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Lecture 1: Darboux Sums

This course continues the study of real analysis, with the main objective being to generalize concepts
you saw last quarter for R to other settings. After finishing one-dimensional analysis on R by
discussing integration, we will switch gears to develop analysis on function spaces, which are spaces
whose elements (or “points”) are functions. Here the notion of what’s called uniform convergence
will be of key importance, and will culminate in the theory of analytic functions and (a piece of)
the theory of Fourier series. Finally we will develop analysis—at least the “differential” part of
analysis–on Rn, with the main goals being to prove the inverse and implicit function theorems,
which are arguably the most important (at least conceptually) theorems in all of analysis, perhaps
after the Bolzano-Weierstrass theorem.

Where are we at? To put the importance of our first topic, namely integration, in the proper con-
text, let us clarify the importance of two concepts from last quarter: continuity and differentiability.
Both of these amount to giving us ways of controlling the growths of functions and understanding
how well or how poorly they behave. (By “growth” here we mean information about the change
f(x) − f(y) in function values in terms of x − y.) Continuity gives us “abstract” control; that is,
we can control f(x)− f(y) by controlling x− y, but we do not have information about how to do
so explicitly: given ε > |f(x)− f(y)| we can find δ > |x− y|, but we cannot say in general what δ
looks like. Continuity is really telling us about the existence of control.

Differentiability then gives us more explicit information about how to control the growth of f ,
in particular via the mean value theorem:

f(x)− f(y) = f ′(c)(x− y).

We can express f(x)−f(y) explicitly in terms of x−y and a derivative term, and information about
the derivative can be turned into explicit information about f . As we introduce higher orders of
differentiability, we get even more explicit information about the growth of f via Taylor’s theorem:

f(x)− f(y) = f ′(y)(x− y) +
f ′′(c)

2
(x− y)2, and so on.

Integrability then goes in the other direction, and suggests that we give up trying to control
the growth of f , at least everywhere. At points where f is continuous we already have a measure
of control, and at points where f is not continuous, integrability amounts to saying that we can
make such points “negligible” so that the behavior of f at such points can be ignored. This is the
point of view we will work towards, and is one you will develop even further next quarter when
discussing measure theory.

Motivation for integration. An integral should give us the area of the region under the graph
of a function:
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To compute this area, we approximate it using areas of rectangles as follows. First, we divide the
interval [a, b] into smaller pieces. Over each of these, we take a rectangle of height equal to the
infimum of f over that piece, and a rectangle of height equal to the supremum of f over that piece:

The actual area we want is sandwiched between the sum of the areas of the “lower” rectangles and
the sum of the areas of the “upper” rectangles. The idea is that by considering all possible such
sums corresponding to all possible ways of breaking up [a, b] into smaller pieces, we can get better
and better approximations to the area we want. The goal is now to make this all precise.

Darboux sums. A partition P of [a, b] is a collection of points x0, . . . , xn such that

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The practical point is that this “breaks” the interval [a, b] up into the smaller intervals

[x0, x1], [x1, x2], . . . , [xn−2, xn−1], and [xn−1, xn].

For a bounded function f on [a, b] and a partition P of [a, b], the lower Darboux sum L(f, P ) is
(letting Ik denote the k-th subinterval [xk−1, xk] determined by the partition):

L(f, P ) =
∑
Ik

(inf f over Ik)(length of Ik)

and the upper Darboux sum U(f, P ) is

U(f, P ) =
∑
Ik

(sup f over Ik)(length of Ik).

Graphically, L(f, P ) is the sum of the areas of the “lower” rectangles in the above picture and
U(f, P ) is the sum of the areas of the “upper” rectangles.

The sums we have defined are often referred to as lower and upper Riemann sums as well,
but historically this approach to integration was actually developed by Darboux some number of
years after Riemann gave his original approach. The two approaches are equivalent, and we will
say something about Riemann’s approach a bit later, but Darboux’s approach is typically easier to
work with, which is why modern analysis books describe it first.

Example. Suppose that f(x) = c is a constant function on [a, b]. Then for any partition P of
[a, b], the supremum of f over any smaller subinterval is always c, so

U(f, P ) =
∑
Ik

(sup f over Ik)(length of Ik) =
∑
Ik

c(length of Ik) = c
∑
Ik

(length of Ik).
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But the intervals Ik together make up all of [a, b], so adding together their lengths gives the length
of [a, b]. Thus

U(f, P ) = c(b− a), and similarly L(f, P ) = c(b− a)

since the infimum of f over any smaller interval is also always c.
Note that this makes sense graphically: the graph of a constant function is a horizontal line,

and any “lower” or “upper” rectangles we use should cover the entire region under the graph, which
has area c(b− a).

Another example. Consider the function f on [0, 1] defined by

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q.

No matter what partition P of [0, 1] we take, the supremum of f over any subinterval is 1 since any
subinterval contains a rational and the infimum of f over any subinterval is 0 since any subinterval
contains an irrational. This means that

U(f, P ) = 1 and L(f, P ) = 0

for any partition P of [0, 1].

Nontrivial example. We compute explicitly the upper and lower sums of f(x) = x on the interval
[0, b] determined by the partition Pn given by the points xk = kb

n :

0 <
b

n
<

2b

n
< · · · < (n− 1)b

n
< b.

The point of this partition is that all the partition points are evenly spaced, so that all subintervals
Ik = [xk−1, xk] have the same length b

n ; this will be important in finding explicit values for the
upper and lower sums.

Since f(x) = x is strictly increasing, its supremum on Ik = [xk−1, xk] is f(xk) = xk and its
infimum on Ik is f(xk−1) = xk−1. Thus

U(f, Pn) =
∑
Ik

(sup f over Ik)(length of Ik)

=
n∑
k=1

(
kb

n

)(
b

n

)
=
b2

n2

n∑
k=1

k =
b2n(n+ 1)

2n2
=
b2(n+ 1)

2n

and

L(f, Pn) =
∑
Ik

(inf f over Ik)(length of Ik)

=
n∑
k=1

(
(k − 1)b

n

)(
b

n

)
=
b2

n2

n∑
k=1

(k − 1) =
b2(n− 1)n

2n2
=
b2(n− 1)

2n
,

where we have used the fact that 1 + 2 + · · · + ` = `(`+1)
2 . Again, note that we were only able to

compute this explicitly due to the fact that all subintervals in Pn had the same length.
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Definition. The upper Riemann/Darboux integral of f over [a, b] is

U(f) := inf{U(f, P ) | P is a partition of [a, b]}

and the lower Riemann/Darboux integral of f over [a, b] is

L(f) := sup{L(f, P ) | P is a partition of [a, b]}.

Again, the intuition is that all upper sums overestimate the area under the graph of f , so this area
should be ≤ the infimum of all upper sums, and all lower sums underestimate the area under the
graph of f , so this area should be ≥ the supremum of all lower sums.

We say that f is (Riemann/Darboux) integrable over [a, b] when the upper Darboux integral
and lower Darbous integrals agree, in which case we call this common value the integral of f over
[a, b]: ∫

[a,b]
f := U(f) = L(f).

To say that the upper and lower integrals are the same means precisely the area under the graph
of f is well-defined. Another common notation for the integral is, of course,

∫ b
a f(x) dx.

Back to previous examples. In the constant function example, since all upper sums equal
c(b− a) the upper integral is c(b− a), and since all lower sums equal to c(b− a) the lower integral
is also c(b− a). Thus a constant function is integrable and∫ b

a
c dx = c(b− a),

which is the expected area under the graph of f(x) = c.
The function f which is 1 at rationals and 0 at irrationals has all upper sums equal to 1 and

all lower sums equal to 0, so the upper integral is 1 and the lower integral is 0. Thus

U(f) 6= L(f),

so f is not integrable over [0, 1]. This means that the area under the graph of f is not well-defined, at
least if we restrict ourselves to using finitely many rectangles to try to estimate this area. (Measure
theory next quarter will give a way to “integrate” this function in a more general sense.)

For f(x) = x on [0, b], the computations from before give

b2(n− 1)

2n
= L(f, Pn) ≤ b2

2
≤ U(f, Pn) =

b2(n+ 1)

2n
.

Since both L(f, Pn) and U(f, Pn) actually converge to b2

2 as n increases, this suggests the the lower

integral and upper integral of f(x) = x over [0, b] should both equal b
2

2 , meaning that f is integrable
over [0, b] with integral equal to: ∫ b

0
x dx =

b2

2
.

Now, of course we know from calculus that this is absolutely true, but this is not something we can
fully conclude just yet.

The problem is that the upper integral is supposed to be the infimum of all possible upper sums
and the lower integral the supremum of all possible lower sums, and so far we only know these
sums for the special partitions Pn where all partition points are evenly spaced. Knowing that the

5



infimum of the specific upper sums U(f, Pn) is b2

2 is not enough (yet) to say that the infimum of all

possible upper sums is also b2

2 . Similarly, knowing that the supremum of the specific lower sums

L(f, Pn) is b2

2 is by itself not enough to conclude that the lower integral has this same value.
This illustrates a problem with using the upper and lower integrals to check for integrability:

for most random partitions P , the values of U(f, P ) and L(f, P ) are simply impossible to compute
directly, and hence it is not feasible that we can directly find the supremum of all lower sums and
the infimum of all upper sums. We need another way to test for integrability which avoids having
to check all possible partitions. Fortunately, there is such a method, as we will discuss next time.

Riemann-Stieltjes integration. The length of an interval [xi−1, xi] used in an upper or lower
sum is simply

xi − xi+1.

If we instead allow for some type of “weighted” length, we get a slightly more general type of
integral. To be clear, for an increasing function α : [a, b] → R we take the “weighted length” of
[xi−1, xi] to be change in α given by

∆αi := α(xi)− α(xi−1).

With this modified “length”, we get modified lower and upper sums

L(f, P, α) =
∑

(inf f)∆αi and U(f, P, α) =
∑

(sup f)∆αi.

The original Darboux sums we considered were the case where α(x) = x is the identity function.
We can then take supremums of lower sums and infimums of upper sums to get lower and upper
integrals, and define a new notion of integrability—called Riemann-Stieltjes integrability with respect
to α—from this. The Riemann-Stieltjes integral of f with respect to α, when it exists, is then
denoted by ∫ b

a
f dα.

The Riemann-Stieltjes integral gives a useful way to study different types of “summations” from
a single point of view, as we will briefly clarify later, but it will not play a major role for us this
quarter. All properties and proofs we will give for the original Riemann/Darboux integral for the
most part work exactly the same as for the Riemann-Stieltjes integral, so we are not losing much
generality by mainly sticking with the α = identity function case, at lease for the purposes of this
course. The Riemann-Stieltjes integral is more important in certain applications to probability or
physics, among other things, just not so much things we will study here.

Lecture 2: Integrability

Warm-Up. Suppose f : [a, b] → R is bounded and continuous at c ∈ (a, b). We show that f is
Riemann-Stieltjes integrable with respect to the step function

α(x) =

{
0 x < c

1 x ≥ c

and determine the value of the Riemann-Stieltjes integral
∫ b
a f dα. Given a partition P of [a, b], the

upper sum with respect to α is

U(f, P, α) =
∑
i

(
sup
Ii

f

)
∆αi
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where Ii = [xi−1, xi] is the i-th subinterval determined by P and ∆αi = α(xi) − α(xi−1) is the
“weighted length” of this subinterval. But α is constant on any subinterval that does not contain
c, so that ∆αi = 0 on these subintervals:

Hence the only potentially nonzero contribution to the upper sum comes from the subinterval I
that contains c, and

U(f, P, α) =

(
sup
I
f

)
∆α = sup

I
f

since ∆α = 1 on this interval because α(right endpoint) = 1 and α(left endpoint) = 0. In the same
way, we get that the lower sum is L(f, P, α) = infI f .

We will see in a bit that when considering the infimum of upper sums or the supremum of lower
sums, all that matters is the behavior of subintervals that get smaller and smaller. (The fact is
that upper sums can only get smaller when taking refinements of partitions, and lower sums can
only get larger.) But for small intervals we can control the values of f , and hence sup f and inf f ,
using continuity. To be clear, for any ε > 0 we can imagine that the subinterval I is small enough
(of length smaller than an appropriate δ > 0) so that |f(x)− f(c)| < ε on I. But then

f(x) ∈ (f(c)− ε, f(c) + ε) =⇒ U(f, P, α) = sup
I
f ∈ [f(c)− ε, f(c) + ε].

This is true on any smaller interval as well, so we get that the infimum of all such upper sum values
is also in [f(c)− ε, f(c) + ε] (since, again, the infimum is determine solely by taking finer and finer
partitions), and thus

U(f, α) ∈ [f(c)− ε, f(c) + ε]

where. U(f, α) = inf{U(f, P, α} is the upper Riemann-Stieltjes integral. But this is true for all
ε > 0, so we get that U(f, α) = f(c). The same is true when replacing sup f by inf f and taking
supremums of lower sums, so the lower integral is L(f, α) = f(c) as well. Thus the upper and lower

integrals agree, so f is Riemann-Stieltjes integrable with respect to α and
∫ b
a f dα = f(c) is the

value of the Riemann-Stieltjes integral.
As we said last time, we will not do much with the Riemann-Stieltjes integral in this course, but

this example gives a hint of its use: evaluation of a function at a point (at which it is continuous)
can be viewed as a type of integral! If instead we wanted to obtain something like∫

f dα = f(c1) + f(c2)

as the value of an integral, all we need to do is use a step function which has two jumps, one at
c1 and one at c2. Similarly if we wanted to obtain any finite sum of values as an integral, and we
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allow step functions with infinitely many jumps, it is possible to obtain an entire infinite series as
the value of a certain Riemann-Stieltjes integral. The point is that (Riemann) integration is often
viewed as a type of “continuous” summation, and by using Riemann-Stieltjes integration we can
make this analogy clearer by viewing discrete summation (either finite or finite) as literally a type
of integral as well. The Riemann-Stieljes integral gives, if nothing else, a way to study integration
and summation from a common unified point of view.

Refinements. As we work towards finding an approach to integrability that does not require
computing all possible upper or lower sums, we need a way to compare upper and lower sums
which come from different partitions. To do so, we need the notion of a refinement. Given a
partition P of [a, b], a refinement of P is a partition P ′ where we take P and throw in additional
partition points. This has the practical effect of taking the subintervals determined by P and
breaking them up even further.

We are interested in what happens to upper and lower sums when taking a refinement of a given
partition; in other words, what’s the relation between U(f, P ) and U(f, P ′), and between L(f, P )
and L(f, P ′)? Suppose we had a subinterval [xk−1, xk] for P which was broken up into two pieces
after adding one more partition point s to create P ′:

In the sum making up U(f, P ) we have a term which looks like

(sup f over [xk−1, xk])(length of [xk−1, xk])

and corresponding to this in the sum making up U(f, P ′) we have two terms which look like

(sup f over [xk−1, s])(length of [xk−1, s]) + (sup f over [s, xk])(length of [s, xk]).

But the supremum of f over all of [xk−1, xk] is greater than or equal to its supremum over either
smaller interval [xk−1, s] or [s, xk], so the first expression above is greater than or equal to the sum
in the second expression; graphically we are saying that

For infimums the opposite is true: the infimum of f over all of [xk−1, xk] is less than or equal to its
infimum over either smaller interval, so
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The same things are true for any subinterval of P which was broken up into smaller intervals in
P ′, so we conclude that

U(f, P ) ≥ U(f, P ′) and L(f, P ) ≤ L(f, P ′).

In other words, adding more points to your partition either decreases an upper sum or keeps it the
same, and either increases a lower sum or keeps it the same. Intuitively, upper sums get “smaller”
under refinements and lower sums get “bigger”.

Existence of upper/lower integrals. Now we can make the comparisons we need. For any
partitions P and Q of [a, b], we claim that

L(f, P ) ≤ U(f,Q).

That is, any lower sum whatsoever is less than or equal to any upper sum whatsoever. Indeed, let
P ∪Q denote the partition formed by taking the points of P together with the points of Q, which
is a common refinement of both P and Q. By the property of refinements given before, we have

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q),

where the middle inequality comes from the fact that for a single partition, the lower sum is always
less than or equal the upper sum since one uses inf f and the other sup f . Thus L(f, P ) ≤ U(f,Q)
as claimed.

In particular, this means that for fixed P , L(f, P ) is a lower bound for the set of all upper sums,
so the infimum of the set of all upper sums (i.e., the upper integral of f) exists and

L(f,Q) ≤ U(f).

But then U(f) is an upper bound for the set of all lower sums, so the supremum of the set of
lower bounds (i.e., the lower integral) exists and L(f) ≤ U(f). Note that this inequality (perhaps
intuitively true) was not obvious (to me at least!) at the start.

Example from last time. We can now finish off the f(x) = x example from last time. Recall
that for the partition Pn of [0, b] consisting of equally-spaced points, we computed

U(f, Pn) =
b2(n+ 1)

2n
and L(f, Pn) =

b2(n− 1)

2n
.

Trying to compute upper and lower sums for other not-so-nice partitions is going to be impossible,
but we do not ned to do so! We have

b2(n− 1)

2n
= L(f, Pn) ≤ L(f) ≤ U(f) ≤ U(f, Pn) =

b2(n+ 1)

2n
,

where the first and third inequalities come from the definitions of L(f) and U(f) respectively as
a supremum and an infimum, and the the middle inequality is the one that required knowledge of
refinements. Taking limits throughout gives

b2

2
≤ L(f) ≤ U(f) ≤ b2

2
,

so we conclude that we must have equalities throughout. Hence L(f) = U(f) = b2

2 , so f is integrable

on [0, b] and
∫ b
a f = b2

2 , all as expected.
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Recasting integrability. We now give the way to characterize integrability without caring about
the behavior of all possible upper/loser sums. The claim is that a bounded function f : [a, b]→ R
is integrable if and only if for all ε > 0 there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

So, in the end we only need to consider the behavior of certain well-chosen partitions. Integrable
means that the infimum of the upper sums should equal the supremum of the lower sums, and
intuitively this suggests that upper and lower sums can be made arbitrarily close to one other,
which is what the condition in this result says. Graphically, U(f, P ) − L(f, P ) is the sum of the
areas of the small rectangles “between” the upper and lower sums:

and the condition says that this sum of small areas can be made arbitrarily small.
Here’s the proof. Suppose that f is integrable on [a, b], so that the upper and lower integrals

are the same:
U(f) = L(f).

Call this common value I to make notation simpler. Let ε > 0. Then, by properties of supremums
and infimums, there exists a partition P of [a, b] such that

I − ε

2
< L(f, P )

and there exists a partition Q of [a, b] such that

U(f,Q) < I +
ε

2
.

Thus for the partition P ∪Q, which is a refinement of both P and Q, we have

U(f, P ∪Q)− L(f, P ∪Q) ≤ U(f,Q)− L(f, P ) <
(
I +

ε

2

)
−
(
I − ε

2

)
= ε,

where the second inequality follows from the fact that we replaced U(f,Q) by something larger
and L(f, P ) by something smaller. Thus P ∪ Q satisfies the requirement in the statement of the
theorem.

Conversely, suppose that for any ε > 0 there exists a partition P of [a, b] such that U(f, P ) −
L(f, P ) < ε. Then for such a partition we have

U(f)− L(f) ≤ U(f, P )− L(f, P ) < ε

where again the first inequality follows from replacing the first term by something larger and the
second by something smaller. This says that the nonnegative number

U(f)− L(f)
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is smaller than any ε > 0, and so must be zero. Hence the upper and lower integrals are the same
so f is integrable on [a, b].

Example. Consider the function f on [0, 10] which is zero everywhere, except at 3 and 8 where
f(3) = 10 and f(8) = 5:

We claim that this function is integrable and that its integral over [0, 10] is 0. This makes sense
intuitively: the region “under” the graph of f consists of two vertical lines (above x = 3 and x = 8)
and the “area” of these two vertical lines should indeed be 0.

Taking ε > 0, we want to find a partition P of [0, 10] such that

U(f, P )− L(f, P ) < ε.

This difference between upper and lower sums looks like

U(f, P )− L(f, P ) =
∑
Ik

(sup f − inf f on Ik)(length of Ik).

In this case, no matter what the subinterval Ik is, the infimum of f over it is zero, so the above
becomes:

U(f, P )− L(f, P ) =
∑
Ik

(sup f on Ik)(length of Ik).

But on any Ik which does not contain 3 or 8, the supremum of f is also zero, so the above simplifies
to just the sum over the intervals containing 3 and 8; say

U(f, P )− L(f, P ) = (sup f on J)(length of J) + (sup f on K)(length of K)

where J is the subinterval containing 3 and K the subinterval containing 8. The supremum of f
on J is f(3) = 10 and its supremum on K is f(8) = 5, so

U(f, P )− L(f, P ) = 10(length of J) + 5(length of K).

This is the expression we want to make smaller than ε, and we can do so by constructing our
partition P in such a way that the lengths of J and K are small enough that they balance out the
values of f(3) and f(10)! In particular, if the length of J was smaller than ε

2·10 and the length of
K smaller than ε

2·5 (note the ε
2 -trick which is used here) then the above becomes

U(f, P )− L(f, P ) = 10(length of J) + 5(length of K) < 10
( ε

2 · 10

)
+ 5

( ε

2 · 5

)
=
ε

2
+
ε

2
= ε,

as required. Thus, given ε > 0, picking an interval J around 3 of length smaller than ε
20 and an

interval K around 8 of length smaller than ε
10 :
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gives a partition P (the points of which are the green points in the picture above, consisting of the
endpoints of all subintervals used) such that U(f, P ) − L(f, P ) < ε, so f is integrable on [0, 10].
(In this argument we are implicitly assuming that J and K do not overlap, but this can always be
made to hold by shrinking J and K if need be.) Since all lower sums are 0, the lower integral is 0,
so ∫ 10

0
f(x) dx = 0.

Integrability as control. This idea of constructing a partition by making subintervals small
enough to balance out some “bad” behavior of a function is the crucial technique used in many
integration problems and results, and is what I meant back on the first day in saying that integra-
bility amounts to saying that the behavior of a function near points where it cannot be controlled
can be made negligible. The same type argument as above works for any function that is piece-
wise constant, no matter how many (finitely many) “jumps” it has, nor the specific values of the
constant on each piece.

Lecture 3: More on Integration

Warm-Up 1. We show that if f : [a, b]→ R is integrable, then |f | is as well. This uses what we’ll
call the reverse triangle inequality :

|f(x)| − |f(y)| ≤ |f(x)− f(y)|.

(If you have not seen this before, it follows from the usual triangle inequality via

|f(x)| = |(f(x)− f(y)) + f(y)| ≤ |f(x)− f(y)|+ |f(y)|

and rearranging terms.) This holds on any subinterval of [a, b], so taking supremums gives

sup |f | − inf |f | ≤ sup f − inf f

on any interval. Thus for given ε > 0, we use integrability of f to pick a partition P of [a, b] such
that

U(f, P )− L(f, P ) < ε,

and then we get

U(|f |, P )− L(|f |, P ) =
∑

(sup |f | − inf |f |) length

≤
∑

(sup f − inf f) length

12



= U(f, P )− L(f, P )

< ε,

so |f | is integrable on [a, b] as claimed.

Warm-Up 2. My favorite function of all time is the function f : [0, 1]→ R defined by

f(x) =

{
0 x /∈ Q
1
q x = p

q ∈ Q in reduced form.

(Since 0 can be written as 0
q for any q, by convention we take 0 = 0

1 so that f(0) = 1.) The graph
of f looks something like

If you have not encountered this function before, for a nice exercise you should try to show that f
is discontinuous at each rational but actually continuous (!!!) at each irrational. (This is why this
is my favorite function!) Here we show that f is integrable and determine the value of

∫ 1
0 f . Given

any partition P of [0, 1], we have L(f, P ) = 0 since any subinterval will always contain irrationals.
Thus the lower integral L(f) = sup{L(f, P )} is 0, and hence

∫ 1
0 f—once we know it exists—has

the value zero.
The difference U(f, P )− L(f, P ) looks like

U(f, P )− L(f, P ) = U(f, P ) =
∑
k

(sup f on Ik)(length Ik) ≤
∑
k

(length Ik) = 1

since sup f ≤ 1 always; however, this is not going to help us if we want to make this expression
smaller than ε. The idea we will use is the same one you would use to show that f is continuous
at each irrational: given some ε > 0, there are only finitely many rationals r ∈ [0, 1] satisfying
f(r) ≥ ε. For all other rationals, we have f(r) < ε, and this will give us a way to bound sup f ,
at least over subintervals which contain none of the rationals where f(r) ≥ ε. Thus, we break up
our entire sum into two pieces—the piece over the intervals J containing a rational where f(r) ≥ ε,
and a piece over the intervals K containing no such rationals:

U(f, P ) =
∑
J

(sup f)(length) +
∑
K

(sup f)(length).

Actually, based on this breaking up into two pieces, we actually go back and replace the previous
ε by ε

2 . That is, we consider the rationals where f(r) ≥ ε
2 and denote the intervals containing such

a rational by J and the others by K. Over each K, sup f ≤ ε
2 so the entire second piece above is

bounded by ∑
K

(sup f)(length) ≤
∑
K

ε

2
(length) =

ε

2

∑
K

(length) ≤ ε

2

13



since adding up all the lengths of the K intervals can’t give more than the total length of [0, 1]. The
goal is now to bound the first piece of U(f, P ) above also by ε

2 , giving us U(f, P ) < ε in the end.
But there are only finitely many rationals satisfying f(r) ≥ ε

2 , so if we construct our partition to
surround each of these rationals by a small enough interval, we can make the sum over the intervals
K containing smaller than whatever we’d like. Here’s our proof.

Let ε > 0 and denote the finitely many rationals r such that f(r) ≥ ε
2 by r1, r2, . . . , rn. For

each rk, take an interval Jk around it such that

length of Jk <
ε

2n
,

and if need be make this intervas even smaller to guarantee that each Jk only contains one of the
ri’s. (We implicitly assumed this in our scratch work above.) Take P to be the partition of [0, 1]
consisting of 0, 1, and the endpoints of all the intervals Jk.

