shows that (xn) converges to 2 as claimed.

Another example. In R2 with the Euclidean metric, a convergent sequence looks like:
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Indeed, as we described earlier when giving the intuition behind the definition of convergence, any
ball we draw around p, no matter how small, has the property that all terms pn past some index
are in it. (This picture also illustrates something we mentioned earlier, that pictures drawn in R2

will help to clarify many metric concepts we’ll come across.)
Here is a concrete example. Take the sequence (pn, qn) in R2 defined by

(pn, qn) =
(

1
2n ,

1
3n

)
.

So the terms of our sequence are (
1
2 ,

1
3

)
,
(
1
4 ,

1
9

)
,
(
1
8 ,

1
27

)
, . . .

which appear to be converging to (0, 0). To prove this we need to make the Euclidean distance

d((pn, qn), (0, 0)) =

√(
1
2n

)2
+
(

1
3n

)2
=
√

1
4n + 1

9n

however small we need. To do so, we use the fact that we can make each of 1
4n and 1

9n however small
we need, since each of these sequences converge to 0 in R. Indeed, let ε > 0 and pick N1, N2 ∈ N
such that ∣∣∣∣ 1

4n
− 0

∣∣∣∣ < ε2

2
for n ≥ N1, and

∣∣∣∣ 1

9n
− 0

∣∣∣∣ < ε2

2
for n ≥ N2.

Then for n ≥ max{N1, N2}, we have

d((pn, qn), (0, 0)) =
√

1
4n + 1

9n <
√

ε2

2 + ε2

2 = ε.

Thus ( 1
2n ,

1
3n ) converges to (0, 0) in R2 (with respect to the Euclidean metric) as claimed.

(In fact, the exact same reasoning applies to all sequences in R2: if pn → p and qn → q in
R, then (pn, qn) → (p, q) in R2. You will prove a general version of this on the homework—the
converge is also true!—and the upshot is that convergence in R2 is equivalent to “componentwise”
convergence in R. The same is true of sequences in Rn.)

Discrete sequences. Now consider a discrete space (X, d). If pn → p in X, we must have

d(pn, p) <
1

2

for all n past some index. However, the only way a distance can be smaller than 1/2 in a discrete
space is for it to zero, so the above condition gives

d(pn, p) = 0 for all n past some index,
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which in turn says that pn = p for all n past some index. Thus, a sequence in a discrete space is
convergent if and only if it is eventually constant, meaning that all terms past some index are the
same. Note in particular that although the sequence

1,
1

2
,

1

3
,

1

4
, . . .

converges to 0 in R with respect to the usual Euclidean metric, it does not converge to 0, nor too
anything, in R equipped with discrete metric. Convergence depends heavily on the metric being
used!

Lecture 13: More on Sequences

Warm-Up. We show that the sequence (fn) in Cb(R), where fn : R → R is defined by fn(x) =
1
n sin(nx), converges to the constant function 0 with respect to the sup metric. Recall that in this
case the distance between fn and the constant function 0 is

d(fn, 0) = sup
x∈R
|fn(x)− 0| = sup

x∈R

∣∣∣∣ 1n sin(nx)

∣∣∣∣ .
For each x ∈ R, we have ∣∣∣∣ 1n sin(nx)

∣∣∣∣ ≤ 1

n

since | sin(nx)| ≤ 1 for all n. Thus, 1
n is an upper bound on the value of numbers | 1n sin(nx)| as

x ∈ R varies, so it is greater than or equal to the supremum of this set:

d(fn, 0) = sup
x∈R

∣∣∣∣ 1n sin(nx)

∣∣∣∣ ≤ 1

n
.

Hence for ε < 0, we can pick N such that 1
N < ε, and then d(fn, 0) ≤ 1

n ≤
1
N < ε for n ≥ N , which

says that fn → 0 in Cb(R) as claimed.
The intuition behind this convergence statement comes from looking at the graphs of the fn.

These graphs are all sine curves, but whose amplitude decreases as n gets larger:

Given any “tube of radius ε” around the graph of 0, eventually the graphs of fn will fall within
this tube, which is what it means to say that d(fn, 0) < ε for large enough n. This example also
illustrates a general process for demonstrating convergence with respect to the sup metric: find a
bound on |fn(x)− f(x)| which depends on n but is independent of x, so that you get a bound on
the supremum of such values. (This is all related to the notion of uniform convergence, which you
will see in the second quarter of real analysis.)

Sequences and limit points. With the notion of sequence convergence at hand we can now
revisit and recast many of the topological notions we previously considered. First and foremost,
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p ∈ X is a limit point of E ⊆ X if and only if there is a sequence of distinct elements xn of E
converging to p. This makes intuitive sense: limit points should be points that are “close” to E,
and this new characterization says that indeed such points arise as limits of sequences in E which
come arbitrarily close to it.

For the forward direction, suppose p is a limit point of E. Then any ball around p contains an
element of E which is not equal to p. In particular, for any n ∈ N there exists xn ∈ E in B1/n(p)

with xn 6= p. The resulting xn satisfy d(xn, p) <
1
n , which implies that the xn converge to p, so

that there is indeed a sequence in E converging to p. However, we have to be careful: we claimed
that there was a sequence of distinct points in E converging to p, and so far we don’t know that
the elements xn we’ve constructed are distinct. Indeed, they don’t have to be: perhaps the element
x2 we chose to be within a distance of 1

2 away from p was also already within 1
3 away from p, so

that it would been a plausible choice for x3 as well. To guarantee that we get distinct points, we
should, at each step, consider a radius small enough so as to exclude all points we’ve chosen up to
that point.

So, for n = 1 pick any x1 ∈ B1(p) in E different from p. But now for n = 2, pick x2 to be
within not only 1

2 away from p but also within d(x1, p) away from p; that is, pick x2 6= p in E in
the ball of radius

min

{
1

2
, d(x1, p)

}
> 0

around p. This point then in particular satisfies d(x2, p) < d(x1, p), so x2 cannot be x1. Then for
n = 3, pick x3 6= p in E in the ball of radius

min

{
1

3
, d(x1, p), d(x2, p)

}
> 0

around p. This point is different from both x1 and x2 since its distance to p is smaller than that of
either x1 or x2. And so on, pick at the n-step a point xn 6= p in E within 1

n from p and closer to p
than any other point constructed up to that point. The resulting sequence xn then does consist of
distinct points, and converges to p as desired.

For the backwards direction, suppose there is a sequence (xn) of distinct points of E converging
to p. By definition of convergence, any ball around p contains all xn past some xN , so in particular
it contains at least one such element that is different from p since the xn’s are distinct. Thus p
satisfies the definition of being a limit point of E.

Sequences and closures. If we drop the requirement that the sequence (xn) of E above consist
of distinct points, then we get elements of the closure of E, which includes more than just the limit
points. That is, p ∈ E if and only if there is a sequence (xn) of elements of E (no requirement that
they be distinct) converging to p. Recall that the closure is E union its set of limit points—the
relation between limit points and sequences was clarified above, so the only remaining issue is how
elements of E relate to convergence of sequences. But this is easy: if p ∈ E, then for sure there
is a sequence of points in E converging to p, since if nothing else we can simply take the constant
sequence

p, p, p, p, . . . .

This is indeed a sequence of elements of E which converge to p, so elements of E ⊆ E also satisfy
the sequence characterization of the closure given above.

Therefore, to say that E is dense in X (i.e. the closure of E in X is all of X) is to say that for
every p ∈ X, there exists a sequence in E converging to p. Thus for example, every element x of R
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has a sequence of rationals rn converging to it (pick rn ∈ Q to be in (x− 1
n , x+ 1

n)) and also has a
sequence of irrationals converging to it, precisely because both Q and Qc are dense in R.

Sequences and open/closed. We now immediately get a characterization of what it means for
E to be closed in X: E is closed in X if and only if whenever there is a sequence in E converging to
p ∈ X, we must have p ∈ E. That is, closed sets are those which contain the limits of all convergent
sequences within it. In other words, we cannot escape a closed set by taking the limit of a sequence,
so that a closed set is one which “attracts” limits of sequences within.

By considering complements, we then also get a characterization of open: E is open in X if and
only if whenever we have a sequence of elements outside of E converging to p ∈ X, p must also be
outside of E. In other words, an open set is one which “repels” limits of sequences that are outside
of it, which can also phrase as saying that limiting process that take place outside of E can never
bring us inside of E.

Limits are unique. We will look at characterizing other topological notions—namely compactness—
in terms of sequences soon. For now we finish with two more basic properties of convergent se-
quences. First is the fact that if a sequences converges, then it converges to only one thing, or in
other words that limits of convergent sequences are unique. Indeed, suppose (xn) ∈ X converges
to both p and q. Then for any ε > 0, there exists N1 such that

d(xn, p) <
ε

2
for n ≥ N1,

and there exists N2 such that

d(xn, q) <
ε

2
for n ≥ N2.

Thus for any xn beyond xN1 and xN2 , we have

d(p, q) ≤ d(p, xn) + d(xn, q) <
ε

2
+
ε

2
= ε.

The nonnegative number d(p, q) is thus smaller than any positive ε, so we must have d(p, q) = 0, so
that p = q and hence the limit of (xn) is unique as claimed. (The intuition is that we can compare
the the distance between p and q to the distances between each of p, q and xn via the triangle
inequality, so since we can make the latter distances arbitrarily small it must be that the distance
from p and q is also arbitrarily small, so it must be zero since it is a fixed distance.)

Convergent sequences are bounded. Finally, we show that a convergent sequence in an arbi-
trary metric space (X, d) is bounded. (Recall that S ⊆ X is bounded if there exists x ∈ X and
r > 0 such that S ⊆ Br(p). So, here we mean that the set whose elements are the terms in our
sequence should be contained in a ball of finite radius.) Suppose that xn → x in X. Then there
exists N ∈ N such that d(xn, x) < 1 for n ≥ N , which can be rephrased as saying

xn ∈ B1(x) for n ≥ N.

Thus we have a ball of finite radius containing at least all terms in our sequence starting with the
N -th one. The idea is now to make this radius large enough so that the corresponding ball includes
all terms of (xn). The picture (drawn in R2 to get some intuition) to have in mind is the following:
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We can get a ball which includes x1 by increasing our current radius of 1 to 1 + d(x1, x), then we
can make the ball include x2 by increasing our radius if need be to make it at least as large as
1 + d(x2, x), and so on. Thus if we define

r := max{d(x1, x), d(x2, x), . . . , d(xN−1, x)}+ 1 > 0,

we claim that Br(x) will contain all terms of (xn). Indeed, for 1 ≤ k ≤ N − 1 we have

d(xk, x) < d(xk, x) + 1 ≤ r

so xk ∈ Br(x) for 1 ≤ k ≤ N − 1, and for n ≥ N we have

d(xn, x) < 1 ≤ r

so xn ∈ Br(x) for n ≥ N . Thus xn ∈ Br(x) for all n, so (xn) is bounded as claimed.

Lecture 14: Numerical Sequences

Warm-Up. A sequence (xn) in R is said to be increasing if xn ≤ xn+1 for all n (each term is at
least as the large as the term before), and is decreasing if xn ≥ xn+1 for all n (each term is at most as
large as the term before). We say that (xn) monotone if it is either increasing or decreasing. (Note
that “increasing” and “decreasing” allow for the possibility that terms are repeated, so constant
sequences are both increasing and decreasing for example.) We prove the Monotone Convergence
Theorem: any monotone and bounded sequence in R converges in R. This is our first result that
can guarantee a sequence converges without knowing what the limit will be ahead of time.

We suppose that (xn) is increasing and bounded above. (The proof in the case that (xn) is
decreasing and bounded below will be very similar.) The set {xn | n ∈ N} containing the terms
of our sequence is nonempty and bounded above, so by the completeness property of R it has a
supremum, call it b. We claim that xn → b. Indeed, let ε > 0. By the alternative characterization
of supremums there exists N ∈ N such that

b− ε < xN ≤ b.

Since (xn) is increasing, we know that xN ≤ xn for n ≥ N , and thus

b− ε < xn ≤ b for n ≥ N.

Hence if n ≥ N , |xn − b| < ε so we conclude that (xn) converges to b. (In the decreasing case the
sequence will converge to the infimum of {xn | n ∈ N}, with almost the same proof.)
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Example. Define the sequence (xn) recursively by setting

x1 =
√

2, xn+1 =
√

2 + xn for n ≥ 1.

Computing a few terms of this sequence:

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2, . . .

suggests that it is increasing, which we can prove using induction; that is, we show that xn ≤ xn+1

for all n. First, x1 =
√

2 ≤
√

2 +
√

2 = x2 so our claim is true for n = 1. Suppose that xk ≤ xk+1

for some k. Then
xk+1 =

√
2 + xk ≤

√
2 + xk+1 = xk+2

so xk ≤ xk+1 implies xk+1 ≤ xk+2. We conclude by induction that xn ≤ xn+1 for all n as claimed,
so (xn) is increasing and hence monotone.

We claim also that this sequence is bounded above by 2, and again we use induction to show
this. First, x1 =

√
2 ≤ 2 so our claim holds for n = 1. Suppose that xk ≤ 2 for some k. Then

xk+1 =
√

2 + xn ≤
√

2 + 2 = 2.

Thus xk ≤ 2 implies xk+1 ≤ 2 so by induction we conclude that xn ≤ 2 for all n.
Since (xn) is bounded and monotone, it converges—let x denote its limit. To determine the

exact value of x we can proceed as follows. First, from the recursive definition of xn we get

x2n+1 = 2 + xn.

The sequence (xn+1) is the subsequence of (xn) consisting of all terms except for the first (we will
discuss subsequences more carefully next time), so (xn+1) also converges to x since (xn) does. Thus
using some limit laws we will soon prove, we have

x2n+1 → x and 2 + xn → 2 + x.

However, x2n+1 = 2 + xn so since limits of a sequence are unique we must have x2 = 2 + x. Solving
for x gives x = −1, 2. We can’t have the limit of (xn) equal −1 since all terms xn are positive, so
we must have x = 2. Thus (xn) converges to 2, a fact which is more challenging to show directly
using only the definition of convergence.

Sums of convergent sequences. The fact we used above that xn → x implies 2 + xn → 2 + x
reflects a more fact about sequences in R, namely that sums of convergent sequences are convergent.
The claim is the following:

Suppose we have sequences an → a and bn → b in R. Then the sequence (an + bn)
converges to a+ b. In other words, we have

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn,

assuming both limits on the right exist.
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The idea of the proof, as usual, is to find a way to bound |(an + bn)− (a + b)| (the expression we
have to make smaller than ε in order to show an + bn → a + b) in terms of |an − a| and |bn − b|,
which we know we can control. This is simple: according to the triangle inequality we have

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|.

Now we see that if we make the two terms on the right smaller than ε/2 (which we know we can do
past some indeces), the expression on the left will be smaller than ε. This is an example of what’s
called an “ ε2 -trick”, and again “picking the maximum of indices” makes an appearance.

Here, then, is our proof. Let ε > 0. Since an → a and bn → b there exist N1, N2 ∈ N such that

|an − a| <
ε

2
for n ≥ N1

and
|bn − b| <

ε

2
for n ≥ N2.

Then if n ≥ max{N1, N2} we have

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| <
ε

2
+
ε

2
= ε.

We conclude that an + bn → a+ b as claimed.

Products of convergent sequences. The fact that xn → x implies x2n → x2 in the “nested square
roots of 2” example is a special case of the general fact that products of convergent sequences in R
are convergent. That is,

Suppose we have sequences xn → x and yn → y in R. Then the sequence (xnyn)
converges to xy. In other words, we have

lim
n→∞

xnyn =
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
,

assuming both limits on the right exist.

The proof again works by making |xnyn − xy| small enough past some index, by bounding it in
terms of the two expressions |xn − x| and |yn − y| we have some control over. The tricky part is in
coming up with such a bound.

So, given ε > 0, we want to find an index N large enough so that for n ≥ N , we have

|xnyn − xy| < ε.

Note that the triangle inequality implies

|xnyn − xy| ≤ |xnyn − xny|+ |xny − xy|.

(We can also see this by adding and subtracting xny inside |xnyn − xy| and then using the usual
triangle inequality for the absolute value.) Thus we have

|xnyn − xy| ≤ |xn||yn − y|+ |xn − x||y|.

Now we are in business, and since we have two terms to work with we try an “ε/2-trick”.
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The second term is easy to bound: since (xn)→ x, we know there exists N1 ∈ N such that

|xn − x| <
ε

2|y|
for n ≥ N1,

and this will give us |xn−x||y| < ε/2. However, note this doesn’t quite work if y = 0, since then we
would be trying to divide by zero. To get around this, we can simply make |y| larger and consider
|y|+ 1 instead: pick N1 ∈ N such that

|xn − x| <
ε

2(|y|+ 1)
for n ≥ N1,

and this will still give us |xn−x||y| < |xn−x|(|y|+ 1) < ε/2. (We don’t need the sharpest possible
bound, just a bound that works!)

Now we have that for n ≥ N1,

|xnyn − xy| ≤ |xn||yn − y|+ |xn − x||y| < |xn||yn − y|+
ε

2
.

The first term looks almost as easy to bound, and a first guess may be to use the fact that (yn)→ y
to pick N2 ∈ N so that for n ≥ N2,

|yn − y| <
ε

2|xn|
.

However, this is bad since the right hand side is changing as n does because of the xn term. We
need to find a way to bound |xn||yn− y| by something which does not depend on n, since we don’t
know what n’s to consider until after we’ve specified the constant bound on |yn−y| we want. To do
this, note that since (xn) converges, it is bounded, so we can find some M > 0 such that |xn| ≤M
for all n. This gives us

|xn||yn − y| < M |yn − y|

for n ≥ N1, and now we can apply our ε/2-trick as we did before since the only thing depending
on n now is |yn − y|. This will give us a natural number N2, and to make sure that all our bounds
hold we need to guarantee that the n’s we consider are larger than both N1 and N2.