Then L(f, P ) = 0 so

U(f, P )− L(f, P ) = U(f, P ) =
n∑
k=1

(sup f on Jk)(length Jk) +
∑
K

(sup f on K)(length K)

where the second sum is over the subintervals K which contain none of r1, . . . , rn. On each K,
sup f ≤ ε

2 while on each Jk, sup f ≤ 1. Thus

U(f, P ) ≤
n∑
k=1

(length Jk) +
∑
K

ε

2
(length K)

<
n∑
k=1

ε

2n
+
ε

2

∑
K

(length K)

≤ ε

2
+
ε

2
= ε.

Hence for this partition we have U(f, P )−L(f, P ) < ε, so we conclude that f is integrable on [0, 1]
as claimed. Since all lower sums are equal to 0, the value of its integral over [0, 1] is zero.

Continuous implies integrable. We now prove that if f : [a, b] → R is continuous, then f is
integrable. Actually, what we need to use here is the fact that f is uniformly continuous since it is
continuous on a compact domain. Given ε > 0, we want a partition P of [a, b] such that

U(f, P )− L(f, P ) =
∑
k

(sup f − inf f)(length Ik) < ε.

Now, in order to bound sup f − inf f over a subinterval Ik we want to able to bound expressions of
the form

|f(x)− f(y)| for x, y ∈ Ik.

But this we can do using uniform continuity of f , which says that |f(x)− f(y)| can be bounded by
whatever positive number we want as soon as x and y are close enough to each other. (We need
uniform continuity and not just continuity since both x and y can vary.)

So for the positive number ε
2(b−a) (why this? we’ll see) there exists δ > 0 such that

|x− y| < δ implies |f(x)− f(y)| < ε

2(b− a)
.

14



Thus if we construct our partition so that each subinterval as length smaller than δ, then any points
in this subinterval are close enough to guarantee that |f(x) − f(y)| < ε

2(b−a) on that subinterval,
giving

sup f − inf f ≤ ε

2(b− a)
on that subinterval.

Here’s the proof. Let ε > 0. Since f is continuous on [a, b], it is uniformly continuous on [a, b],
so there exists δ > 0 such that

if |x− y| < δ, then |f(x)− f(y)| < ε

2(b− a)
for all x, y ∈ [a, b].

Let P be a partition of [a, b] such that the lengths of all subintervals are smaller than δ. Then we
get sup f − inf f ≤ ε

2(b−a) on each subinterval, so

U(f, P )− L(f, P ) =
∑

(sup f − inf f) length

≤
∑ ε

2(b− a)
length

=
ε

2(b− a)

∑
length

=
ε

2(b− a)
(b− a)

=
ε

2
< ε.

(The desire to get a strict inequality < ε rather than ≤ ε is why we threw in the extra factor of 2
in the denominator at the start; it’s not really needed.)

Piecewise continuous example. We show that the function f : [0, 3]→ R defined by

f(x) =



ex if 0 ≤ x < 1

30 x = 1

cos 1
x if 1 < x < 2

−100 x = 2

−x4 if 2 < x ≤ 3

is integrable. (This is not the function we looked at in class, but the idea is exactly the same. I
just happened to have this particular example already nicely typed up from elsewhere.)

Let ε > 0 and let M be a bound on f over [0, 3]. Pick intervals J and K around 2 and 3
respectively, each of length less than ε

2M ·5 and small enough so that they do not overlap. On
the interval [0, left endpoint of J ], f = ex is continuous so f is integrable here and there exists a
partition P1 of this interval such that

U(ex, P1)− U(ex, P2) <
ε

5
.

Similarly, f = cos 1
x is continuous on the interval from the right endpoint of J to the left endpoint

of K, so there exists a partition P2 of this interval such that

U(cos 1
x , P2)− L(cos 1

x , P2) <
ε

5
,
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and f = −x4 is continuous on [right endpoint of K, 3], so there is a partition P3 of this interval
such that

U(−x4, P3)− L(−x4, P3) <
ε

5
.

Altogether, this looks like

Let P be the partition of [0, 3] consisting of 2, 3, all points making up P1, all points making up
P2, and all points making up P3. The the difference U(f, P )− L(f, P ) can then be broken up into
five pieces, consisting of contributions from

P1, J, P2, K, and P3.

The contributions on the pieces coming from P1, P2, and P3 are each smaller than ε
5 by choice of

these partitions. The contributions from J and K are smaller than

(sup f − inf f) length < 2M
ε

2M · 5
=
ε

5

since |f(x)− f(y)| ≤ 2M for all x, y because M is a bound on f , and by the choice of the lengths
of J and K. Putting it all together gives

U(f, P )− L(f, P ) =
∑

contributions <
ε

5
+
ε

5
+
ε

5
+
ε

5
+
ε

5
= ε.

Hence f is integrable on [0, 3] as claimed. (The same idea works for any function which is piecewise
continuous, no matter how many “pieces” it consists of and what those pieces look like.)

Lecture 4: Fundamental Theorem of Calculus

Warm-Up. Suppose f : [a, b]→ R is integrable and for fixed k ∈ N set

Dk :=

{
c ∈ [a, b]

∣∣∣∣∣ inf
δ>0

(
sup

x,y∈[c−δ,c+δ]
|f(x)− f(y)|

)
≥ 1

k

}
.

We claim that for any ε > 0 there exist finitely many intervals covering Dk whose total sum of
lengths is smaller than ε: ∑

length < ε.

Let us first give some context. The number

inf
δ>0

(
sup

x,y∈[c−δ,c+δ]
|f(x)− f(y)|

)

16



is called the oscillation of f at c and measures the extent (or not) to which f fails to be continuous
at c. Indeed, the supremum

sup
x,y∈[c−δ,c+δ]

|f(x)− f(y)| = sup
x∈[c−δ,c+δ]

f(x)− inf
x∈[c−δ,c+δ]

f(x)

measures by how much the values of f can differ on the interval [c − δ, c + δ] around c, and by
taking the infimum of these as δ > 0 decreases (note that the supremums can only get smaller as
δ gets smaller since we are taking the supremum of a smaller set) we are measuring by how much
f can change arbitrarily close to c:

The oscillation of f at c measures the “jump” (if there is one) of f at c, and indeed to say that f
is continuous at c means precisely that the oscillation is zero:

inf
δ>0

(
sup

x,y∈[c−δ,c+δ]
|f(x)− f(y)|

)
= 0 ⇐⇒ f is continuous at c.

To be clear, the definition of continuity via

|x− c| < δ =⇒ |f(x)− f(c)| < ε

says precisely that
sup

x,y∈[c−δ,c+δ]
|f(x)− f(y)| ≤ 2ε

using |f(x)− f(y)| ≤ |f(x)− f(c)|+ |f(c)− f(y)|, so the infimum of such supremums as ε > 0 gets
smaller will be zero. Thus, the set Dk consists of points at which f is not continuous because the
oscillation at those points is at least 1

k > 0. The point of this problem is to show that the set of
such points is “small” in the sense that it can be covered by appropriately small intervals. This
fits into the idea that integrability amounts to saying that the behavior near poorly-behaved points
can be made “negligible”, which we will formally make precise next time.

Back to the Warm-Up. Let ε > 0 and pick, using integrability, a partition P of [a, b] such that

U(f, P )− L(f, P ) <
ε

k
.

Among the subintervals determined by P are the ones that contain an element of Dk, and on these
specific subintervals we have

sup f − inf f = sup |f(x)− f(y)| ≥ 1

k

17



since the oscillation at elements of Dk is at least 1
k . Thus if we extract these subintervals along

from the entire sum U(f, P )− L(f, P ), we get∑
subintervals ∩Dk 6=∅

1

k
· length ≤

∑
subintervals ∩Dk 6=∅

(sup f − inf f) · length ≤ U(f, P )− L(f, P ) <
ε

k

where the second inequality follows since U(f, P ) − L(f, P ) includes more nonnegative term than
the sum right before. After clearing the constant k in the first and final terms, we get∑

subintervals ∩Dk 6=∅

length < ε

as desired. (Next time we will define the notion of a set having “measure zero”, and see that this
result means that Dk has measure zero.)

Properties of integrals. Integrals, as we’ve defined them, have all the properties one might
expect from a calculus course:

• (linearity) If f, g : [a, b]→ R are integrable, then f + g is integrable on [a, b] and∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g,

and if c ∈ R, then cf is integrable on [a, b] and∫ b

a
cf = c

∫ b

a
f.

• (domain splitting) If c ∈ (a, b), then f is integrable on [a, b] if and only if f is integrable on
[a, c] and [c, b], and ∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

• (monotonicity) If f and g are integrable on [a, b] and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f ≤

∫ b

a
g.

• (absolute value) If f is integrable on [a, b], then |f | is integrable on [a, b] and∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.

The first property in “lineraity” is proved in Rudin, and comes down to making appropriate esti-
mates between upper/lower sums for f + g versus those for f and g alone. This is not trivial since
in general we can only guarantee

U(f + g, P ) ≤ U(f, P ) + U(g, P ) since sup(f(x) + g(x)) ≤ sup f(x) + sup g(x)

instead of equalities, and the opposite inequalities for lower sums, but we leave the details to Rudin.
(Even better, do it on your own!) The scalar multiplication property is more straightforward and
follows from

sup cf(x) = c sup f(x) and inf cf(x) = c inf f(x) for c ≥ 0,

18



while for c < 0 the same is true except sup and inf get interchanged since sup(−f(x)) = − inf f(x).
The domain splitting property is on the homework and comes down to carefully comparing

partitions of [a, c] and [c, b] to those of [a, b]. Monotonicity follows from the fact that the sup f on
an interval is less than or equal to sup g on an interval, so U(f, P ) ≤ U(g, P ) for any partition.
As for absolute value, we showed that |f | is integrable as a Warm-Up last time, and the integral
bound comes from applying monotonicity to

−|f | ≤ f ≤ |f | =⇒ −
∫
|f | ≤

∫
f ≤

∫
|f |.

Integrability vs anti-differentiability. And yet, not everything about integration behaves ex-
actly as you would naively expect from a calculus course, where in particular computing an integral
comes down to finding an antiderivative, so that “integration” and “anti-differentiation” are syn-
onymous. This is not true in general, which is why the result that specifies when it is true—the
fundamental theorem of calculus—is indeed “fundamental”.

To see the distinction between integration and anti-differentiation, first consider a function like

This function is integrable via standard methods (i.e., surround the discontinuity by a small enough
interval and use continuity to partition everything else), and yet does not have an anti-derivative,
specifically because it does not have the intermediate value property as all derivatives (from last
quarter) do. So, integrability in general does not imply existence of an anti-derivative. Second, the
function

f(x) =

{
x2 sin( 1

x2
) x 6= 0

0 x = 0

is differentiable (use a limit to check differentiability at 0) and

f ′(x) =

{
2x sin( 1

x2
)− 2

x cos( 1
x2

) x 6= 0

0 x = 0.

Thus f ′ has an anti-derivative, namely f , but f ′ is not integrable on, say [−1, 1] because it is
unbounded here. Thus, existence of an anti-derivative in general does not imply integrability

Fundamental Theorem of Calculus, I. The fundamental theorem of calculus clarifies the rela-
tion between integrals and anti-derivatives. There are typically two versions, one which says what
happens when you “integrate a derivative” and the second when you “differentiate an integral”.
Here we state the first: If f is differentiable and f ′ is integrable on [a, b], then∫ b

a
f ′(x) dx = f(b)− f(a).

A key assumption here is that f ′ is integrable since, as we saw in the previous example, this is not
guaranteed. So, indeed the method of finding an anti-derivative and evaluating at endpoints does
give the correct value of the integral, under the correct assumption.
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For the proof, take any partition P = {a = x0 < x1 < · · · < xn = b} of [a, b]. Write the
difference f(b)− f(a) as a telescoping sum by adding and subtracting all intermediate f(xi):

f(b)− f(a) = f(xn)− f(xn−1) + f(xn−1)− f(xn−2) + · · · − f(x1) + f(x1)− f(x0)

=
n∑
i=1

[f(xi)− f(xi−1)].

Now, here’s the magic: by the mean value theorem, for each i we have

f(xi)− f(xi−1) = f(ci)(xi − xi−1)

for some ci ∈ (xi−1, xi), so

f(b)− f(a) =
n∑
i=1

[f(xi)− f(xi−1)] =
n∑
i=1

f ′(ci)(xi − xi−1).

The sum on the right sits between the upper and lower sums for f ′ for the partition P since
inf f ≤ f ′(ci) ≤ sup f , so we get

L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P )

and thus L(f ′) ≤ f(b) − f(a) ≤ U(f ′). Since f ′ is integrable, L(f) = U(f) so we have equality

throughout and hence
∫ b
a f
′(x) dx = U(f) = L(f) = f(b)− f(a) as claimed.

Fundamental Theorem of Calculus, II. For the second statement, suppose f : [a, b] → R is
integrable and define F : [a, b]→ R by

F (x) =

∫ x

a
f(t) dt.

The claim is that any point x0 ∈ (a, b) at which f is continuous, F is differentiable at F ′(x0) = f(x0).
(So, “differentiating the integral gives the integrand.”) To prove this we simply verify that the limit
defining F ′(x0) exists and has value f(x0):

lim
h→0

F (x0 + h)− F (x0)

h
= f(x0).

For fixed ε > 0, this means we need δ > 0 such that

0 < |h| < δ =⇒
∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ < ε.

Using domain splitting, we have

F (x0 + h)− F (x0) =

∫ x0+h

a
f(t) dt−

∫ x0

a
f(t) dt =

∫ x0+h

x0

f(t) dt.

(One small detail is that h is allowed to be negative, in which case x0 + h < x0 so that the
bounds on the integral are in the wrong order. We use the common convention that by such an
integral we mean the negative of the integral with the bounds in the correct order: if c < d, then∫ c
d f := −

∫ d
c f .) By writing the constant f(x0) as f(x0) = 1

h

∫ x0+h
x0

f(x0) dt, we thus have∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ =

∣∣∣∣1h
∫ x0+h

x0

f(t) dt− 1

h

∫ x0+h

x0

f(x0) dt

∣∣∣∣
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=

∣∣∣∣1h
∫ x0+h

x0

(f(t)− f(x0)) dt

∣∣∣∣ .
Now we start bounding:∣∣∣∣1h

∫ x0+h

x0

(f(t)− f(x0)) dt

∣∣∣∣ ≤ 1

|h|

∫ max{x0,x0+h}

min{x0,x0+h}
|f(t)− f(x0)| dt,

where we use the min and max bounds we do since h might be negative. All we need now is to
appropriate bound |f(t)− f(x0)| using continuity, and we are good to go. Since f is continuous at
x0, we can pick δ > 0 such that

|t− x0| < δ =⇒ |f(t)− f(x0)| < ε.

For |h| smaller than this δ, all t between min{x0, x0 + h} and max{x0, x0 + h} satisfy |t− x| < δ,
so we get∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ ≤ 1

|h|

∫ max{x0,x0+h}

min{x0,x0+h}
|f(t)− f(x0)| dt <

1

|h|

∫ max{x0,x0+h}

min{x0,x0+h}
ε dt = ε

where we use the fact that the length of in the interval from min{x0, x0 + h} to max{x0, x0 + h} is
|h|. Thus

lim
h→0

F (x0 + h)− F (x0)

h
= f(x0)

as claimed. (Note that along the way, from

F (x0 + h)− F (x0) =

∫ x0+h

x0

f(t) dt

we see that, regardless of whether or not it is differentiable, F is always (uniformly) continuous: if
M > 0 is a bound on f , then

|F (x0 + h)− F (x0)| ≤
∫ max{x0,x0+h}

min{x0,x0+h}
|f(t)| dt ≤

∫ max{x0,x0+h}

min{x0,x0+h}
M dt = M |h|,

which implies uniform continuity on [a, b].)

Lecture 5: Riemann-Lebesgue Theorem

Warm-Up. Let f : R→ R be the function defined by

f(x) =

{
sin 1

x x 6= 0

0 x = 0

and define F : R → R by F (x) =
∫ x2
0 f(t) dt. We claim that F is differentiable everywhere. Note

that f is integrable on any closed interval since it is only discontinuous at one point, so the integral
defining F exists.

Since f is continuous at any x 6= 0, the fundamental theorem of calculus together with the chain
rule imply that F is differentiable at all x 6= 0. To be clear, the function

G(x) =

∫ x

0
f(t) dt
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is differentiable at x 6= 0 by the fundamental theorem, and hence F (x) = G(x2) is as well by the
chain rule. (Note that we need to know x2 6= 0 for x 6= 0 in order for the chain rule to apply here.)

Thus all that’s left is to check differentiability at 0. For x 6= 0 we have:

F (x)− F (0)

x− 0
=
F (x)

x
=

1

x

∫ x2

0
f(t) dt.

Since ∣∣∣∣∣1x
∫ x2

0
f(t) dt

∣∣∣∣∣ ≤ 1

|x|

∫ x2

0
|f(t)| dt ≤ 1

|x|

∫ x2

0
1 dt = |x|

and the right side goes to 0 as x→ 0, the squeeze theorem implies that

lim
x→0

F (x)− F (0)

x− 0
= lim

x→0

1

x

∫ x2

0
f(t) dt

exists and equals zero, so F is differentiable at zero as well. Thus F is differentiable everywhere.

Other topics in integration. All the other main integration results you might recall from
a calculus course can now be rigorously proved. Integration by parts, for example, is a quick
consequence of the fundamental theorem of calculus.

Integration by substitution, or “change of variables”, also holds, although in full generality
requires some real effort to prove. The general setting is that of a continuously differentiable
function φ : [a, b] → R with positive derivative and an integrable function f on the image interval
[φ(a), φ(b)]. Change of variables should then say that∫ φ(b)

φ(a)
f(u) du =

∫ b

a
f(φ(x))φ′(x) dx.

(A small modification is needed in instead φ′ < 0.) In a calculus course, you would naively set
u = φ(x) and then take du = φ′(x) dx to turn the integral on the right into the integral on the left.
But to actually prove that this works, in particular when f is only integrable and not necessarily
continuous, takes more care. We will leave the details to a discussion section, but here is the basic
strategy. An upper sum for the integral on the left looks like∑

i

(sup f on [ui−1, ui])(ui − ui−1).

Under the assumptions of change of variables, we can write each ui as ui = φ(xi) for some xi, and
we get that the sum above looks like∑

i

(sup f on [φ(xi−1), φ(xi)])(φ(xi)− φ(xi−1)).

Using the mean value theorem we can write each φ(xi)− φ(xi−1) as

φ(xi)− φ(xi−1) = φ′(ci)(xi − xi−1),

and the upper sum from before becomes∑
i

(sup f ◦ φ on [xi−1, xi])φ
′(ci)(xi − xi−1).
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This final sum is now looks almost like an upper sum for the integral on the right in the change
of variables formula, except with sup(f ◦ φ)φ′(ci) instead of sup[(f ◦ φ) · φ′). The goal is now is to
make a appropriate estimates between this and an actual upper sum for the integral on the right,
and between lower sums as well, to get the equality of integrals. Again, you’ll look at the details
in discussion.

But note that, from another perspective, the rewritten upper sum∑
i

(sup f on [φ(xi−1), φ(xi)])(φ(xi)− φ(xi−1))

for the integral on the left is precisely a Riemann-Stieltjes sum with respect to the “weight” function
φ. Indeed, the integral ∫ φ(b)

φ(a)
f(u) du

can be viewed as the Riemann-Stieltjes of f with respect to φ, and the point of change of variables
is to then say that this Riemann-Stieltjes integral is equivalent to an ordinary Riemann integral
for the function (f ◦ φ)φ′. We saw before that ordinary summations can be viewed as Riemann-
Stieltjes integrals, and this is now the other extreme where a Riemann-Stieltjes integral is an
ordinary integral. The general Riemann-Stieltjes integral lives somewhere inbetween, providing a
unified approach to all of these concepts.

One final general comment to make pertaining to integration is that, as we’ve mentioned before,
the definition we have given in terms of upper and lower sums is due to Darboux and not Riemann.
Riemann’s original definition used Riemann sums (no upper/lower adjective), where rather than
using supremums and infimums to give the “heights” of rectangles, we use the value of the function
at some “sample” points. The definition of “integrable” becomes a bit more involved to state in
Riemann’s original approach, but in the end the two approaches are equivalent, as you will show
on a homework problem.

Integrability vs continuity. We’ve mentioned (and seen in examples) the idea that the set
of points at which a function is discontinuous is in a sense “negligible” as far as integration is
concerned since we can make their contributions “small” by picking appropriately small intervals
around them. We finish our discussion of integration by making this precise, and clarifying just
how different (or similar?) the notions of “integrable” and “continuous” are.

If f : [a, b]→ R is a function, set D(f) to be the set of points at which f is not continuous:

D(f) := {x ∈ [a, b] | f is not continuous at x}.

If f were integrable, we could try to “split” its integral up into one which takes place over the
subset of points of [a, b] where f is continuous and another over the subset D(f) where it is not:∫

[a,b]
f “=”

∫
[a,b]\D(f)

f +

∫
D(f)

f.

Of course, we have only defined what it means for a function to be integrable on an interval, so
integrating over arbitrary subsets of R (as in the two expressions on the right) does not make sense,
in this course at least. So take what we are saying with a grain of salt—it is only meant to provide
some context! (Next quarter you will see how to make integration over more general subsets precise,
in which case the above “equalty” will become a literal equality.)

Continuous functions are always integrable, so the
∫
[a,b]\D(f) f term above should exist since f

is continuous at points of [a, b]\D(f). Thus, morally, the only thing which determines whether or
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not
∫
[a,b] f exists is whether or not

∫
D(f) f exists. But on this domain f is very poorly behaved since

it is nowhere continuous, so the only hope of having this integral exist is for D(f) to be “small”,
where the precise notion of “small” is provided by a set of measure zero.

Measure zero. Intuitively, sets of measure zero are the subsets of R which have zero “length”.
Here is the definition: a subset Z ⊆ R has measure zero if for any ε > 0 there exists a countable
collection I1, I2, I3, . . . of intervals which cover Z such that

∞∑
i=1

length(Ii) ≤ ε.

This sum is called the total length of the collection {Ii}.
Let us wrap our heads around this definition. Given a countable collection of intervals, its

total length is exactly what is sounds like: we are just adding up the lengths of all intervals in the
collection. (Of course we should only consider collections where this sum actually exists, i.e. such
that

∑
i Ii converges.) If a set Z is covered by such a collection, clearly the “length” of Z should

be smaller than or equal to the total length of the collection. The above definition says that a set
has measure zero when its “length” is smaller than or equal to any ε > 0, so that the “length” of
a set of measure zero, if such a thing makes sense, should actually be zero.

Examples. Any finite subset of R has measure zero. Indeed, suppose that Z = {x1, . . . , xn} is a
finite subset of R and fix ε > 0. For each i, let Ii = (xi − ε

2n , xi + ε
2n) be the interval of radius ε

2n
around xi. Then the the collection {Ii} covers Z and its total length is

∑
i

length(Ii) =
n∑
i=1

ε

n
= ε.

Hence Z has measure zero. Note that this makes sense intuitively: the “length” of a single point is
zero, and the “length” of Z is obtained by adding together the (finitely many!) lengths of {xi}.

More interestingly, any countable set (such as Q) has measure zero. We have already shown this
for countable sets which are finite, so suppose that Z is countably infinite. Since Z is countable,
we can list its elements as

x1, x2, x3, . . . .

Let ε > 0 and for each i let Ii be an interval of length ε
2i

around xi; so, I1 is an interval of length
ε
2 around x1, I2 is an interval of length ε

4 around x2, I3 has length ε
8 around x3, and so on. Then

the collection {Ii} covers Z and its total length is

∞∑
n=1

length(Ii) =

∞∑
n=1

ε

2i
= ε

∞∑
n=1

(
1

2

)i
= ε,

where we use properties of geometric series to compute the final sum. Thus Z has measure zero.
The same argument shows more generally that if Z1, Z2, Z3, . . . is a collection of countably many

sets of measure zero, then their union
⋃
i Zi has measure zero as well: we simply pick, for each i, a

covering of Zi of total length smaller than ε
2i

, and take the union of all of these to get a big covering
of
⋃
i Zi of total length smaller than ε. Another basic result is that any subset of a set of measure

zero has measure zero itself, since a covering for the larger set is also a covering for the subset.

Riemann-Lebesgue. The Riemann-Lebesgue theorem sates that a bounded function f : [a, b]→ R
is (Riemann) integrable if and only if its set of discontinuity points D(f) has measure zero, giving
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us our sought-after characterization of integrability. In measure theory, to say that a property holds
everywhere except for some set of measure zero is to say that it holds almost everywhere, so being
Riemann integrable is equivalent to being “continuous almost everywhere”.

You will prove the backwards direction of Riemann-Lebesgue on the homework, where the
idea is the same as the one we’ve already seen elsewhere: use the measure zero condition to make
contributions from subintervals where f might be discontinuous small, and use continuity to control
the behavior over the other subintervals. The forward direction is essentially what we proved in
the Warm-Up last time. Indeed, for each k ∈ N set

Dk :=

{
c ∈ [a, b]

∣∣∣∣∣ inf
δ>0

(
sup

x,y∈[c−δ,c+δ]
|f(x)− f(y)|

)
≥ 1

k

}
to be the set of points at which the oscillation of f is at least 1

k . Since continuity is equivalent to
having zero oscillation, and any positive oscillation is at least as large as 1

k for some k ∈ N, we have

D(f) =
⋃
k

Dk.

If f is integrable, the Warm-Up from last time shows that each Dk has measure zero (we didn’t
phrase the Warm-Up in terms of “measure zero”, but this is indeed what we proved if you go back
and check the statement), so D(f) has measure zero as well since it is the countable union of sets
of measure zero.

Examples. Since the discontinuity set of a continuous function is empty and the empty set has
measure zero, the Riemann-Lebesgue theorem immediately implies that continuous functions on
closed intervals are always integrable. A piecewise continuous function has a finite set of disconti-
nuity points, so since finite sets always have measure zero, Riemann-Lebesgue again implies that a
piecewise continuous function on [a, b] is integrable.