Here then is our final proof. Let ε > 0. Pick a positive bound M > 0 on the |xn|, which exists
since (xn) converges. Choose N1 ∈ N such that

|xn − x| <
ε

2(|y|+ 1)
if n ≥ N1.

Next, choose N2 ∈ N such that

|yn − y| <
ε

2M
if n ≥ N2.

If n ≥ max{N1, N2}, we then have:

|xnyn − xy| = |xnyn − xny + xny − xy|
≤ |xn||yn − y|+ |xn − x||y|
≤M |yn − y|+ |xn − x|(|y|+ 1)

< M
ε

2M
+

ε

2(|y|+ 1)
(|y|+ 1)

=
ε

2
+
ε

2
= ε.

We conclude that (xnyn) converges to xy as claimed.
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This is an absolutely crucial argument to understand, since it is reflective of so much of what
analysis is about. The entire goal is to find a way to bound some expression of interest (|xnyn−xy|
in this case) by things (|xn − x| and |yn − y|) we know we can control, and in doing so get a way
to control the growth our original expression. Controlling “growth” in this way is, in many ways,
the entire point of analysis.

Lecture 15: Subsequences

Warm-Up. Suppose (xn) is a sequence of nonzero real numbers that converges to x. If x 6= 0, we
show that 1

xn
→ 1

x . This is yet another basic “arithmetic” property of sequences we expect to be
true from calculus:

lim
n→∞

1

xn
=

1

lim
n→∞

xn
,

provided that the limit on the right exists and that at no point are we dividing by zero. We want

to make the quantity
∣∣∣ 1
xn
− 1

x

∣∣∣ smaller than ε. We can first rewrite this as∣∣∣∣ 1

xn
− 1

x

∣∣∣∣ =
|xn − x|
|xn||x|

.

Now, the numerator is good because this is something we know we can control given that (xn)
converges to x. But, in order to make the quantity above smaller than ε, we cannot jump to
requiring that

|xn − x| < ε|xn||x|

since the right side is not a fixed positive number, but rather varies as n does. So, we need to find
a way to bound |xn−x|

|xn||x| by something whose only dependence on n comes from |xn − x|, meaning

that we need to find a way to bound |xn| from below since it occurs in the denominator:

|xn − x|
|xn||x|

≤ |xn − x|
(some positive quantity smaller than |xn|)|x|

.

After we have a bound like this, we can choose make |xn− x| appropriately small in order to make
everything smaller than ε.

In order to find a positive lower bound on |xn|, we use the fact that xn → x: since the terms

xn are converging to x, they must eventually be bounded away from 0 by at least, say, |x|2 . In other
words, by the definition of convergence, there must exist a point in our sequence beyond which

xn lies in (x− |x|2 , x+ |x|
2 ),

at which point |xn| ≥ |x|2 is true. We can also derive this using the reverse triangle inequality: pick

N beyond which |xn − x| < |x|
2 is true, and then we get

|x| − |xn| ≤ |x− xn| <
|x|
2
, so |x| − |x|

2
≤ |xn| for such n.

The point is that we can, for large enough n, bound |xn| from below by |x|2 , and for these terms we
thus have:

|xn − x|
|xn||x|

≤ |xn − x||x|
2 |x|

.
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Now that we have a constant in the denominator, we can proceed to make the fraction smaller than

ε by forcing |xn − x| to be smaller than ε|x|2
2 . Note that we used two indices throughout all this:

one beyond which |xn− x| < |x|
2 is true, and one beyond which |xn− x| < ε|x|2

2 is true. So, in order
to make both of these apply we need to take the maximum of these indices.

Here is our final proof. Let ε > 0. Since xn → x, there exists N1 ∈ N such that

|xn − x| <
ε|x|2

2
for n ≥ N1.

There also exists N2 ∈ N such that |xn − x| < |x|
2 for n ≥ N2, which implies that

|x| − |xn| ≤ |x− xn| <
|x|
2
, so

|x|
2
< |xn| for n ≥ N2.

Thus for n ≥ max{N1, N2}, we have:∣∣∣∣ 1

xn
− 1

x

∣∣∣∣ =
|xn − x|
|xn||x|

≤ |xn − x||x|
2 |x|

<
ε|x|2/2
|x|2/2

= ε,

which shows that 1
xn
→ 1

x as claimed.

Subsequences. We are now working towards a sequential characterization of compactness. The
correct phrasing depends on the notion of a subsequence of a sequence, which is simple to grasp: a
subsequence of a sequence (pn) in X is a sequence (pnk

) of terms coming from among the pn such
that if k1 ≥ k2, then nk1 ≥ nk2 . This property says precisely that the order in which terms occur
the subsequence (as given by the index k) matches the relative order in which the terms occur in the
original sequence (as given by the index nk). If one term comes after another in the subsequence,
that must also have been true in the original sequence. So, for example,

p4, p1, p6, p7, p20, p10, . . .

is not considered to be a subsequence of

p1, p2, p3, p4, p5, . . .

since ordering isn’t preserved: p4 comes before p1 in the subsequence, even though p1 came before
p4 in the original sequence, and similarly for p20 vs p11.

The first basic fact about subsequences is that if the original sequence converges, so does any
subsequence and to the same limit. That is, suppose pn → p in X. Then for any ε > 0 there exists
N such that

d(pn, p) < ε for n ≥ N.

The point is that all terms in a subsequence (pnk
) are among these pn once the subsequence index

nk is large enough: pick K ∈ N such that nK ≥ N and then we have

d(pnk
, p) < ε for k ≥ K,

since nk ≥ nK ≥ N . This shows that (pnk
) also converges to p as claimed. (In particular then, a

sequence for which there exists two subsequences converging to different points, or for which there
exists a subsequence that does not converge, cannot be convergent itself.)
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Bolzano-Weierstrass. The most important fact related to sequences and subsequences in R
is the following result, known as the Bolzano-Weierstrass theorem: every bounded sequence in
R has a convergent subsequence. The point is that even if our original sequence behaves in a
completely random way, as long as it is bounded there will be terms among them that behave
in a very controlled way, by converging to something. (So, our original sequence wasn’t behaving
so randomly after all!) It is precisely this fact which will allow for many of the nice properties a
continuous function can have to hold.

We will give two proofs of this theorem in the next few days, but for now we emphasize that this
is ultimately a result about compactness. (Boom!!!) Indeed, here, finally, is the characterization
of compactness in terms of sequences we’ve been alluding to for a while: a subset K of a metric
space X is compact if and only if every sequence in K has a convergent subsequence in K. (Saying
“convergence subsequence in K” requires that the limit of the subsequence be in K as well.) To
distinguish between this characterization of compactness and the previous ones in terms of open
covers, we often refer to this version as sequential compactness and the previous one as covering
compactness. The two, however, are indeed equivalent.

We will prove that covering compactness implies sequential compactness next time, and you
will show on the homework (with the help of a discussion problem) that sequential compactness
implies covering compactness. (This latter direction is the harder one.) But, for now we see that
we can restate the Bolzano-Weierstrass theorem as essentially the claim that closed intervals [a, b]
are sequentially compact. Indeed, suppose (xn) is a sequence in [a, b]. Then in particular [a, b] is
bounded, so the Bolzano-Weierstrass theorem says that (xn) has a convergent subsequence (xnk

).
If p ∈ R denotes the limit of this subsequence, then since [a, b] is closed in R and each xnk

is in [a, b],
we have that the limit p must be in [a, b] as well, so that (xn) does have a convergent subsequence
in [a, b], and so [a, b] is sequentially compact. Going the other way, if we know that closed intervals
are always sequentially compact, then given a bounded sequence (xn) in R, take a closed interval
containing all xn. By sequential compactness, this sequence (xn) then has a convergent subsequence
(whose limit is in the same closed interval), which gives the Bolzano-Weierstrass Theorem.

Lecture 16: Sequential Compactness

Warm-Up. Suppose (pn, qn) is a sequence in a rectangle [a, b]× [c, d] in R2. We show that (pn, qn)
has a convergent subsequence in [a, b]×[c, d]. Here is a first attempt, that does not work. Since each
(pn, qn) is in [a, b]×[c, d], each pn is in [a, b] and each qn is in [c, d]. Thus, by the Bolzano-Weierstrass
theorem, the sequence (pn) has a convergent subsequence (pnk

) in [a, b], and the sequence (qn) has
a convergent subsequence (qn`

) in [c, d]. The problem is that these two do not necessarily produce
a convergent subsequence of (pn, qn): terms like (pnk

, qn`
) are not necessarily among the (pn, qn)

since the indices nk and n` might be different. For example, it might be that the subsequence (pnk
)

actually consists of the odd-indexed terms (p2n−1), and the subsequence (qn`
) might be the one

with even-indexed terms (q2n), but then

(p1, q2), (p3, q4), (p5, q6), . . .

are not among
(p1, q1), (p2, q2), (p3, q3), . . . .

We need a way to force the indices of the p’s and q’s to match up, since this is what is required in
our original sequence (pn, qn).

Here is the fix. As above, take a convergent subsequence (pnk
) of (pn), converging to, say,

p ∈ [a, b]. Now consider the corresponding sequence (qnk
) of y-coordinates in [c, d]. This sequence
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is bounded, so this sequence has a convergent subsequence (qnk`
) in [c, d], converging to, say,

q ∈ [c, d]. (So, the qnk`
form a “sub-subsequence” of the original qn’s.) Now go back and take

the corresponding x-coordinates (pnk`
), which still converges to p ∈ [a, b] since it is a subsequence

of the convergent sequence (pnk
). We thus get a subsequence (pnk`

, qnk`
) of the original (pn, qn)

converging to (p, q) ∈ [a, b]× [c, d], as desired.

Heine-Borel via sequences. The Warm-Up shows that [a, b] × [c, d] is sequentially compact,
which we recall means that any sequence in that space contains a subsequence converging in that
same space. The same reasoning as in the Warm-Up shows more generally that boxes (or k-cells)
in Rk are compact: given a sequence (x1n, x2n, . . . , xkn in

[a1, b1]× [a2, b2]× · · · × [ak, bk],

we take first a convergent subsequence of the x1n’s in [a1, b1], then look at the corresponding second
coordinates and take a convergent “sub-subsequence” of the x2n’s, then look at the corresponding
third coordinates and take a convergent “sub-sub-subsequence” of the x3n’s, and so on. (Said
another way, this shows that the Bolzano-Weierstrass theorem holds in Rk: any bounded sequence
in Rk has a convergent subsequence.)

This in turns give a sequence-based proof of the Heine-Borel theorem, under the assumption
that covering and sequential compactness are equivalent. Indeed, suppose K ⊆ Rk is closed and
bounded. Let (pn) be a sequence in K. Since K is bounded, there is a k-cell which contains it, and
which thus contains (pn) as well. By the generalization of the Warm-Up, (pn) has a convergent
subsequence in the k-cell, and since K is closed the limit of this convergent subsequence is in K.
Hence K is sequentially compact, and thus covering compact too.

Covering implies sequential. We now show that covering compactness implies sequential com-
pactness. (As we said last time, the other direction is harder, but you will work through it on the
homework.) So, suppose K ⊆ X is covering compact. The key is a result we proved in a Warm-Up
a while back: every infinite subset of K has a limit point. (This property is often called limit
point compactness, and the upshot is all of these notions of compactness—covering, limit point,
and sequential—are all equivalent.)

Let (pn) be a sequence in K. If the set {pn | n ∈ N} of terms of the sequence is finite (take
note: the sequence contains infinitely many terms, but the elements which make up those terms
do not have to be distinct), then there is at least one element p which occurs infinitely often in our
sequence. (This is an application of the pigeonhole principle!) The subsequence consisting of these
repeating p’s is then constant, so it converges and hence (pn) has a convergent subsequence in K
in this case.

Otherwise assume {pn | n ∈ N} is infinite. By limit point compactness, this set has a limit point
p. Our goal is to get a subsequence of the original (pn) which converges to this p. If we have this,
then since K is closed in X (compact always implies closed), p ∈ K and (pn) will have a convergent
subsequence in K as desired. Now, to get the subsequence we want we mimic the proof from a few
days ago that limit points are characterized by having sequences of distinct elements converging
to them. Pick some pn1 from our sequence in B1(p), which exists by the definition of limit point.
Next pick pn2 from our sequence in the ball of radius

min

{
1

2
, d(p1, p), d(p2, p), . . . , d(pn1 , p)

}
> 0

around p. The reason for including the distances d(p1, p), . . . , d(pn1 , p) here is to guarantee that pn2

is not among p1, . . . , pn1—since it is closer to p than any of these points—so that pn2 really does
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come after pn1 in our original sequence, which we need in order to get a subsequence in the end.
Then similarly pick pn3 from our original sequence in the ball of radius

min

{
1

3
, d(p1, p), d(p2, p), . . . , d(pn2 , p)

}
> 0,

which is guaranteed to be further along in our original sequence than pn2 . And so on, at the k-th
stage pick pnk

from our original sequence which is within 1
k away from p and also closer to p than

any term from p1 through pnk−1
. The resulting pnk

’s form a subsequence of (pn) satisfying

d(pnk
, p) <

1

k
,

which implies that pnk
→ p ∈ K. This thus shows that K is sequentially compact.

Lecture 17: Cauchy Sequences

Warm-Up. We show that every sequence in R has a monotone subsequence. Consider the collec-
tion of all indices n such that xn is greater than or equal to everything coming after it. There are
two possibilities, either there are infinitely many such indices or finitely many.

If there are infinitely many such indices we can list them in increasing order:

n1 < n2 < n3 < . . . .

Then by the property these indices satisfy we have

xn1 ≥ xn2 ≥ xn3 ≥ . . . ,

since each xni is greater than or equal to all terms coming after it. This gives a decreasing subse-
quence of (xn).

If there are finitely many such indices pick m1 ∈ N larger than them all. Then xm1 is not
greater than or equal to everything coming after it, so there is some xm2 beyond xm1 (so with
m1 < m2) such that xm1 < xm2 . Similarly, m2 is not among the indices considered above, so xm2

is not greater than or equal to everything coming after it, and hence there is some m2 < m3 such
that xm2 < xm3 . Continuing in this manner gives a sequence of indices m1 < m2 < m3 < . . . such
that

xm1 < xm2 < xm3 < . . . ,

which gives an increasing sequence of (xn) in this case. Thus either way, (xn) has a monotone
subsequence.

Bolzano-Weierstrass revisited. We can now give another (quick!) proof of the Bolzano-
Weierstrass theorem. (We previously gave a proof using compactness of [a, b].) Take a bounded
(xn) sequence in R. By the Warm-Up, this sequence has a monotone subsequence. But this mono-
tone subsequence is still bounded, and hence converges by the Monotone Convergence Theorem.
Hence (xn) has a convergent subsequence as desired.

Cauchy sequences. The monotone convergence theorem is the first result we’ve seen that can
guarantee a sequence converges without knowing what the limit will be ahead-of-time. But, this
only applies to monotone (and bounded!) sequences. More generally, we can consider the following
type of sequence: a sequence (pn) in a metric space (X, d) is Cauchy if for any ε > 0 there exists
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N ∈ N such that d(pn, pm) < ε for m,n ≥ N . Note that there is no mention a potential limit here:
the definition uses only distances between two terms of (pn).

The intuition is that a Cauchy sequence is one whose terms are getting “bunched” up closer and
closer to one another: no matter how small an ε we take, eventually we come across terms in our
sequence all of which are within ε of each other. Informally this suggests that the sequence appears
as if it should converge, but whether or not it actually does is a bit more subtle. (In fact, in R it
is indeed true that Cauchy sequences always converge, which highlights an important property of
R. We’ll elaborate more on this next time.)

Example. The sequence
(
1
n

)
in R is Cauchy. This sequence in fact converges, and we will show

next time that convergent sequences are always Cauchy (intuitively, if the terms of a sequence are
all approaching some fixed definite limit, then for sure they should be approaching one another as
well), but let us give a direct proof that ( 1

n) is Cauchy here.
Let ε > 0 and pick N ∈ N such that 2

N < ε. For any m,n ≥ N , we have∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ 1

n
+

1

m
≤ 1

N
+

1

N
=

2

N
< ε,

so ( 1
n) is Cauchy as claimed.

Another example. Let (xn) be the sequence in R defined by

xn = 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n
.

We claim (xn) is also Cauchy. (This sequence is actually related to the alternating harmonic series:

∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · .

Namely, (xn) is the sequence of partial sums of this series. We will discuss series in detail later.)
To show (xn) is Cauchy we must show that we can make |xm − xn| smaller than ε past some

index. Suppose m ≥ n. To make the notation simpler, we set m = n + k for some k ≥ 0, so that
what we want is some index N beyond which

|xn+k − xn| < ε

holds for all k ≥ 0. (Requiring this for all k ≥ 0 is what guarantees that m = n + k takes on all
values beyond n, as needed in the definition of Cauchy.) The key point in this case is that the
expression for xn+k contains the expression for xn plus some more terms. Indeed, we have

xn+k = 1− 1

2
+

1

3
− · · ·+ (−1)n+1

n︸ ︷︷ ︸
xn

+
(−1)n+2

n+ 1
+

(−1)n+3

n+ 2
+ · · ·+ (−1)n+k

n+ k − 1
+

(−1)n+k+1

n+ k
,

so that

xn+k − xn =
(−1)n+2

n+ 1
+

(−1)n+3

n+ 2
+ · · ·+ (−1)n+k

n+ k − 1
+

(−1)n+k+1

n+ k

is the quantity whose absolute value we want to make smaller than ε. As a first attempt to do so,
we can use the triangle inequality to get

|xn+k − xn| ≤
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ k − 1
+

1

n+ k
≤ k

n+ 1
,
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where in the final step we use the fact that each of the k terms we had are all smaller than or equal
to 1

n+1 . The problem is that k is suppose to take on all possible positive integer values here, in
order to make n + k take on all integer values beyond n, and there is no way we can make this
final quantity smaller than ε if its numerator k is unbounded. What we need is a way to bound
|xn+k − xn| in a way which depends only on n but not k, so that our bound works for all k.