The function f : [0, 1]→ R defined by

f(x) =

{
1 if x ∈ Q
0 if x ∈ R\Q.

is discontinuous everywhere, so D(f) = [0, 1], which does not have measure zero and hence f is not
integrable. (Actually, it is not so obvious that [0, 1] does not have measure zero according to our
definition of “measure zero”, but this is true, although it takes some care to prove correctly. This
is better saved for next quarter when you will learn about measure theory proper.) My favorite
function on [0, 1] is discontinuous at each rational, so its set of discontinuity points is countable
and hence has measure zero. Thus my favorite function on [0, 1] is integrable, as we already knew.

Quick integrability results. Various integrability results we’ve seen are now easy consequences
of Riemann-Lebesgue, although Riemann-Lebesgue is tougher to prove than any of these specific
results. If f, g : [a, b] → R are both continuous at x, then so is fg, so fg fails to be continuous
possibly only at points where f is discontinuous or g is discontinuous, and hence

D(fg) ⊆ D(f) ∪D(g).

If f and g are integrable, D(f) and D(g) has measure zero, so D(f) ∪D(g) has measure zero, and
hence so does D(fg), so fg is integrable. Similarly, D(f + g) ⊆ D(f)∪D(g), so f + g is integrable.

If g is continuous, then g◦f is continuous at any point where f is continuous, so D(g◦f) ⊆ D(f)
and we get integrability of g ◦ f assuming integrability of f . The Riemann-Lebesgue theorem is
indeed quite powerful, at least after we’ve proven it, which again you’ll do (the remaining direction)
on the homework.
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Lecture 6: Uniform Convergence

Warm-Up. Suppose f, g : [a, b] → R are integrable and satisfy f(x) < g(x) for all x ∈ [a, b]. We
claim that then ∫ b

a
f <

∫ b

a
g.

This seems like something which is completely intuitive, but giving a proper proof actually requires
some real work, essentially amounting to proving the Riemann-Lesbesgue theorem or something
close to it. We absolutely have

∫ b
a f ≤

∫ b
a g by monotonicity of the integral, but to see that

integration also preserves strict inequalities requires that we move beyond looking at upper/lower
sums alone. The issue is that a strict inequality f(x) < g(x) only guarantees sup f ≤ sup g for
example, so that U(f, P ) might be equal to U(g, P ). Even if we could guarantee that U(f, P ) <
U(g, P ) for all partitions, we could still have

inf{U(f, P )} = inf{U(g, P )}.

Note that g − f > 0 in our setup, and so by inearity of the integral our claim is equivalent to∫ b

a
(g − f) > 0.

Here is the key point: such a strict inequality holds in the setting of continuity, and integrable
implies continuous almost everywhere! That is, g − f > 0 is integrable and hence continuous at at
least one point x0 ∈ [a, b] by Riemann-Lebesgue since the set of points where it is discontinuous
as measure zero and hence cannot be all of [a, b]. But for a nonnegative function, being positive
at a point at which it is continuous is in fact enough to guarantee that its integral is positive, as
you are asked to show on the homework. Hence since g − f is nonnegative, continuous at x0, and
g(x0)− f(x0) > 0, we do get that ∫ b

a
(g − f) > 0

as claimed. (Being continuous somewhere is key, so you can get around using the full-blown
Riemann-Lebesgue theorem by showing that there is at least point where g − f is continuous, and
for this the Warm-Up of Lecture 4 is enough.)

Pointwise convergence. Our focus now shifts to the study of function spaces, which are “spaces”
whose elements are functions. We aim to develop many of the same notions we’ve already seen
before—such as continuity and compactness—in this setting.

As a first step, we want a notion of what it means for one function to be “close” to another,
or for a sequence of functions to get “closer and closer” (i.e., “converge”) to a fixed function. (A
sequence of functions is just a sequence f1, f2, f3, . . . where each fn : X → R is a real-valued function
on some common domain X.) Here is our first version of convergence:

A sequence (fn) of functions fn : X → R converges pointwise to a function f : X → R
if for every x ∈ X, the sequence of values (fn(x)) converges to the number f(x) in R

So, fn → f pointwise if, point-by-point, the values of fn get arbitrarily close to the values of f . If
so, we call f the pointwise limit of the sequence (fn). Note that here we are not varying the inputs
into the function: for each fixed x ∈ X, we evaluate all fn at this one point, and ask for convergence
of the resulting sequence in R. Note also that pointwise limits, if they exist, are unique because
limits in R are unique, so that for each x there is only to which thing (fn(x)) could converge.
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Examples. The sequence (fn) defined by fn(x) = 1
n sinx converges pointwise on R. Indeed, for

fixed x ∈ R we have
lim
n→∞

fn(x) = lim
n→∞

1
n sinx = 0,

so fn(x)→ 0 for all x ∈ R. The pointwise limit of this sequence is thus the constant zero function.
The sequence (gn) defined by

gn(x) = cos(xn) +
√
x2 + 1

n

converges pointwise on [−1, 1]. For fixed x ∈ R, we have x
n → 0 and x2 + 1

n → x2, so continuity of
cosine and the square root function give

cos(xn) +
√
x2 + 1

n → cos(0) +
√
x2 = 1 + |x|.

Thus gn → g pointwise where g(x) = 1 + |x|. (Note that there is nothing special about [−1, 1] here,
and indeed gn → g pointwise on all of R as well. We are restricting the domain for the purpose of
another property we will soon talk about.)

Consider now the sequence hn : [0, 1]→ R where hn(x) = xn. So, our sequence looks like

x, x2, x3, x4, . . . ,

each viewed as functions on [0, 1]. For x = 1, we have hn(1) = 1 for all n, so hn(1)→ 1 as n→∞.
But for 0 ≤ x < 1, we have that hn(x) = xn → 0 as n → ∞, so we conclude that this sequence
converges pointwise to the function h : [0, 1]→ R defined by

h(x) =

{
0 if 0 ≤ x < 1

1 if x = 1.

Graphically this convergence looks like

Uniform convergence. The example hn(x) = xn on [0, 1] is a standard one which shows that
continuity is not preserved under pointwise convergence: each hn is continuous on [0, 1], but the
pointwise limit is not due to the “jump” at 1. Ideally, we want a notion of convergence where
continuity is preserved, with the intuition being that if two functions f and g are “close” to one
another in appropriate sense, continuity of one should transfer over to continuity of the other.
Pointwise convergence is not a strong notion of convergence of guarantee this, which makes sense:
pointwise convergence details only what happens point-by-point, with the convergence at one point
having no bearing on the convergence elsewhere, whereas continuity depends not only on the
behavior of a function at a single point but rather on its behavior near that point as well. We need
a notion of convergence where the behavior of functions at all points matters.

This is provided by the notion of uniform convergence:
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A sequence (fn) of functions fn : X → R converges uniformly to f : X → R if for all
ε > 0 there exists N ∈ N such that

|fn(x)− f(x)| < ε if n ≥ N for all x ∈ X.

If so, we call f the uniform limit of (fn).

The “for all x ∈ X” is the key point: to say that fn → f pointwise means that for each x we can
guarantee fn(x) is within ε of f(x) for all n large enough, but the large enough n after which this
starts to happen might change as x does. As we change x perhaps we have to go further in our
sequence (fn(x)) to guarantee that fn(x) is close to f(x), with no restriction on how large n needs
to be, whereas to say that fn → f uniformly means that we can find one single N which guarantees
fn(x) is close to f(x) if n ≥ N uniformly for all x once. (The use of the term “uniform” here should
remind you of how it is used in the notion of “uniform continuity”, where in that case one δ works
for all points at once. In general, “uniform” properties are ones which can be guaranteed to hold
in a way which is independent of any one point we are looking at.)

Note in general that uniform convergence implies pointwise convergence, since fixing x in the
definition of pointwise convergence immediately gives the definition of what it means for (fn(x))
to converge to f(x) in R. Thus, if a sequence is going to converge uniformly, the only to which it
could converge uniformly is its pointwise limit, assuming this pointwise limits exists.

Back to examples. We saw before that the functions fn(x) = 1
n sinx converged pointwise to

f = 0 on R. We claim that this convergence is actually uniform. This follows from

| 1n sinx− 0| = 1
n | sinx| ≤

1
n for all x ∈ R.

If ε > 0, picking N ∈ N such that 1
N < ε then gives | 1n sinx−0| ≤ 1

n ≤
1
N < ε if n ≥ N for all x ∈ R.

Practically, what made this possible is that fact that we were able to find a uniform (meaning
independent of x) bound | 1n sinx| ≤ 1

n on our function values that could be made arbitrarily small.

The sequence gn(x) = cos(xn) +
√
x2 + 1

n on [−1, 1] also converges uniformly. We computed

the pointwise limit before to be g(x) = 1 + |x|, which we now want to explicitly think of as being
g(x) = cos 0 +

√
x2. In order to justify uniform convergence we consider

|gn(x)− g(x)| ≤ | cos(xn)− cos(0)|+ |
√
x2 + 1

n −
√
x2|.

For fixed ε > 0, we aim to make each term on the right uniformly smaller than ε
2 . For the first

term, we can use the mean value theorem: cos(xn)− cos(0) = − sin(c)(xn − 0) for some c between 0
and x

n , so

| cos(xn)− cos(0)| = | sin( cn)||xn | ≤
|x|
n ≤

1
n ,

where the last inequality follows from the fact that we are working on the interval [−1, 1]. Thus
for n large enough we have the uniform estimate we want.

For the square root term, we use the fact that |
√
a−
√
b| ≤

√
|a− b| for a, b ≥ 0. (If you haven’t

seen this inequality before, it can be justified through some algebraic manipulations after squaring
both sides.) This gives

|
√
x2 + 1

n −
√
x2| ≤

√
|(x2 + 1

n)− x2 =
√

1
n ,
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which again we make uniformly small. To put it all together, fix ε > 0 and pick N ∈ N such that
2√
N
< ε

2 . Then for n ≥ N and any x ∈ [−1, 1], we have

|gn(x)− g(x)| ≤ | cos(xn)− cos(0)|+ |
√
x2 + 1

n −
√
x2|

≤ 1

n
+

1√
n

≤ 2√
n

≤ 2√
N

< ε,

so gn → g uniformly on [−1, 1] as claimed.
Note that we can replace [−1, 1] here by any bounded interval and get uniform convergence on

such domains as well. However, we cannot extend this to get uniform convergence gn → g on all
of R. Certainly the argument above will not work as is since we would not be able to uniformly
bound x

n from the

| cos(xn)− cos(0)| = | sin( cn)||xn | ≤
|x|
n

estimate we used if we allowed x ∈ R. Of course, just knowing that this argument no longer works
is not enough to conclude that the convergence cannot be uniform on R, but instead we can argue
as follows. First, the square root part definitely convergences uniformly on R using

|
√
x2 + 1

n −
√
x2| ≤

√
|(x2 + 1

n)− x2 =
√

1
n ,

and one can show that the sum of uniformly convergent sequences is uniformly convergent, so
gn → g uniformly on R if and only if cos(xn)→ 1 uniformly on R. But for any N ∈ N we have for
x = πN/2 that | cos( xN )−1| = | cos(π/2)−1| = 1, so that | cos(x/n)−1| cannot be made uniformly
smaller than, say, 1

2 on all of R no matter how large n is. The upshot is that the domain matters
when discussing these notions of convergence.

Graphical interpretation. The sequence hn(x) = xn on [0, 1] does not converge uniformly to its
pointwise limit

h(x) =

{
0 if 0 ≤ x < 1

1 if x = 1.

This we can derive as a consequence of the fact that uniform convergence preserves continuity,
which we will prove next time, but it is also helpful to understand this graphically as follows. The
condition for uniform convergence is that

|hn(x)− h(x)| < ε for all x and large enough n,

which we can write as

hn(x) ∈ (h(x)− ε, h(x) + ε) for all x and large enough n.

This says that the entire graph of hn must lie “within ε” of the graph of h once n is large enough;
that is, if at every point x we move a distance ε away (vertically up and down) from h(x), we get
an “ε-tube” around the graph of h which must contain the graph of hn for large n:
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But in this case, no matter how large n is, the graph of hn must eventually (as we get closer
to x = 1) jump outside this tube, for ε = 1

4 for example, since the graph of hn must hit hn(x) = 1
at x = 1. Thus, visually, there is no N for which the graph of hN lies within ε of the graph of h,
so the convergence is not uniform. The issue is that, although for each x ∈ [0, 1] there is an N for
which |hn(x)− h(x)| < ε can be guaranteed, the N that works increases as x→ 1, so there will be
no single N that works for all x ∈ [0, 1] at once:

Note that even if we exclude x = 1 from our domain (thereby avoiding the issue that the limit
is not continuous), the convergence is still not uniform for these graphical reasons. (To be more
precise than just “graphicall”, if the convergence were uniform on [0, 1), it would also be uniform
on [0, 1] since hn(1)− h(1) = 0 anyway, so that include this one extra point will not effect whether
|hn(x)− h(x)| < ε holds or not.) On any interval [0, b) with b < 1 which is bounded away from 1,
however, we do have xn → 0 uniformly.

For the example of 1
n sinx→ 0 uniformly on R, the graphs look like

so that sure enough, once n is large enough, the entire graph of fn(x) = 1
n sinx lies within a fixed

ε-tube around the graph of 0. For cos(xn)→ 1 uniformly on [−1, 1] but not on R, the picture is

.
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Lecture 7: More on Uniform Convergence

Warm-Up 1. Define fn : [0,∞)→ R by fn(x) = max{n, x}. We claim that fn converges pointwise
on [0,∞) but not uniformly. First, let us draw the graphs to make the intuition clear:

For fixed x, we have fn(x) = x once n > x, so limn→∞ fn(x) = x and thus (fn) converges pointwise
on [0,∞) to f(x) = x.

Graphically, the convergence is not uniform since given any “tube” around the graph of f(x) =
x, the graph of any fn eventually lies outside the tube as x increases. But to be more precise, for
any N ∈ N, we have |fN (N + 1)− f(N + 1)| = |N − (N + 1)| = 1, so |fn(x)− f(x)| cannot be made
uniformly smaller than, say, 1

2 no matter how large n is:

Warm-Up 2. We show that the uniform limit of bounded functions is bounded, so that bounded-
ness is a property preserved by uniform convergence. Suppose fn : X → R are bounded functions
converging uniformly to f . Then we have

|fN (x)− f(x)| < 1 for all x ∈ X

and some large N , which implies

|f(x)| < 1 + |fN (x)| for all x ∈ X.

If M > 0 is a bound on fN , then 1 +M is a bound on f , so f is bounded as claimed.
Note that this gives another approach to the first Warm-Up: each fn is bounded on [0,∞), but

f(x) = x is not, so the convergence is not uniform.

Supremum metric. To say that fn → f uniformly X means that for all ε > 0 we have

|fn(x)− f(x)| < ε for all x ∈ X and large n.

But since this is meant to hold for all x, we get that the supremum of the terms on the left is at
most ε. Conversely, if this supremum is at most ε, then we get the inequality above required of
uniform convergence. Even better: we can phrase this using sup < ε and not just sup ≤ ε, since
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if we had the latter for every ε, picking smaller ε’s would give the former for every ε. That is, the
requirement of uniform convergence can be rephrased as saying that for all ε > 0,

sup
x∈X
|fn(x)− f(x)| < ε for large enough n,

where we turn the “uniform” requirement into a requirement on supremums instead.
The supremum above defines a metric on a space of functions, so that uniform convergence

really takes its proper context in the setting of metric spaces. If we use F (X) to denote the set
of all functions X → R, then we will use B(X) to denote the subset of those functions which are
bounded:

B(X) := {f : X → R | f is bounded}.

On this set we define the supremum metric by

d(f, g) = sup
x∈X
|f(x)− g(x)|.

One can show that this is indeed a metric (which you should do if you didn’t do it last quarter!),
and the upshot is that uniform convergence in B(X) is precisely convergence with respect to this
particular metric. (Note that we work in B(X) since boundedness guarantee that the supremum
we are using always exists. Uniform convergence, of course, can also apply to unbounded functions,

like
√
x2 + 1

n →
√
x2 uniformly on R, it’s just that in such a case we cannot easily interpret it as

metric convergence in a concrete metric space.)
With respect to this metric, the pictures we’ve been drawing of “ε-tubes” are then just pictures

of ε-balls, or more precisely the graphs of functions in ε-balls. Indeed, to say that g ∈ Bε(f) means
that

d(f, g) = sup
x∈X
|f(x)− g(x)| < ε,

which means that |f(x)− g(x)| < ε for all x, and hence that the graph of g lies within the ε-tube
around the graph of f :

(Actually, we get graphs within the ε-tube which do not come arbitrarily close to the edges of
the tube, since if the graph of g did come are arbitrarily close to the edge we would have that
sup |f(x)− g(x)| equals ε rather than being smaller than ε.)

Uniform preserves continuity. We now show that uniform convergence preserves continuity:
if each fn : X → R is continuous and fn → f uniformly, then f : X → R is continuous. In the
language of metric spaces, this implies that if

C(X) := {f ∈ B(X) | f is continuous}

denotes the set of bounded continuous functions on X, then C(X) is a closed subset of B(X) since
C(X) will contain all of its limit points, where we are considering B(X) equipped with the sup
metric. This result makes intuitive sense: if fn is continuous so that its values cannot differ too
wildly from one another, and if the values of f are uniformly close to those of fn, then the values
of f should also not differ too wildly from one another.
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To prove this, fix y ∈ X, let ε > 0, and use uniform convergence to pick N ∈ N such that

|fN (x)− f(x)| < ε
3 for all x ∈ X.

Since fN is continuous at y, there exists δ > 0 such that

|fN (x)− f(y)| < ε
3 when |x− y| < δ.

Thus if |x− y| < δ, we have

|f(y)− f(x)| ≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)| < ε

3
+
ε

3
+
ε

3
= ε.

(To be clear, we control the first and third terms using uniform convergence—note we are evaluating
these at different points, which is why pointwise convergence is not enough—and we control the
second term using continuity.) This shows that f is continuous at y, so f is continuous on X. If
each fn were uniformly continuous, the same argument would show that f is uniformly continuous.

Pointwise vs integration. The next claim is that uniform convergence preserves integration,
but first we give examples showing that, again, pointwise convergence is not enough. This also
makes sense: integration depends on the behavior of a function over an entire interval, so knowing
what happens only point-by-point is not good enough. Enumerate the countably many rationals
in Q ∩ [0, 1] as

Q ∩ [0, 1] = {r1, r2, r3, . . .}

and define fn : [0, 1]→ R to be 1 at r1, . . . , rn and 0 elsewhere. Then each fn is integrable since it
is discontinuous only at the finitely many r1, . . . , rn, but the pointwise limit of the fn is

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q,

which is not integrable on [0, 1]. (In the limit we include more and more rationals at which the
value is 1, which is why we get the function f above in the end.)

Even if the pointwise limit is integrable, it is also not true that values of the integrals themselves
are preserved, which would be a nice property to have: if f and g are “close”,

∫ b
a f and

∫ b
a g should

ideally be “close” as well. For this take gn : [0, 1]→ R to be

gn(x) =

{
n if 0 < x < 1

n

0 otherwise.

Then
∫ 1
0 gn = 1 for all n, but the gn’s converge pointwise to g(x) = 0 (since for each fixed x ∈ (0, 1]

we have gn(x) = 0 once 1
n < x), whose integral is 0. Hence

∫ 1
0 gn 6→

∫ 1
0 g in this case. We can even

cook up an example of this where each gn is actually continuous by using some triangular shapes
instead:

33



(Here gn as defined above is on the left and on the right would be the continuous modification.)

Uniform preserves integration. But everything works fine with uniform convergence: integra-
bility is preserved, as are the values of the integrals. To be clear, we claim that if the fn : [a, b]→ R
are integrable and fn → f uniformly, then f is integrable on [a, b] and

lim
n→∞

∫ b

a
fn =

∫ b

a
f.

(This equality says that the integration and limit operations can be exchanged under uniform

convergence: limn→∞
∫ b
a fn =

∫ b
a (limn→∞ fn).) In the language of metric space, this says that the

set R([a, b]) of Riemann integrable functions is closed in B([a, b]) with respect to the sup metric.
Here’s a proof of integrability using Darboux sums. Let ε > 0 and pick N ∈ N such that

|f(x)− fN (x)| < ε

3(b− a)
for all x ∈ [a, b].

Then sup(f − fN ) ≤ ε
3(b−a) and inf(f − fN ) ≥ − ε

3(b−a) on any subinterval of [a, b], so that

U(f − fN , P ) =
∑

sup(f − fN ) · length ≤
∑ ε

3(b− a)
· length =

ε

3

and similarly L(f − fN , P ) ≥ − ε
3 . Thus if we pick a partition P of [a, b] such that

U(fN , P )− L(fN , P ) <
ε

3
,

using integrability of fN , we have

U(f, P )− L(f, P ) ≤ U(f − fN , P ) + U(fN , P )− L(fN , P )− L(f − fN , P )

<
ε

3
+
ε

3
+
ε

3
= ε,

where in the first step we think of f and f = (f−fN )+fN and use U(g+h, P ) ≤ U(g, P )+U(h, P )
and L(g + h, P ) ≥ L(g, P ) + L(h, P ). This shows that f is integrable on [a, b].

For a quicker proof making use of Riemann-Lebesgue, note that our proof of “uniform preserves
continuity” actually showed that if each fn is continuous at some y, then f is continuous at y as
well. Thus, if f is not continuous at y, then some fn is not continuous at y, so

D(f) ⊆
⋃
n

D(fn)

where the D’s denote discontinuity sets. If each fn is integrable, each D(fn) has measure zero, and
hence so does their union, and thus so does D(f). Hence f is integrable. (Note that we already
know f is bounded since uniform convergence preserves boundedness by the second Warm-Up.)

To see that the values of the integrals are preserved, for ε > 0 pick N ∈ N such that

|fn(x)− f(x)| < ε

b− a
for n ≥ N and all x ∈ [a, b].

Then if n ≥ N , we have∣∣∣∣∫ b

a
fn −

∫ b

a
f

∣∣∣∣ =

∣∣∣∣∫ b

a
(fn − f)

∣∣∣∣ ≤ ∫ b

a
|f − fn| <

∫ b

a

ε
b−a = ε,

which shows that the numbers
∫ b
a fn converge to the number

∫ b
a f . (This what we mean by saying

that the values of the integrals are “preserved”.)
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Lecture 8: Uniform Completeness

Warm-Up. We compute the limit

lim
n→∞

∫ 2

0
ex

2/n dx.

The point is that the given integral cannot be computed directly since ex
2/n has no antiderivative

expressible in terms of the basic functions we all know and love, so trying to compute the integral
and then limit leads to nowhere. Instead, we want to be able to exchange the limit and integration
operations, and for this we need to know that the sequence ex

2/n converges uniformly on [0, 2].
For fixed x, ex

2/n → e0 = 1, so the pointwise limit of ex
2/n is the constant function 1. To

establish uniform convergence we need to make

|ex2/n − 1|

uniformly small. Here we exploit the fact that the exponential function is increasing to say that
1 = e0 ≤ ex2/n ≤ e4/n for x ∈ [0, 2], so

|ex2/n − 1| = ex
2/n−1 ≤ e4/n − 1.

For ε > 0, we can thus pick N ∈ N such that e4/n − 1 < ε—using the fact that the sequence e4/n

converges to 1 in R, which in turn uses continuity of the exponential function—and we get

|ex2/n − 1| ≤ e4/n − 1 < ε for all x ∈ [0, 2],

so the convergence ex
2/n → 1 is uniform on [0, 2]. Thus we have

lim
n→∞

∫ 2

0
ex

2/n dx =

∫ 2

0

(
lim
n→∞

ex
2/n
)
dx =

∫ 2

0
1 dx = 2,

so 2 is the desired value.

What about derivatives? Uniform convergence preserves continuity and integration, so the next
question to ask is whether differentiation is preserved as well? That is, if fn → f uniformly and
each fn is differentiable, is f differentiable as well and do we have

lim
n→∞

f ′n = ( lim
n→∞

fn)′ = f ′?

The answer, unfortunately is no. We give examples of what goes wrong below, but first we note
that there is no reason why we should expect the answer to be “yes” since derivatives measure how
rapidly a function changes, and two functions which are “close” to one another can still change at
completely different rates:

Take fn(x) =
√
x2 + 1

n , which converges uniformly to
√
x2 = |x| on an interval (even un-

bounded) around zero. Each fn is differentiable everywhere, but the uniform limit |x| is not
differentiable at 0, so differentiability is not preserved by uniform convergence. Even if the limit is
differentiable, we cannot guarantee that uniform convergence preserves the derivatives in the sense
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that limn→∞ f
′
n = (limn→∞ fn)′: take gn(x) = sin(nx)√

n
, which is always differentiable and converges

uniformly to g(x) = 0, which is also differentiable, but

g′n(x) =
√
n cos(nx)

does not converge uniformly at all let alone to g′(x) = 0. Visually these examples look like

Uniform completeness. All is not lost, however, and we will see that under a mild assumption—
essentially saying that the derivatives f ′n are not too wildly behaved, everything works in the way
one might hope. But for this we first need to discuss a completeness property, upon which the
correct “uniform preserves differentiation” result will depend.

To say that a sequence of functions (fn) on X is Cauchy with respect to the sup metric means
that for all ε > 0 there exists N ∈ N such that

sup
x∈X
|fn(x)− fm(x)| < ε for n,m ≥ N.

But, using the same reasoning as for why convergence with respect to the sup metric is equivalent
to uniform convergence, this is equivalent to saying that for all ε > 0 there exists N ∈ N such that

|fn(x)− fm(x)| < ε for n,m ≥ N and all x ∈ X.