We can give the exact expression for |xn+k − xn| as follows. Note that in

(−1)n+2

n+ 1
+

(−1)n+3

n+ 2
+ · · ·+ (−1)n+k

n+ k − 1
+

(−1)n+k+1

n+ k
,

the first term will be positive or negative depending on the value of (−1)n+2, but whatever it is
the subsequent terms will alternate in sign: if the first term is positive, then the second is negative,
third positive, and so on; while if the first term is negative, the second is positive, third negative,
and so on. If the first term were positive, then we subtract a smaller quantity, and then add back
a positive value, but then subtract a quantity smaller than the one we added on, and so on. This
shows that any expression of the form

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·+ (−1)k+1 1

n+ k

is positive, since we never subtract more than the positive value we had previously. The sum

(−1)n+2

n+ 1
+

(−1)n+3

n+ 2
+ · · ·+ (−1)n+k

n+ k − 1
+

(−1)n+k+1

n+ k

either equals this positive expression above or is its negative, so either way we get that the absolute
value of xn+k − xn is exactly this positive expression:

|xn+k − xn| =
1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·+ (−1)k+1 1

n+ k
.

Now, this entire expression is smaller or equal to its firm term 1
n+1 , since as described above,

as we begin to subtract and add subsequent terms we never subtract more than what we had
previously. (So, we get a bound independent of k as desired!) Thus, for ε > 0, pick N ∈ N such
that 1

N < ε. Then if n ≥ N and k ≥ 0 we have

|xn+k − xn| =
1

n+ 1
− 1

n+ 2
+

1

n+ 3
− 1

n+ 4
+ · · ·+ (−1)k+1 1

n+ k

≤ 1

n+ 1

≤ 1

n

≤ 1

N
< ε,

which shows that (xn) is Cauchy as claimed. (Once we know that Cauchy sequences in R always
converge, we will know that this sequence (xn) converges. In fact, it converges to − ln 2, but proving
this requires the theory of power series, which will be developed next quarter.)

Lecture 18: More on Cauchy

Warm-Up. Suppose that (pn) is a Cauchy sequence in a metric space X and that (pnk
) is a

convergent subsequence. We show that (pn) converges as well. It is not true that if an arbitrary
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sequence has a convergent subsequence then the original sequence must converge as well, so the
assumption here that our original sequence is Cauchy is crucial. The intuition is that the Cauchy
condition gives a way to compare terms in (pn) to terms in (pnk

), and the convergence condition
gives a way to compare terms in (pnk

) to its limit, so the triangle inequality gives a way to compare
terms in our original sequence to this limit.

Say that pnk
→ p ∈ X and let ε > 0. Since (pn) is Cauchy there exists N such that

d(pn, pm) <
ε

2
for n ≥ N.

Since pnk
→ p there exists K such that

d(pnK , p) <
ε

2
.

By making K larger if necessary we may also assume that nk ≥ N , so that pnK is within the range
of terms where the first inequality above holds. Then for n ≥ N we have

d(pn, p) ≤ d(pn, pnK ) + d(pnK , p) <
ε

2
+
ε

2
= ε,

so pn → p as claimed. (Again, informally: if the terms of (pn) are bunching up near each other,
and some terms among those actually approach some definite p, then all of (pn) must approach p.)

Convergent implies Cauchy. We now show that convergent sequences are always Cauchy.
Suppose that (xn) converges to x in X and let ε > 0. Then there exists N ∈ N such that

d(xn, x) <
ε

2
for n ≥ N.

Hence if m,n ≥ N we have

d(xm, xn) ≤ d(xm, x) + d(x, xn) <
ε

2
+
ε

2
= ε,

so (xn) is Cauchy as was to be shown.
It is crucial to understand, however, that the converse of this result is not true: Cauchy does not

necessarily imply convergent. The issue, essentially, is that the candidate “limit” of the sequence
might be missing. For example, take the metric space Q and a sequence of rationals rn that
converges to

√
2 in R. (That such a sequence exists is the fact that Q is dense in R.) This sequence

(rn), viewed as a sequence in R, is convergent and hence Cauchy. But the Cauchy definition does
not care if we are working in Q or R as long as we use the same metric, so (rn) is also Cauchy in
Q. But, (rn) does not converge in Q, since the thing

√
2 to which it would have to converge is not

in Q. So (rn) is a Cauchy sequence in Q that does not converge.

Completeness. We say that a metric space X is complete if every Cauchy sequence in X converges
in X. (The convergence “in” X is the important part.) So, Q is not complete, but we will show in
a bit that R is complete. (In fact, this use of the word “complete” when it comes to R is actually
equivalent to the previous usage in terms of existence of supremums. The homework problem asking
to prove the equivalence between the monotone convergence theorem and the least upper bound
property is essentially the reason why.)

The intuition is that Q fails to be complete because it is “missing” elements which would arise
as “limits” of certain Cauchy sequences, but once we throw those limits in to obtain R, we now
have something complete. In fact, this same type of idea can be used to show that any metric
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space can be “completed” in a similar way: if X is a metric space, there always exists a complete
metric space containing X as a subspace. The “smallest” complete metric space with this property
is called the completion of X, so for example R is the completion of Q. (We don’t define what
“smallest” means in this context, but one way to state what the completion should be is that it is
the complete metric space containing X as a dense subset.)

Proving that every metric space has a completion is not something we’ll get into, but there
are some notes on my website which go into details if you’d really like to see how it works. We
essentially construct the completion of X as the space whose points are the Cauchy sequences of
X, and then consider “Cauchy sequences of Cauchy sequences” to show that the result is complete.
Good stuff, but not essential for our purposes so we’ll skip it.

Cauchy implies bounded. Before proving that R is complete, we need one more property of
Cauchy sequences: the fact that they are always bounded. This is would certainly be a consequence
of knowing that Cauchy sequences are convergent, since convergent sequences are always bounded,
but here we prove this first on the way towards proving completeness of R.

The proof is essentially the same as the one we gave for why convergent sequences are always
bounded, only stated without using a limit in mind. Suppose (pn) is Cauchy in X. Then there
exists N ∈ N such that

d(pn, pm) < 1 for all m,n ≥ N.
In particular then, pn ∈ B1(pN ) for all n ≥ N . Then we simply enlarge the radius of this ball if
necessary to ensure it includes all terms of our sequence before pN : for

r = min{d(p1, pN ), d(p2, pN ), . . . , d(pN−1, pN )}+ 1 > 0,

we indeed have pn ∈ Br(pN ) for all n. Hence all terms in (pn) belong to some ball of finite radius,
so (pn) is bounded as claimed.

Rn is complete. We now prove that R is complete. The proof is quick, after we put various
things we’ve done together! Suppose (xn) is a Cauchy sequence in R. Then (xn) is bounded, so
it has a convergent subsequence by Bolzano-Weierstrass. But the Warm-UP from today show’s
that any Cauchy sequence with a convergent subsequence must itself converge, so (xn) converges
in R and hence R is complete. Don’t let the shortness of this proof fool you, however: the fact
that R is a complete is a deep result that depends on other deep results, most importantly the
Bolzano-Weierstrass theorem.

Going up a dimension, we can now show that R2 is complete. Indeed, suppose (pn, qn) is a
Cauchy sequence in R2. The key point is that then both (pn) and (qn) are Cauchy in R. This
comes from the fact that

|pn − pm| ≤
√

(pn − pm)2 + (qn − qm)2

and similarly for |qn − qm|; once we make the square root above smaller than ε, that will make the
distance between the x- or y-coordinates smaller than ε as well. Since R is complete, both (pn) and
(qn) converge in R, say to p and q respectively, and then (pn, qn) converges to (p, q), so that every
Cauchy sequence in R2 converges. In fact, the same reasoning applied to more coordinates, shows
that Rn is complete in general.

Compact implies complete. We finish with one more general observation, namely the fact
that compact spaces are always complete. This is really just the Warm-Up again. Suppose X is
compact and that (pn) is a Cauchy sequence in X. By (sequantial) compactness, X has a convergent
subsequence in X, but then by the Warm-Up this means that (pn) must converge as well. Hence
every Cauchy sequence in X converges in X, so X is complete.
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Lecture 19: Limits of Functions

Warm-Up. A series is an infinite sum

∞∑
n=1

an = a1 + a2 + a3 + · · ·

of real numbers an. (We will discuss series in more detail at the end of this quarter, so here we are
only giving a flavor of this topic.) To say that a series converges to S ∈ R means that the sequence
(sn) formed by taking the partial sums

sn = a1 + · · ·+ an

of the series converges to S in the usual sense of sequence convergence. (The intuition is that in
order for the infinite sum a1 + a2 + a3 + · · · to “equal” S it had better be the case that the sums
obtained by adding one more an at each step should be getting closer and closer to S.) We show
that the series

∑
an above converges if and only if for all ε > 0 there exists N ∈ N such that

|an + an+1 + · · ·+ am| < ε for all m ≥ n ≥ N.

(This says that portion of our sum occurring between the m-th and n-th terms should be getting
smaller and smaller the further and further we go in a1 + a2 + a3 + · · · . That is, in order for this
infinite sum to exist as a finite value, the contribution from any number of terms we are adding on
should get more and more negligible as we go.)

But the condition we want above is precisely a Cauchy condition! In other words, if we take

sm = a1 + a2 + · · ·+ am and sn−1 = a1 + a2 + · · ·+ an−1

for m ≥ n, with all terms making up sn−1 occurring among the terms making up sm, then the sum
an + · · ·+ am is precisely their difference:

sm − sn−1 = an + an+1 + · · ·+ am.

The condition that we can make |sm−sn−1| smaller than epsilon for all m ≥ n past some index just
says that the sequence (sn) of partial sums is Cauchy, so that this problem is just a consequence
of the fact that R is complete when applied to the Cauchy sequence of partial sums of the series.

This result is often called the Cauchy criterion for convergence of a series, and is useful because
it gives a way to show a series converges without knowing the value of its sum, which can be difficult
to determine in general. In this setting, the example we looked at previously

xn = 1− 1

2
+

1

3
+ · · ·+ (−1)n+1

n

of a Cauchy sequence in R is just the sequence of partial sums of the series
∑ (−1)n+1

n , so that
example amounts to showing that this series converges. Another example you’ve seen before which
fits into this framework is that of the sequence

1 + x+ x2 + · · ·+ xn

where |x| < 1. A homework problem, phrased in terms of convergence in the metric space Cb of
bounded functions, showed essentially that this sequence converges to 1

1−x . But this sequence is
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precisely the sequence of partial sums of the geometric series
∑
xn, so we find that this series

converges to 1
1−x for |x| < 1. Again, we’ll come back to this when we discuss series later.

Limits of functions. Most of the remaining time this quarter will focus on properties of functions
between metric spaces. The study of functions will take up the bulk of MATH 321-2, and so
here we begin to lay the groundwork. The main properties we care about will be continuity and
differentiability, both of which depend on the notion of a limit of a function.

Suppose f : E ⊆ X → Y is a function defined on a subset E of a metric space X, taking values
in a metric space Y . If p ∈ X is a limit point of E, we say that the limit of f as x approaches p is
q ∈ Y if for all ε > 0, there exists δ > 0 such that

if 0 < dX(x, p) < δ, then dY (f(x), q) < ε.

(Here we use dX to denote the metric on X and dY the metric on Y .) If such q ∈ Y exists, we use
the notation

lim
x→p

f(x) = q

to denote it. The basic intuition is the same as in calculus: as the input x gets closer and closer to
p ∈ X, the output f(x) should be getting closer and closer to q ∈ Y .

Let us digest the definition. First, we require that p be a limit point of E simply so that it
makes sense to approach p using elements of E. Second, by saying that 0 < dX(x, p), we exclude
x = p from consideration, so that the limit as we approach p never depends on the behavior of f
at p (indeed, f might not even be defined at p if p /∈ E), only on the behavior of f near p. Now,
using open balls we can rephrase the “ε-δ” condition in the definition as

if x ∈ Bδ(p) and x 6= p, then f(x) ∈ Bε(q).

Thus the definition says the following: given any open ball around the candidate limit value q,
there exists an open ball around the point p we are approaching so that all x in this ball—apart
from possibly p itself—are sent into the given ball around q:

That is, given any measure for how close we want to end up to q, we can find a measure for how
close we need to be to p in order to guarantee that we do end up within that measure of “closeness”
away from q. As the measure ε gets smaller perhaps we have to come in closer (via a smaller δ) to
p to end up within ε from q, but we are guaranteed that we can always do so.

Example. Let us look at a key example which illustrates well how to work with the ε-δ definition
of a limit in general. We claim that for any a ∈ R,

lim
x→a

x3 = a3.

(So, we are considering the limit of the function f : R→ R, f(x) = x3 as x approaches a.) This is
the type of thing you might expect to be true from a calculus course, but let us actually prove it.
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Let ε > 0. We want δ > 0 such that

if 0 < |x− a| < δ, then |x3 − a3| < ε.

First, we need to somehow bound the expression we want to make smaller than ε by something in
terms of |x − a| since this is the only quantity we can control, by controlling δ. In this case, we
have

|x3 − a3| = |x2 + ax+ a2||x− a|.

The naive choice of
δ =

ε

|x2 + ax+ a2|
does not work since δ should not depend on x, since, after all, the x we consider in the definition
are themselves determined by the choice of δ. In

|x3 − a3| = |x2 + ax+ a2||x− a|,

the first factor on the right will be smaller than δ, so what we need then is to find a constant bound
on the second factor.

Let us assume for the time being that |x− a| < 1. (Later we will shrink δ if necessary in order
to guarantee that this holds.) Then |x| − |a| ≤ |x− a| < 1, so

|x| < 1 + |a|, and thus |x2 + ax+ a2| ≤ |x|2 + |a||x|+ |a|2 < (1 + |a|)2 + |a|(1 + |a|) + |a|2.

Thus when |x− a| < 1, we get

|x3 − a3| = |x2 + ax+ a2||x− a| ≤ [(1 + |a|)2 + |a|(1 + |a|) + |a|2]|x− a|.

The fact that we now have our bound of the form “constant times |x − a|” is good, since we can
now make this smaller than ε by picking δ to be

δ =
ε

(1 + |a|)2 + |a|(1 + |a|) + |a|2
.

(Note that this expression is defined since the denominator is strictly positive.) These is a somewhat
messy looking expression, but the exact expression for δ does not really matter—what matters is
that such a value exists.

However, there is one final wrinkle. If we then pick x satisfying |x − a| < δ for this δ, we are
not guaranteed to also have |x − a| < 1 as a consequence. This is bad since |x − a| < 1 is an
assumption we used in deriving our bounds in the first place, so that these bounds will not apply
without knowing that |x − a| < 1. The fix is to make δ smaller if need be, and actually pick δ
to be the minimum of 1 (so that the bounds we use work) and the expression above in terms of
ε (so that the final quantity will be smaller than ε). Picking a minimum of such δ’s is the “ε-δ”
analog of picking a maximum of indices in the previous sequence convergence proofs we looked at.
(Moreover, using 1 as the constant in |x − a| < 1 is not important, in that we could have used
|x − a| < 2 or |x − a| < 1000 instead and still made it work. We would get different constant
bounds in the end, and hence different expressions for δ, but that’s fine. Choosing to use 1 is just
a standard convenient choice.)

Here is our final proof. Let ε > 0 and set

δ = min

{
1,

ε

(1 + |a|)2 + |a|(1 + |a|) + |a|2

}
,
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which is positive. Suppose that 0 < |x− a| < δ. Since δ ≤ 1 we have |x− a| < 1 so

|x| < 1 + |a|, and thus |x2 + ax+ a2| ≤ |x|2 + |a||x|+ |a|2 < (1 + |a|)2 + |a|(1 + |a|) + |a|2.

Hence
|x3 − a2| = |x− a||x2 + ax+ a2| < δ[(1 + |a|)2 + |a|(1 + |a|) + |a|2].

By the choice of δ, this expression is smaller than or equal to ε, so |x3 − a3| < ε and we conclude
that limx→a x

3 = a3 as claimed.

Towards continuity. The same type of argument as that above can be used to show more
generally that

lim
x→a

xn = an

for n ∈ N. (Here you use the identity |xn−an| = |xn−1+xn−2a+xn−3a2+· · ·+xan−2+an−1||x−a|.)
Here is a definition we look at more carefully next time: a function f is continuous at a if

lim
x→a

f(x) = f(a).

That is, for a continuous function the value of a limit as we approach a point should just be the
value of the function at that point. In this language, what we showed in our example is that the
function f(x) = x3 is continuous at all a ∈ R, and the remark above says that f(x) = xn is in
general continuous at all points as well.

Lecture 20: Continuous Functions

Warm-Up. Suppose f, g, h : X → R are real-valued functions on a metric space X such that
f(x) ≤ g(x) ≤ h(x) for all x ∈ X. We prove the squeeze theorem: If limx→p f(x) and limx→p h(x)
both exist and are equal, then limx→p g(x) exists and has this same value. Let us denote the limit
of f and h by L ∈ R. Note that since f(x) ≤ g(x) ≤ h(x) for all x ∈ X, we also have

f(x)− L ≤ g(x)− L ≤ h(x)− L,

so
|g(x)− L| ≤ max{|f(x)− L|, |h(x)− L|} for all x ∈ X.