We say that the sequence (fn) is uniformly Cauchy on X in this setting.
The key fact about uniformly Cauchy sequences is that they are always uniformly convergent,

just as Cauchy sequences in R are always convergent. This says that B(X), equipped with the sup
metric, is a complete metric space; as a consequence, the subspace C(X) of continuous bounded
functions is also complete as closed subsets of complete spaces always are. Suppose (fn) is uniformly
Cauchy. Then in particular for each x ∈ X, (fn(x)) is a Cauchy sequence in R, which we get by
fixing x in the uniformly Cauchy definition. But R is complete, so (fn(x)) converges for each x ∈ R,
and we denote the limit of this sequence by f(x):

f(x) := lim
n→∞

fn(x) for each x ∈ X, one at a time.

This defines a function f : X → R, and we claim that (fn) converges uniformly to this f .
To see this, let ε > 0 and pick N ∈ N such that

|fn(x)− fm(x)| < ε

2
for n,m ≥ N and all x ∈ X.
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For each x ∈ X, we have fn(x) → f(x), so there exists mx ∈ N such that |fmx(x) − f(x)| < ε
2 .

(Note the dependence of mx on x since at this point we only have pointwise convergence fn → f .)
We can make mx larger if need to guarantee that mx ≥ N as well, and then

|fn(x)− f(x)| ≤ |fn(x)− fmx(x)|+ |fmx(x)− f(x)| < ε

2
+
ε

2
= ε.

Thus |fn(x)− f(x)| < ε for n ≥ N and all x ∈ X, so fn → f uniformly.
Note the subtle argument here, where in order to justify uniform convergence we have to make

use of non-uniform reasoning! The mx which we use is chosen non-uniformly as it explicitly depends
on x, and yet the actual inequality |fn(x)− f(x)| < ε we derive in the end is uniform since N was
chosen uniformly. This is a point which Rudin glosses over, but is essential to our reasoning.

Uniform differentiation. Now we can finally give our version of a sense in which uniform
convergence does preserve differentiation. The claim is that if (fn) is a sequence of differentiable
functions on [a, b] which converges uniformly to f : [a, b] → R, and the sequence of derivatives
(f ′n) converges uniformly as well, then f is differentiable and f ′n → f ′ uniformly. So, as long as the
derivatives f ′n converge uniformly to something, so that they are not too wildly behaved, everything
is OK in the world.

The proof uses a clever rephrasing of what differentiability means together with some of the
key properties of uniform convergence we have already developed. Fix x ∈ [a, b] and introduce the
auxiliary functions

φn(t) =

{
fn(t)−fn(x)

t−x if t 6= x

f ′n(x) if t = x.

Note that fn being differentiable at x is equivalent to continuity of φn at x:

lim
t→x

fn(t)− fn(x)

t− x
= f ′n(x) ⇐⇒ lim

t→x
φn(t) = φn(x).

For now denote the uniform limit of the fn by g, so that sequence φn above converges at least
pointwise (recall fn → f) to

φ(t) =

{
f(t)−f(x)

t−x if t 6= x

g(x) if t = x.

Now, here is the point: the statements that f is differentiable at x and f ′(x) = limn→∞ fn(x) are
together equivalent to the single statement that φ is continuous at x since

f ′(x) := lim
t→x

f(t)− f(x)

t− x
exists and equals g(x) ⇐⇒ lim

t→x
φn(t) exists and equals φ(x).

Thus, if we can show that φ is continuous, we will be finished.
To show that φ is continuous we exploit continuity of the φn: if we can show that φn → φ

uniformly, then we get continuity of φ automatically. (This is our first example of showing that a
function is continuous not by verifying it satisfies the definition of continuity directly, but rather by
showing that it is the uniform limit of functions which are already known to be continuous!) And
to show that φn → φ uniformly we actually avoid any mention of φ altogether and show instead
that the φn are uniformly Cauchy. If so, they φn will converge uniformly, and since φ is at least
the pointwise limit of the φn, then the thing to which the φn converge uniformly must be φ itself.
(This is overall an amazing argument which may take a few read throughs to grasp in full!)
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For t 6= x, we have

φn(t)− φm(t) =
fn(t)− fn(x)

t− x
− fm(t)− fm(x)

t− x
=

[fn(t)− fm(t)]− [fn(x)− fm(x)]

t− x
.

Applying the mean value theorem to the function fn − fm gives

φn(t)− φm(t) =
[fn(t)− fm(t)]− [fn(x)− fm(x)]

t− x
=

(f ′n(ct)− f ′m(ct)(t− x)

t− x
= f ′n(ct)− f ′m(ct)

for some ct between t and x. Since (f ′n) converges uniformly, (f ′n) is uniformly Cauchy, so we can
make |f ′n(t)− f ′m(t)| uniformly small. Thus for ε > 0 we can pick N ∈ N such that

|φn(t)− φm(t)| = |f ′n(ct)− f ′m(ct)| < ε for n,m ≥ N and all t 6= x.

We can also include t = x here since we know |φn(x) − φm(x)| = |f ′n(x) − f ′m(x)| < ε by the (f ′n)
being uniformly Cauchy condition. Thus (φn) is uniformly Cauchy, so it converges to its pointwise
limit φ uniformly, so φ is continuous since each φn is continuous, so f is differentiable at x and
f ′(x) = limn→∞ f

′
n(x). (Phew!)

Lecture 9: Contractions

Warm-Up. In the differentiability result we proved last time, we assumed that fn → f uniformly
on [a, b] with each fn differentiable, and that (f ′n) converged uniformly in order to get the result
that f is then differentiable and f ′ = limn→∞ f

′
n. Actually, we can get away with a bit less and

assume only that fn(x0) converges for some x0 ∈ [a, b], while still assuming that (f ′n) converges
uniformly. We prove that this weaker assumption alone already guarantees that (fn) converges
uniformly, so that we end up in the setting of the previous result. The point is that what matters
is the control we have over (f ′n), and not so much the behavior of (fn) originally.

To get a sense of why we should expect that knowing how (f ′n) and (fn(x0)) behave alone is
enough to know how (fn) behaves, we appeal to the mean value theorem. We get that for each x
there exists cx,n (dependent on both x and n) such that

fn(x) = fn(x0) + f ′n(cx,n)(x− x0).

The intuition is that by knowing that (fn(x0)) converges and that (f ′n) converges, we can control
the behavior of the right side, thereby controlling the left side. This alone does not give an honest
proof, however, since we cannot use the uniform convergence of the f ′n as is because the points
at which these derivatives are being evaluated change as n does. Instead, we show that (fn)
converges uniformly by forgetting about any mention of a potential limit and instead show that
(fn) is uniformly Cauchy.

For x ∈ [a, b], applying the mean value theorem to the function fn − fm gives

[fn(x)− fm(x)]− [fn(x0)− fm(x0)] = [f ′n(c)− f ′m(c)](x− x0)

for some c between x and x0. (This mean value application is the same idea we used in the uniform
differentiation proof last time.) This then gives

|fn(x)− fm(x)| ≤ |[fn(x)− fm(x)]− [fn(x0)− fm(x0)]|+ |fn(x0)− fm(x0)|
≤ |f ′n(c)− f ′m(c)||x− x0|+ |fn(x0)− fm(x0)|
≤ |f ′n(c)− f ′m(c)|(b− a) + |fn(x0)− fm(x0)|
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where in the first step we subtracted and added fn(x0)−fm(x0) before using the triangle inequality
and in the final step we use that x, x0 ∈ [a, b] to say that |x− x0| ≤ b− a. Everything now can be
controlled: for ε > 0, pick N ∈ N such that

|f ′n(x)− f ′m(x)| < ε

2(b− a)
for n,m ≥ N and all x

using uniform convergence (which implies uniformly Cauchy) of the f ′n, and pick M ∈ N such that

|fn(x0)− fm(x0)| <
ε

2
for n,m ≥ N

(no uniformity needed here since x0 is a single point), to get that for n,m ≥ max{N,M},

|fn(x)− fm(x)| ≤ |f ′n(c)− f ′m(c)|(b− a) + |fn(x0)− fm(x0)| <
ε

2
+
ε

2
= ε

for all x ∈ [a, b], so that (fn) is uniformly Cauchy as desired.

A detour. We will now take a bit of a detour and consider a topic, namely contractions, which
Rudin does not cover until later in the setting of multivariable differentiation. Contractions play a
key role in the proof of the general inverse function theorem, which will be one of the last results
we derive this quarter, but contractions have other uses beyond this alone and the type of result
we will prove regarding them has much broader importance in mathematics. Indeed, the reason
why we consider this topic now in these notes is to give one application of contractions to function
spaces, which just so happens to be my favorite application of all time.

Before jumping into this, we recall (or prove if you did not see this last quarter) one metric
space fact: if (pn) is a sequence in a metric space X for which there exists 0 ≤ r < 1 satisfying

d(pn+1, pn) ≤ rn for all n,

then (pn) is Cauchy. The intuition is that as n increases rn decreases since 0 ≤ r < 1, so the
distance between successive terms in (pn) is decreasing as well by at least a fixed factor r at each
step. This should imply that all terms (not just successive ones) get closer and closer as we go in
in the sequence, which is the Cauchy condition. Note that knowing that d(pn+1, pn) decreases (but
not necessarily by at least a fixed factor 0 ≤ r < 1) is not enough to guarantee being Cauchy as
the sequence xn = 1 + 1

2 + · · ·+ 1
n of partial sums of the harmonic series shows.

For any n and k > 0 we have

d(pn+k, pn) ≤ d(pn+k, pn+k−1) + d(pn+k−1, pn+k−2) + · · ·+ d(pn+2, pn+1) + d(pn+1, pn)

≤ rn+k−1 + rn+k−2 + · · ·+ rn+1 + rn,

where the first step comes from repeated applications of the triangle inequality using all intermediate
points between pn and pn+k. The resulting sum is a difference of partial sums of the geometric
series

∑
n r

n, so since this series converges (this is where 0 ≤ r < 1 is used), the sequence of partial
sums is Cauchy so we can make the sum above smaller than any ε > 0 for large enough n and
arbitrary k > 0. Hence (pn) is Cauchy, and therefore if X is complete, (pn) will converge. The
same argument works if we have

d(pn+1, pn) ≤ Crn

for some fixed constant C ≥ 0 since this only multiplies all expressions used above by C (in
particular we end up using convergence of the series

∑
nCr

n) and does not affect the ability to
make things small.
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Banach contraction principle. A contraction on a metric space X is a function f : X → X
such that there exists 0 ≤ K < 1 satisfying

d(f(p), f(q)) ≤ Kd(p, q) for all p, q ∈ X.

As the name suggests, contractions “shrink” distances—the distance between two outputs is always
smaller than the distance between the inputs—and do so by at least a fixed factor of 0 ≤ K < 1.
The point is that things get “smaller” or “closer” when applying contractions in a way which we
can control. Note that contractions are always continuous—in fact uniformly continuous—since
d(p, q) < ε

K (in the K 6= 0 case) implies d(f(p), f(q)) ≤ Kd(p, q) < ε.
The fact we need about contractions is the Banach contraction principle, which also known as

the Banach fixed point theorem:

If X is a complete metric space and f : X → X is a contraction, then f has a unique
fixed point, which is a point p ∈ X such that f(p) = p.

So, contractions on complete spaces always leave one, and only one, point unchanged upon applica-
tion. The intuition is that if we start with any random q ∈ X, applying f over and over and again
gives points that are getting closer and closer to one another, thereby “clustering” near something
which can no longer be made close to anything else upon applying f because it remains as is:

The proof essentially turns this intuition into a proper argument. Take any q ∈ X and consider
the sequence

q, f(q), f(f(q)), f(f(f(q)), . . .

of iterates. We use fn(q) to denote the point obtained by applying f n times to q. Since f is a
contraction, we get that

d(fn+1(q), fn(q)) ≤ Kd(fn(q), fn−1(q)).

Using the contraction property again gives

d(fn+1(q), fn(q)) ≤ Kd(fn(q), fn−1(q)) ≤ KKd(fn−1(q), fn−2(q)),

and so on: each time we “unwind” an application of f using the contraction property, we introduce
a new factor of K, so that in the end we get

d(fn+1(q), fn(q)) ≤ Knd(f(q), q).

But this then implies that the sequence pn := fn(q) is Cauchy, so it converges, say to p ∈ X,
since X is complete. Because fn(q) → p and f is continuous, we get f(fn(q)) → f(p). But
f(fn(q)) = fn+1(q) is just a subsequence of the original fn(q), so it must converge to the same
thing—namely p—as the original sequence, and thus by uniqueness of limits we get f(p) = p,
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so that p is the fixed point we want! Uniqueness is then an easy consequence of the contraction
property: if f(p) = p and f(p′) = p′, then

d(p, p′) = d(f(p), f(p′)) ≤ Kd(p, p′),

which implies that d(p, p′) = 0 since 0 ≤ K < 1, so the fixed point p = p′ is unique.

My favorite application. We will make use of the Banach contraction principle at the end of the
course in proving the inverse function theorem, but, as promised, we use it here to give my favorite
application in all of mathematics. Consider the differential equation

f ′(x) = 3xf(x)2 − log(esin(cosx) + 1)

with initial value condition f(1) = 1. A solution of this initial value problem is a function f(x)
which satisfies both the differential equation and the initial value condition. For simpler equations,
solutions can at times be found explicitly; for example, f(x) = ex satisfies f ′(x) = f(x), f(0) = 1,
and f(x) = 1

1−x satisfies f ′(x) = −f(x)2, f(0) = 1. But for general equations there is no hope of
finding an explicit solution, so how can we know that one even exists? We claim that for the initial
value problem above there does exist a solution, in fact a unique one, on a small enough interval
I = [1− δ, 1 + δ] around 1.

The idea in proving this is to recast the problem in a different way so that other non-obvious
tools suddenly become available. After integrating both sides of the given equation, we see that a
function f satisfies

f ′(x) = 3xf(x)2 − log(esin(cosx) + 1)

if and only if it satisfies

f(x) = c+

∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt

for some constant c. Indeed, if f is continuous, the fundamental theorem of calculus implies that
the integral expression on the right is differentiable with respect to x and that its derivative is the
integrand evaluated at t = x, so that taking derivatives of both sides indeed reproduces our original
differential equation. (Note that if we assume only that f is continuous, it might not be clear that
the derivative of the left side f(x) even exists, but the point is that it will as a consequence of the
fact that this left side equals the differentiable expression given on the right side.) The constant
c is determined by the initial condition f(1) = 1: since an integral from 1 to 1 is always zero, we
need c = 1 in order to have f(1) = 1. Thus, the upshot is that a function f satisfies

f ′(x) = 3xf(x)2 − log(esin(cosx) + 1) with initial condition f(1) = 1

if and only if it satisfies the single integral equation:

f(x) = 1 +

∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt.

So our goal is now to show that there is a function satisfying this integral equation. It might not
seem that we’ve made much progress, but here is the amazing observation which makes everything
work out: we can rephrase this integral equation as a fixed-point problem! Indeed, consider the
metric space C(I) of continuous functions on I = [1− δ, 1 + δ] for some to-be-determined constant
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δ > 0 equipped with the sup metric, and define the map T : C(I) → C(I) by setting, for each
f ∈ C(I), Tf to be the function on I whose value at x ∈ I is:

(Tf)(x) = 1 +

∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt.

The function Tf is continuous again since the right side is differentiable by the fundamental theorem
of calculus. Then, saying that f satisfies

f(x) = 1 +

∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt

is the same as saying that the function Tf equals f itself, so that what we want is to establish that
T has a unique fixed point on some small I.

To show that T as defined above has a unique fixed point we will appeal to the Banach Contrac-
tion Principle: since C(I) is complete with respect to the sup metric, showing that T : C(I)→ C(I)
is a contraction (guaranteeing that it is a contraction is where the choice of a small δ > 0 will come
in) implies that T has a unique fixed point, and my favorite application will be complete. We will
work out the contraction details next time.

Lecture 10: Series of Functions

Warm-Up. We show that the map T : C(I)→ C(I) defined by

(Tf)(x) = 1 +

∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt

is a contraction for a small enough I = [1− δ, 1 + δ]. (Actually, we’ll have to restrict the definition
of C(I) as well, as we’ll see.) Recall the point of this is that, once we know we have a contraction,
the completeness of C(I) guarantees that T has a unique fixed point f , and this fixed point then
satisfies the initial value problem

f ′(x) = 3xf(x)2 − log(esin(cosx) + 1), f(1) = 1,

thereby showing that this initial value problem has a solution—in fact a unique one—on some small
enough interval around 1.

The claim is that there exists 0 ≤ K < 1 such that d(Tf, Tg) ≤ Kd(f, g) for and all f, g ∈ C(I),
which if we spell out the details of the sup metric becomes

sup
x∈I
|(Tf)(x)− (Tg)(x)| ≤ K sup

x∈I
|f(x)− g(x)|.

We have (noting that the constants 1 in the definitions of (Tf)(x) and (Tg)(x) subtract away)

|(Tf)(x)− (Tg)(x)| =
∣∣∣∣∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt−

∫ x

1
[3tf(t)2 − log(esin(cos t) + 1)] dt

∣∣∣∣
=

∣∣∣∣∫ x

1
3t(f(t)2 − g(t)2) dt

∣∣∣∣
≤
∫ max{1,x}

min{1,x}
3|t||f(t)2 − g(t)2| dt
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=

∫ max{1,x}

min{1,x}
3|t||f(t) + g(t)||f(t)− g(t)| dt.

The |f(t) − g(t)| term will be bounded by d(f, g), which is what will end up giving the right side
of the contraction property.

What we need now, however, is a way to bound |f(t) + g(t)|. Certainly for fixed f and g we
can find a bound since f and g(continuous on compact) themselves are bounded, but we actually
need a uniform bound on all functions under consideration since the contraction constant K we are
deriving should be independent of whatever functions we use. The set of all continuous functions
on I is not going to be uniformly bounded, so we must restrict the types of functions we consider
and consider only those which, say, are bounded by 10:

C(I, [−10, 10]) := {f ∈ C(I) | f maps I into [−10, 10]}.

(The specific bound 10 we use here is irrelevant—we just need some bound larger than 1 to account
for the eventual initial value requirement that f(1) = 1.) After all, if the fixed point we desire
is meant to satisfy f(1) = 1 and be continuous, it’s value near 1 should not differ too much
from f(1) = 1, so we do not really lose anything by making such a restriction. The restricted
space of functions C(I, [−10, 10]) which take values only in [−10, 10] is still complete (the proof
of complements in the I → R case depended only on the fact that the codomain R was complete,
so since [−10, 10] is complete the same argument works), so the Banach contraction principle still
applies. In order to ensure that the functions Tf we get as outputs are indeed in C(I, [−10, 10])
(so that T maps this space into itself), we shrink our eventual δ > 0 if needed. Let us also say that
δ will be small enough so that [1− δ, 1 + δ] ⊆ [0, 2] so that we can use 2 as a bound on the variable
of integration t.

With f and g in this restricted space of functions, and for the small enough δ, we have

|(Tf)(x)− (Tg)(x)| ≤
∫ max{1,x}

min{1,x}
3|t||f(t) + g(t)||f(t)− g(t)| dt

≤
∫ max{1,x}

min{1,x}
60|t||f(t)− g(t)| dt

≤
∫ max{1,x}

min{1,x}
120 d(f, g) dt

≤ 120δ d(f, g)

for x ∈ I = [1 − δ, 1 + δ]. This gives that the supremum of the terms on the left is bounded by
120δ d(f, g), so

d(Tf, Tg) ≤ 120δ d(f, g).

Thus by picking δ < 1
120 (which already guarantees I ⊆ [0, 2]), we get that T is a contraction

as desired. (As mentioned before, we also have to guarantee that Tf is within the same space
C(I, [−10, 10]) of functions with restricted codomain; since

|Tf(x)| ≤ 1 +

∫ max{1,x}

min{1,x}

(
3|t||f(t)|2 + log(esin(cos t) + 1) dt

)
≤ 1 +

∫ max{1,x}

min{1,x}
(600 + log(4)) dt

≤ 1 + 700δ,
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where we use |t| ≤ 2 and |f(t)| ≤ 10, the δ < 1
120 we already have does guarantee that |Tf(x)| ≤ 10.

If it did not, we would just make δ smaller.)

Fun with contractions. Contractions are powerful tools in many areas of mathematics. The
general version of this existence and uniqueness result for solutions of differential equations—called
the Picard-Lindelöf theorem—is proved by the same type of fixed-point/contraction argument, and
is something you will look at on the homework. Note that not only does this result guarantee the
existence of a solution, it also gives a way to approximate it. Start with any continuous function f
whatsoever, and form the sequence of iterates

f, Tf, T 2f, T 3f, . . . .

The proof of the contraction principle shows that this sequence of iterates converges to the fixed
point of T , and hence to the solution of our differential equation. This gives the method known
as Picard iteration for approximating solutions of differential equations. (For the equation f ′(x) =
f(x), f(0) = 1, the corresponding contraction is defined by (Tf)(x) = 1 +

∫ x
0 f(t) dt. For a fun

thing to do on your own, take the constant function f = 1 as a starting point and compute the
iterates above; you will get a well known sequence of polynomials which does indeed, as we will
show next week, converge to the unique function satisfying f ′(x) = f(x), f(0) = 1.)

As mentioned previously, we will also use contractions to prove the inverse function theorem
at the end of this course, which is a completely different type of application. On the homework
you will also see an example of obtaining well-known sets as fixed points of certain contractions,
so the takeaway is that contractions are everywhere. This is my favorite application because it
best exemplifies to me what the point of modern mathematics is, and why we spend so much effort
dealing with abstraction: once we are able to prove things about abstract concepts, we are able to
apply the results to a wide range of different scenarios all at once!

Series of functions. The next natural thing to do after considering sequences of functions is to
add them together to get a series of functions like∑

n

fn = f1 + f2 + f3 + · · · .

Convergence of series is defined in terms of convergence of the sequence of partial sums, so we say
that

∑
n fn converges ADJECTIVE if the sequence of partial sums

f1 + · · ·+ fn

converges ADJECTIVE, where we put in place of ADJECTIVE whatever type of convergence we
want, such as pointwise, uniformly, or absolutely. In the case of uniform convergence, properties of
the terms fn carry over to properties of the sum: if

∑
n fn converges uniformly on whatever domain

we need, the function f =
∑

n fn is

• continuous if each fn is continuous (since the partial sums f1 + · · ·+ fn are then continuous),
• integrable if each fn is integrable (since the partial sums are then integrable) and we have∫ b

a
f =

∫ b

a

∑
n

fn =
∑
n

∫ b

a
fn

so that sums can be integrated term-by-term (since
∫

(f1 + · · ·+ fn) =
∫
f1 + · · ·+

∫
fn),
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• differentiable if each fn is differentiable and
∑

n f
′
n also converges uniformly, in which case

the sum can be differentiated term-by-term

f ′ =

(∑
n

fn

)′
=
∑
n

f ′n,

which all comes from considering the analogous result for the sequence of partial sums and
using (f1 + · · ·+ fn)′ = f ′1 + · · ·+ f ′n.

The point of doing all the work before relating uniform convergence to continuity, integrability, and
differentiability is that we no longer have to check these properties by hand for functions defined
via series—we get them for free as long as we can verify uniform convergence.

Weierstrass M-test. In order to make such results useful, we need a clean way of checking
for uniform convergence. The standard approach is the following, which is typically called the
Weierstrass M -test and exploits what we know about series of numbers already. The claim is that
if (fn) is a sequence of functions for which we can find bounds |fn| ≤Mn such that (the numerical
series)

∑
nMn converges, then

∑
n fn converges uniformly on whatever domain these bounds hold.

(In fact, we get absolute uniform convergence, which implies usual uniform convergence.)
Indeed, for m ≥ n, we have

|fn + · · ·+ fm| ≤ |fn|+ · · ·+ |fm| ≤Mn + · · ·+Mm.

Thus if
∑

nMn converges, we can make the sum on the right however small we like (since the
sequence of partial sums of

∑
nMn is Cauchy), and this implies that the sequence of partial sums

of
∑

n |fn| is uniformly Cauchy, so that
∑

n fn converges absolutely and uniformly.

Example. We derive some properties of the function defined on (0,∞) by

f(x) =
∞∑
n=0

e−nx = 1 + e−x + e−2x + · · · .

First we argue that this function is actually well-defined, meaning that the series on the right
converges. For this we directly jump to verifying uniform convergence. We have

|e−nx| = 1

enx
=

(
1

ex

)n
.

To bound this uniformly by some constant Mn requires that we make x as small as possible, but
this we cannot do on all of (0,∞) at once. (Note that 1

ex ≤
1
e0

= 1 will not help since
∑

n 1 does
not converge.) So, we instead fix a > 0 and consider only convergence on [a,∞) ⊆ (0,∞) for the
time being. On this domain we have

|e−nx| = 1

enx
≤ 1

eax
≤
(

1

ea

)n
.

Since a > 0, 1
ea < 1, so

∑
n( 1

ea )n converges, and hence
∑

n e
−nx converges uniformly on [a,∞) by

the M -test. Thus f(x) =
∑

n e
−nx defines a function on [a,∞), which is in fact continuous since

e−nx is continuous and the convergence on [a,∞) is uniform.
Now by taking a to approach 0 we can extend the domain of f to be all of (0,∞), and still have

continuity on all of (0,∞). To be clear, we are not claiming that
∑

n e
−nx converges uniformly on
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all of (0,∞), which is not true; rather, the argument is that for any x ∈ (0,∞), there is an interval
[a,∞) for some a < x that contains x, so that uniform convergence on [a,∞) implies convergence
and continuity at x specifically. Since each e−nx is integrable on any [a, b] ⊆ (0,∞), we also get
integrability of f(x) =

∑
n e
−nx for free (ok, in this case this can be obtained from continuity

alone), and ∫ b

a
f(x) dx =

∞∑
n=0

∫ b

a
e−nx dx =

∞∑
n=0

ena − enb

n
.