Thus let ε > 0 and pick δ1, δ2 > 0 such that

|f(x)− L| < ε whenever 0 < dX(x, p) < δ1

and
|h(x)− L| < ε whenever 0 < dX(x, p) < δ2.

If 0 < dX(x, p) < min{δ1, δ2}, then

|g(x)− L| ≤ max{|f(x)− L|, |h(x)− L|} < ε

since both |f(x)−L| and |h(x)−L| are smaller than ε for such x. This shows that limx→p g(x) = L
as claimed. (The intuition is that g(x) is “squeezed” between two values which are each approaching
L, so g(x) should approach L as well.)

Limits via sequences. The notion of the limit of a function can be characterized via sequences
as follows. Recall our notation: f : E ⊆ X → Y is a function defined on a subset E of X and
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p ∈ X is a limit point of E. We claim that limx→p f(x) = q in the ε-δ sense if and only if whenever
(xn) is a sequence of points in E, none of which equal p, converging to p, then (f(xn)) converges
to q in Y . This matches our intuition: as xn gets closer and closer to p, the values f(xn) of the
function should get closer and closer to the limit q. Excluding p from being one of the xn’s just
says, as usual, that the behavior of f at p should play no role in the definition of a limit.

For the forward direction, suppose limx→p f(x) = q and let ε > 0. Then there exists δ > 0 such
that

if 0 < dX(x, p) < δ, then dY (f(x), q) < ε.

Suppose (xn) is a sequence of points in E not equal to p and converging to p. Then in particular,
there exists N ∈ N such that

dX(xn, p) < δ for n ≥ N.

But these points also satisfy 0 < dX(xn, p) since xn 6= p, so by the choice of δ we have that as a
consequence

dY (f(xn), q) < ε for n ≥ N.

This means that (f(xn)) converges to q in Y as desired.
For the backwards direction, we argue by contrapositive. Suppose limx→p f(x) 6= q. Then there

exists ε > 0 such that for all δ > 0, there exists x ∈ E satisfying

0 < dX(x, p) < δ but dY (f(x), q) ≥ ε.

In particular, pick such a point xn ∈ E for each δ = 1
n with n ∈ N. The resulting sequence (xn)

satisfies

0 < dX(xn, p) <
1

n
and dY (f(xn), q) ≥ ε.

The first inequality implies that xn → p, and the second that f(xn) 6→ q since the f(xn) get no
closer than ε > 0 away from q. Thus there exists a sequence converging to p, none of whose elements
equal p, but for which the image sequence does not converge to q, which gives the contrapositive
of the backwards direction.

Continuous functions. A function f : X → Y is said to be continuous at p ∈ X if

lim
x→p

f(x) = f(p).

We say that f is continuous on X if it is continuous at all points of X. The notion of a continuous
function is perhaps the most important in all of analysis. The definition says that the limit of the
function as you approach a point should be precisely the value of the function at that point. Thus
for a continuous function, the value of the function at a point is completely determined by its values
at points nearby: the value of f(p) can be recovered from the values of f(x) for x “close” to p via
the limit limx→p f(x).

If we write out the limit statement above in ε-δ form, we get the ε-δ definition of continuity: f
is continuous at p if for all ε > 0, there exists δ > 0 such that

if dX(x, p) < δ, then dY (f(x), f(p)) < ε.

(Note that we no longer have to require that 0 < dX(x, p) here, since dX(p, p) < δ is always true
that dY (f(p), f(p)) < ε is always true as well.) Here then is the practical takeaway: for a continuous
function, we can control how far away from f(p) the point f(x) is by controlling instead how far
away from p the point x is, or informally, we can control distances between outputs by controlling
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distances between inputs. Having this type of “control” is what makes continuity such a useful
concept.

Using the sequential approach to limits of functions, we then get the following equivalent se-
quential definition of continuity: f is continuous at p if and only if whenever xn → p in X, then
f(xn) → f(p) in Y . This says that continuous functions are precisely the ones which “preserve”
limits of convergent sequences. This version of the definition also matches some intuition we might
expect: changing the input of a continuous function by a small amount should also change the
value by only a (relatively) small amount, since as xn gets close to p, f(xn) gets close to f(p).

Example. The example we did last time of limx→a x
3 = a3 shows that f : R → R defined by

f(x) = x3 is continuous at all points. This is an important example to understand since it provides
a good illustration of how to work with the ε-δ definition of continuity in general.

We can also justify this fact using sequences by piecing together things we’ve done previously.
Namely, suppose xn → a in R. Then by what showed earlier about products of convergent se-
quences, we have that

xnxnxn → aaa,

or in other words x3n → a3, which is what continuity of f(x) = x3 requires.

Arithmetic and compositions. Using the same types of arithmetic sequences properties we
saw before (i.e. taking sums, products, and reciprocals), we immediately get that sums and prod-
ucts of continuous functions are continuous. Also, reciprocals of nonzero continuous functions are
continuous as well.

Compositions of continuous functions are also continuous. That is, if f : X → Y is continuous
at p ∈ X and g : Y → Z is continuous at f(p) ∈ Y , then g ◦ f : X → Z is continuous at p. Indeed,
let ε > 0. Since g is continuous at f(p), there exists δ′ > 0 such that

dY (y, f(p)) < δ′ =⇒ dZ(g(y), g(f(p))) < ε.

But then since f is continuous at p, there exists δ > 0 such that

dX(x, p) < δ =⇒ dY (f(x), f(p)) < δ′.

Thus if dX(x, p) < δ, we have dY (f(x), f(p)) < δ′, which by the choice of δ’ implies that

dZ(g(f(x)), g(f(p))) < ε,

which shows that g ◦ f is continuous at p as claimed.

Another example. Let f : R2 → R3 by the function defined by

f(x, y) = (x3 + y, xy, 2y − x).

We claim that this is continuous. Indeed, fix (p, q) ∈ R2 and suppose (pn, qn) → (p, q) in R2. We
need to show that

f(pn, qn) = (p3n + qn, pnqn, 2qn − pn)→ f(p, q) = (p3 + q, pq, 2q − p).

By what we know about convergent sequences in Rn, to show this we need only show that each
component sequence on the left converges to the corresponding component on the right. But this
just again follows from some arithmetic properties: since pn → p and qn → q in R, we have

p3n → p, so p3n + qn → p3 + q,
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and we have pnqn → pq and 2qn− pn → 2q− p. Hence by componentwise convergence, f(pn, qn)→
f(p, q), so f is continuous.

In fact, there was nothing special about the components x3 + y, xy, 2y − x of this particular
functions. More generally, these could have been any continuous expressions, and moreover we can
look at Rn for other n as well. The general fact is that f : Rm → Rn is continuous if and only if
each component function of f is continuous, where by component functions we mean the functions
fi : Rm → R that give each component of the values of f :

f(x) = (f1(x), . . . , fn(x)).

Discrete example. As a final example, we determine the possible continuous functions f : X → Y
in the case where X has the discrete metric. In fact, we claim that all functions with discrete
domains are actually continuous! Indeed, let ε > 0, fix p ∈ X, and set δ = 1

2 . The continuity
condition we need is

dX(x, p) <
1

2
=⇒ dY (f(x), f(p)) < ε.

But for the discrete metric the only possible x satisfying dX(x, p) < 1
2 is x = p, so this is the

only point we need to check in the condition above. For this point it is certainly true that
dY (f(p), f(p)) < ε simply because this distance is zero, so we have continuity at p.

If we phrase this in terms of sequences instead, it comes down to a property we saw previously:
the only convergent sequences in a discrete space are those which are eventually constant. If pn → p
in X, then pn = p for all n past some N , which case f(pn) = f(p) for all n past N as well. But
this means that the image sequence (f(pn)) is eventually constant, so it converges to the eventual
constant value f(p), which is what we need in continuity. The upshot is that continuity of a function
depends heavily on the metric being considered!

Lecture 21: More on Continuity

Warm-Up. Fix a ∈ R and consider the function T : Cb(R)→ R which sends a function f ∈ Cb(R)
to its value at a:

T (f) = f(a).

We claim that this is continuous when we equip Cb(R) with the sup norm. Let ε > 0 and fix
g ∈ Cb(R). To show that T is continuous at g means that there should exist δ > 0 such that

d(f, g) < δ =⇒ |T (f)− T (g)| < ε,

where d denotes the sup metric. Given the definition of T as “evaluation at a”, what this actually
means is that

d(f, g) < δ =⇒ |f(a)− g(a)| < ε.

But note that |f(a)− g(a)| is precisely one of the values of which d(f, g) is the supremum:

d(f, g) = sup
x∈R
|f(x)− g(x)|.

This means that |f(a)−g(a)| ≤ d(f, g), so δ = ε satisfies our requirement. That is, if d(f, g) < δ = ε,
then

|T (f)− T (g)| = |f(a)− g(a)| ≤ d(f, g) < ε
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, so T is continuous at g. (The real tricky part of this problem is in understanding what the notation
all means, since we are looking at a function that takes as inputs other functions! Thinking about
“spaces of functions” in general takes some good effort to understand.)

The intuition behind this is as follows. Recall that, visually, d(f, g) measures the “maximal”
vertical distance between points on the graphs of f and g:

The value of |T (f)−T (g)| is just one of these vertical distances, so continuity in this case just says
that if the graphs of f and g are close to each other, then certainly the their values at any specific
point are also close to each other.

Visualizing discontinuities. To get a basic sense of what it means for a function to not be con-
tinuous at a point, consider the following standard example of a function that fails to be continuous
at a point:

In calculus you would informally say that this function is discontinuous at x = a due to the “jump”
in the graph at x = a. To see that this in fact does not satisfy the formal ε-δ definition of continuity,
consider the ε-interval around f(a) drawn above. The claim is that no matter what δ > 0 we take
around a, it will never be true that all points within δ of a will be sent to points within ε of
f(a). Indeed, for any δ > 0, picking a point x in the left half of the δ-interval around a gives a
value f(x) that lies further than ε away from f(a), which is why continuity at a fails. (This is
a good picture to have in mind, but is not completely illustrative of all ways in which a function
can fail to be continuous, since there can also be “oscillatory discontinuous” in addition to “jump
discontinuities”. We’ll some examples later.)

My favorite function. And now for my favorite example of all time, based on my favorite function
of all time. (In every single analysis course I’ve ever taught, this is always a fundamental example
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since it illustrates, I think, incredibly well how to think about the ε-δ definition of continuity.)
Note first that any rational number in [0, 1] can be written in a unique way as p

q with p, q positive
integers (except take p = 0 and q = 1 when the rational is zero) with no common factors apart from
1—simply “cancel” common factors in the numerator and denominator until you can’t anymore.
Define f : [0, 1]→ R by

f(x) =


0 if x /∈ Q
1 if x = 0
1
q if x = p

q where p, q ∈ N have no common factors

.

The claim is that this function is discontinuous at each rational in [0, 1], but actually continuous
(!!!) at each irrational in [0, 1]. (This is my favorite function since it exhibits seemingly strange
continuity phenomena.)

You will prove this on the homework, but here is a quick word about how to think about the
claim that f is continuous at each irrational, which is the harder part. Visually, this function has
a graph that looks like

(Perhaps you can see why this function is often called the “popcorn” function.) Suppose we fix an
irrational y and want to check the continuity condition for ε = 1

4 . Then we need δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < 1

4
.

Since y is irrational, f(y) = 0, so the second inequality is just f(x) < 1
4 . (The values of f are never

negative, so we can just ignore the absolute value.) Certainly for irrational x in (y − δ, y + δ), we
have f(x) = 0 < 1

4 , so the point is that this continuity condition comes down to guaranteeing that
rationals r in (y − δ, y + δ) also satisfy f(r) < 1

4 .
But how many rationals r are there for which this is not true? The only possible values f(r)

can have are reciprocals like
1

1
,

1

2
,

1

3
,

1

4
,

1

5
, . . . ,

and the first four here specifically are the only values of f(r) for which f(r) < 1
4 is not true. In

order for f(r) to be one of these values requires that the denominator of r be one of 1, 2, 3, 4, and
thus the only values of r for which f(r) < 1

4 is not true are

r = 0, 1,
1

2
,

1

3
,

2

3
,

1

4
,

3

4
.

Hence, by picking a small enough δ > 0 around y, we can make sure that none of these rationals
are within δ from y, which implies that any rational satisfying |r − y| < δ for this δ will in turn
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satisfy f(r) < 1
4 , as continuity at y requires. That’s the basic idea, and an argument along these

lines works for any ε > 0.

Continuity via topology. We have seen the definition of continuity phrased in terms of limits,
ε-δ (which is just the same as the limit definition), and sequences, and now we give one more
characterization, this time via open sets. The claim is that:

f : X → Y is continuous if and only if f−1(U) is open in X whenever U is open in Y .

Here, f−1(U) denotes the preimage of U under f , which is the set of all elements in the domain X
which get sent to something in U :

f−1(U) := {x ∈ X | f(x) ∈ U}.

Note the direction here: we start with an open subset of Y on the right, and “pull it back” to X
via taking its preimage, and the result should still be open:

This might seem like a strange phrasing of continuity, and indeed the proof might be tricky to
follow at first, but I claim that this is essentially the same as the ε-δ definition when phrased in
terms of open balls. In particular, saying

q ∈ Bδ(p) =⇒ f(q) ∈ Bε(f(p))

as the ε-δ definition requires means that q is in the preimage of Bε(f(p)), since f(q) in the set
Bε(f(p)) of which is the preimage is being taken. So Bδ(p) is an open ball around p which is
fully contained in this preimage, which is indeed look like the definition of “open” applied to this
preimage. The proof is tricky only because it requires jumping back and forth between various
definitions, but the key point is that mentioned above.

Here is the proof. Suppose that f is continuous and that U ⊆ Y is open. Let p ∈ f−1(U).
Then f(p) ∈ U , so since U is open in Y there exists ε > 0 such that Bε(f(p)) ⊆ U . Now, since f is
continuous at p, there exists δ > 0 such that

q ∈ Bδ(p) =⇒ f(q) ∈ Bε(f(p)).

But since Bε(f(p)) ⊆ U , this says that anything in Bδ(p) is sent to something in U , so that all
of Bδ(p) is contained in the preimage of U . Thus there exists an open ball Bδ(p) ⊆ f−1(U), so
f−1(U) is open in X.

Conversely suppose that the preimage of any open subset of Y is open in X. Let p ∈ X and
let ε > 0. Since Bε(f(p)) is open in Y , its preimage f−1(Bε(f(p))) is open in X. Thus since
p ∈ f−1(Bε(f(p))), there exists δ > 0 such that Bδ(p) ⊆ f−1(Bε(f(p))). This means that any
q ∈ Bδ(p) is in the preimage of Bε(f(p)), so for any such q we have f(q) ∈ Bε(f(p)). Thus

q ∈ Bδ(p) =⇒ f(q) ∈ Bε(f(p)),
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showing that f is continuous at p.
After taking complements, we immediately also get a characterization of continuity in terms of

closed sets, again in terms of taking preimages:

f : X → Y is continuous if f−1(A) is closed in X whenever A is closed in Y .

The proof uses the fact that A is closed if and only if Ac is open, and the fact that the operation
of taking preimages behaves well with respect to complements in the sense that the preimage of a
complement is the complement of the preimage: f−1(Ac) = (f−1(A))c.

Example. Here is a typical application of this new (and final) characterization of continuity.
Consider the set

S = {x ∈ R | x3 + x > 2}.

We claim that this is open in R. Showing this directly is not impossible but takes some effort since
it is not easy to describe x satisfying x3 + x > 2 so concretely, and really any direct proof of this
will end up essentially proving that f(x) = x3 + x is continuous anyway, in a roundabout way.
The goal is to express S as being the preimage of an open set under a continuous function. Take
f : R→ R defined by f(x) = x3 + x. The points in S are precisely those for which f(x) > 2, or in
other words those for which f(x) ∈ (2,∞). Thus, S is the preimage of (2,∞) under this function:

S = f−1((2,∞)).

Since (2,∞) is open in R and f is continuous (each of x3 and x are continuous, and sums of
continuous functions are continuous), we get that S is also open in R as claimed. The practical
point is that changing the value of an x satisfying x3 + x > 2 by a small enough amount produces
a number that still satisfies this same inequality. That is, given x such that x3 + x > 2, there is an
interval interval around x containing numbers y satisfying y3 + y > 2.

In the same vein, the set of numbers satisfying x3 + x = 2 is closed. (Of course, there are not
many numbers that satisfy this—there’s only a finite number!—but how many there actually are
is not important here.) If we denote this set by A, then A is the preimage of {2} under the same
function as above:

A = f−1({2}).

Since {2} is closed in R, we thus get that A is closed in R as well.

Lecture 22: Continuity and Compactness

Warm-Up. Let M2(R) denote the set of 2× 2 matrices with real entries. By thinking of a 2× 2
matrix as a vector in R4 via [

a b
c d

]
 


a
b
c
d

 ,
we can equip M2(R) with the Euclidean metric by defining the distance between two matrices to
be the Euclidean distance between the corresponding vectors in R4. We claim that then the set of
invertible 2× 2 matrices, commonly denoted by GL2(R):

GL2(R) := {A ∈M2(R) | A is invertible},
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is open in M2(R). (A practical consequence of this result is that changing the entries of an invertible
matrix by a small enough does not effect invertibility. The notation “GL” stands for “general
linear”, but why this name is used is beyond the scope of this course.) We prove this via the
relation between continuous functions and open sets given last time.

The key point is that a matrix is invertible if and only if its determinant is nonzero, which in
the 2× 2 case means that

ad− bc 6= 0.

Note that the determinant here on the left is nothing but a polynomial expression in terms of the
entires of the matrix, which implies that it is continuous with respect to the Euclidean metric on
M2(R)! That is, the function that sends a matrix to its determinant:

det : M2(R)→ R defined by A 7→ detA

is continuous. (Said another way, the functions sending a vector in R4 to one of its coordinates are
continuous, and detA is a difference of products of these continuous functions, so it is continuous
too.) To say that detA 6= 0 means that detA ∈ (−∞, 0) ∪ (0∞), so we can express GL2(R) as the
preimage of this union:

GL2(R) = det−1((−∞, 0) ∪ (0,∞)).

Since det is continuous and (−∞, 0) ∪ (0,∞) is open in R, GL2(R) is open in M2(R) as claimed.
Actually, the same holds for larger matrices as well. Viewing the entries of an n × n matrix

as the entries of a vector in Rn2
gives a way to equip Mn(R) (space of n × n matrices) with a

metric. The determinant of an n × n matrix is still a polynomial expression (i.e. made up of
sums and products) of the entries of the matrix, so the function which sends an n × n matrix to
its determinant is still continuous, and the same reasoning as above shows that GLn(R) (space of
invertible n× n matrices) is open in Mn(R) as well.

Another important subset of Mn(R) is SLn(R), which is the set of matrices of determinant 1:

SL2(R) := {A ∈Mn(R) | detA = 1}.

(“SL” stands for “special linear”.) In this case, SLn(R) is closed in Mn(R) since it is the preimage
under det of the closed subset {1} of R. Practically, this means that if you have a convergent
sequence of matrices of determinant 1, its limit also has determinant 1. Good stuff!

Watch the direction. As we noted last time, the characterization of continuity in terms of open
and closed sets uses a “backwards” direction: given an open/closed subset of Y on the right, its
preimage on the left (so, right to left) is open in X. The analogous claims in the “forward” direction
are not true in that a continuous function does not automatically send open sets to open sets, nor
closed sets to closed sets.

Here are some examples. First, take f : R→ R to be a constant function, say f(x) = 1 for all x.
This is continuous, but given any open set U in R (the domain), the image f(U) consists of only 1,
and f(U) = {1} is not open in R. So, the image (going forward) of an open set under a continuous
function is not necessarily open. Second, take g : (0,∞) → R to be defined by g(x) = 1

x . Then
[1,∞) is closed in the domain, but its image isf([1,∞)) = (0, 1], which is not closed in R. Hence
again, the image of a closed set under a continuous function is not necessarily closed. The upshot is
that the direction matters (right to left when taking preimages vs left to right when taking images)
when asking about continuity in terms of open and closed sets!

Continuity and compactness. We now come to, truly, one of the most important results in
all of analysis, which gives the effect of continuous functions on compact sets. The claim is that
continuous functions send compact sets to compact sets:
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If f : X → Y is continuous and K ⊆ X is compact, then the image f(K) ⊆ Y of K
under f is also compact.

(Note there the direction here does go from left to right, as opposed to continuity in terms of open
and closed sets.) We can see that this is true in some basic examples, say f(x) = x3 on R. The
image of the compact interval [0, 2] is [0, 8], which is compact as well, and the image of [−3, 1] is
[−27, 1], which is also compact. The main consequence of this result is what’s called the Extreme
Value Theorem, which we will get to after some proofs.

We give two proofs of this result, one using open covers and the other using sequences. Both
approaches are important to understand. In both cases, the key is to take data on the codomain
side on the right, and use it to get data on the domain side on the left, where we can then apply
compactness of K. First, suppose that {Uα} is an open cover of f(K), so that

f(K) ⊆
⋃
α

Uα.

Since f is continuous, each preimage f−1(Uα) is open in X, so the collection {f−1(Uα)} forms an
open cover of K:

K ⊆
⋃
α

f−1(Uα).

(To be clear, for any p ∈ K, f(p) ∈ f(K) is in some Uα, so that p is then in some preimage
f−1(Uα).) Now, since K is compact, this open cover has a finite subcover, say:

K ⊆ f−1(U1) ∪ · · · ∪ f−1(Un),

which implies that
f(K) ⊆ U1 ∪ · · · ∪ Un.

(Again, to be clear, anything in f(K) is of the form f(p) or some p ∈ K, and if this p is in f−1(Ui),
f(p) is in Ui.) Thus {U1, . . . , Un} is a finite subcover of the open cover {Uα} of f(K), so f(K) is
compact as claimed.

Here is a picture illustrating the ideas above:

We begin with open sets on the right covering f(K), take preimages to get open sets on the left
covering K, apply compatness to reduce this to a finite number, which then also reduces the cover
we had on the right. (The result goes left to right but the proof goes right to left!)

Now for sequences. Suppose (qn) is a sequence in f(K). Then each qn can be written as
qn = f(pn) for some pn ∈ K since each qn is in the image of K. Since K is compact, the sequence
(pn) in K has a convergent subsequence, say pnk

→ p ∈ K. Since f is continuous, we then have
f(pnk

)→ f(p) ∈ f(K), so (f(pnk
)) is a convergent subsequence of (qn) = (f(pn)) in f(K), so f(K)

is compact.
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Extreme Value Theorem. In the special where Y = R above, we get as a consequence the
Extreme Value Theorem:

Any real-valued continuous function f : K → R on a compact space K attains a
maximum and a minimum. (So, f attains its “extreme” values.)

To be clear, to say that f has a maximum is to say that there exists p ∈ K such that f(p) ≥ f(x)
for all x ∈ K—so that the value at p is the largest value f can have—and to say that f has a
minimum means there exists q ∈ K such that f(q) ≤ f(x) for all x ∈ K, so that the value of f
at q is the smallest value f can have. There might be more than one point at which each of these
maximal or minimal values occur, but they exist. The most important case of this result will be
where K = [a, b], so that any continuous functions f : [a, b]→ R has a maximum and a minimum.
This makes sense intuitively, at least, if we draw the graph of any such continuous function:

Here’s the proof. Since f is continuous and K is compact, f(K) ⊆ R is compact. But then
f(K) is bounded (compact implies bounded), so it has a supremum and an infimum, and it is closed
(compact implies closed), these supremums and infimums are actually in f(K) itself. (Recall that
the supremum and infimum of a set can both be obtained as limits of sequences within that set,
and a closed set contains all such limits.) The point p ∈ K for which f(p) is sup f(K) is then the
point at which the maximum is attained (a maximum is just a supremum that belongs to the set
itself), and the point q ∈ K for which f(q) = inf f(K) is where the minimum occurs, so maxima
and minima both exist.

Example. Here is a first (informal) application of the Extreme Value Theorem. The surface of the
Earth is a metric space (!), since we can easily measure distances in the usual way. (The surface
of the Earth is almost like a sphere, or perhaps more precisely an ellipsoid.) Consider the function
that sends a point on the surface of the Earth to its altitude, meaning its distance above (or below!)
sea level:

Earth→ R, p 7→ altitude at p.

This function is continuous since moving from a point p to a nearby point only changes the altitude
by a (very) small amount, which is the type of thing continuity requires. The Earth is compact
since it is closed and bounded in R3 (Heine-Borel), so the Extreme Value Theorem guarantees that
there exist points of maximal and minimal altitude. (The maximal altitude is teh summit of Mount
Everest, and the minimal altitude—below sea level—is known as the Challenger deep and is in the
Mariana trench in the Pacific ocean.)
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Another example. For an example more relevant to this course, take a compact subset K of X
and a fixed point a ∈ X. Consider the function that sends a point of K to its distance to a:

K → R, q 7→ d(a, q).

A minimum for this function is a point p ∈ K that minimizes all such d(a, q), and this minimum
value is precisely what we’ve previously called the distance from a to K and denoted by d(a,K).
Thus, saying that this function has a minimum is the claim that there exists p ∈ K such that
d(a, p) = d(a,K).

But proving the existence of such a p ∈ K was precisely a problem on a recent homework!
Indeed, the real point of that problem was—even though not phrased in this language—to show
that the function q 7→ d(a, q) above is in fact continuous. If so, then the Extreme Value Theorem
immediately gives the minimum we desire. To say that this function is continuous is to say that
for any convergent sequence qn → q in K, it should be true that

d(a, qn)→ d(a, q)

in R. If you go back and check the homework solution for this problem, you will see that this
sequence statement is precisely what it proven there. (The idea is to use the reverse triangle
inequality to bound |d(a, qn) − d(a, q)| by d(qn, q).) Thus, that entire problem can be rephrased
as a statement about continuity and the Extreme Value Theorem. This is indicative of a general
phenomenon: many problems which state the existence of some maximal or minimal quantity can
often be phrased as an application of the Extreme Value Theorem.

Lecture 23: Uniform Continuity

Warm-Up. We show that if K is nonempty and compact, then the diameter of K is attained as
the distance between point elements of K: there exists p, q ∈ K such that d(p, q) = diamK. This
is something you already did on the homework, but here we do it as a consequence of the Extreme
Value Theorem. Consider the function

K ×K → R, defined by (a, b) 7→ d(a, b).

We claim that this function is continuous, and that K ×K is compact, so that the Extreme Value
Theorem guarantees the existence of a maximum, which is precisely what we want since diamK is
then that maximal quantity.

The fact that the function above is continuous is precisely what was shown on the relevant
homework problem, only without using the language of continuity. Indeed, the claim is that if
(an, bn)→ (a, b) in K ×K, then

d(an, bn)→ d(a, b)

in R, and this is what was shown on the homework. The key is the following inequality

|d(an, bn)− d(a, b)| ≤ d(an, a) + d(bn, b),

which comes from two applications of the triangle inequality. By making the terms on the right each
smaller than ε

2 , we can make the term on the left smaller than ε, which is what d(an, bn)→ d(a, b)
requires. Check the details in the homework solution.

Compactness of K ×K is not something we have proven in full generality before, but we did
give a proof as a Warm-Up one day in the case where K = [a, b], and the general proof is the same.
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Namely, taken a sequence (pn, qn) in K ×K. Then (pn) is a sequence in K, so it has a convergent
subsequence (pnk

) in K, converging to say p ∈ K. Then (qnk
) is also a sequence in K, so it has

its own convergent subsequence (qnk`
, converging to q ∈ K. Then pnk`

→ p, so (pnk`
, qnk`

) is a
convergent subsequence of (pn, qn), converging to (p, q) ∈ K ×K, so K ×K is compact. Hence the
Extreme Value Theorem gives our claim.

Uniform continuity. Consider the functions f(x) = x2 and g(x) = 3x, both defined on all of R.
Both of these are continuous at any a ∈ R, and so for a fixed ε > 0 there exists δ > 0 satisfying
the requirements in the ε-δ definition of continuous at a. In particular, if you work this out in each
case, you’ll find that for f the value

δ =
ε

2 + |a|
works (for small enough ε) while for g the value δ = ε

3 works.
Here is the key observation: for f the value of δ we find depends on a—i.e. the point at which

we’re checking continuity—while for g it does not. As a gets larger and larger, the δ for f gets
smaller and smaller, while the δ for g remains the same. In fact, because δ → 0 as a → ∞ in the
case of f(x) = x2, it is not possible to find a “smallest” possible δ which will work for all a ∈ R at
once for f since we want δ to be positive, while for g we do have one δ that works for all a ∈ R:

This distinction is what tells us that f is not uniformly continuous on R but that g is uniformly
continuous on R.

Here is the definition, in the general metric space setting:

f : X → Y is uniformly continuous on X if for any ε > 0 there exists δ > 0 such that

if dX(p, q) < δ, then dY (f(p), f(q)) < ε.

This looks very similar to the usual definition of continuous, except that there we fixed a point
q ∈ X we were checking continuity at while here q is not fixed; there, only p ∈ X was allowed to
vary, while here both p and q are allowed to vary.

Practically, this means that in usual continuity δ can depend on ε and the point you’re checking
continuity at, while in uniform continuity δ can only depend on ε. Since the same δ works for
all points in X, f is continuous in a “uniform” way across all of X. Geometrically, a continuous
function fails to be uniformly continuous when it changes “too rapidly”, such as when its graph
gets steeper and steeper. This is what happens in the f(x) = x2 on R case, but does not happen
for g(x) = 3x on R. We will talk more about the relation between “uniformly continuous” and
“steepness” when we talk about derivatives.

The domain matters. Consider the function f(x) = x2 on the interval [a, b]. In this case, for
|x− y| < δ we can bound |f(x)− f(y)| as follows:

|x2 − y2| = |x− y||x+ y| < δ|x+ y| ≤ 2 max{|a|, |b|}δ
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since |x+ y| ≤ |x|+ |y| ≤ max{|a|, |b|} for x, y ∈ [a, b]. Thus for ε > 0, δ = ε
2max{|a|,|b|} satisfies the

ε-δ definition of continuous, so f is uniformly continuous on [a, b].
The point is that when asking whether a function is uniformly continuous or not, the domain

of the function matters: f(x) = x2 is not uniformly continuous on all of R, but it is uniformly
continuous on [a, b]. Geometrically, when restricting the domain to be [a, b] the graph of f(x) = x2

does not get arbitrarily steep.

Example. The function f(x) = 1
x is not uniformly continuous on (0, 1). When going through a

proof that f is continuous at a ∈ (0, 1), for ε > 0 you find that

δ = min

{
a

2
,
a2ε

2

}
satisfies the required definition, since∣∣∣∣1x − 1

a

∣∣∣∣ =
|x− a|
xa

≤ |x− a|
a2/2

for |x− a| < a
2 . However, note that δ → 0 as a→ 0, so there will not be a single positive δ of the

form above which satisfies the required definition for all a ∈ (0, 1) at once. This suggests that f is
not uniformly continuous. (This isn’t quite a definite proof yet since one could ask why there isn’t
some other δ not of the form above that could work. We’ll come back to this in a bit.) Again,
geometrically, note that the graph of f gets steeper and steeper as a→ 0.

Properties of uniformly continuous functions. Here are two basic properties of uniformly
continuous functions, which hints at why uniform continuity is a nice property to have:

• If f : X → Y is uniformly continuous and (xn) is a Cauchy sequence in X, then (f(xn))
is Cauchy as well. Thus, uniformly continuous functions send Cauchy sequences to Cauchy
sequences.

• If f : (a, b)→ R is uniformly continuous, then f can be “extended” to a continuous function
f : [a, b]→ R. Thus, uniformly continuous functions on open intervals can be defined at the
endpoints so as to still remain continuous. (This generalizes to other metric spaces as well:
if f : E ⊆ X → Y is uniformly continuous, then f can be extended to a continuous function
on the closure E of E.)

Note that for the Cauchy sequence 1
n+1 in (0, 1), the function from the previous example has

f( 1
n+1) = n+ 1, which is not Cauchy. Thus this function does not satisfy the first property above,

which gives a proof that f(x) = 1
x is not uniformly continuous on (0, 1). This example also shows

that the second property above fails for a non-uniformly continuous function, since f(x) = 1
x cannot

be extended to be continuous at 0.
For the first property, suppose (xn) is Cauchy in X and let ε > 0. By uniform continuity there

exists δ > 0 such that
dX(p, q) < δ =⇒ dY (f(p), f(q)) < ε.

Since (xn) is Cauchy, there exists N ∈ N such that dX(xn, xm) < δ for m,n ≥ N . Hence for
m,n ∈ N we then also have dY (f(xn), f(xm)) < ε, which shows that (f(xn)) is Cauchy in Y .

For the second property, take p ∈ E which is not in E; we want to show how to extend f : E → R
to be defined at p. Take a sequence (xn) in E which converges to p. Then (xn) is Cauchy in E, so
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(f(xn)) is Cauchy in R by the first property. Since R is complete, this sequence converges, and we
then define f(p) to be the limit of this sequence:

f(p) := lim
n→∞

f(xn).

What remains to be shown is that this function is well-defined, in the sense that a difference choice
of sequence (xn) converging to p would give the same value for f(p), and that the function so-defined
is in fact continuous at p. We will omit these verifications here since they will not be crucial to
how uniform continuity will be used going forward, but you should think about them for practice!
Ultimately, for our purposes, uniform continuity will be important since it gives a way to control
distances between outputs of a function by controlling distances between inputs, in a “uniform”
way across the entire domain.

Continuous on a compact domain. The observation we made above—that f(x) = x2, even
though not uniformly continuous on R, is uniformly continuous on [a, b]—is no coincidence, and
reflects a general property of compactness. Indeed, the claim is that if f : X → Y is continuous and
X is compact, then f is automatically uniformly continuous. So, for example, continuous functions
on closed intervals are automatically uniformly continuous. You should view this as being one
of the many properties (together with the Bolzano-Weierstrass Theorem and the Extreme Value
Theorem) which make closed intervals special.

Here is a first proof of this fact, which is probably the most important but toughest to follow
since relies on the open cover definition of compactness. Still, note that, in the end, compactness
is used to turn an infinite set of radii into a finite set of radii, so that taking their minimum is
possible. You will give another proof of this result on the homework using sequences, and we will
sketch a possible third proof which highlights the intuition behind this result next time.

Fix ε > 0. By ordinary continuity, we know that for any a ∈ X there exists δ(a) > 0 (delta
might depend on a) such that

dX(x, a) < δ(a) =⇒ dY (f(x), f(a)) < ε.