To show that f(x) =
∑

n e
−nx is differentiable on (0,∞), we show it is differentiable on each

[a,∞) ⊆ (0,∞), and for this we need to know that
∑

n f
′
n converges uniformly. We have

|f ′n(x)| =
∣∣−ne−nx∣∣ ≤ n

ean

for x ∈ [a,∞). Since
∑

n
n
ean converges (say, by the root test), we get that

∑
n ne

−nx does converge
uniformly on [a,∞), so that f(x) =

∑
n e
−nx is differentiable on this domain. Again by taking a

to approach zero, we get differentiability on all of (0,∞) and that

f ′(x) =

∞∑
n=0

(e−nx)′ =

∞∑
n=0

−ne−nx.

Continuous nowhere differentiable. With these tools at hand we can now give a famous
example in analysis, that of a function which is continuous on all of R yet nowhere differentiable.
(I believe you showed at the end of last quarter that such functions exist—and in fact that, in a
sense, “most” continuous functions are nowhere differentiable—but giving an explicit example of
such a function was out of reach back then.) The function we want will be defined via a uniformly
convergent series, so that continuity is not something we will have to check by hand.

First take σ0 to be the function defined by σ0(x) = |x| for −1 ≤ x ≤ 1, and then extended
elsewhere to have period 2:

Note that σ0 is continuous everywhere, fails to be differentiable at the integers where the “peaks”
(high or low) are, and has size |σ0| ≤ 1. Now shrink the period by a factor of 4 and the size by a
factor of 3

4 to get the function σ1(x) := 3
4σ0(4x):

This has period 2
4 , is still continuous, has size |σ1| ≤ 3

4 , and fails to be differentiable at quarters
of integers. Do the same thing to σ1 to get σ2(x) := 3

4σ1(4x) = (34)2σ0(4
2x), and keeping going to

define in general
σk(x) := (34)kσk(4

kx).
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The σk’s are all continuous on R, have smaller and smaller sizes, smaller and smaller periods ( 2
4k

in
general), and the points at which they fail to be differentiable (countably many at each step) get
lumped closer and closer together:

We claim that the function defined by adding all σk’s together is the function we want:

σ(x) :=

∞∑
k=0

σk(x).

The intuition is that the “lumping” of non-differentiability points as k increases makes it harder
and harder for the sum of σk’s to be differentiable, so that indeed σ as defined above where will be
nowhere differentiable! Continuity comes for free from uniform convergence: we have

|σk(x)| ≤
(

3

4

)k
|σ0(4x)| ≤

(
3

4

)k
for all x ∈ R,

so since
∑

k(
3
4)k converges, the sum defining σ converges uniformly on R, so σ is defined for all x

and is continuous everywhere.
To show that σ is differentiable requires some work and exploits the specific way in which the

σk’s were defined. Fix x ∈ R. We want to show that

σ′(x) := lim
h→0

σ(x+ h)− σ(x)

h

does not exist, so that σ is not differentiable at the arbitrary x. Define the sequence (hn) by setting

hn = ± 1

2 · 4n
,

where the choice between plus and minus will be made in a bit. This sequence converges to 0 and
we claim that the sequence

σ(x+ hn)− σ(x)

hn

diverges to ∞, which is why the limit above defining σ′(x) will not exist. We take this difference
quotient for fixed n, and break it up into those terms occurring before k = n, the term at k = n,
and the terms after k = n:

σ(x+ hn)− σ(x)

hn
=
∞∑
k=0

σk(x+ hn)− σk(x)

hn

=
∑
k<n

σk(x+ hn)− σk(x)

hn
+
σn(x+ hn)− σn(x)

hn
+
∑
k>n

σk(x+ hn)− σk(x)

hn
.

The pictures to have in mind for the behavior of each of these pieces are the following:
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To start, for k > n we have that hn = ± 1
2·4n is precisely an integer multiple of the period of σk,

which is 2
4k

, since

± 1

2 · 4n
= ±4k−(n+1) 2

4k
if k ≥ n+ 1.

This means that x+ hn and x are a multiple of the period apart from one another when k > n, so
σk(x+ hn) and σk(x) have the same value, and thus the sum∑

k>n

σk(x+ hn)− σk(x)

hn

vanishes since all numerators involved are zero.
Hence we are left with

σ(x+ hn)− σ(x)

hn
=
∑
k<n

σk(x+ hn)− σk(x)

hn
+
σn(x+ hn)− σn(x)

hn
.

For the k = n term on the right, the point is that hn = ± 1
2·4n is small enough to guarantee x+ hn

and x lie on the same linear “segment” of σn, at least for the appropriate choice of sign:

This works because the distance between “peaks” (high or low) in the graph of σn is 1
4n —half the

period—so one of x − 1
2·4n or x + 1

2·4n lies between the same peaks as x. Thus with these choices
of signs we get that

σn(x+ hn)− σn(x)

hn

is the slope of a linear segment in the graph of σn, which is ±3n, so that∣∣∣∣σn(x+ hn)− σn(x)

hn

∣∣∣∣ = 3n.

(The slope is 3n because from σn(x) = (34)nσ0(4
nx) we see that the difference in two function values

on the same segment is (34)n, while the difference in inputs is 4n, so that the 4n pieces cancel, leaving
the “rise over run” as 3n. Note that the slopes in the σ0 case are just ±1.) For the k < n terms,
we do not care to be so precise, and simply use the fact that the “slope” between any two points
on the graph of σk for k < n is never larger/smaller than the slope of one of the linear segments,
which are ±3k, so that ∣∣∣∣σk(x+ hn)− σk(x)

hn

∣∣∣∣ ≤ 3k for k < n.

Thus, a reverse triangle inequality gives∣∣∣∣σ(x+ hn)− σ(x)

hn

∣∣∣∣ =

∣∣∣∣∣∑
k<n

σk(x+ hn)− σk(x)

hn
+
σn(x+ hn)− σn(x)

hn

∣∣∣∣∣
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≥
∣∣∣∣σn(x+ hn)− σn(x)

hn

∣∣∣∣−
∣∣∣∣∣∑
k<n

σk(x+ hn)− σk(x)

hn

∣∣∣∣∣
≥ 3n − (1 + 3 + 32 + · · ·+ 3n−1)

= 3n − 1− 3n

1− 3

=
1

2
(3n + 1).

As n→∞, this diverges to ∞, so σ(x+hn)−σ(x)
hn

→∞ and thus

σ′(x) := lim
h→0

σ(x+ h)− σ(x)

h

does not exist as claimed, so σ is not differentiable at any x ∈ R. (Phew!)

Lecture 11: Arzela-Ascoli Theorem

Warm-Up. We show that

f(x) =

∞∑
n=1

(
1− cos

x

n

)
defines a differentiable function on all of R. On the closed interval [−M,M ], we have∣∣1− cos xn

∣∣ = | − sin c| |x|n ≤ |c|
|x|
n ≤

|x|2
n2 ≤ M2

n2 ,

where we use one application of the mean value theorem to get 1 − cos xn = (− sin c)xn for some c
between 0 and x

n , and then another to get | sin c| = | cos d||c| ≤ |c| for some d between 0 and c.

Since
∑

n
M2

n2 converges, the M -test implies that the given series converges uniformly on [−M,M ].
By taking M →∞, we thus get that

f(x) =

∞∑
n=1

(
1− cos

x

n

)
is well-defined on all of R. Note that f is also continuous on all of R: it is continuous on each
[−M,M ] by uniform convergence, and hence continuous on R by taking M →∞.

To check differentiability of f , we consider the term-by-term derivative series:

∞∑
n=1

1

n
sin

x

n
.

On any [−M,M ] we have

| 1n sin x
n | ≤

1
n
|x|
n ≤

M
n2 ,

where use the same | sin c| ≤ |c| as before with c = x
n . Again

∑
n
M
n2 converges, so

∑∞
n=1

1
n sin x

n
converges uniformly on [−M,M ]. Hence

f(x) =

∞∑
n=1

(
1− cos

x

n

)
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is differentiable on [−M,M ], and thus on all of R by taking M →∞.

Compactness in function spaces. So far we have developed the notion of convergence (for
sequences and series) in function spaces, and seen examples of continuous functions (such as the
contractions in differential equation applications) from one function space to another. We have
seen examples of closed and open sets in function spaces, and of complete function spaces. The
next natural thing to wonder is what compactness looks like in the setting of function spaces. Of
course, one answer is “sets of functions for which any open cover has a finite subcover”, or “sets
of functions where any sequence in that set has a convergent subsequence”, but what we are really
after is a way to characterize these properties in simpler terms.

In Rn we know that compactness is equivalent to being closed and bounded, so we first ask
if this is true in function spaces as well. To be precise, from now on the function spaces we are
talking about are C([a, b])—real-valued continuous functions on [a, b] (or perhaps on a more general
compact domain K)—equipped with the sup metric, so that convergence means the same thing as
uniform convergence. Does closed and bounded in C([a, b]) imply compact? The answer is no: the
closed ball

B1(0) = {f ∈ C([0, 1]) | d(f, 0) ≤ 1}

of radius 1 around the constant zero function on [0, 1] is closed and bounded, but we claim not
compact. This is closed since it is the closure of the open ball B1(0) = {f ∈ C([0, 1]) | d(f, 0) < 1},
and it is bounded in the metric space sense, which in our current language means that its elements
are uniformly bounded, in fact by 1 in this case. But it is not compact since the sequence fn(x) = xn

in B1(0) has no convergent subsequence: any potential uniformly convergent subsequence would
have to converge to its pointwise limit, which is the same discontinuous function defined by f(x) = 0
for 0 ≤ x < 1 and f(1) = 1 we saw before.

Equicontinuity. But all is not lost, as we will see that closed and bounded plus one more property
is enough to guarantee compactness in these function spaces. To get a sense of what this additional
property might be, let us think about the functions xn on [0, 1] a bit more:

We previously argued (intuitively via the graph) that the reason why this sequence fails to converge
uniformly is that given ε > 0, to end up within ε away from the limit value 0 requires that the n
for which this is true get larger and larger as x→ 1 from the left. This is due to the fact that we
have steeper and steeper slopes of xn close to x = 1 as n increases. But such steep slopes are also
a reflection of the δ’s needed in the definition of continuity: the δ > 0 needed to end up within ε
away from xn has to get smaller and smaller as x → 1 and n → ∞. The reason why no one N is
enough to satisfy the definition of uniform convergence is essentially the same for why there is no
“minimal” δ that satisfies the definition of continuous for all xn at once.

The additional property we claim we need to compare compactness to closed and is thus that
of being equicontinuous, which was a term introduced on a recent homework problem. (In fact,
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that homework problem will play a key role in the main result for today.) Recall the definition: a
collection S of functions is equicontinuous if they are all continuous “in the same way”, meaning
that for all ε > 0 there exists δ > 0 such that

|f(x)− f(y)| < ε whenever |x− y| < δ for all f ∈ S.

That is, one δ satisfies the definition of (uniform) continuity for all functions in S at once. Having
one single such δ at least avoids the type of bad behavior we saw in the xn example.

We now show that uniform convergence in C([a, b]) (or more a general compact domain) implies
equicontinuity, which suggests that equicontinuity is indeed a property we should expect to need
if are looking for something that might imply the existence of uniformly convergent subsequences.
Suppose (fn) is an equicontinuous sequence of functions converging uniformly to f in C([a, b]).
(The limit f must be in C([a, b]) as well if each fn is.) Fix ε > 0 and and pick N ∈ N such that

|fn(x)− f(x)| < ε

3
for n ≥ N and all x ∈ [a, b].

Since f is continuous on [a, b], it is uniformly continuous so we can pick δ > 0 such that

|f(x)− f(y)| < ε

3
whenever |x− y| < δ.

Thus if n ≥ N and |x− y| < δ, we get

|fn(x)− fn(y)| ≤ |fn(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− fn(y)| < ε

3
+
ε

3
+
ε

3
= ε,

so that this δ satisfies the definition of equicontinuity for all fn with n ≥ N . To include the
remaining functions f1, . . . , fN−1 as well, we simply note that each of these is uniformly continuous
on [a, b], so we can pick δi for each 1 ≤ i ≤ N − 1 to satisfy the definition of uniform continuity,
and then min{δ, δ1, . . . , δn} > 0 satisfies the definition for all fn.

Pointwise plus equicontinuity. On the homework you showed that equicontinuity is enough for
pointwise convergence to actually imply uniform convergence on compact domains. In fact, we can
get away with a bit less, and assume only pointwise convergence on a countable dense subset of
the domain. The same argument works as, in the end, using compactness, it comes down to only
working with a finite number of points anyway.

Indeed, in the case of domain [a, b], take [a, b] ∩ Q to be our countable dense set. If (fn) is an
equicontinuous sequence in C([a, b]) which converges pointwise on [a, b]∩Q, for fixed ε > 0 we pick
δ > 0 as in the definition of equicontinuity to make

|fn(x)− fn(y)| < ε

3
for |x− y| < δ.

The open balls of radius δ around each point in [a, b] ∩ Q cover all of [a, b] since, by denseness, in
any (x − δ, x + δ) there exists some p ∈ [a, b] ∩ Q, which means that in turn x is in (p − δ, p + δ).
Thus we get a finite subcover by taking these open balls only at some p1, . . . , pn ∈ [a, b] ∩Q. If we
pick N ∈ N such that

|fn(pi)− fm(pi)| <
ε

3

for m,n ≥ N (pointwise convergent implies pointwise Cauchy) and all i = 1, . . . , n (possible by
taking a maximum of finitely many N ’s), then for any x ∈ [a, b] and m,n ∈ N we have

|fn(x)− fm(x)| ≤ |fn(x)− fn(pi)|+ |fn(pi)− fm(pi)|+ |fm(pi)− fm(x)| < ε

3
+
ε

3
+
ε

3
= ε
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where pi is the specific p1, . . . , pn for which x ∈ (pi − δ, pi + δ). Hence (fn) is uniformly Cauchy on
[a, b], so it is uniformly convergent.

Arzela-Ascoli. Finally we come to our main compactness result, which gives a general way
to guarantee the existence of uniformly convergent subsequences. View this as a function space
analog of the Bolzano-Weierstrass theorem, and indeed Bolzano-Weierstrass is crucial to the proof.
The Arzela-Ascoli theorem (note that Rudin does not use this name) states that if (fn) is an
equicontinuous uniformly bounded sequence in C([a, b]), then (fn) has a uniformly convergent
subsequence. Constructing this subsequence takes some real care (as we will see), but note that we
need only construct a subsequence that converges pointwise, and indeed only on [a, b]∩Q since the
result above then gives uniform convergence on all of [a, b].

Enumerate the elements of [a, b] ∩ Q as [a, b] ∩ Q = {p1, p2, p3, . . .}. Since (fn) is uniformly
bounded, the sequence (fn(p1)) of values at p1 specifically is bounded in R, so it has a convergent
subsequence by Bolzano-Weierstrass; we denote this convergent subsequence and its limit by

f1,1(p1), f1,2(p1), f1,3(p1), . . . −→ y1.

To be clear, the functions f1,k here form a subsequence of the original fn. We use the double index
notation to keep track of the point p1 we are evaluating at as well as the location k a term occurs
at moving horizontally above. Now evaluate the functions f1,k used here at the point p2 to get a
new bounded sequence (f1,k(p2)) in R which has its own convergent subsequence, say

f2,1(p2), f2,2(p2), f2,3(p2), . . . −→ y2.

The f2,k’s here come from a subsequence of the previous f1,k’s, and thus evaluating the f2,k’s at
the previous point p1 maintains the convergence we had previously:

f2,1(p1), f2,2(p1), f2,3(p1), . . . −→ y1.

Now do the same with p3: the sequence (f2,k(p3)) has a convergent subsequence

f3,1(p3), f3,2(p3), f3,3(p3), . . . −→ y3,

and since the f3,k’s are a subsequence of the f2,k’s (and hence also of the f1,k’s) we still have

f3,1(p1), f3,2(p1), f3,3(p1), . . . −→ y1,

and
f3,1(p2), f3,2(p2), f3,3(p2), . . . −→ y2.

And so on and so on, we get at the m-th stage a sequence

fm,1(pm), fm,2(pm), fm,3(pm), . . . −→ ym

where the fm,k’s maintain all previous convergences as well when evaluated at the previous pi’s.
We end up with a big grid of convergences

f1,1(p1), f1,2(p1), f1,3(p1), . . . −→ y1

f2,1(p2), f2,2(p2), f2,3(p2), . . . −→ y2

f3,1(p3), f3,2(p3), f3,3(p3), . . . −→ y3
...

...
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fm,1(pm), fm,2(pm), fm,3(pm), . . . −→ ym
...

...

where each row maintains the previous ones in the sense we’ve described above.
To get our desired subsequence of the original fn’s, we first pick k1 such that

|f1,k1(p1)− y1| < 1

from the first row, and so that this holds for all terms after f1,k1 in the first row. Next we pick k2
such that

|f2,k2(p2)− y2| <
1

2

from the second row, far enough along so that this is still true for all terms after f2,k2 in the second
row, and far enough along the first row so that f2,k2 occurs after f1,k2 , which implies that

|f2,k2(p1)− y1| < 1

as well. Then pick k3 such that

|f3,k3(p3)− y3| <
1

3

far enough long the third row, and far enough along the first two rows so that f3,k3 is after f1,k1
and after f2,k2 , so that

|f3,k3(p1)− y1| < 1 and |f3,k3(p2)− y2| <
1

2
.

Continue, where at the m-th stage we pick km such that

|fm,km(pm)− ym| <
1

m

and far enough to maintain the previously inequalities for p1, . . . , pm−1. The resulting subsequence
(fm,km)) of (fn) then converges pointwise on Q ∩ [a, b] = {p1, p2, p3, . . .} since

|fm,km(pi)− yi| <
1

i
for m ≥ i =⇒ fm,km(pi)→ yi for all i.

Since (fm,km) converges pointwise on the dense set Q ∩ [a, b], we have that (fm,km) converges
uniformly, so this indeed is our desired uniformly convergent subsequence of (fn). The same
argument works for C(K) with K being any compact space, where we replace [a, b] ∩ Q by any
countable dense subset, which exists in any compact metric space. (Phew again!)

Lecture 12: Weierstrass Approximation

Warm-Up 1. Suppose fn : [a, b] → R is a sequence of differentiable functions with uniformly
bounded derivatives, and such that the sequence (fn(x0)) in R is bounded for at lest one x0 ∈ [a, b].
We show that (fn) has a uniformly convergent subsequence. Clearly (based on the fact that we
want to produce a convergent subsequence) this meant to be an Arzela-Ascoli problem, so the goal
is to verify that the assumptions of the Arzela-Ascoli theorem are satisfied.
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Let M > 0 be a uniform bound on the f ′n over [a, b]. An application of the mean value theorem
gives that for all x 6= y ∈ [a, b], we have

|fn(x)− fn(y)| = |f ′n(cn)||x− y| ≤M |x− y| for all n,

where the cn are some numbers between x and y. Thus for ε > 0, any 0 < δ < ε
M satisfies the

requirement of equicontinuity since

|x− y| < δ =⇒ |fn(x)− fn(y)| ≤M |x− y| < M
ε

M
= ε for all n.

Moreover, if we pick y = x0 above, we get

|fn(x)| ≤ |fn(x)− fn(x0)|+ |fn(x0)| ≤M |x− x0|+ |fn(x0)| ≤M(b− a) + |fn(x0)|

for all n and x ∈ [a, b], so picking a bound on the fn(x0) gives a uniform bound on the fn. Since
(fn) in C([a, b]) is thus uniformly bounded and equicontinuous, it has a uniformly convergent
subsequence by the Arzela-Ascoli theorem.

Warm-Up 2. We prove the Heine-Borel theorem for C([a, b]), which is the claim that K ⊆ C([a, b])
is compact if and only if K is closed, bounded, and equicontinuous. (Recall the usual Heine-Borel
theorem for Rn is the claim that compact means closed and bounded, so this is now the function
space version of this result where equicontinuity is the only extra thing we need.) The backwards
direction is just the Arzela-Ascoli theorem: if K is closed, bounded, and equicontinuous, then any
sequence (fn) is K is uniformly bounded and equicontinuous, so Arzela-Ascoli gives a uniformly
convergent subsequence, and the fact that K is closed guarantees that the limit of this subsequence
remains in K, so K is compact by the sequential characterization of compactness.

For the forward direction, if K is compact we get K being closed and bounded for free since
compact implies closed and bounded in any metric space. To show that K is equicontinuous, we
use the essentially the same argument as in the “uniform convergence implies equicontinuity” result
from last time, only modified to work for all elements of K and not just a single sequence. Let
ε > 0 and consider the collection of all open balls Bε/3(f) of radius ε/3 centered at all elements f
of K. This is an open cover, so we get a finite subcover

Bε/3(f1), . . . , Bε/3(fn)

by a compactness. Each of these fi is uniformly continuous, so we can pick a minimal δ > 0 which
satisfies the uniform continuity requirement for all of them. If f ∈ K is any function, then f belongs
to some Bε/3(fi) since these cover K, so we get that if |x− y| < δ, then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)| < ε

3
+
ε

3
+
ε

3
= ε,

where the second ε/3 comes from uniform continuity of fi and the first and third ε/3’s come from
f ∈ Bε/3(fi), so that sup |f − fi| ≤ ε/3. Hence K is equicontinuous as claimed.

Another ODE application. To give a sense of how the Arzela-Ascoli theorem is used in practice,
let us give another ODE (ordinary differential equation) application. We claim there is a function
f : [0, 1]→ [0, 10] which satisfies

f ′(x) =
√
f(x) + 1, f(0) = 0
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(On the homework you are asked to prove the Picard-Lindelöf theorem, which is the general version
of the contraction ODE application we had before, but this theorem does not apply in this example,
as we will explain shortly.) As in our previous ODE application, we rephrase this problem as a
fixed point problem instead, where we are thus looking for f which satisfies

f(x) =

∫ x

0
(
√
f(t) + 1) dt.

If we take the same approach as before and try to show that

(Tf)(x) :=

∫ x

0
(
√
f(t) + 1) dt

defines a contraction T : C([0, 1])→ C([0, 1]) (where really we should consider only those functions
with restricted codomain [0, 10], and where we potentially have to shrink [0, 1]), we run into the
issue that we end up with

|(Tf)(x)− (Tg)(x)| ≤
∫ x

0
(
√
f(t)−

√
g(t)) dt ≤

∫ x

0

√
|f(t)− g(t)| dt ≤ δ

√
d(f, g)

for a small δ, which gives
d(Tf, Tg) ≤ δ

√
d(f, g)

with d the sup metric. But this cannot be made into a contraction property anymore because of the
presence of the square root on the right! Indeed, for small d(f, g), d(f, g) will actually be smaller
than

√
d(f, g), and so the inequality above cannot be used to bound d(Tf, Tg) by a constant times

d(f, g) instead. So, the Picard-Lindelöf argument does not work here.
Instead, we approach this via Arzela-Ascoli. (The real point of the contraction argument is

to obtain the desired fixed point as the uniform limit of some sequence of iterates, and we get
around this by producing the fixed point as the uniform limit of some subsequence of a carefully
constructed sequence instead. Note that in this approach there will be no uniqueness claim, since
uniqueness in the previous approach came from having a contraction. All we are claiming now is
the existence of at least one solution.) The idea is that if f were not a solution to our ODE, so
that it did not already satisfy

f(x) =

∫ x

0
(
√
f(t) + 1) dt,

we can perhaps try to say something about how far off from being a solution f is by somehow
controlling the “error” in

f(x) =

∫ x

0
(
√
f(t) + 1) dt+ error.

If the “error” is small, f is close to a solution, so by controlling the error we can try to obtain a
solution via a limiting process. We claim that we can construct functions fn : [0, 1] → [0, 10] for
which the error is expressible in a particularly nice way:

fn(x) =

∫ x

0
(
√
fn(t) + 1) dt+ gn(x)

where gn(x) is some function defined via some type of integral. (We will not go into the construction
of these functions here as you will do this in a more general setting on the homework anyway; our
goal for now is simply to illustrate how and why Arzela-Ascoli appears.) These error functions
gn will have the property that they converge uniformly to 0, and thus if the sequence (fn) we
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construct also converges uniformly, what it converges uniformly to would then be a solution of our
ODE since taking limits in

fn(x) =

∫ x

0
(
√
fn(t) + 1) dt+ gn(x) gives f(x) =

∫ x

0
(
√
f(t) + 1) dt+ 0

with f the (if it exists) uniform limit of the fn.
The problem is that the functions fn constructed here are not guaranteed to converge uniformly.

But actually, we do not need the entire sequence to converge uniformly—having a uniformly con-
vergent subsequence is enough! Indeed, the same reasoning as above shows that the uniform limit
of a convergent subsequence would have to satisfy

f(x) =

∫ x

0
(
√
f(t) + 1) dt,

thereby giving our existence result. Thus to finish off our argument, we need only show that Arzela-
Ascoli is application to be carefully constructed fn mentioned above. In fact, the first Warm-Up
gets us much of the way there: we need only show that the derivatives of the fn are uniformly
bounded (it will also be true that all fn satisfy fn(0) = 0 in this particular setup, so we definitely
have boundedness of (fn(x0)) for at least one x0) in order to get the existence of a uniformly
convergent subsequence.

The fact that the f ′n will be uniformly bounded will come from the initial property they are
meant to satisfy

fn(x) =

∫ x

0
(
√
fn(t) + 1) dt+ gn(x),

so that
f ′n(x) = (

√
fn(x) + 1) + g′n(x).

The g′n will be shown to be uniformly bounded by the way in which they are defined, and the first
term on the right will be uniformly bounded by the restriction that we only consider functions
taking values in [0, 10], and hence we will be finished. Again, rather than finishing this particular
example, you will carry out a general version of this argument on the homework to prove what’s
called the Peano existence theorem (no uniqueness!) for solutions of ordinary differential equations.

Weierstrass approximation theorem. The last “topological” notion to discuss in the context of
function spaces is that of denseness; namely, what do dense subsets of C([a, b]) look like? The first
result in this direction is the Weierstrass approximation theorem, which is the statement that the
set of polynomial functions is dense in C([a, b]). If you interpret “dense” in terms of sequences, the
claim is that given any continuous function f : [a, b]→ R, there is a sequence of polynomials Pn(x)
which converges to f uniformly on [a, b], so that continuous functions can always be “uniformly
approximated” by polynomials to whatever accuracy we want.

Here is one explicit example of such a convergence. You might recognize the polynomials

1, 1 + x, 1 + x+ 1
2x

2, 1 + x+ 1
2x

2 + 1
3!x

3, . . .

as the Taylor polynomials of ex centered at 0. As we will show next week, this sequence of
polynomials does in fact converge uniformly to ex on any [a, b], so the statement of Weierstrass
approximation holds for ex, at least. But the types of functions for which an analogous Taylor
polynomial approach works is quite limited (these are what are called analytic functions, which we
will study soon enough), whereas Weierstrass approximation is meant to hold for all continuous
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functions. Constructing the polynomials that converge to a general continuous f is not an easy
endeavor, and before doing so we look at one example of why having such a result can be useful.

Example. Suppose f : [a, b]→ R is a continuous function such that∫ b

a
f(x)xn dx = 0 for all n ∈ N.

We claim that this then forces f = 0 to be the constant zero function. The intuition is that, by
knowing only something about the behavior of polynomial functions, we should be able to deduce
(via Weierstrass approximation) information about the behavior of f itself, essentially because in
this case integration behaves well with respect to uniform convergence.

So, take a sequence Pn → f of polynomials converging to f uniformly on [a, b]. Then∫ b

a
f(x)Pn(x) dx = 0 for all n

since we can break up the integral of f(x)Pn(x) into sums of scalar multiples of the
∫ b
a f(x)xn dx,

which will all be zero. Since Pn → f uniformly and f is bounded, we have that Pnf → ff uniformly
as well. (We need f to be bounded here in order to bound the |f(x)| term on the right side of
|f(x)Pn(x)− f(x)f(x)| = |f(x)||Pn(x)− f(x)|.) Since Pnf → f2 uniformly on [a, b], we thus get∫ b

a
f(x)Pn(x) dx→

∫ b

a
f(x)2 dx

as n→∞. The terms on the left are zero, so we get∫ b

a
f(x)2 dx = 0.

Since f(x)2 is nonnegative and continuous, we must have f(x)2 = 0 (see Homework 2), so f(x) = 0
for all x ∈ [a, b] as claimed.

Constructing the polynomials. To prove Weierstrass approximation, we first make a simplifi-
cation. Our given continuous f is defined on [a, b], but after applying a linear change of variables
to x we can assume f is defined on [0, 1] instead:

A sequence of polynomials converging uniformly to his new function can be modified to produce
one converging uniformly to the original f since making a linear change of variables in a polynomial
still gives a polynomial. Moreover, after modifying the output by a linear function we can also make
it so that the values at 0 and 1 are both 0, which is the third picture above. Again, such a linear
change does not affect the ability to be uniformly approximated by polynomials.
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Thus we reduce down to the case where f : [0, 1] → R is continuous and f(0) = f(1) = 0. We
will need f to be defined elsewhere as well, so we extend the definition of f to be 0 outside [0, 1].
Introduce the polymoials

Qn(x) = cn(1− x2)n on [−1, 1], where cn =
1∫ 1

−1(1− x2)n dx
.

(Note that cn is just the constant we need in order to ensure that
∫ 1
−1Qn(x) dx = 1 for all n.) Here

are the graphs of these polynomials:

Each (1 − x2)n is nonegative and has values 0 at ±1 and 1 at 0, so the scaling factor cn increases
(decreases in the Q1 case) the height as needed to make the area underneath 1. As n increases,
the graphs get more and more concentrated near x = 0, and the portions near ±1 get flatter and
flatter, so that Qn becomes more and more “neglible” near these endpoints—this is perhaps the
most crucial property we will need!

The polynomials we claim will converge uniformly to f are then defined by

Pn(x) :=

∫ 1

−1
f(x+ t)Qn(t) dt.

Note that x ∈ [0, 1] here is fixed one-at-a-time and t is the variable of integration. From this
expression it is not at all clear that Pn(x) is actually a polynomial, but this can be deduced by
making the change of variables u = x+ t:

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t) dt =

∫ x+1

x−1
f(u)Qn(u− x) du =

∫ 1

0
f(u)Qn(u− x) dx,

where in the last step we use that f is 0 outside [0, 1] to reduce the integral over [x−1, x+1] ⊇ [0, 1]
(recall x ∈ [0, 1]) to one over [0, 1] alone. We see after expanding that

Qn(u− x) = cn(1− (u− x)2)n

is a polynomial in terms of x, and all the instances of u integrate away when computing∫ 1

0
f(u)Qn(u− x) dx,

so that this integral does in the end result in constants and powers of x alone, so that Pn(x) thus
defined is indeed a polynomial.

We will prove next time that these Pn do converge uniformly to f on [0, 1], which will make use
of key properties of the Qn’s. This type of convergence strategy (phrasing convergence in terms of
integrals) is a general one we will see show up again when discussing Fourier series, so we will also
give a bit more context behind this idea next time.
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Lecture 13: Stone-Weierstrass Theorem

Warm-Up. Suppose f : [a, b] → R is continuous. We show that there exists a sequence of
polynomials pn such that pn → f and p′n → f ′ uniformly on [a, b]. The point here is that we get
convergence not only of pn → f but also of the derivatives simultaneously. Certainly, since f is
continuous by Weierstrass approximation we get polynomials pn → f , but for such a sequence we
cannot guarantee that p′n → f ′ as well unless we knew that (p′n) also converged uniformly, which is
not a given unless we construct the pn more carefully.

Instead, we apply Weierstrass approximation not to f but to f ′, which is also continuous, to
get a sequence of polynomials qn converging to f ′ uniformly on [a, b]. Then set

pn(x) = f(a) +

∫ x

a
qn(t) dt.

Each of these is a polynomial in x since we can compute the integral on the right explicitly by
using an antiderivative of qn, and antiderivatives of polynomials are themselves polynomials. Since
qn → f ′ uniformly on [a, b], qn → f ′ uniformly on any [a, x] as well, and hence∫ x

a
qn(t) dt→

∫ x

a
f ′(t) dt

uniformly on [a, b]. (To be clear, we can use∣∣∣∣∫ x

a
qn(t) dt−

∫ x

a
f ′(t) dt

∣∣∣∣ ≤ ∫ x

a
|qn(t)− f ′(t)| dt ≤

∫ b

a
|qn(t)− f ′(t)| dt

to get uniform convergence with respect to x of the
∫ x
a integrals.) Thus

pn(x) = f(a) +

∫ x

a
qn(t) dt −→ f(a) +

∫ x

a
f ′(t) dt = f(a) + [f(x)− f(a)] = f(x)

uniformly, where we use the fundamental theorem of calculus at the end, and

p′n(x) = qn(x)→ f ′(x)

uniformly by the choice of qn. Hence these pn satisfy our requirements.

Landau kernels. Recall that in order to prove the Weierstrass approximation theorem for a
continuous f on [0, 1], extended to be 0 outside [0, 1], we constructed the polynomials

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t) dt

where Qn(t) = cn
∫ 1
−1(1 − t2)n dt with cn = 1/(

∫ 1
−1(1 − t2)n dt. (Check the change of variables

argument from last time to verify that these are indeed polynomials.) The claim is that these
polynomials do converge uniformly to f , which proves Weierstrass approximation.

But before finishing this argument, let us give some context as this same type of idea occurs
more broadly in analysis, and indeed is what we will use soon enough to prove convergence of
Fourier series. The polynomial functions Qn(x) = cn(1− x2)n used here are known as the Landau
kernels, and are an example of what are called integral kernels. An integral kernel is simply a
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function we use to turn one function into another via an integration process: a “kernel” function
g(x) can be used to transform f(x) into the function of x defined by∫ b

a
f(x+ t) g(t) dt.

(The map that sends f to the function above is called an integral transform. Note that the use
of the word “kernel” here is different from the typical use of this word in algebra, where kernel
usually means things that are sent to zero. In general, some care needs to be taken to make sure
the integral above makes sense by being clear about the domains of f and g. Such an integral is
in fact an infinite-dimensional analog of matrix multiplication, but we will not take the space here
to explain why. Ask in office hours if you want to know more!) The integral above is what’s called
the convolution of f and g and is typically denoted by f ?g. Integral kernels are thus used to prove
convergence statements like

f ? gn → f,

where by picking appropriate kernel functions gn we get a desired type of function f ? gn on the
left, such as a polynomial in the case of the Landau kernels. (For the convergence of Fourier series
we will soon discuss, the kernels we will use are what are known as the Dirichlet kernels.)

In this language, the claim is that the Landau kernels (where convolutions give polynomials)
satisfy the requirement that

Pn := f ? Qn → f

uniformly on [0, 1]. The key properties we will need in order to show this are:∫ 1

−1
|Qn(t)| dt = 1 and Qn → 0 uniformly on [−1,−δ] ∪ [δ, 1] for any 0 < δ < 1.

The first property is just from the choice of the cn in the definition of |Qn(x)| = Qn(x) = cn(1−x2)n.
The second property is the one we pointed out informally last time when mentioning that the graphs
of the Qn become “flatter and flatter” near the endpoints of [−1, 1] as n increases; the precise claim
now is that, as long we remain bounded away from x = 0, no matter by how small an amount, the
Qn can be made uniformly small. (Integral kernels are typically assumed to have similar types of
properties in general, which is what makes convergences like f ? gn → f possible.)

To justify the second property, we note first that

1 =

∫ 1

−1
cn(1− x2)n dx ≥ 2cn

∫ 1/
√
n

0
(1− x2)n dx ≥ 2cn

∫ 1/
√
n

0
(1− nx2) dx > cn√

n
,

where the first inequality comes from noting that (1 − x2)n is even and nonnegative, so that∫ 1
−1 = 2

∫ 1
0 ≥ 2

∫ 1/
√
n

0 , the next inequality comes from showing that (1 − x2)n − (1 − nx2) is
nonnegative by computing its derivative to show that it is increasing, and the final inequality

comes from explicitly computing
∫ 1/
√
n

0 (1 − nx2) dx. This gives cn <
√
n for all n. (Note that

cn = Qn(0) is the maximum value on the graph of Qn, and the pictures of these graphs from last
time do suggest that these values increase, which now we know happens at a rate we can control.)
Thus for fixed 0 < δ < 1, we have

Qn(x) = cn(1− x2)n <
√
n(1− x2)n ≤

√
n(1− δ2)n for δ ≤ |x| ≤ 1.

Since |1− δ2| < 1,
√
n(1− δ2)n → 0 since the left is bounded by n(1− δ2)n, which converges to 0.

The inequality above then implies that

Qn(x)→ 0 uniformly for δ ≤ |x| ≤ 1.
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Proof of uniform convergence. To now show that Pn → f uniformly on [0, 1], use the fact that∫ 1
−1Qn(t) dt = 1 to write

Pn(x)− f(x) =

∫ 1

−1
f(x+ t)Qn(t) dt−

∫ 1

−1
f(x)Qn(t) dt =

∫ 1

−1
(f(x+ t)− f(x))Qn(t) dt.

Our desired convergence claim then amounts to controlling the behavior of this integral. Since f
is (uniformly) continuous, we can hope to control the

f(x+ t)− f(x)

term when t is small so that x + t is close to x. This will only work for |t| ≤ δ with δ chosen by
continuity, so we break up the domain of our integral as

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
(f(x+ t)− f(x))Qn(t) dt

∣∣∣∣
≤
∫ 1

−1
|f(x+ t)− f(x)|Qn(t) dt

=

∫
|t|≤δ
|f(x+ t)− f(x)|Qn(t) dt+

∫
δ≤|t|≤1

|f(x+ t)− f(x)|Qn(t) dt.

(Note that the final integral is actually a sum of two integrals, one over [−1,−δ] and the other over
[δ, 1]. Also, we use the fact that Qn ≥ 0 to avoid absolute values on the Qn terms.)

Now we are set: we first use continuity to make |f(x+ t)− f(x)| small and then the fact that∫
|t|≤δ

Qn(t) dt ≤
∫ 1

−1
Qn(t) dt = 1

to make the first integral uniformly small, and then we bound |f(x + t) − f(x)| by whatever and
use uniform convergence Qn → 0 on δ ≤ |t| ≤ 1 to make the second integral uniformly small as
well. Et voilà! Magic. We leave writing out this argument more formally to you, and in fact you
will show on the homework that the same type of reasoning works for more general appropriately
“nice” integral kernel functions.

Function algebras. Polynomials are dense in C([a, b]), so one might wonder just what it is about
the structure of the set of polynomials that allows for this to happen, and whether other such subsets
of C([a, b]) work just as well. The Stone-Weierstrass theorem shows that, indeed, other subsets of
C([a, b]) can be shown to be dense too as long as they satisfy some key algebraic properties. (This
applies more generally to continuous real-valued functions on any compact space.)

We say that a set A ⊆ C([a, b]) of continuous functions is an algebra if it is closed under addition,
multiplication, and scalar multplication; i.e., if

for all f, g ∈ A and c ∈ R, the functions f + g, fg, and cf are all in A as well.

We say that A vanishes nowhere if for all p ∈ [a, b] there exists f ∈ A such that f(p) 6= 0, so
that there is no point at which all elements of A vanish. And we say that A separates points if
for all distinct p1, p2 ∈ [a, b] there exists f ∈ A such that f(p1) 6= f(p2), so that distinct points
can be “separated” by an element of A. Essentially, these properties ensure that A has “enough”
elements. The set of constant functions, for example, is an algebra but does not separate points,
while the set of positive powers of x − p (not an algebra) vanishes at p. In both of these cases,
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there are not enough elements in that set to have any hope of being able to uniformly approximate
all continuous functions.

The set of polynomials is an algebra (sums, products, and scalar multiples of polynomials
are polynomials), vanishes nowhere (non-zero constant polynomials do not vanish), and separates
points (x gives different values at different points), so Stone-Weierstrass applies to say that the
set of polynomials is dense. One might ask, then, why we went to the trouble of establishing
this fact first via Weierstrass approximation if it was just going to be a consequence of Stone-
Weierstrass anyway? The answer is that, as we will see, the proof of Stone-Weierstrass relies on
Weierstrass approximation applied to the absolute value function, so we had to prove the latter
first. (Proving Weierstrass approximation independently of Stone-Weierstrass is also useful for the
sake of illustrating the idea of an integral kernel!)

For a newer example, we claim that the set of trigonometric polynomials, which are functions
built out of sines and cosines and expressible as

k∑
n=0

(an cos(nx) + bn sin(nx)),

on the unit circle is also dense in C(unit circle). (Here, we think of the unit circle as the interval
[−π, π] with the endpoints −π and π glued to one another; in other words, we identify a point on
the circle with the angle at which it occurs in the standard (cos t, sin t) parametrization, where ±π
give the same point. A continuous function on the circle is then a continuous function on [−π, π]
such that f(−π) = f(π).) Sums and scalar multiples of such things are certainly of this same form.
For products we can use various trigonometric identities, such as

sin2 x = 1
2(1− cos 2x), sin3 x = 1

4(3 sinx− sin 3x), and sinx cosx = 1
2 sin 2x

for example, to show that the set of trigonometric polynomials is closed under multiplication as
well, so it is an algebra. Constants are trigonometric polynomials (the n = 0 case in the sum above),
so they show that this set vanishes nowhere. At points in [−π, π] where sinx has the same value,
cosx does not (look at the unit circle), so these two show that the set of trigonometric polynomials
on [−π, π] separates points. Hence this set is dense, so any continuous function on [−π, π] with the
same values at ±π can be uniformly approximated by sine and cosine expressions alone.

The key property that being a nowhere vanishing and point-separating function algebra guar-
antees is the following: for any p1, p2 ∈ [a, b] and c1, c2 ∈ R, there exists f ∈ A such that

f(p1) = c1 and f(p2) = c2.

This is the main property we need in order to prove Stone-Weierstrass, so why do we not take this
as our assumption instead of nowhere vanishing and point separating? Because verifying nowhere
vanishing and point-separating by hand is typically easier than verifying this consequence! To prove
this consequence, pick g ∈ A such that g(p1) 6= g(p2) (point separation), and h1, h2 ∈ A such that
h1(p1) 6= 0, and h2(p2) 6= 0 (nowhere vanishing). Then

f(x) = c1
[g(x)− g(p2)]h1(x)

[g(p1)− g(p2)]h1(p1)
+ c2

[g(x)− g(p1)]h2(x)

[g(p2)− g(p1)]h2(p2)

is the function we want. (This is essentially a “it works because it works” construction!) The
denominators are nonzero and the entire thing is a sum of scalar multiples and products of things
in A, so f ∈ A, and you can check that f(pi) = ci.
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Stone-Weierstrass theorem. So, suppose A ⊆ C([a, b]) is a nowhere vanishing point-separating
function algebra. Given f ∈ C([a, b]) and ε > 0, our goal is to find g ∈ A such that

|g(x)− f(x)| < ε for all x ∈ [a, b],

so that for all ε > 0 we have Bε(f) ∩ A 6= ∅, meaning that f is a limit point of A and hence that
A is dense in C([a, b]). We will structure the argument by leaving the more tedious details to the
end and focusing on the construction of a candidate g first, so we will point out along the way
which properties we use still need to be verified. This is opposite to how Rudin and every other
source approaches this, where the argument builds from the ground up, but I feel the “big picture”
essence is simpler to grasp by postponing some details.

Here’s the picture, where we take an ε-tube around the graph of f :

Our goal is to construct g ∈ A whose graph is fully within this tube. Fix x ∈ [a, b]. For each
y ∈ [a, b], we can find gx,y ∈ A such that which agrees with f at x and y:

gx,y(x) = f(x) and gx,y(y) = f(y).

This comes from the key consequence we showed nowhere vanishing and point-separating gives us.
As y varies, we get a whole collection of such functions:

The main point is that near x and y at least, gx,y is not too far off from f . Indeed, for each y by
continuity (of f at y and of gx,y at y) we can find δy > 0 such that

gx,y(t) > f(t)− ε for t ∈ (y − δy, y + δy).

(Apply continuity to get |gx,y(t) − gx,y(y)| < ε
2 and |f(t) − f(y)| < ε

2 for |t − y| < δy, then hit
|gx,y(t)− f(t)| with a triangle inequality and use the fact that gx,y(y) = f(y).) The picture is
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As long as we remain within these intervals, we have functions gx,y which do not fall below the
ε-tube around f . But these intervals cover [a, b] as y varies, so compactness gives a finite number
of such intervals and corresponding functions

gx,y1 , . . . , gx,yn .

Taking the maximum gx := max{gx,y1 , . . . , gx,yn} of these functions thus gives a single function
whose graph never dips below this tube:

On some (yi− δyi , yi + δyi), gx,yi stays above the bottom of the tube, and as it begins to dip below
once we leave this interval, we switch to a different gx,yj on a different interval which is the new
maximum on this new interval. Now, here is one assumption we will have to come back to later:
the maximum gx constructed in this way is in fact in the closure (in the metric space sense) of A.
We cannot guarantee that gx ∈ A, but being in the closure will be good enough, as we’ll see.

Now vary x. The functions gx constructed above all lie above f − ε, but we have no control so
far over how large they can be. To achieve this control, we do the same thing we did before, only
now restricting how large our functions are instead of how small in order to get a function that
does not rise above the tube. For each x use continuity to get δx > 0 such that

gx(t) < f(t) + ε for t ∈ (x− δx, x+ δx),

which uses the fact that gx(x) = f(x):

Each such gx now lies within the ε-tube around f near x. The intervals (x− δx, x+ δx) cover [a, b],
so we get finitely many such intervals and functions

gx1 , . . . , gxm .

The minimum g := min{gx1 , . . . , gxm} of these is then continuous and has graph that lies fully within
the tube f(x)−ε < g(x) < f(x)+ε uniformly, since as we move from one interval (xi−δxi , xi+δxi)
to the next we switch from one gxi which begins to head above the tube to the next where we move
back in:
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And there you have it! Almost. Just as with the construction of gx, we can only guarantee that
the minimum g above lies in the closure of A, so this is not quite the final g ∈ A we want. But
what this argument does show is that our original f is actually a limit point of A since any open
ball around it contains an element of A, so f is in the closure of A, which is the same thing as A
since closures are closed. Thus f ∈ A, which is what it means for A to be dense in C([a, b]). If you
want to get an actual g ∈ A (instead of in the closure of A) which is uniformly close to f , apply
the argument above to get h ∈ A which is within ε

2 from f , and then pick g ∈ A which is within ε
2

from h (h is a limit point of A), so that g ∈ A is then within ε of f as desired. (Phew!)

Closures of function algebras. We now justify the remaining technical details in the proof of the
Stone-Weierstrass theorem. The key functions in the proof are constructed as maxima or minima
of functions first in A (in the maximum case) and then in the closure A (in the minimum) case,
so we have to know that such maxima/maxima remain at least in A. This will come from the fact
that we can express the maximum and minimum of two functions f, g as

max{f, g} = 1
2(f + g + |f − g|) and min{f, g} = 1

2(f + g − |f − g|).

(This we can simply check point-by-point using the fact that |f − g| = f − g at points where f > g
and the opposite at points where f < g.) If we start with f and g in A, and we know that A is
itself closed under addition and scalar multiplication and closed under taking absolute values, then
all terms on the right sides above are in A, and so the max and min will be as well. From two
functions we can extend to a finite number inductively, so the max’s and min’s used in the proof
of Stone-Weierstrass will indeed be in A.

So, we are left showing thatA is closed under addition, scalar multiplication, and taking absolute
values. (The closure of A is also closed under multiplication, so that it is a function algebra itself,
but we do not need this final property here.) If f, g ∈ A and c ∈ R, we can pick sequences fn → f
and gn → g with fn, gn ∈ A, so that we get

fn + gn → f + g and cfn → cf,

which means that f + g, cf ∈ A.
The statement about being closed under absolute values is the claim that if f ∈ A, then |f | ∈ A.

(This is the point where working in the closure of A instead of just A is required, and why we can
only guarantee that max’s and min’s are in the closure: if f ∈ A, it is not true that |f | must
be in A well—we can only guarantee that |f | is in the closure of A. For example, the absolute
value of the polynomial x is not a polynomial.) To prove this, we must make use of Weierstrass
approximation by polynomials applied to |x|, which is why we needed that result first. Given ε > 0,
pick a polynomial such that

|(a0 + a1x+ · · ·+ anx
n)− |x|| < ε for x ∈ [−M,M ].

where M > 0 is a bound on f . Note that taking x = 0 in particular gives |a0| < ε. In fact, we can
assume that a0 = 0 since otherwise we can replace the polynomial above with it minus the constant
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polynomial a0 and still maintain the uniform approximation: i.e.

|(a1x+ · · ·+ anxn)− |x|| ≤ |(a0 + a1x+ · · ·+ anx
n)− |x||+ |a0|

can be made uniformly smaller than ε if the original |(a0 + a1x + · · · + anx
n) − |x|| can be made

uniformly smaller than ε
2 . So, our uniform approximation looks like

|(a1x+ · · ·+ anx
n)− |x|| < ε for x ∈ [−M,M ].

Hence for f(x) ∈ [−M,M ] with x ∈ [a, b] (now we are changing what we denote by x), we get

|(a1f(x) + · · ·+ anf(x)n)− |f(x)|| < ε

uniformly. This says that the function a1f + a2f
2 + · · · + anf

n is ε-uniformly close to f , so since
a1f + a2f

2 + · · ·+ anf
n ∈ A (closed under addition and scalar multiplication), this says that f is a

limit point of A. But A contains all of its limit points, so f ∈ A as desired. (Phew again! Note that
we needed to have a0 = 0 since otherwise we would get the function a0 + a1f + · · ·+ anf

n, which is
not guaranteed to be in A unless A contains all constant functions, which is not necessarily true.)

Big time analysis. Let us take a pause here and reflect on what we have done the past five
days. Within these five days, we have developed some absolutely monster results of analysis:
Picard-Lindelöf (contraction application to ODEs), explicit example of a continuous nowhere dif-
ferentiable function, Arzela-Ascoli, Weierstrass approximation (including a brief introduction to
integral kernels), and Stone-Weierstrass. Each of these took some serious effort to make sense of,
as exemplified by all the times the word “phew” appeared at the end of a proof!

The point is that you should not expect that all of this will come easily on a first, or even second
or third or INSERT LARGER NUMBER HERE read through as many huge ideas are involved.
(Indeed, in class we only outlined the main ideas behind the proof of Stone-Weierstrass, as going
through the details in full would take a good amount of time that, in my opinion, is not obviously
worth it.) We have covered 100 years worth of analysis (from Weierstrass around 1830 to Stone
around 1930) in the span of five days, so it is good to keep this perspective in mind as you work to
make sense of it all.

Lecture 14: Power Series

Warm-Up. Suppose f is a continuous real-valued function on the unit circle, which as we explained
last time can be taken to be a continuous function on [−π, π] such that f(−π) = f(π). We show
that if ∫ π

−π
f(x) cos(nx) dx = 0 =

∫ π

−π
f(x) sin(nx) dx

for all n = 0, 1, 2, 3, . . ., then f = 0 everywhere. We saw a simpler type of result previously where
a continuous f : [a, b]→ R satisfying ∫ b

a
f(x)xn dx = 0

for all n ≥ 0 is necessarily zero, and in fact the argument here is exactly the same: the given
assumptions imply that ∫ π

−π
f(x)(trigonometric polynomial) dx = 0
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for any trigonometric polynomial, so take a sequence of such things converging uniformly to f
(using denseness of trig polynomials in C(circle) by Stone-Weierstrass) shows that

∫ b
a f(x)2 dx = 0,

from which f = 0 follows.
But rather than repeat the details of this same argument again, let us now recast both of these

examples as arising from how continuous functions behave on dense sets in general. The point is
that for fixed f , the mapping

T : C([a, b])→ R defined by T (g) :=

∫ b

a
f(x)g(x) dx

is continuous when C([a, b]) is equipped with the sup metric. (Same thing for C(circle) where
“circle” is [−π, π] as above.) Indeed, we have

|T (g1)− T (g2)| ≤
∫ b

a
|f(x)|g1(x)− g2(x)| dx ≤

∫ b

a
|f(x)|d(g1, g2) dx

where d(g1, g2) is the sup distance between g1 and g2. If M > 0 is a bound on f over [a, b], this
gives

|T (g1)− T (g2)| ≤
∫ b

a
M d(g1, g2) dx = M(b− a) d(g1, g2),

which implies continuity of T by taking δ = ε
M(b−a) for a given ε > 0.