Here, a is fixed and x varies. Doing this for all a ∈ X results in a corresponding δ(a) for each a,
and then we consider the collection of open balls {Bδ(a)(a)}a∈X in X given by these radii. This
is an open cover of X since each a ∈ X is in particular in the open ball Bδ(a)(a) centered at that
point. Since X is compact, this open cover has a finite subcover

Bδ1(a1), . . . , BδN (aN )

where δj denotes δ(aj). Each element of X is in at least one of these open balls.
Now, we want to come up with a single δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

The point of the finite cover obtained above is that now we have finitely many radii to deal with, so
we can try to their minimum as the δ we need. However, we only know something about quantities
of the form dY (f(x), f(aj)) where aj is one of the centers of the finitely many open balls derived
above. We would like to use something like

dY (f(x), f(y)) ≤ dY (f(x), f(aj)) + dY (f(aj), f(y)) <
ε

2
+
ε

2
= ε,

so as a first fix we go back and replace the ε we used in coming up with the radii δ(a) by ε
2 , as the

book does in its proof.
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But now the problem is that, although we know that both x and y will each be in some open
ball among the finitely many we obtained above, and so we will get some inequalities of the form

dY (f(x), f(ak)) <
ε

2
and dY (f(a`), f(y)) <

ε

2
,

to get what we’re doing to actually work we need the center points ak and a` used here to be the
same. Thus, we need to know that x and y are both in the same open ball among the finitely many
obtained above. But when picking δ = min{δ1, . . . , δN}, dX(x, y) < δ does NOT guarantee that x
and y will be in the same such ball, since we could have a picture like:

(ρ in this picture is dX .) Thus this choice of δ is no good. But the fix is to go back and instead

consider balls of radii δ(a)
2 , and after we get our finite subcover use δ = min{ δ12 , . . . ,

δN
2 } instead as

the book does. The point is that now having

dX(x, y) ≤ min

{
δ1
2
, . . . ,

δN
2

}
DOES guarantee that x and y will be in the same ball:

so that our approach will work out. (The book’s proof should be easier to digest now, and although
it is still quite challenging to grasp on the first read throughs, hopefully at least it’s somewhat
clearer now why the book uses ε

2 and δ(a)
2 instead of simply ε and δ(a) at the beginning.)

Lecture 24: Connected Sets

Warm-Up. We show that the function f : [0,∞) → R defined by f(x) =
√
x is uniformly

continuous. The key inequality is the following:

|
√
x−√y| ≤

√
|x− y| for all x, y ≥ 0.
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To see this, square both sides and consider (
√
x−√y)2 = x−2

√
xy+ y vs |x− y| instead. If x ≥ y,

then
x− 2

√
xy + y ≤ x− 2

√
yy + y = x− y = |x− y|,

while if x < y, then
x− 2

√
xy + y < x− 2

√
xx+ y = y − x = |x− y|,

so either way we have (
√
x−√y)2 ≤ |x− y|, and taking square roots gives our desired inequality.

Now, let ε > 0 and set δ = ε2. Then if x, y ∈ [0,∞) satisfy |x− y| < δ = ε2, we have

|
√
x−√y| ≤

√
|x− y| <

√
ε2 = ε,

so f(x) =
√
x is uniformly continuous on [0,∞) as claimed.

Back to previous theorem. As promised, here is a sketch of another “proof” that continuous
functions on compact sets are uniformly continuous. I write “proof” in quotation marks here since
what follows is not a precise proof because certain parts will be a bit hand-wavy, but I feel that
this sketch better captures the underlying point of this result. There is a way to make what I’m
going to outline precise and rigorous, but doing so fully probably isn’t worth all the work involved.
So, use this only to get some intuition for why this theorem is true: the point is that we want to
find a single δ > 0 which works for all points in our domain at once.

Suppose f : X → Y is continuous with X compact. Let ε > 0. Then for any y ∈ X, f is
continuous at y so there exists δy > 0 such that

dX(x, y) < δy implies dY (f(x), f(y)) < ε.

(We’re using δy to emphasize the δ depends on y, and different y’s might require different δ’s.)
Now, view the assignment y 7→ δy as defining a function g : X → R:

g(y) = δy.

We claim (and this is the hand-wavy part) that g is continuous: intuitively, changing y by a small
amount should only change δy by a small amount, and indeed in the examples we’ve seen where δ
depends on a this has been the case. (There is another issue, in that δy isn’t uniquely defined yet
since there could be different δ’s which satisfy the definition of continuity for the same y. This is
easier to deal with: we can define δy to be 1

2 the supremum among all δ’s which work.) So, taking
it for granted that there is a way to make g(y) = δy continuous, we push onward.

Since g : X → R is continuous, it has a minimum value by the Extreme Value Theorem—call it
δ. Note that δ > 0 since it is the minimum of positive numbers. We claim that this one δ satisfies
the definition of continuity at any y ∈ X. Indeed, suppose that dX(x, y) < δ. Since δ ≤ δy, we
then also have dX(x, y) < δy, so by the choice of δy we get

dY (f(x), f(y)) < ε.

Thus dX(x, y) < δ implies dY (f(x), f(y)) < ε, so f is uniformly continuous as claimed.

Connected sets. We now come back to one topic we glossed over previously, that of connected
sets. We are doing this now in order to setup the discussion of properties of continuous functions
on connected sets, with the Intermediate Value Theorem being the main goal. We briefly gave the
definition of “connected” before, but let us start from scratch anyway.
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A metric space X is said to be disconnected if there exist disjoint, nonempty open subsets U
and V of X such that

X = U ∪ V.

(Recall that saying U and V are disjoint means that U ∩ V = ∅.) Intuitively, this means that we
can “split” X into two pieces, U and V . A space is connected if it is not disconnected (beware the
double negative!), meaning that such a “splitting” is not possible. Here is another way to phrase
the definition of connected in a way which is more practically useful: X is connected if whenever
we have X = U ∪ V with U and V disjoint and open in X, one of U or V must be empty.

Examples. The space consisting of the union of the following open disks is disconnected:

Indeed, each open disk in question is open in this space, is nonempty, and has nothing in common
with the other one. Visually we can see the way in which disconnected spaces can be “split” up
into multiples “pieces”. Each individual open disk, however, is an example of a connected space.

The space X = [0, 1] ∪ [2, 3] is also disconnected, with respect to the standard absolute value
metric. At first this might not seem to match the definition since the definition says we need to
break our space up into open sets, but the point is that these sets are only required to be open in
X itself. In particular, the intervals [0, 1] and [2, 3] are indeed open in X, so X is disconnected.

Finally, Z is disconnected, which again should be visually clear. To be precise, every subset of
Z is open in Z so

Z = {negative integers} ∪ {nonnegative integers}

exhibits Z as the union of two nonempty, open and disjoint subsets, so Z is disconnected. In fact,
the only connected subsets of Z are those which consist of a single point or are empty.

Clopen subsets. In the decomposition X = U ∪ V into disjoint open subsets, note that we can
view each subset as the complement of the other. Since complements of open sets are closed, we
see that U and V are both open and closed in X, so they are clopen subsets of X. Thus, saying
that X is disconnected implies that it has a nonempty proper clopen subset, while conversely if X
has a nonempty property clopen subset A,

X = A ∪Ac

exhibits X as the union of two nonempty, disjoint, open subsets, so X is disconnected.
Thus we have that X is disconnected if and only if it has a nonempty property clopen subset,

or equivalently X is connected if and only if the only clopen subsets of X are ∅ and X itself. This
gives a more succinct way of saying what disconnected/connected mean, although the definition
we first gave is visually clearer. In the case of X = [0, 1] ∪ [2, 3], both [0, 1] and [2, 3] are clopen
subsets of X, while in the case of the integers every subset is clopen.
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Why we care. To motivate why we care about the notion of connected sets, consider the following
question: if f : U → R is a differentiable function on an open subset U of R with f ′(x) = 0 for all
x ∈ U , is it true that f must be constant? Your experience in calculus might lead you to believe
that this is true, but in fact it is only true if U is connected! Indeed, take the function f : U → R
on U = (−2,−1) ∪ (1, 2) defined by

f(x) =

{
1 x ∈ (−2,−1)

−1 x ∈ (1, 2).

This is differentiable and has derivative equal to zero throughout U , but is clearly not constant, the
issue being that U here is disconnected. In general, having derivative zero everywhere throughout
a region only implies that your function is constant on each “connected piece” of that region, but
the constant over different pieces can differ.

A similar thing will be true when we consider higher-dimensional derivatives, so the distinction
between connected and disconnected spaces will pop-up next quarter as well, although only in the
setting of Rn where things are easier to visualize.

Intervals are connected. Any interval I in R is connected, which should make intuitive sense
visually. The one fact we need to prove this is that a compact subset of R always has a maximum
element and a minimum element: indeed, a compact subset is bounded, so it has a supremum and
an infimum, and a compact set is closed, so it will contain its supremum and its infimum. Note
that by “interval” we mean any type: open, closed, half-open, half-closed, bounded or unbounded,
so that in particular R = (−∞,∞) itself is connected.

The idea behind the proof is that given any two nonempty, open disjoint subsets of an interval,
their union can never be the full interval. In the case of a closed interval, say we try to write it as

[x, y] = U ∪ V

with U and V open, nonempty, and disjoint. Then we argue that both U and V are compact
(since each is a closed subset of the compact set [x, y]), so they have a maximal and minimal
element respectively. If we set this up correctly, then nothing between these two elements can be in
U ∪V , which will lead to a contradiction. This makes sense visually: if you draw two disjoint open
nonempty sets (for example open intervals) on a number line, there will always be points excluded
by their union. The proof below is essentially reducing the case of an arbitrary interval to the case
of a closed interval.

For a contradiction, suppose that I = U ∪ V where U and V are nonempty, disjoint, and open
in I. Pick x ∈ U and y ∈ V , and assume without loss of generality that x < y and consider the
smaller interval [x, y] ⊆ I. Then we have

[x, y] = ([x, y] ∩ U) ∪ ([x, y] ∩ V ).

Since [x, y]∩U is open in [x, y], its complement [x, y]∩V is closed in [x, y] and hence compact since
a closed subset of a compact space is always compact. Thus [x, y]∩V has a minimum element, call
it b ∈ [x, y] ∩ V .

Consider now the interval [x, b] ⊆ [x, y]. We have

[x, b] = ([x, b] ∩ U) ∪ ([x, b] ∩ V ),

so the same argument as above shows that [x, b]∩U is compact and hence has a maximum element,
call it a ∈ [x, b] ∩ U . We have a ≤ b, and thus a < b since a 6= b given that a ∈ U , b ∈ V , and U
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and V are disjoint. Now, take any a < c < b. Since

x ≤ a < c < b ≤ y,

c ∈ [x, y], and thus either c ∈ [x, y] ∩ U or c ∈ [x, y] ∩ V . However, the first is not possible since
then c is in [x, b] ∩U and is greater than its largest element a, and the second is not possible since
then c is in [x, y] ∩ V and is smaller than its largest element b. Thus we have a contradiction, so I
must have been connected to begin with.

Here is a picture to illustrate where all the different elements considered above come from:

The point is that b is the smallest element of V in [x, y] and a the largest element of U in [x, b], so
nothing between them is in [x, y], which contradicts a basic property of intervals.

Rn is connected. (We didn’t look at this specific claim in class, but let us include here for the
sake of giving more examples of connected sets.) Suppose that A and B are connected subsets of
R2 which are not disjoint. Then A ∪ B is also connected. This generalizes to other metric spaces
as well, and gives a quick way of verifying that various sets are indeed connected.

To see this, suppose that A ∪ B = U ∪ V where U and V are open in A ∪ B and disjoint. We
must show that one of U or V is empty. Since A and B are not disjoint, there exists p ∈ A ∩ B,
and hence this element is in U ∪ V so either p ∈ U or p ∈ V . Without loss of generality suppose
that p ∈ U , in which case we must show that V is empty.

Now, we can write A as
A = (A ∩ U) ∪ (A ∩ V )

since any element of A must be in U or V . Since U and V are open in the larger space A ∪ B,
these intersections are each open in A. (In general, it is true that if A ⊆ X and U is open in X,
then A∩U is open in A, and in fact all open subsets of A arise in this way.) Since A is connected,
one of these two open sets must be empty, and since p ∈ A∩U we must have A∩V = ∅. Similarly,
writing B as

B = (B ∩ U) ∪ (B ∩ V )

and using the fact that p ∈ B ∩ U , the fact that B is connected implies that B ∩ V = ∅. But now
we can conclude that V = ∅: if not, a point of V would be in A or B since V ⊆ U ∪ V = A∪B, in
which case this point would be either in A ∩ V or B ∩ V , neither of which are possible since both
of these intersections are empty. Thus we conclude that A ∪B is connected as claimed.

Now we consider R2. From last time, we know that R is connected. It does not matter if we
draw R as a horizontal line or as some other kind of line, it will still be connected. Thus the x-
and y-axes of R2 are connected, and by the fact above so is their union since they have a point in
common. Similarly, the union of the y-axis with the line y = 1 is connected, and so is the union of
the y-axis with any horizontal line:
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But now, all of these connected “cross” shaped figures overlap with one another (they intersect
on the y-axis), so again their union is connected. As we move the horizontal line up and down, we
see that this union is all of R2, so R2 is connected. In a similar way, we can build up to show that
R3 is connected, then R4, and so on, so Rn is connected in general.

Continuous sends connected to connected. The key relation between connected sets and
continuous functions is the following claim: if f : X → Y is continuous and that A ⊆ X is
connected. Then f(A) ⊆ Y is connected as well. Thus, a continuous function sends connected sets
to connected sets. (This is similar to how continuous functions send compact sets to compact sets,
although of course the proof is different.)

Suppose that f(A) = U ∪ V with U and V open in f(A) and disjoint. We must show that one
of U or V is empty. Since f is continuous, f−1(U) and f−1(V ) are open in A and we have

A = f−1(U) ∪ f−1(V ).

(Technically, here we are not really considering the original f : X → Y but rather its restriction to
A, which is often denoted by f |A : A → f(A). This is a minor point which we will not dwell on.)
Since U and V are disjoint, their preimages are disjoint, so since A is connected we thus have that
one of f−1(U) or f−1(V ) is empty. Without loss of generality, say that f−1(U) is empty. Then
U is empty as well, since if not there would exist f(p) ∈ U ⊆ f(A) and this p would then be in
f−1(U), which is empty. Thus we conclude that f(A) is connected.

Intermediate Value Theorem. And finally we come to the main point, which is known as the
Intermediate Value Theorem. Suppose that f : A → R is continuous and that A is connected.
Suppose further than f(a) < f(b) in R. Then the result is:

for any c ∈ R such that f(a) < c < f(b), there exists p ∈ A such that f(p) = c.

Hence, any “intermediate value” between f(a) and f(b) is attained as a value of f , and we say that
f has the intermediate value property. In particular then, since intervals are connected we have
that any continuous function [a, b] → R has the intermediate value property. This makes sense
intuitively if you draw a graph of a typical continuous function: given two points on the graph,
there are points that give rise to all intermediate y-coordinates between them.

Here is the proof. Since f is continuous and A is connected, f(A) is a connected subset of R,
so f(A) must be an interval. But then if f(a) < f(b) in this interval, any c between f(a) and
f(b) remains in the interval, so c ∈ f(A) and hence there exists p ∈ A which is sent to c under f .
(The claim that a connected subset of R is an interval is the converse to the claim that intervals
are always connected. To see why this is true, note that if J ⊆ R is connected, then if J were
not an interval there would exist p < c < q in J such that p, q ∈ J but c /∈ J . This would give
J = [J ∩ (−∞, c)] ∪ [J ∩ (c,∞)], which is a separation of J into nonempty disjoint open sets,
contradicting connectedness. Hence J must be an interval.)
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Lecture 25: Differentiable Functions

Warm-Up. We show that at any instant of time, there is a point p on the surface of the Earth
such that the temperature at p is the same as the temperature at its antipodal point −p. (The
antipodal point is the point directly on the opposite side of the Earth.) We are thinking of the
“surface of the Earth” here really as being a sphere, and making use of the fact that spheres are
connected. (We will explain why afterwards.)

Consider the function T : Earth → R that sends a point on the Earth to the temperature
measured at that point. This function is continuous, which we only informally justify by noting
that moving from point to a nearby point only changes the temperature by a very very small
amount. Now set f : Earth→ R to be the function

f(p) = T (p)− T (−p),

so that f measures the difference in temperatures at p vs its antipodal point −p. This function is
also continuous since it is a sum of continuous functions, so it has the intermediate value property
by the Intermediate Value Theorem. What we want then is a point such that f(p) = 0, which says
precisely that T (p) = T (−p) as we want.

Now, if f is always zero, then any point will work so there is nothing to show. If f is not always
zero, there exists q such that f(q) 6= 0. Then one of f(q), f(−q) is positive and the other is negative
since

f(−q) = T (−q)− T (−(−q))) = −[T (q)− T (−q)] = −f(q),

so 0 is an intermediate value between f(q) and f(−q). Hence there exists p such that f(p) = 0 by
the intermediate value property, as desired.

Path connectedness. The notion of a path-connected space is not mentioned in the book at this
point yet, and indeed we did not mention it in class either. But let us briefly introduce it here to
justify the fact about spheres made above (they are connected), and because it provides possibly
simpler ways of showing that spaces are connected.

We say that a space X is path-connected if any points p, q ∈ X of X can be joined by a
continuous path: i.e. there exists a continuous function γ : [a, b] → X defined on some interval
[a, b] such that γ(a) = p and γ(b) = q. The points γ(t) in the image of γ trace out a path
which starts at p and ends at q as t ranges from a to b. Visually, path-connectedness is a simple
property to determine: just literally draw a continuous path from one point to the other. The
point is that path-connectedness implies connectedness, and that path-connected is usually a much
simpler property to check. Indeed, this gives an easier way of showing that Rn is connected, or
that rectangles in R2 are connected, or even disks in R2. Essentially, any nice subset of R2 you
can draw which “appears” to be path-connected will indeed be so, and will thus be connected as
well. (Take note whoever that connected does not imply path-connected, with what’s called the
topologist’s sine curve being the key counterexample. Look it up!)