Since T : C([a, b]→ R is continuous, its behavior is completely characterized by its values on a
dense subset of the domain. In the previous example, this dense subset is the set of polynomials
on [a, b], and we get that T sends any such polynomial to 0, so it must send everything to 0, in

particular f itself so that T (f) =
∫ b
a f(x)2 dx = 0. In the current case, the dense subset is the

set of trigonometric polynomials in C(circle), so T being zero on this dense subset implies it is
zero everywhere, so in particular again T (f) =

∫ π
−π f(x)2 dx = 0, which implies f = 0. Taking

more general dense subsets of C([a, b]) as the ones against which integrating f gives 0 would give
precisely the same outcome.

A nicer form of denseness. We know that the set of ordinary polynomials is dense in C([a, b]),
and we know that the set of trigonometric polynomials is dense in C(circle). But both of these
results are in a sense non-explicit, in that we prove there exists ordinary/trig polynomials converging
uniformly to a given f without being able to say much about what these ordinary/trig polynomials
look like. Of course, we do have concrete expressions for polynomials that work in the Weierstrass
approximation case via

Pn(x) :=

∫ 1

−1
f(x+ t)Qn(t) dt

where Qn are the Landau kernels, but we have no idea what these polynomial actually looks like in
general without doing a big computation. The situation is even worse in the trig polynomial case,
where the existence comes from the max/min construction in the proof of Stone-Weierstras, and
who knows what type of thing this gives explicitly.

The question now is whether there are “nicer” versions of these results, where we can say
something more explicit about the ordinary/trig polynomials we need. For example, we previously
claimed that

1, 1 + x, 1 + x+ 1
2x

2, 1 + x+ 1
2x

2 + 1
3!x

3, . . .

converges uniformly to ex on any [a, b], where here we do have incredibly nice descriptions of the
polynomials that work. Are there analogs of this in general? What about the trig polynomial case?
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The answer is that there are other such “nice” analogs, although we will have restrict the types
of functions we care about, and they are provided by the notions of power series in the ordinary
polynomial case and Fourier series in the trig polynomial case. We will study power series first,
and Fourier series later.

Power series convergence. A power series is a series of the form

∞∑
n=0

cn(x− a)n

with variable x. (We say in this case that the power series is centered at a.) Recall (earlier in
Rudin) that the issue of pointwise convergence of such a series is settled by the root test: the series
converges—in fact absolutely—if

lim sup n
√
|cn(x− a)|n = |x− a| lim sup n

√
|cn| < 1

and diverges if this lim sup is larger than 1. The root test is inconclusive when the lim sup equals
1, but we actually will not about these edge cases here. We thus have convergence when

|x− a| < 1

lim sup n
√
|cn|

,

where we interpret the right side as infinite (so no restriction on x in that case) when lim sup n
√
|cn|

is 0. We call

R :=
1

lim sup n
√
|cn|

the radius of convergence of the power series, and the corresponding interval (a−R, a+R) centered
at a the interval of convergence, or simply the “domain” of the power series. (Again, we might
or might not have convergence at the endpoints a± R, but we will ignore such behavior here. By
“interval of convergence” or “domain” we will always mean open interval or domain.)

So, power series converge pointwise on their intervals of convergence. However, we cannot
guarantee that this convergence is in fact uniform on the entire open domain, as you essentially
showed in a previous homework problem: the partial sums of

∑
n x

n are all bounded on (−1, 1),
but the pointwise sum 1

1−x of this series is unbounded on (−1, 1), so the convergence cannot be
uniform on all of (−1, 1). But, the observation now is that, as long as we do not allow ourselves to
come arbitrarily close to the endpoints, we can guarantee uniform convergence, and in fact this is
a property of power series in general.

The claim is that if R > 0 is the radius of convergence of
∑

n cn(x−a)n, then the convergence is
uniform on any closed interval of the domain (a−R, a+R). (The modern lingo is that power series
“converge uniformly on compact subsets” of their domain. When R = 0, then the series converges
pointwise only at a, so asking for uniform convergence in this case is moot. Also, if we do have
convergence at an endpoint, it turns out that the uniform convergence does in fact extend to that
endpoint as well; this is what’s known as Abel’s theorem, which we will not prove as we will not
need it.) It is enough to show this for closed intervals of the form [a− r, a+ r] with 0 < r < R since
all closed intervals are subsets of these types alone. On [a− r, a+ r], so that |x− a| < r, we have

|cn(x− a)n| ≤ |cn|rn = |cn|((a+ r)− a)n,
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where the point is that we have removed the dependence on The number x = a + r lies in the
interval of convergence (a−R, a+R) of the power series, so

∑
n |cn|((a+ r)− a)n converges (this

uses the fact that convergence for power series is always absolute), so

∞∑
n=0

cn(x− a)n

converges uniformly on [a− r, a+ r] ⊆ (a−R, a+R) by the Weierstrass M -test.
Since each cn(x− a)n is continuous, we thus get that

f(x) =

∞∑
n=0

cn(x− a)n

is continuous on any [a− r, a+ r] ⊆ (a−R, a+R), and since any point in (a−R, a+R) lies in such
a closed interval, we get continuity of f on its entire domain. (Again, if we also have convergence
at and endpoint, continuity in fact extends to that endpoint as well as a consequence of Abel’s
theorem as alluded to earlier.) We also get integrability on any [c, d] ⊆ (a−R, a+R) for free, and
the fact that integration can be carried out term by term.

Smoothness. For differentiability, we have to also know that the series of term-by-term derivatives

∞∑
n=0

ncn(x− a)n−1 =
∞∑
n=1

(n+ 1)cn+1(x− a)n

also converges uniformly. (Note that this term-by-term derivative is yet another power series!) But
since n1/n → 1 as n→∞, we have that

lim sup n
√
n|cn| = lim sup n

√
|cn|,

so a power series and its term-by-term derivative always have the same radius of convergence. Thus
by the general machinery of power series derived above, we do have that

∞∑
n=0

ncn(x− a)n−1 =

∞∑
n=1

(n+ 1)cn+1(x− a)n

converges uniformly on any [a− r, a+ r] ⊆ (a−R, a+R), and hence that

f(x) =
∞∑
n=0

cn(x− a)n

is differentiable on any [a− r, a+ r] with derivative equal to the term-by-term derivative; taking r
to approach R then gives differentiability on all of (a−R, a+R).

Applying the same general power series machinery to

f ′(x) =

∞∑
n=1

(n+ 1)cn+1(x− a)n

shows that f ′ is differentiable on its domain, so f is twice-differentiable, and then applying the ma-
chinery to f ′′, then f ′′′, etc shows that f is in fact infinitely-differentiable on (a−R, a+R). We will
use the term smooth to refer to the property of being infinitely-differentiable, and thus smoothness
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is a first restriction we need to impose if we are wanting to express functions as convergent power
series: if it were possible to express f in this way, f would have to be smooth since power series
are always smooth. It is not true however that smoothness is enough as there are smooth functions
which are not expressible as power series; we will clarify the distinction between “smooth” and
“expressible as a power series” next time.

Example. We have

1

1− x
=
∞∑
n=0

xn on (−1, 1).

Differentiating gives

1

(1− x)2
=
∞∑
n=1

(n+ 1)xn on (−1, 1),

and differentiating again gives

2

(1− x)3
=
∞∑
n=2

(n+ 2)(n+ 1)xn on (−1, 1).

And so on we can keep going, all of which we obtain for free from the general machinery of power
series, no longer having to do any hard work ourselves. The same works with integration/anti-
differentiation, so that

− ln(1− x) =

∞∑
n=0

xn+1

n+ 1
on (−1, 1),

and then

−
∫ x

0
ln(1− t) dt =

∞∑
n=0

xn+2

(n+ 2)(n+ 1)
on (−1, 1),

and so on. (As a side remark, the series above expressing − ln(1 − x) as a power series does also
make sense at the endpoint −1, so this gives the identity

− ln 2 =

∞∑
n=0

(−1)n+1

n+ 1

for example. The original series 1
1−x =

∑
n x

n from which this was derived, however, does not
converge at x = −1, so this illustrates that in general convergence at endpoints for a power series
has nothing to do with convergence of endpoints of its derivative, which is one reason why we are
excluding the behavior at endpoints from this entire discussion.)

Sums and products. Our goal now is to better thus understand the types of functions which
convergent power series define. If

f(x) =
∞∑
n=0

cn(x− a)n and g(x) =

∞∑
n=0

dn(x− a)n

with radii of convergence R1 and R2 respectively, then it is true that f + g and fg are also
expressible as convergent power series, at least within whichever of the radii Ri is smaller. (We will
see later that composing power series also works, as does dividing as long as we assume nonzero
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denominator.) Indeed, these come from general properties of absolutely convergent series covered
earlier in Rudin: for |x− a| < min{R1, R2}, we have that

∞∑
n=0

(cn + dn)(x− a)n converges to f(x) + g(x)

and that
∞∑
n=0

(
n∑
k=0

(
n

k

)
ckdn−k

)
(x− a)n converges to f(x)g(x).

(The first expression comes from combining like—meaning same degree—terms in

(c0 + c1(x− a) + c2(x− a)2 + · · · ) + (d0 + d1(x− a) + d2(x− a)2 + · · · )

and the second from doing the same in

(c0 +c1(x−a)+c2(x−a)2 + · · · )(d0 +d1(x−a)+d2(x−a)2 + · · · ) = c0d0 +(c0d1 +c1d0)(x−a)+ · · ·

Note that being able to rearrange the terms—which is what absolute convergence gives us—is
crucial to making this work.)

Lecture 15: Analytic Functions

Warm-Up. Let a 6= 1. We show that f(x) = 1
1−x can be expressed as a convergent power series

centered at a on some interval around a. Rewrite 1
1−x as follows:

1

1− x
=

1

(1− a)− (x− a)
=

1

1− a

(
1

1− x−a
1−a

)
.

Using 1
1−y =

∑∞
n=0 y

n for |y| < 1 with y = x−a
1−a , we have:

1

1− x
=

1

1− a

∞∑
n=0

(
x− a
1− a

)n
=
∞∑
n=0

1

(1− a)n+1
(x− a)n when

∣∣∣∣x− a1− a

∣∣∣∣ < 1.

This gives the desired expression with radius of convergence |1− a| > 0. Specifically, for a > 1 this
expresses 1

1−x as a convergent power series on (1, 2a − 1), while for a < 1 this expresses 1
1−x as a

convergent power series on (2a− 1, 1).

Analytic functions. The types of functions which can be expressed as power series are special
enough that we give them their own name. We say that f is analytic on an open set U ⊆ R if U
can be covered by open intervals on each of which f can be expressed as a convergent power series
centered at some point in that interval; i.e., each element of U belongs to an open interval I such
that for some a ∈ I there exist cn such that

f(x) =
∞∑
n=0

cn(x− a)n on I.

The power series we need in order to express f might change as we move from one interval to
another, but such a series expansion always exists locally.
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For example, f(x) = 1
1−x is analytic on R\{1}, the set of real numbers excluding 1, as the

Warm-Up shows: the intervals (1, 2a − 1) for a > 1 and (2a − 1, 1) for a < 1 cover all of R\{1},
and on each f is expressible as a convergent power series. We cannot find one power series that
works on all of R\{1} at once, but that’s OK since we only require that f be locally expressible as
a power series throughout our domain.

Note that analytic functions will always be smooth since power series are always infinitely
differentiable within their domains of convergence. It is not true, however, that all smooth functions
are analytic, as we’ll see.

Shifting the center. The definition of analytic only requires that express our function as a power
series centered at some point in an interval, whereas in the example of 1

1−x we are able to find
such an expression centered at any a 6= 1 we want. So we are led to wonder what the role the
center of the power series plays in general. The answer is that the center is insignificant, as once we
have a power series expression with some center, we can always come up with one with a different
candidate center. For simplicity of notation, let us consider only the case of a power series

∞∑
n=0

cnx
n

centered at 0, since an arbitrary
∑

n cn(x−a)n can always be though of as
∑

n cny
n with y = x−a.

The claim is that if the given series converges on (−R,R), then for any a ∈ (−R,R) we can
rewrite this series as one centered at a instead on some (a − r, a + r) ⊆ (−R,R). Indeed, write x
as x = a+ (x− a) and use the binomial theorem

(c+ d)n =
n∑
k=0

(
n

k

)
cn−kdk

to get
∞∑
n=0

cnx
n =

∞∑
n=0

cn(a+ (x− a))n =
∞∑
n=0

cn

(
n∑
k=0

(
n

k

)
an−k(x− a)k

)
.

The specific form of the coefficients used in the binomial expansion do not really matter—what
matters is that we get an expression in terms of power of x − a. In order to turn the resulting
expression into what we want, namely a power series centered at a, we now need to swap the two
summations; indeed, we are left with something involving (x− a)k, so for this to be an appropriate
power series we need to sum over k’s in the outer sum:

∞∑
n=0

cn

(
n∑
k=0

(
n

k

)
an−k(x− a)k

)
=

∞∑
k=0

( ∞∑
n=k

cn

(
n

k

)
an−k

)
(x− a)k.

A first clarification needed here is in having the inner sum run from n = k to∞, which comes from
the fact that a given exponent k in the sum on the left only occurs once the outer index n is large
enough, so that for example we do not get a (x− a)5 term in the sum on the left until n is at least
5 since we get no such term when k = 0, 1, 2, 3, 4.

The bigger issue is in knowing that such a sum swap makes sense and does not affect the
convergence. This is a general problem about double summations

∞∑
n=0

∞∑
k=0

ank
?
=
∞∑
k=0

∞∑
n=0

ank,
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with the key fact being that as long as the left side converges absolutely, then such a swap is indeed
valid. (To apply this in our case, where in

∞∑
n=0

cn

(
n∑
k=0

(
n

k

)
an−k(x− a)k

)
=
∞∑
k=0

( ∞∑
n=k

cn

(
n

k

)
an−k

)
(x− a)k

we have only finitely many terms in the inner sum on the left and n = k to ∞ instead of n = 0 to
∞ on the right, we simply take the general version with a bunch of the ank’s—namely those where
k > n—equal to 0.) Taking this general fact for granted for now, we must thus know that

∞∑
n=0

n∑
k=0

|cn|
(
n

k

)
|a|n−k|x− a|k

converges. But after unwinding the binomial expansion, this sum is the same as

∞∑
n=0

n∑
k=0

|cn|
(
n

k

)
|a|n−k|x− a|k =

∞∑
n=0

|cn|(|a|+ |x− a|)n,

which converges as long as |a| + |x − a| < R is within the radius of convergence of the original
series, which thus requires that |x− a| < R− |a|. Hence,

∞∑
n=0

cnx
n =

∞∑
k=0

( ∞∑
n=k

cn

(
n

k

)
an−k

)
(x− a)k

is valid on (a − r, a + r) ⊆ (−R,R) for r := R − |a| > 0, so we have expressed our original power
series as one centered at a instead as desired.

Double summations. The fact that

∞∑
n=0

∞∑
k=0

ank =

∞∑
k=0

∞∑
n=0

ank

as long as the left side converges absolutely is proved in Rudin using uniform convergence of
functions, but we do not need all of that machinery to derive this. Instead, the same proof as the
one used in showing that rearrangements of the terms of an absolutely convergent series do not
affect the convergence works here as well, as long as we define what it means for a double series∑

n,k ank to converge.
First, we say that a doubly-indexed sequence sij converges to S if for all ε > 0 there exists

N ∈ N such that
|sij − S| < ε for i, j ≥ N.

(So, same definition as for singly-indexed sequences, only where we take both indices to be large
enough in a common way.) If so, one can show that the limit S can be computed “index-by-index”
in the sense that

if lim
j→∞

aij exists for each i, then S = lim
i→∞

( lim
j→∞

aij).

We then say that a double series
∑

n,k ank converges if the doubly-indexed sequence of partial sums

sij :=
i∑

n=0

j∑
k=0

ank
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converges in the sense above. If so, then we get that the sum can be computed index-by-index in
the sense that

if
∞∑
k=0

ank exists for each n, then
∑
n,k

ank =
∞∑
n=0

∞∑
k=0

ank.

We then get a Cauchy criterion for convergence of double sums, a notion of absolute convergence,
and so on. In particular, absolute convergence guarantees that rearrangements are possible (with
essentially the same proof as in the usual series case as mentioned before), which gives our desired
sum swap. We will not give further details of double sums here as the proofs really are analogous
to things you saw last quarter.

Taylor series. If f is analytic and hence expressible (locally) as a power series, then there is in
fact only one series that can do the job. Suppose that

f(x) =

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · · .

Plugging in a on the right side gives only c0 since all other terms will contain a power of a− a = 0.
Thus f(a) = c0 is the constant term. Next, taking derivatives gives

f ′(x) = c1 + 2c2(x− a) + · · · ,

so f ′(a) = c1. In general, taking k-th derivatives gives

f (k)(x) = k!ck + (terms with (x− a)), so f (k)(a) = k!ck.

Thus the coefficients of the given power series must be given by cn = f (n)(a)/n!, meaning that the
power series in question must be the Taylor series of f centered at a:

∞∑
n=0

f (n)(a)

n!
(x− a)n.

Hence, in the definition of analytic we can omit any reference to the existence of some convergent
power series and replace this specifically by the Taylor series centered at a point. Analyticity of a
smooth function then comes down to arguing that its Taylor series have positive radii of convergence
and the thing to which they converge on their domains of convergence is the given function itself.

Examples. We claim that f(x) = ex is analytic. In fact, in this case we claim that we can express
f globally as a power series, specifically its Taylor series centered at 0:

ex =
∞∑
n=0

1

n!
xn for all x ∈ R.

(Note that f (n)(0) = 1 for all n in this case.) We can compute the radius of convergence of this series
to see that it is infinite using the lim sup n

√
|cn| formula, but instead we will just verify convergence

directly at any x ∈ R. (Even with the lim sup computation of the radius, we would still need to
argue that the thing to which this series converges is indeed ex.)

The key is Taylor’s theorem, which expresses the difference between f(x) and one of its Taylor
polynomials. For fixed x ∈ R, there thus exists c between 0 and x such that∣∣∣∣∣ex −

N∑
n=0

1

n!
xn

∣∣∣∣∣ =

∣∣∣∣∣f (N+1)(c)

(N + 1)!
xN+1

∣∣∣∣∣ =
ec

(N + 1)!
|x|N+1.
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Since c is between 0 and x, we have ec ≤ max{1, ex} (the 1 takes care of the case where x < 0), so∣∣∣∣∣ex −
N∑
n=0

1

n!
xn

∣∣∣∣∣ ≤ max{1, ex}
(N + 1)!

xN+1.

(The point here is that we have found a uniform bound on the f (N+1) term, independent of N .)
As N →∞, we have xN+1/(N + 1)!→ 0, which shows that

ex = lim
N→∞

N∑
n=0

xn

n!

as desired. (The same type of argument shows that sinx and cosx ae analytic on R as well, where
we are able to find uniform bounds on the derivatives. In general, uniform bounds are not strictly
required, but what we do need is some type of control over how quickly the derivatives can grow so

that expressions like f (N+1)(c)
(N+1)! x

N+1 can be forced to go to 0 as N increases. A problem in discussion

section will explore this idea further.) As a consequence (general power series stuff), we then get
that

1 + x+ x2

2 + x3

3! + · · ·+ xn

n! → ex

uniformly on any closed interval. Here’s what this looks like on, say, [−4, 2] with the second, fourth,
sixth, and eighth order Taylor polynomials:

(The convergence is slower for negative values, due to the fact that the odd-order polynomials—not
drawn—have negative leading term xn for x negative.)

Smooth but not analytic. The standard example of a non-analytic smooth function is the
following. Define f on R by

f(x) =

{
e−1/x if x > 0

0 if x ≤ 0.

This function is indeed smooth, in particular it is infinitely-differentiable at 0, and in fact f (n)(0) = 0
for all n. (This was an example done last quarter, but if it’s unfamiliar try to prove it yourself!)
If this function were analytic on R, it would be expressible as a power series on some interval
containing 0, and hence would have to equal its own Taylor series centered at 0 on some (−R,R).
(This is why being able to shift the center is important, since the failure to be analytic will come
from the behavior when 0 is the center.) But the Taylor series centered at 0 is explicitly

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

0 = 0,

and f does not equal 0 on any (0, R), so we conclude that f is not analytic on R.
The function f is certainly analytic on (0,∞) since it is constant there, and it is also analytic

on (0,∞) since, as you will show on the homework, compositions of analytic functions like e−1/x

are analytic too. The problem only arises when we try to include 0, illustrating that analyticity is
very much dependent on the domain under consideration.
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Lecture 16: More on Special Series

Warm-Up. Suppose f is analytic on U ⊆ R and not the constant zero function. We claim that
the zeroes of f are then isolated, meaning that if f(a) = 0 for some a ∈ U , there exists δ > 0 such
that (a − δ, a + δ) contains no other zeroes of f apart from a, so that zeroes of f occur at some
positive distance from one another. This gives credence to the idea that an analytic function can
thought of as an “infinitely long polynomial” via a power series expansion, since zeroes of nonzero
polynomials are for sure isolated since there are only finitely many; in the “infinite” version of this,
we might have infinitely many zeroes, but at least they are still guaranteed to be isolated. (Think
about the zeroes of sinx, for example.)

We can write f as a convergent power series on some interval around a as

f(x) =
∞∑
n=0

cn(x− a)n.

If all coefficients cn here are zero, then this series is the constant zero function and has infinite
radius of convergence, meaning that this equality would be true everywhere, but this is not true
since we are assuming that f is not the constant zero function. Thus this series must have some
nonzero coefficients. Since f(a) = 0 = c0 is the constant term in the series, we know that the first
nonzero coefficient must hence be some ck where k ≥ 1.

With this k, we can then write our series as

f(x) = ck(x− a)k + ck+1(x− a)k+1 + · · · ,

where we’ve ignored all the zero terms occurring before we hit ck(x− a)k. Factoring out (x− a)k

gives
f(x) = (x− a)k [ck + ck+1(x− a) + ck+2(x− a)2 + · · · ]︸ ︷︷ ︸

g(x)

,

where we denote the function to which the power series in brackets converges to by g. Since ck 6= 0,
h(a) = ck 6= 0, and since g is continuous (as is any convergent power series), we have that g is
nonzero on some (a− δ, a+ δ) ⊆ U . Hence on this interval the only way in which f can be zero is
for the first factor (x−a)k above to be zero, which only occurs at x = a, so the zero at a is isolated.

Identity theorem. The fact about having isolated zeroes places severe restrictions on the behavior
of analytic functions. The most important of which is the identity theorem, which states that if
two analytic functions f and g agree on a set E which contains a limit point, then f and g must be
the same everywhere. This is quite restrictive, since it says that knowing only how f behaves on
the elements of E determine how it behaves everywhere else. For example, open intervals contain
limits points, so if an analytic function is equal to 0 on some interval—no matter how small!!!—it
must be zero everywhere. This is in stark contrast to what happens for even smooth functions (let
alone ones which are only continuous), where having a function be zero, say, on a small interval
says absolutely nothing about how it must behave anywhere else. This again rules out the smooth
function which is e−1/x for x > 0 and 0 elsewhere from being analytic, since this is zero on all of
(−∞, 0] but not on (0,∞).

To see this, suppose f = g on E which contains a limit point p. Then f − g, which is still
analytic, is zero at all elements of E, including p. But since p is a limit point, the zero at p is
not isolated since any interval around it will contain an element of E and hence another zero of
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f − g, so the Warm-Up shows that f − g must in fact be the constant zero function, so that f = g
everywhere. If an analytic function f has, for example, value

f( 1
n) = e1/n for all n ∈ N,

then by continuity we must have f(0) = e0 as well, so that f(x) and ex agree on the limit-point-
containing set E = {0} ∪ { 1n | n ∈ N}, and hence the identity theorem guarantees that f(x) = ex

everywhere, solely from knowledge of the values f( 1
n). Quite restrictive indeed.

Intro to complex analysis. Most functions you’ve ever written down in your life—at least unless
you were purposefully trying to create some discontinuities—were analytic. Indeed, things made
out of polynomials, exponentials, sines, and cosines are analytic, and then taking sums, products,
reciprocals, and compositions (see the next homework) gives more analytic things. So,

f(x) =
1

1 + x2

is certainly analytic on R. And yet, finding explicit power series expressions, let alone their radii
of convergence, is not always so easy. In the example above, this is pretty easy when we take the
center to be zero using the standard geometric series 1

1−y =
∑

n y
n, but finding a series expansion

around 1, say, is challenging. This is due to the fact that the Taylor coefficients are not easy to
compute directly since there will be no “nice” discernible pattern which arises. So, how do we
actually work with such series expansions in general, and why do we actually care about analytic
functions at all?

The answer comes from the realm of complex analysis, which is where the notion of analyticity
finds its true home. We give a crash course introduction to this subject here, if only to put
our discussion into the proper context. Let C denote the set of continuous functions on some
domain, and Ck the set of functions which are k-times continuously differentiable. We then have
the containments

C ⊇ C1 ⊇ C2 ⊇ C3 ⊇ · · ·C∞ ⊇ Cω := {analytic functions},

where the idea is that as we move to the right functions get “nicer”: differentiable functions are
nicer to work with than continuous functions, twice differentiable ones nicer than differentiable
ones, and so on. Note that each of these containments is strict, since we can find examples of
functions belonging to one set but not the next; in particular, we saw last time an example of a
function which is infinitely-differentiable but not analytic. In a sense, real analytic functions are
the “end of the line” for how nice a real function can get.

But, real analytic functions are only the starting point in the subject of complex analysis. If real
analysis studies functions defined on the set of real numbers R, complex analysis studies functions
defined on the set of complex numbers C. The key definition is what it means for a complex
function to be complex differentiable, which is based on the same type of limit which defines real
differentiability:

f ′(z) = lim
z→z0

f(z)− f(z0)

z − z0
.