Here is a proof that path-connected implies connected. Suppose X is disconnected. Then we
claim that X is not path-connected. Since X is disconnected, we can write it as

X = U ∪ V

for some disjoint, nonempty open subsets U, V ⊆ X. Pick p ∈ U and q ∈ V . We claim that there
is no continuous path then from p to q. Indeed, if there was such a continuous map γ : [a, b]→ X
with γ(a) = p and γ(b) = q, then taking the preimages gives

[a, b] = γ−1(U) ∪ γ−1(V ).
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Both sets on the right are open in [a, b] since γ is continuous, and they are disjoint since U and
V are disjoint. Moreover, they are both nonempty since a ∈ γ−1(U) and b ∈ γ−1(V ), and this
contradicts the fact that [a, b] is connected. Hence no such γ can exist, so X is not path-connected
as claimed. (Path-connectedness will show up at various points later, such as when discussing
properties of higher-dimensional derivatives.)

Differentiable functions. Continuous functions are ones where we can control the behavior of
outputs by controlling inputs, and the notion of differentiability will give us even more control over
such things. For U an open subset of R, we saw that a function f : U → R is differentiable at
a ∈ U if

lim
x→a

f(x)− f(a)

x− a
exists, in which case we call the value of this limit the derivative of f at a and denote it by f ′(a).
This limit can equivalently be written as

lim
h→0

f(a+ h)− f(a)

h

after making the substitution x = a + h and noting that then saying x → a and h → 0 mean the
same thing. We say that f is differentiable on U if it is differentiable at each y ∈ U . (The reason
for asking that U be open is to guarantee that we can approach a ∈ U from “both” sides; otherwise
we potentially only get one-sided derivatives.)

This definition is no doubt one you’ve seen in a previous calculus course. The fraction we are
taking the limit of is the slope of secant line passing through (a, f(a)) and (x, f(x)) on the graph
of f in the first version and through (a, f(a)) and (a + h, f(a + h)) in the second; thus the limit,
when it exists, indeed gives us the slope of the tangent line at a itself. We will take differentiability
of many standard functions (xn, ex, trig functions, etc) for granted, and will focus on examples you
likely haven’t seen before and on what we can actually do with derivatives.

Example. Consider the function f : R→ R defined by

f(x) =

{
x sin 1

x if x 6= 0

0 if x = 0.

We claim that this function is not differentiable at 0. Indeed, we have:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x sin 1
x

x
= lim

x→0
sin

1

x
,

and this limit does not exist due to the oscillatory behavior of sin 1
x as x→ 0. (Note that when we

are considering the limit as x→ 0, we are looking at values approaching 0 but never equal to zero
itself, which is why we were able to substitute f(x) = x sin 1

x for such x.) However, note that f is
indeed continuous at 0 since limx→0 f(x) = 0 = f(0).

Now consider the function g : R → R defined by the same formula as f only using x2 sin 1
x

instead of x sin 1
x . In this case we end up with:

lim
x→0

g(x)− g(0)

x− 0
= lim

x→0

x2 sin 1
x

x
= lim

x→0
x sin

1

x
= 0,

so g is differentiable at 0 and g′(0) = 0. The function g is differentiable for x 6= 0 since near such
values g is the same as the function

x2 sin
1

x
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which is differentiable at x 6= 0 as a consequence of some differentiantion rules, in particular the
product and chain rules. (We will prove these next time.) Hence g is differentiable on all of R. The
value of g′(x) for x 6= 0 is obtained by differentiating x2 sin 1

x for x 6= 0, and thus we find that the
derivative of g : R→ R is

g′(x) =

{
2x sin 1

x − cos 1
x if x 6= 0

0 if x = 0.

Note that this derivative g′, however, is not continuous at 0 since limx→0 g
′(x) does not exist. (It

should equal g′(0) in order for g′ to be continuous at 0.) This is due to the cos 1
x term, which has

no limit as x→ 0. We say that even though g is differentiable, it is not continuously differentiable.
(In general, we say that a function is Ck, or continuously k-times differentiable, if it is k-times
differentiable with a continuous k-th derivative.) As will show shortly, g′ being discontinuous at 0
prevents it from being differentiable at 0, so g is not twice differentiable at 0.

The functions

fk(x) =

{
xk sin 1

x if x 6= 0

0 if x = 0

in general then give examples of the various types of behaviors possible. (Above we considered f1
and f2.) The fact, as you will show on the homework, is that f2k is an example of a function which
is k-times differentiable but not continuously k-times differentiable, and f2k+1 is a function which
is continuously k-times differentiable but not (k + 1)-times differentiable.

Differentiable implies continuous. As a first basic fact, that claim that if f : U → R is
differentiable at a ∈ R, then f is continuous at a. This should again be a well-known fact from
calculus. The basic idea is that in order for the limit

lim
x→a

f(x)− f(a)

x− a
to exist, the numerator had better approach 0 since the denominator does. (Otherwise with the
denominator approaching 0 but not the numerator we would end up with a fraction whose limit did
not exist.) Thus for this limit to exist we need f(x) − f(a) → 0 as x → a, so limx→a f(x) = f(a)
and thus f is continuous at a.

But we can be more precise (to avoid the vague “the numerator had better approach 0 since
the denominator does”) as follows. Consider the identity

f(x) = f(a) +
f(x)− f(a)

x− a
(x− a)

for x 6= a. If we take the limit of both sides as x → a, the f(x)−f(a)
x−a term approaches f ′(a) by

differentiability, the x− a term approaches 0, and the constant f(a) term remains as is, so we get

lim
x→a

f(x) = f(a) + f ′(a) · 0 = f(a),

which says that f is continuous at a.

Lecture 26: More on Differentiability

Warm-Up. Let f : R→ R be the function defined by

f(x) =

{
x2 if x ∈ Q
0 if x /∈ Q.
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We show that f is differentiable at 0 and only at 0. Indeed, to show that f is not differentiable at any
y 6= 0, we show that it is not even continuous at any such y; this rules out f being differentiable at
such y since differentiable implies continuous. If y is a nonzero rational number, take any sequence
of irrationals (yn) converging to y. (As we’ve seen before, such a sequence exists since the irrationals
are dense in R.) Then f(yn) = 0 for all n so f(yn)→ 0. Thus we have

yn → y but f(yn) 9 f(y) = y2 > 0,

so f is not continuous at y. If y is an irrational number, take a sequence of rationals (yn) converging
to y. Then f(yn) = y2n, which converges to y2 > 0 according to some limit laws. Thus

yn → y but f(yn) 9 f(y) = 0,

so f is not continuous at y. Thus f is not continuous, nor then differentiable, at any y 6= 0.
Now, to determine differentiability at 0 we consider the limit

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
.

As x→ 0, f(x) is either 0 (when x is irrational) or x2 (when x is rational); in the first case we have
f(x)
x = 0 and in the second f(x)

x = x. Thus for ε > 0, δ = ε satisfies

0 < |x− 0| < δ =⇒
∣∣∣∣f(x)

x
− 0

∣∣∣∣ < ε,

so the limit defining f ′(0) exists and equals zero.

Important Remark. At first glance, you might be tempted to say that since x2 is differentiable
at all x ∈ Q and since the constant 0 is differentiable as well, f is differentiable everywhere and

f ′(x) =

{
2x if x ∈ Q
0 if x /∈ Q

by computing the derivative of each term separately. However, this is total nonsense as our argument
in the Warm-Up shows. The problem is that since the derivative is defined as a limit, it depends
on values near the point we’re approaching and not the value at that point itself. In other words,
just knowing the value of f at a point x is not enough to determine the derivative at x; we need to
know how f behaves “close” to x.

In this case, any interval around x ∈ Q will contain an irrational y, and at such points f will
have the value 0 and not y2. So f does not look like the function x2 everywhere near x ∈ Q, so
we cannot just simplify use this expression itself to determine differentiability. Similarly, at an
irrational f has the value 0 but it does not have the value 0 everywhere near an irrational since
any interval around an irrational will contain a rational r, will f has the value r2.

Comparing with a previous example where we had a function with the value x2 sin 1
x for x 6= 0

and 0 for x = 0, in that case at any x 6= 0 there is an interval consisting of only nonzero numbers
y, and the value of f at those points is still given by y2 sin 1

y . That is, in that case everywhere

“near” some x 6= 0 the function in question was the same as the function x2 sin 1
x so we can use

what we know about this function to say something about differentiability; that doesn’t happen in
the function in the first Warm-Up.
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Product rule. Let us now justify the basic product rule from calculus. This is not difficult, and
we do it really to highlight the use of continuity. The claim is that if f, g are both differentiable at
a, then fg (the product function) is differentiable at a as well and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

This requires looking at the limit

lim
x→a

f(x)g(x)− f(a)g(a)

x− a
.

If we add and subtract f(a)g(x) in the numerator, we get

f(x)g(x)− f(a)g(a)

x− a
=
f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a

=
f(x)− f(a)

x− a
g(x) + f(a)

g(x)− g(a)

x− a
.

When we take the limit x→ a, we have

f(x)− f(a)

x− a
→ f ′(a),

g(x)− g(a)

x− a
→ g′(a), and g(x)→ g(a),

where the last one is where continuity of g at a (which follows from differentiability) is needed.
This thus gives

lim
x→a

f(x)g(x)− f(a)g(a)

x− a
= f ′(a)g(a) + f(a)g′(a)

as claimed.

Chain rule. The chain rule takes more effort to justify, but is important to understand for the sake
of setting up the idea of using errors—which we will consider more carefully when discussing Tay-
lor’s theorem—and because this same idea is the one that will be needed to prove the multivariable
chain rule next quarter, which is more important.

The claim is that if f is differentiable at a and g is differentiable at f(a), then the composition
g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a))f ′(a).

We first note that if we introduce the “error”

ε(x) =
f(x)− f(a)

x− a
− f ′(a),

which measures how far off from f(x)−f(a)
x−a the number f ′(a) really is, then the definition of differ-

entiability of f at a can be rephrased as saying ε(x)→ 0 as x→ a. Similarly, the error

δ(y) =
g(y)− g(f(a))

y − f(a)
− g′(f(a))

approaches 0 as y → f(a), by differentiability of g at f(a). With these errors we can write

f(x)− f(a) = (x− a)(f ′(a) + ε(x)) and g(y)− g(f(a)) = (y − f(a))(g′(f(a)) + δ(y)).

Taking y = f(x) in the second gives

g(f(x))− g(f(a)) = (f(x)− f(a))(g′(f(a)) + δ(f(x))),
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and then substituting in for f(x)− f(a) gives

g(f(x))− g(f(a)) = (x− a)(f ′(a) + ε(x))(g′(f(a)) + δ(f(x))).

Thus
g(f(x))− g(f(a))

x− a
= (f ′(a) + ε(x))(g′(f(a)) + δ(f(x)))

for x 6= a. As x → a, we have ε(x) → 0 and f(x) → f(a) (continuity), so δ(f(x)) → 0 as well
because δ(y)→ 0 as y → f(a). Hence taking the limit gives

lim
x→a

g(f(x))− g(f(a))

x− a
= (f ′(a) + 0)(g′(f(a)) + 0) = g′(f(a))f ′(a),

as the chain rule requires.

Derivative at extreme point. Now we justify one of the most basic properties of derivatives
when it comes to optimization, namely the fact that if f : U → R is differentiable and has a local
maximum or minimum at a, then f ′(a) = 0. To be clear: to say that f has a local maximum at a
means that there exists an interval (a−δ, a+δ) around a on which f(a) ≥ f(x) is true, and similarly
for a local minimum with the inequality reversed. This is a very well-known fact from calculus,
which is more-or-less clear intuitively when considering the graph of f , since the tangent line at a
local max or min is horizontal. But of course, not every possible differentiable function will have
an easy-to-draw graph, so that geometric intuition isn’t enough to constitute a full justification.

So, suppose f has a local maximum at a. (The proof for the local minimum case is very
similar, with inequalities below reversed.) Then there exists δ > 0 such that f(x) ≥ f(a) for all
x ∈ (a− δ, a+ δ). We know that

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

exists. In particular, this means that the limit as x approaches a from the left and right both exist
and equal f ′(a). For x ∈ (a− δ, a), we have that x− a < 0 and f(x)− f(a) ≤ 0, so the fraction in
the above limit is positive for x to the left of a. Thus

lim
x→a−

f(x)− f(a)

x− a
= f ′(a) ≥ 0

where x → a− means the limit as we approach a from the left. For x ∈ (a, a + δ), x − a > 0 and
f(x)− f(a) ≤ 0 so the fraction in the above limit is negative. Thus

lim
x→a+

f(x)− f(a)

x− a
= f ′(a) ≤ 0.

Since f ′(a) ≥ 0 and f ′(a) ≤ 0, we must therefore have f ′(a) = 0 as claimed.

Lecture 27: Mean Value Theorem

Warm-Up. Suppose f : R → R is a differentiable function. We claim that f ′ has the following
intermediate value property: whenever f ′(a) < y < f ′(b), there exists c between a and b such that
f ′(c) = y. In other words, derivatives always attain any “intermediate” values. If f ′ is continuous
this is just a consequence of the Intermediate Value Theorem, but the amazing fact here is that
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this is true even when f ′ is not continuous! (The result is often called Darboux’s theorem, and a
function with the intermediate value property in general is often called a Darboux function.) This
places a big restriction on which types of functions can arise as derivatives of others, as we’ll see.

Suppose without loss of generality that a < b and let F be the function defined by F (x) =
f(x)− y. Then F is differentiable since it is the difference of differentiable functions, and hence it
is continuous on [a, b]. Thus by the Extreme Value Theorem F has a minimum at some point in
[a, b]. Now, we claim that this minimum does not occur at a nor at b. Indeed, since

F ′(a) = f ′(a)− y < 0,

we have that

F (x)− F (a)

x− a
< 0 for x in some interval (a− δ, a+ δ) around a.

(This is a fact we’ve seen before: the limit of the fraction above defines F ′(a), and if this limit
is negative then the expression we take the limit of must be negative near the point a we’re
approaching.) In particular, for x ∈ (a, a+ δ) we have that x− a > 0 so F (x)− F (a) < 0. Hence
F (x) < F (a) so the minimum of F does not occur at a. Similarly, since

F ′(b) = f ′(b)− y > 0,

we have
F (x)− F (b)

x− b
> 0 for x in some interval (b− δ, b+ dδ) around b.

In particular for x ∈ (b− δ, b), x− b < 0 so F (x)− F (b) < 0 and again F (x) < F (b) meaning that
minimum of F does not occur at b. Thus the minimum of F must occur at some c ∈ (a, b). At a
minimum the derivative must be zero, so F ′(c) = f ′(c) − y = 0, meaning that f ′(c) = y and c is
the desired point.

Derivatives do not have jump discontinuities. The fact that derivatives have the intermediate
value property says that certain functions can never arise as the derivatives of other functions; in
particular, any function with a “jump” discontinuity is not the derivative of anything else. For
instance, consider the function

g(x) =

{
1 if x ≥ 0

−1 if x < 0.

If there was a differentiable function G such that G′ = g, we would have

G′(−1) = g(−1) = −1 < 0 < G′(1) = g(1) = 1,

so the Warm-Up would say that there should exist c ∈ (−1, 1) such that G′(c) = g(c) = 0, which is
nonsense. Thus there can be no such G.

The problem is that g has a jump discontinuity at 0. Derivatives of course can have discon-
tinuities, but the Warm-Up places restrictions on just what types of discontinuities those can be:
the only way in which a derivative might fail to be continuous is because of some “oscillatory”
behavior, such as what happens with the derivative of the function which is x2 sin 1

x for x 6= 0
and 0 at x = 0. Said another way, a function with a jump discontinuity such as g above does not
have an antiderivative. This is surprising for the following reason: such a function, such as this
explicit g, could very well have a well-defined integral, even without having an antiderivative. This
seems to run counter to what you know from calculus, where “integral” and “antiderivative” are
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usually thought of as being synonymous with one another. The point is that “integration” and
“anti-differentiation” really are two different things, and the fact that they are sometimes related
as clarified by the Fundamental Theorem of Calculus truly is quite amazing. You’ll see this next
quarter when studying integration in detail.

Mean Value Theorem. We now come to the Mean Value Theorem, which is perhaps the entire
point of differentiability in the first place, at least from the perspective of an analysis (not calculus)
course. Ultimately, if continuity says that we can control how large f(b)− f(a) is, the Mean Value
Theorem (and hence differentiability) goes one step further by giving more explicit control over
this expression.

Here is the claim. If f is continuous on [a, b] and differentiable on (a, b), then there exists
c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a). The “explicit control” mentioned above comes from
this explicit expression for f(b) − f(a), where by controlling the derivative we gain better control
over this difference. The Mean Value Theorem is completely obvious if you draw a picture of what
it says. Take the graph of a differentiable function f and draw the points (a, f(a)) and (b, f(b)) on
the graph. The line passing through these two points has slope

f(b)− f(a)

b− a
,

and from the picture:

it looks as though there should be some point c ∈ (a, b) at which the slope of the tangent line has
same slope as this line above:

f(b)− f(a)

b− a
= f ′(c).

This is precisely what the Mean Value Theorem says, after rewriting this equation. The proof
essentially amounts to “straightening out” the picture above and applying the Extreme Value
Theorem in a way similar to the Warm-Up.

Here are the details. Set

g(x) = f(x)−
[
f(a) +

f(b)− f(a)

b− a
(x− a)

]
,

is still differentiable and continuous. The expression in brackets above is precisely the secant line
connecting (a, f(a)) to (b, f(b)) in the picture above, so g measures the difference between this line
and f . Note that in the picture it seems we should thus have g(a) = 0 = g(b) since the secant line
and f agree at these points, and this is indeed evident from the definition of g as well:

g(a) = f(a)−
[
f(a) +

f(b)− f(a)

b− a
(a− a)

]
= f(a)− f(a) = 0
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and

g(b) = f(b)−
[
f(a) +

f(b)− f(a)

b− a
(b− a)

]
= f(b)− [f(a) + f(b)− f(a)] = 0.

(Geometrically, as alluded to above, g has the effect of “straightening out” the graph of f by putting
the points of intersection between the graph and the line down on the x-axis.)

Now, since g is continuous on [a, b], it has a maximum and a minimum on [a, b]. If both occurred
at the endpoints, then g(a) = 0 = g(b) would be both the maximum and minimum value of g, so
that g would be constant. In this case, f is exactly equal to the secant line, so the derivative of f is
equal to the slope of the secant line at all points, which is better than what Mean Value Theorem
asks for. If g is not constant, at least one of the max or min (in the “straightened out” version
of the picture above it would be the max) occurs in (a, b). If this extreme point is attainted at
c ∈ (a, b), then we have g′(c) = 0 by what we already know about the value of derivatives at local
extrema, and this translates to

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
.

This is what the Mean Value Theorem asks for, after rearranging terms.

Basic mean value consequences. As stated before, the Mean Value Theorem gives a way to
directly relate values of the function to one another using properties of the derivative. The first
few basic consequences are simple ones you expect from calculus, but whose justification depends
on this result.

For example, if f ′ > 0 at all points, then f is an increasing function. Indeed, for any a, b the
Mean Value Theorem gives c such that

f(b)− f(a) = f ′(c)(b− a).

But f ′(c) > 0, so if a ≤ b then f(a) ≤ f(b) as well since both sides above should be nonnegative.
This says that f is increasing. If instead f ′ < 0, the equation above gives that if a ≤ b then
f(a) ≥ f(b), so f is decreasing in this case.

Finally, if f ′ = 0 at all points, then we have f(b)− f(a) = 0(b− a) = 0 as a consequence of the
mean value identity above, so f(a) = f(b) for all a, b, which says that f is constant. Again these
are all basic facts from calculus, but they cannot be justified formally without some version of the
Mean Value Theorem. For example, knowing that f has zero derivative on an interval means that
for any a in that interval

lim
x→a

f(x)− f(a)

x− a
= 0.

But, this doesn’t say much about the fraction we’re taking the limit of since you can definitely have
a nonzero expression which gives a limit of zero. So, we can’t directly conclude that the numerator
must be zero; we need some way of comparing f(x) − f(a) to x − a, which is precisely what the
Mean Value Theorem gives us.

Lecture 28: More on Mean Value

Warm-Up. Suppose that f is continuous on R, differentiable at all x 6= a, and that limx→a f
′(x) =

L exists. Then f is differentiable at a as well and f ′(a) = L. Before looking at the proof, note that
this too places a restriction on how badly derivatives can actually behave, similar to the “no jump
discontinituies” fact we saw before. In particular, if f ′ exists everywhere near a point a and the
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limit of the derivative exists as you approach a, this fact says that f ′ is actually continuous at a! A
function who graph thus has a “hole” at a point then cannot be the derivative of another function,
and so has no antiderivative.

To prove the claim, consider the limit defining f ′(a):

lim
x→a

f(x)− f(a)

x− a
.

For any fixed x, f is differentiable on the open interval between x and a so the Mean Value Theorem
says that there exists some cx in this interval such that

f(x)− f(a) = f ′(cx)(x− a).

Substituting this above gives

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

f ′(cx)(x− a)

x− a
= lim

x→a
f ′(cx).

Since cx is sandwiched between x and a, as x → a we also have cx → a. Thus the above limit is
the same as

lim
cx→a

f ′(cx),

which exists and equals L by our assumption on f . Hence f ′(a) exists and f ′(a) = L.

Bounded derivative implies uniformly continuous. Now we expand on something we saw
when introducing uniform continuity, namely that functions which do not “change” too rapidly
should be uniformly continuous. The precise version of this statement is that a differentiable
function f : R→ R which has bounded derivative everywhere is in fact uniformly continuous. Say
that M is a bound for f ′, so |f ′(x)| ≤ M for all x ∈ R. For any x and y, by the Mean Value
Theorem says there exists c ∈ R such that

|f(x)− f(y)| = |f ′(c)||x− y| ≤M |x− y|.

(A function satisfying this type of inequality in a general metric space is said to be Lipschitz with
Lipschitz constant M . For example, the contractions you saw on a recent homework are Lipschitz
with Lipschitz constants smaller than 1. ) Thus, if ε > 0, δ = ε

M > 0 has the property that

|x− y| < δ =⇒ |f(x)− f(y)| ≤M |x− y| < Mδ = ε,

so that f is uniformly continuous. (Lipschitz functions are uniformly continuous in general.)
Even though this result is good for visualizing what the graph of a uniformly continuous function

might look like, it does not describe all possible uniformly continuous functions. For one thing,
not every uniformly continuous function is differentiable, and this fact only applies to differentiable
functions. More importantly, the converse of this fact is not true: if f is differentiable and uniformly
continuous, it is not necessarily true that f ′ must be bounded. For instance, the function f(x) =

√
x

is uniformly continuous on (0,∞) but its derivative is unbounded there. (Actually, it is only for
differentiable Lipschitz functions that we can guarantee the derivative has to be bounded.)

Second derivative test. Here is another basic fact from calculus whose proof uses the Mean
Value Theorem. Suppose that f is differentiable, that f ′(a) = 0, and that f ′′(a) > 0. We claim
that f then has a local minimum at a, meaning there exists an interval (a− δ, a+ δ) around a such

85



that f(a) ≤ f(x) for all x ∈ (a − δ, a + δ). (This is often referred to as the second derivative test
for classifying local extrema via concavity. The case where f ′′(a) < 0 implies that f has a local
maximum at a is on the final homework.)

To prove this, start with

lim
x→a

f ′(x)− f ′(a)

x− a
= f ′′(a) > 0.

Since this limit is positive, there exists δ > 0 such that

f ′(x)− f ′(a)

x− a
> 0 for x ∈ (a− δ, a+ δ).

Recall that f ′(a) = 0, so this inequality means that

f ′(x) and x− a have the same sign for x ∈ (a− δ, a+ δ).

Now, take any x ∈ (a− δ, a+ δ). By the Mean Value Theorem there exists c between x and a such
that

f(x)− f(a) = f ′(c)(x− a).

Now, either x < c < a or a < c < x, and either way x− a and c− a have the same sign, and thus
f ′(c) and x− a have the same sign. This means that

f(x)− f(a) = f ′(c)(x− a) ≥ 0, so f(x) ≥ f(a) for x ∈ (a− δ, a+ δ)

and hence f has a local minimum at a as claimed.

Error estimates. When viewed in the right way, the Mean Value Theorem, and its higher-order
generalization Taylor’s theorem (which we’ll look at next time), is really a statement about errors.
To setup the context let us take a step back to ordinary continuity. For x 6= a, we can write

f(x) = f(a) + ε0(x)

for the “zeroth order error” ε0(x) := f(x)− f(a). This zeroth order error describes how far off we
are when approximating f(x) using the constant function f(a). The property of being continuous
at a is then the claim that

ε0(x)→ 0 as x→ a,

so that this “constant” approximation gets better the closer we are to a. The upshot is that the
Mean Value Theorem then gives an exact form for this error. Indeed, if f is differentiable, we have

f(x) = f(a) + f ′(c)(x− a)︸ ︷︷ ︸
ε0(x)

for some c between x and a, so that the explicit form ε0(x) = f ′(c)(x−a) for the zeroth order error
is really the point of the Mean Value Theorem from this perspective.

Now, if f is differentiable, we get an even better approximation than the constant one. Indeed,
write

f(x) = f(a) + f ′(a)(x− a) + ε1(x)

where ε1(x) is now the first-order error (ε1(x) is literally just f(x) minus f(a) + f ′(a)(x− a)). The
first-order error thus tells us how far off the linear approximation f(a) + f ′(a)(x − a) is from the
actual value of f(x). The definition of differentiable then says precisely that

ε1(x)

x− a
→ 0 as x→ a,
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so that not only does ε1(x) approach 0, it does so “faster” than x − a. The upshot is that the
first-order error approaches 0 more rapidly than the zeroth-order error, so the linear (or “tangent
line”) approximation should be better than the constant approximation.

If f is twice-differentiable (which implies in particular that f ′ is continuous), Taylor’s theorem
will give an explicit form for this second-order error as

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2
(x− a)2︸ ︷︷ ︸
ε1(x)

for some c between x and a. And so on, Taylor’s theorem in general is all about saying what
happens with the higher-order errors. At the next step, being twice-differentiable gives

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + ε2(x)

for some second-order error ε2(x) that controls the quadratic approximation f(a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2 to f near a. This second-order error satisfies

ε2(x)

(x− a)2
→ 0 as x→ a,

so that ε2(x) goes to zero even more rapidly than (x − a)2, which is less than x − a for x close
enough to a. If f is three-times differentiable (let’s just say C3), Taylor’s theorem then gives

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(c)

3!
(x− a3)︸ ︷︷ ︸
ε2(x)

for some c between x and a, and so on. The overarching idea is that each time we introduce a
new order of differentiability, we gain more control over f(x) − f(a), or indeed over f(x) minus
higher-order approximations. We’ll state the full form of Taylor’s theorem, prove it, and look at
some applications next time. Good stuff!

Lecture 29: Taylor’s Theorem

Warm-Up. Suppose f and g are differentiable and fix x 6= a. We show there exists c between x
and a such that

g′(c)(f(x)− f(a)) = f ′(c)(g(x)− g(a)).

Now, before doing so, it is natural to wonder why this type of result might be useful since it
seems like quite a random thing to consider. Note first that when g is the function g(x) = x, the
equation above is precisely the one given in the Mean Value Theorem: we have g′(c) = 1, so the
left side above is f(x)− f(a) and the right side is f ′(c)(x− a). So, this result can be viewed as a
generalization of the Mean Value Theorem, and indeed it is often called the generalized Mean Value
Theorem. If we assume that g′(c) 6= 0 and g(x)− g(a) 6= 0, we can rewrite the given equation as

f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)
,

so that if we think of the left side as some kind of “slope/mean” of f “with respect to g” (whatever
that means), the claim is that this “mean” value is attained as an actual value of the derivative,
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again in some sense “with respect to g”. (You will consider such values “with respect to g” next
quarter when discussing a general form of integration.) Note that if we simply apply the Mean
Value Theorem to f and g separately:

f(x)− f(a) = f ′(c)(x− a) and g(x)− g(a) = g′(d)(x− a)

for some c and d, we get
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(d)
,

but with possibly different inputs on the right. Thus the real point of the result in the Warm-Up
is that we guarantee this equation holds with the same input on the right.

Set F to be the function (of y) defined by

F (y) = g(y)[f(x)− f(a)]− f(y)[g(x)− g(a)].

Since f and g are differentiable, F is differentiable as well. We have

F (a) = g(a)f(x)− f(a)g(x) = F (x).

By the Mean Value Theorem there exists c between x and a such that

F (x)− F (a) = F ′(c)(x− a),

which, since the left side is zero and x 6= a, gives F ′(c) = 0. Explicitly we have

F ′(c) = g′(c)[f(x)− f(a)]− f ′(c)[g(x)− g(a)],

so F ′(c) = 0 gives g′(c)[f(x)− f(a)] = f ′(c)[g(x)− g(a)] as desired.
One quick application of this result is L’Hopital’s rule, which you might remember from calculus.

The statement is that if f, g are differentiable and f(a) = 0 = g(a), then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Indeed, since f(a) = 0 = g(a), we have

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
,

which by our result is
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)

for some c between x and a. Since c is between x and a, as x→ a we also have c→ a, so

lim
x→a

f(x)

g(x)
= lim

c→a

f ′(c)

g′(c)

as desired. The point is that the Warm-Up gives a way to control f(x) − f(a) and g(x) − g(a) in
a simultaeneous way.

Taylor’s theorem. As explained at the end of last time, the Mean Value Theorem can be viewed as
a giving an explicit expression for the “zeroth-order errors” obtained when approximating functions
by constant functions. The general version of this result for higher-order errors is Taylor’s theorem.
Here is the statement:
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Suppose f is a Cn+1 function. (Actually, Taylor’s theorem applies in the more general
situation where is Cn and (n+1)-times differentiable, without assuming that the (n+1)-
st derivative is continuous, but saying all this is more of a mouthful than just saying
“Cn+1”, which is the only reason why I’m using Cn+1 as my assumption.) Then for
any x 6= a, there exists c between x and a such that

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(c)

(n+ 1)!
(x− a)n+1.

The summation in the first term on the right is a polynomial:

n∑
k=0

f (k)(a)

k!
(x− a)k = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

and is called the n-th order Taylor polynomial of f centered at a. Taylor’s theorem thus gives
an expression for the error εn(x) (also called the n-th order Taylor remainder) obtained when
approximating f via this Taylor polynomial:

εn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1 for some c between x and a,

where εn(x) is the difference between f(x) and its n-th order Taylor polynomial approximation.
Note that the error in the n-th order Taylor approximation is described in terms of the derivative
for the next larger order n + 1. The Mean Value Theorem is precisely the n = 0 case of Taylor’s
theorem, and, as we’ll see, also plays a key role in its proof.

Taylor polynomials. Before proving Taylor’s theorem, let us comment on why Taylor polynomials
specifically are the ones that appear. That is, if we are trying to approximate a function f near a
point a using a polynomial

c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n,

why should it be the case that cn is given by f (n)(a)
n! ? The point is that the polynomial with these

specific coefficients is the unique one which agrees with f “up to order n” at a. This means that
if we denote the polynomial with these coefficients by Pn(x), then Pn(x) is the only polynomial of
degree n whose derivatives at a all the way up to the n-th derivative agree with those of f :

f (k)(a) = P (k)
n (a) for k = 0, . . . , n.

Indeed, set Pn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n. Then Pn(a) = c0, so if this
is meant to agree with f(a), then we must have c0 = f(a). Next, P ′n(a) = c1, so if this agrees with

f ′(a) we have c1 = f ′(a). Then P ′′n (a) = 2c2, so we must have c2 = f ′′(a)
2 in order for P ′′n (a) = f ′′(a)

to hold. And so on: in general P
(k)
n (a) = k!ck, so

f (n)(a) = P (k)
n (a) ⇐⇒ ck =

f (k)(a)

k!
.

Thus Pn(x) is the n-th order Taylor polynomial of f at a as claimed.
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Proof of Taylor’s theorem. Let us first prove Taylor’s theorem in the n = 1 case to get a feel
for the general argument. In this case, the claim is that if f is twice differentiable, then for any x
and a there is some c between x and a satisfying

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2!
(x− a)2.

Consider the function h of a variable y defined by

h(y) = ε1(y)− ε1(x)

(x− a)2
(y − a)2,

where ε1(x) = f(x)− [f(a) + f ′(a)(x− a)] is the first-order Taylor error/remainder of f at a. The
function h is twice differentiable with respect to y and its derivatives with respect to y are:

h′(y) = ε′1(y)− 2
ε1(x)

(x− a)2
(y − a), and

h′′(y) = ε′′2(y)− 2
ε1(x)

(x− a)2
.

Since f and its first-order Taylor approximation agree up to first-order at a, we have that ε1(a)
and ε′1(a) are both zero, so the function h satisfies:

h(a) = ε1(a)− ε1(x)

(x− a)2
(a− a)2 = 0− 0 = 0,

h′(a) = ε′1(a)− 2
ε1(x)

(x− a)2
(a− a) = 0− 0 = 0, and

h(x) = ε1(x)− ε1(x)

(x− a)2
(x− a)2 = ε1(x)− ε1(x) = 0.

By the Mean Value Theorem applied to h there exists c1 between x and a such that

0− 0 = h(x)− h(a) = h′(c1)(x− a), so h′(c1) = 0.

Now applying the Mean Value Theorem to h′ says that there exists c between c1 and a such that

0− 0 = h′(c1)− h′(a) = h′′(c)(c1 − a), so h′′(c) = 0.

But ε1(y) = f(y) − [f(a) + f ′(a)(y − a)], so ε′′1(y) = f ′′(y) and thus the equation h′′(c) = 0 is the
same as

f ′′(c)− 2
ε1(x)

(x− a)2
= 0, or ε1(x) =

f ′′(c)

2
(x− a)2,

which is the desired claim. Since c is between c1 and c, and x1 is between x and a, c is indeed
between x and a, so Taylor’s theorem holds in the n = 1 case.

The proof in the general case is similar, where we introduce an auxiliary function h, and then
“bootstrap” by applying the Mean Value Theorem first to h, and then h′, then h′′, and so on all
the way up to h(n). Namely, set

h(y) = εn(y)− εn(x)

(x− a)n
(y − a)n
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where εn is the n-th order Taylor error:

εn(y) = f(y)−
n∑
k=0

f (n)(a)

n!
(y − a)n.

This function satisfies

h(x) = 0, h(a) = 0, h′(a) = 0, h′′(a) = 0, . . . , h(n)(a) = 0

since f and the n-th order Taylor polynomial agree at a to order n, and applying the Mean Value
Theorem to h, then h′, then h′′, etc in the end produces c between x and a such that h(n+1)(c) = 0,
in a manner exactly analogous to the n = 1 case above. The equation h(n+1)(c) = 0 then precisely
works out to be (by direct computation)

εn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

which is what Taylor’s theorem states.
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