Here, f denotes a complex function f : C → C (or with domain only some subset of C), z is a
complex variable, and z0 a complex number. This limit makes perfect sense in this settings as well,
and all the same derivative rules we had for real functions work in this setting too: the derivative
of zn is nzn−1, the derivative of sin z is cos z (once you define what it means to take sine or cosine
of a complex number), and so on.
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The punchline is that when it comes to complex differentiability, the distinctions given in the
containments above for real functions disappear: if a complex function is complex differentiable, it
is automatically complex twice differentiable, three times differentiable, complex infinitely differen-
tiable, and complex analytic!!! Thus, “analytic” in the complex setting means the same thing as
“differentiable”. This is perhaps the ultimate reason why real analytic functions are “nice”: they
are precisely the types of real functions which can be “extended” to complex differentiable ones.

For example, consider the complex function f(z) = 1
1+z2

, where z is a complex variable. This
function is complex differentiable at all z except ±i where the denominator is zero. Thus, it is
complex analytic on C\{±i}. In particular, its restriction to the real axis is real analytic on R,
which is one way of showing that 1

1+x2
is analytic on R. Now, here is another useful fact about

complex analytic functions: if f is complex analytic, the Taylor series centered at some z0 has
radius of convergence equal to the radius of the largest possible disk which can be drawn centered
at z0 to avoid points at which f is not differentiable. (We visualize the set of complex numbers C
as a plane with the set of real numbers the x-axis and the set of complex numbers of the form iy
with y ∈ R the y-axis; the word “disk” here means a disk in this plane.)

Thus, radii of convergence in complex analysis are incredibly simple to compute and no lim sup
computations are necessary. In the case of 1

1+z2
, the largest disk (magenta in the picture below)

centered at 0 which can be drawn without hitting a point where f is not differentiable is of radius
1 since f is not differentiable at ±i:

Intersecting this disk with the real axis gives the interval (−1, 1), which is indeed the interval of
convergence of the Taylor series of 1

1+x2
centered at 0. The Taylor series of 1

1+z2
centered at 1 has

radius of convergence equal to the distance from 1 to i, and intersecting the disk of convergence (in
green) with the real axis shows that the radius of convergence of the Taylor series of 1

1+x2
centered

at 1 is equal to
√

2. Complex analysis, if nothing else, gives us an easier way to answer questions
about real analytic functions, but of course has numerous other uses in its own right. Take a course
in complex analysis to learn more.

Trigonometric series. We now shift to our final topic in the study of function spaces, Fourier
series. The motivation is the same as the one we initially took for studying power series: polyno-
mials are dense among all continuous functions, and power series give a particular “nice” way to
try to express a function as a limit of polynomials (Taylor polynomials to be precise, so now we
know this only works for functions which are analytic), and now we seek to develop a similar story
for trigonometric polynomials, which, as we have seen, are dense among all continuous functions
on a circle thought of us [−π, π] with the endpoints glued.
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The role of power series is now played by what is known as a trigonometric series, which is a
series of the form

a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)].

(We will clarify why we write the constant term as a0
2 instead of just a0 soon enough.) The partial

sums of such a series are just trigonometric polynomials as we defined them before. If we are trying
to understand which functions can expressed in such a way, the first thing to note is that such a
function would have to be 2π-periodic, since the sine and cosine terms used above are themselves
2π-periodic. The behavior of a 2π-periodic function is determined fully from its behavior on [−π, π]
alone, where we now have the additional constraint that the values at ±π should be the same due
to the periodicity. The upshot is that a 2π-periodic function can just be thought of as a function
on a circle in the sense we’ve described previously.

By modifying the period of the sine and cosine terms used above we can account for any possible
period. For example,

a0
2

+

∞∑
n=1

[an cos(nπx) + bn sin(nπx)]

would be used to 2-periodic functions, or equivalently functions on [−1, 1] with the same values at
±1, and more generally

a0
2

+
∞∑
n=1

[an cos(2πnxL ) + bn sin(2πnxL )]

would work for 2L-periodic functions, or functions on [−L,L] with the values at ±L. We will stick
with the 2π-periodic version for simplicity of notation, but everything we do easily carries over the
case of a general period after a small change of variables.

Fourier coefficients. Hence suppose that f is a function on [−π, π] with f(−π) = f(π). Assume
for the time being that we can in fact express f as a uniformly convergent trigonometric series

f(x) =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)].

For power series we saw that the coefficients needed must be those given by the coefficients of a
Taylor series, so we ask whether we can similarly determine what the coefficients a0, an, bn above
would have to be if such a uniform convergence were to hold. The fact is that as long as f is
integrable, such coefficients can be determined explicitly.

Take the expression above and multiply through by some cos(mx):

f(x) cos(mx) = a0
2 cos(mx)+

∞∑
n=1

[an cos(nx) cos(mx) + bn sin(nx) cos(mx)].

If f is integrable, we can integrate both sides and use the uniform convergence to exchange inte-
gration and summation to get∫ π

−π
f(x) cos(mx) dx =

a0
2

∫ π

−π
cos(0x) cos(mx) dx

+

∞∑
n=1

[
an

∫ π

−π
cos(nx) cos(mx) dx+ bn

∫ π

−π
sin(nx) cos(mx) dx

]
.
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(Note that we wrote the first integral on the right as
∫

cos(0x) cos(mx) instead of
∫

cos(mx) using
cos(0x) = 1, for reasons that will soon be clear.) To further simplify we need to know the values of
all the resulting integrals, but these all have easy values given by what are called the orthogonality
relations for sine and cosine:

∫ π

−π
cos(nx) cos(mx) dx =


0 m 6= n

π m = n 6= 0

2π m = n = 0∫ π

−π
cos(nx) sin(mx) dx = 0 for all m,n∫ π

−π
sin(nx) sin(mx) dx =

{
0 m 6= n or m = n = 0

π m = n 6= 0

These can all be justified by direct computations, using various trig identities where appropriate.
We will skip the details here. (We will talk about why we use the term “orthogonality” when
describing these identities next time.)

If m = 0, all the terms in the summation on the right of∫ π

−π
f(x) cos(mx) dx =

a0
2

∫ π

−π
cos(0x) cos(mx) dx

+
∞∑
n=1

[
an

∫ π

−π
cos(nx) cos(mx) dx+ bn

∫ π

−π
sin(nx) cos(mx) dx

]
.

are thus zero and
∫ π
−π cos(0x) cos(mx) dx = 2π, so we are left with∫ π

−π
f(x) cos(0x) dx =

a0
2

(2π), and thus a0 =
1

π

∫ π

−π
f(x) cos(0x) dx =

1

π

∫ π

−π
f(x) dx.

For m 6= 0,
∫ π
−π cos(0x) cos(mx) dx = 0 and the only nonzero term in the infinite summation above

is the an
∫ π
−π cos(nx) cos(mx) dx term in the case where n = m, so we get∫ π

−π
f(x) cos(mx) dx = am

∫ π

−π
cos(mx) cos(mx) dx = amπ, so am =

1

π

∫ π

−π
f(x) cos(mx) dx.

Thus for all n, even n = 0, we have an = 1
π

∫ π
−π f(x) cos(nx) dx. (This is the reason for writing

the constant term in the trigonometric series as a0
2 instead of as a0: it allows us to use the same

integral formula for an for all n at once. Otherwise, because
∫ π
−π cos(0x) cos(0x) dx = 2π instead of

π, we would have to use a0 = 1
2π

∫ π
−π f(x) cos(0x) dx as the constant term. This just comes down

to a matter of preference, and we prefer to absorb the extra factor of 2 into a0
2 instead of in the

integral formula for a0.)
A similar argument where we multiply both sides of

f(x) =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]

by sin(mx) and then integrate will yield∫ π

−π
f(x) sin(mx) dx = am

∫ π

−π
sin(mx) dx sin(m) dx = amπ, so am =

1

π

∫ π

−π
f(x) sin(mx) dx.
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The conclusion is that if

f(x) =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)]

is to converge uniformly, the coefficients must be given by

an =
1

π

∫ π

−π
f(x) cos(nx) dx and bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

So, if we are looking for a trigonometric series which we hope will converge to a given integrable f (on
[−π, π] with same values at ±π) uniformly, the trigonometric series with these specific coefficients is
the one we would need. This is called the Fourier series of f , and we will investigate its convergence
properties over the next two days.

Note that we are considering only Fourier series for real-valued functions here. Rudin discusses
the slightly more general case of complex-valued functions, where the benefit is that we can use
complex exponentials instead of sines and cosines to express the Fourier series in a more compact
way. The theory works exactly the same, so we will stick with the real case so as to be consistent
with everything else we have done.

Lecture 17: Fourier Analysis

Warm-Up. We compute the Fourier series of the “square wave” function defined over [−π, π] by

f(x) =

{
−1 −π ≤ x < 0

1 0 ≤ x < π.

To be more precise, we extend this function to be periodic over the rest of R with period 2π, and
compute the Fourier series of the resulting function. The name “square wave” comes from the
picture of its graph:

The Fourier coefficients of f are:

an =
1

π

∫ π

−π
f(x) cosnx dx = 0 for n ≥ 0

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

(∫ 0

−π
− sinnx dx+

∫ π

0
sinnx dx

)
=

2(1− cosnπ)

nπ
for n > 0.

A quick way of seeing the value of an is to note that f(x) is an odd function, so f(x) cosnx is odd
and hence should integrate to 0 over a symmetric interval. The point is that the Fourier series of
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an odd function should have no cosine terms in it at all since such terms would prevent the series
from being odd; similarly, the Fourier series of an even function should have no sine terms in it.
The Fourier series of f is thus

∞∑
n=1

2(1− cosnπ)

nπ
sinnx =

∞∑
k=0

4

(2k + 1)π
sin(2k + 1)x,

where the second expression comes from rewriting the first to only consider odd integers n = 2k+1,
which we can do because 1− cosnπ = 0 for even n.

Let us get a sense of the convergence of this Fourier series by considering the partial sums

(SNf)(x) =
N∑
k=1

2(1− cos kπ)

kπ
sin kx.

In particular, using the simplified form where we only consider odd indices, we have

(S1f)(x) =
4

π
sinx

(S3f)(x) =
4

π
sinx+

4

3π
sin 3x

(S5f)(x) =
4

π
sinx+

4

3π
sin 3x+

4

5π
sin 5x

(S7f)(x) =
4

π
sinx+

4

3π
sin 3x+

4

5π
sin 5x+

4

7π
sin 7x

The graphs of these (in yellow) vs f(x) (in blue) look like

Here are S19f and S49f :

The takeaway is that the Fourier partial sums do seem to be visually approaching f , at least at
points where f is continuous! (So, not at 0 or ±π.) This is the type of result we aim to justify,
under appropriate assumptions. (In fact, continuity alone will not be enough as there are examples
of continuous functions whose Fourier series do not converge pointwise! But, everything works fine
with just some slightly stronger forms of continuity.)

For another visual example, the “triangular wave” function which is f(x) = |x| for −π ≤ x ≤ π
and then extended 2π-periodically (this is similar to the function we used previously to construct
a continuous but nowhere differentiable function, only with different period) has Fourier series

π

2
+
∞∑
n=1

2(cosnπ − 1)

πn2
cos(nx),

whose first few partial sums look like
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Again, these do appear to be approaching the triangular wave, in this case everywhere since the
triangular wave is continuous (in the slightly stronger way we’ll describe next time) everywhere.

Fourier partial sums. In order to approach the problem of determining convergence of Fourier
series we must investigate their partial sums

(SNf)(x) :=
a0
2

+
N∑
n=1

[an cos(nx) + bn sin(nx)].

It will be useful to have an alternative way of writing this partial sum expression. To get this, we
substitute in the integral formulas for all the coefficients:

(SNf)(x) =
1
π

∫ π
−π f(t) dt

2
+

N∑
n=1

[
1

π

∫ π

−π
f(t) cos(nt) cos(nx) dt+

1

π

∫ π

−π
f(t) sin(nt) sin(nx) dt

]
.

Note that we use t as the variable of integration in the Fourier coefficient formulas to distinguish
it from x, which is the value at which the partial sum SNf is being evaluated.

We can now manipulate by exchanging integrations and (finite) summations, and then factoring
a common f(t) out of every term to get

(SNf)(x) =
1

π

∫ π

−π
f(t)

(
1

2
+

N∑
n=1

[cos(nt) cos(nx) + sin(nt) sin(mx)]

)
dt.

Using the angle sum formula cos(a + b) = cos(a) cos(b) − sin(a) sin(b) for cosine, we can further
write the partial sum above as

(SNf)(x) =
1

π

∫ π

−π
f(t)

(
1

2
+

N∑
n=1

cos[n(x− t)]

)
dt.

Controlling the behavior of these partial sums then comes down to controlling the behavior of this
integral, and in particular the behavior of the function being multiplied by f(t).

Dirichlet kernel. Set DN to be the function defined by

DN (x) =
1

2
+

N∑
n=1

cos(nx),

so that we can write the Fourier partial sums as

(SNf)(x) =
1

π

∫ π

−π
f(t)DN (x− t) dt.

After a change of variables u = x− t, we get

(SNf)(x) =
1

π

∫ x+π

x−π
f(x− u)DN (u) du =

1

π

∫ π

−π
f(x− u)DN (u) du,
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where in the second integral we use the fact that f and DN are 2π-periodic to write the integral
over [x − π, x + π] as that over [−π, π] instead. (Integrating a periodic function over any interval
whose length matches the period always gives the same value.)

The function DN is called the N -th order Dirichlet kernel, and understanding its properties is
crucial to understanding convergence of Fourier series. The integral expression above for SNf is
called the convolution of f with DN , and is typically denoted by f ? DN :

(f ? DN )(x) := (SNf)(x) =
1

π

∫ π

−π
f(x− u)DN (u) du.

We previously saw the terms “kernel” and “convolution” in the context of the Landau kernels used
to prove Weierstrass approximation, and they were also used on the previous homework. (The
homework problem this refers to deals with so-called “good” kernels, where the result is some
uniform convergence property of convolutions with good kernels. The Dirichlet kernels are not
“good” in that sense, however, which is why convergence of Fourier series can be quite a delicate
problem. We’ll say more next time.) In both the homework and the previous Landau case the
convolution was written using f(x + t) instead of f(x − t) as given here, but the two expressions
give the same result in this case since DN is an even function and the interval of integration is
symmetric about 0, so that the change of variables u 7→ −u does not change the integral.

Back to linear algebra. Before moving on, it will be useful to describe the linear-algebraic
context behind the study of Fourier series. Recall that given an orthogonal basis b1, . . . ,bn for
Rn—where the dot product between any two vectors is zero—all x ∈ Rn can be decomposed in
terms of this basis as

x =

(
x · b1

b1 · b1

)
b1 + · · ·+

(
x · bn
bn · bn

)
bn.

Moreover, the part of this sum that goes up to ek gives the orthogonal projection of x onto the
subspace V spanned by b1, . . . ,bk:

projV x =

(
x · b1

b1 · b1

)
b1 + · · ·+

(
x · bk
bk · bk

)
bk.

This orthogonal projection is characterized by the property that x − projV x is orthogonal to all
elements of V , or equivalently that projV x is the element of V that is closest to x in the sense that
it minimizes the length of x− v among all v ∈ span(b1, . . . ,bk).

The point is that this is precisely what is going on with Fourier series as well. Define an inner
product (generalization of dot product) on functions by

〈f, g〉 :=

∫ π

−π
f(x)g(x) dx.

(The right side is an “uncountable sum” analog of the usual dot product sum x ·y =
∑

i xiyi.) The
“orthogonality relations”

〈cos(nx), cos(mx)〉 =

∫ π

−π
cos(nx) cos(mx) dx =


0 m 6= n

π m = n 6= 0

2π m = n = 0

〈cos(nx), sin(mx)〉 =

∫ π

−π
cos(nx) sin(mx) dx = 0 for all m,n
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〈sin(nx), sin(mx)〉 =

∫ π

−π
sin(nx) sin(mx) dx =

{
0 m 6= n or m = n = 0

π m = n 6= 0

we introduced last time then say precisely that the functions 1, cos(nx), sin(nx) for n > 0 (note
1 = cos(0x)) are orthogonal with respect to this inner product. The Fourier coefficients are then

an =

∫ π
−π f(x) cos(nx) dx

π
=
〈f(x), cos(nx)〉
〈cos(nx), cos(nx)〉

and bn =

∫ π
−π f(x) sin(nx) dx

π
=
〈f(x), sin(nx)〉
〈sin(nx), sin(nx)〉

when n > 0, and

a0
2

=

∫ π
−π f(x) cos(0x) dx

2π
=
〈f(x), cos(0x)〉
〈cos(0x), cos(0x)〉

,

so the Fourier series decomposition (when valid)

f(x) =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]

is thus nothing but an infinite sum analog of

x =

(
x · b1

b1 · b1

)
b1 + · · ·+

(
x · bn
bn · bn

)
bn.

In the Rn case we can turn an orthogonal basis into an orthonormal basis ui = bi
‖bi‖ (where each

basis vector now has norm 1) by dividing by lengths ‖bi‖ =
√

bi · bi, and then the decomposition
of x looks like

x = (x · u1)u1 + · · ·+ (x · un)un.

Similarly, we get “orthonormal” functions by dividing each of 1, cos(nx), sin(nx) by its “length”,
which is the square root of the inner product of it with itself:

1√
2π
,

cos(x)√
π

,
sin(x)√

π
,

cos(2x)√
π

,
sin(2x)√

π
, . . . .

For ease of notation, let us denote these orthonormal functions by φ0, φ1, φ2, . . . as they appear, so

φ0 =
1√
2π
, φ1 =

cos(x)√
π

, φ2 =
sin(x)√

π
, φ3 =

cos(2x)√
π

, φ4 =
sin(2x)√

π
, . . . .

(So, odd indices for the cosine ones and even indices for the sine ones, except for φ0 which uses
cos(0x) = 1.) Then

an cos(nx) =
〈f(x), cos(nx)〉
〈cos(nx), cos(nx)〉

cos(nx) =

〈
f(x),

cos(nx)√
π

〉
cos(nx)√

π
= 〈f(x), φ2n−1(x)〉φ2n−1(x)

for n ≥ 1, and similarly

a0
2

cos(0x) = 〈f(x), φ0(x)〉φ0(x) and bn sin(nx) = 〈f(x), φ2n(x)〉φ2n(x).

The upshot is that the Fourier series expression

a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)] =
a0
2

+

∞∑
n=1

an cos(nx) +

∞∑
n=1

bn sin(nx)
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then looks like
∞∑
n=0

〈f, φn〉φn,

which is an infinite sum analog of (x · u1)u1 + · · ·+ (x · un)un. The coefficients cn := 〈f, φn〉 here
are related to the previous coefficients (before we normalized) by c0 =

√
2π a0

2 and

c2n−1 =
√
π an and c2n =

√
π bn for n ≥ 1.

Integral minimizers. If the linear-algebraic interpretation above is to be the correct one, we
would expect a Fourier partial sum

N∑
n=0

〈f, φn〉φn

to be the “orthogonal projection” of f onto the space spanned by φ0, . . . , φN , which we take as
meaning that this partial sum should be the element in this span that minimizes “distance” to f .
Here we interpret “distance” as the uncountable analog of

√∑
i(xi − yi)2 given by√∫ π

−π
(f(x)− g(x))2 dx.

This square root is minimized when the integral of which the square root is taken is minimized, so
the claim is that

N∑
n=0

〈f, φn〉φn

minimizes the integral ∫ π

−π
(f − TN )2

among all trigonometric polynomials TN spanned by φ0, . . . , φN .
To see this, write the Fourier series of f as

∑∞
n=0 cnφn with cn = 〈f, φn〉, and write an arbitrary

TN =
∑N

m=0 dmφm with dm ∈ R. The expression we want to minimize is∫ π

−π
(f − TN )2 =

∫ π

−π
f2 − 2

∫ π

−π
fTN +

∫ π

−π
T 2
N .

Using the fact that the φi are orthonormal with respect to 〈f, g〉 =
∫ π
−π fg, we have∫ π

−π
T 2
N =

∫ π

−π

(
N∑
n=0

dnφn

)(
N∑
m=0

dmφm

)
=

N∑
n,m=0

dndm

∫ π

−π
φnφm︸ ︷︷ ︸

〈φn,φm〉=0 or 1

=
N∑
n=0

d2n.

By the definition cn = 〈f, φn〉 =
∫ π
−π fφn, we have∫ π

−π
fTN ==

∫ π

−π
f

N∑
m=0

dmφm =

N∑
m=0

dm

∫ π

−π
fφm =

N∑
m=0

dmcm.

Thus ∫ π

−π
(f − TN )2 =

∫ π

−π
f2 − 2

∫ π

−π
fTN +

∫ π

−π
T 2
N
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=

∫ π

−π
f2 − 2

N∑
n=0

dncn +

N∑
n=0

d2n

=

∫ π

−π
f2 −

N∑
n=0

c2n +

N∑
n=0

(dn − cn)2,

where in the last step we use (dn−cn)2−c2n = −2dncn+d2n. This final line is the expression we wish
to minimize, and since the final term

∑N
n=0(cn − dn)2 is nonnegative, the expression is minimized

when this final term is zero, which occurs if and only if each (dn − cn)2 is zero, so if and only if
dn = cn for n = 0, . . . , N . Thus,

∫ π
−π(f − TN )2 is minimized when TN =

∑N
n=0 cnφn is indeed the

N -th partial sum of the Fourier series
∑∞

n=0 cnφn. (The same proof works with respect to any inner
product, and in particular gives the fact that orthogonal projections in Rn minimize distance.)

Bessel and Riemann-Lebesgue. As a consequence of the work above, when TN is a partial sum
of the Fourier series of f we have∫ π

−π
(f − TN )2 =

∫ π

−π
f2 −

N∑
n=0

c2n

with cn the Fourier coefficients. The left side is nonnegative, so we get that

N∑
n=0

c2n ≤
∫ π

−π
f2.

Since this holds for all N , we then get

∞∑
n=0

c2n ≤
∫ π

−π
f2,

a result known as Bessel’s inequality. The point here is that, as a consequence, the series on the
left actually converges. Thus, the c2n, and hence the cn must converge to 0, a result known as
the Riemann-Lebesgue lemma. (Not to be confused with the Riemann-Lebesgue theorem we saw
earlier in the context of integrability via measure zero. The phrase “Riemann-Lebesgue theorem”
for the integrability result is common but not super widespread, whereas everyone on Earth does
use “Riemann-Lebesgue lemma” for the Fourier coefficient result.)

If we translate the results above in terms of cn, φn into corresponding statements in terms of
an, cos(nx), bn, sin(nx) using

c0 =
√

2π
a0
2
, c2n−1 =

√
π an, c2n =

√
π bn for n ≥ 1

as described earlier, we get that Bessel’s inequality is

a20
2

+
∞∑
n=0

(a2n + b2n) ≤ 1

π

∫ π

−π
f(x)2 dx

and that the Riemann-Lebesgue lemma becomes

an =
1

π

∫ π

−π
f(x) cos(nx) dx→ 0 and bn =

1

π

∫ π

−π
f(x) sin(nx) dx→ 0
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as n→∞. The fact that Fourier coefficients decay to 0 is crucial to understanding the convergence
of Fourier series. (It can be shown that Bessel’s inequality is actually an equality, a result known
as Parseval’s theorem. Rudin proves this for a general integrable f , but we will not give the proof
here as we will not need this result going forward. We will, however, give a proof in the case where
f is continuous as an application of another result we’ll see. Parseval’s theorem is nothing but an
infnite-dimensional analog of the Pythagorean theorem—convince yourself why!)

Lecture 18: Convergence of Fourier Series

Warm-Up 1. We show that if continuous functions f and g have the same Fourier coefficients
(and hence the same Fourier series), then f = g. This a type of uniqueness result in that an
integrable function is uniquely determined by its Fourier coefficients. Note that if Fourier series
always converged uniformly (or even pointwise) this would be immediate, as then f can be recovered
directly from

f(x) =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)].

But the claim here is more general assuming only continuity of our functions, which is not enough
to guarantee any type of convergence of the Fourier series.

A key observation is that Fourier coefficients are linear in the sense that the Fourier coefficients
of f + g are those of f plus those of g:

an(f+g) =

∫ π

−π
(f(x)+g(x)) cos(nx) dx =

∫ π

−π
f(x) cos(nx) dx+

∫ π

−π
g(x) cos(nx) dx = an(f)+an(g)

and similar for the sine coefficients bn. (Here we include the function of which we are computing
the Fourier coefficients as part of the notation, so an(f) versus an alone.) If f and g thus have the
same Fourier coefficients, then f − g has all zero Fourier coefficients:

an(f − g) = an(f)− an(g) = 0 and bn(f − g) = bn(f)− bn(g) = 0.

But actually, we have already studied functions satisfying an(f − g) = 0 = bn(f − g) for all n
before, namely as the Warm-Up in Lecture 14. There we showed, using denseness of trigonometric
polynomials, that

an(h) =

∫ π

−π
h(x) cos(nx) dx = 0 =

∫ π

−π
h(x) sin(nx) dx = bn(h)

for all n forces h = 0 (assuming h is continuous), which is precisely the setup we are looking at now.
We thus get immediately that f − g = 0, so f = g. The takeaway is that that previous denseness
result is really a result about Fourier coefficients uniquely determining a function.

Warm-Up 2. We show that if f is C1, then nan → 0 and nbn → 0 as n→∞. We know already
from the Riemann-Lebesgue lemma that an and bn both decay to zero, so what this now gives us
is a faster type of decay, at least for C1 functions. (More generally, the same argument works even
if f ′ is just integrable, but C1 is the usual way to guarantee that.) We have

an(f) =
1

π

∫ π

−π
f(x) cos(nx) dx.
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The point is that we can rewrite this by integrating by parts:

an(f) =
1

π

∫ π

−π
f(x) cos(nx) dx

=
1

nπ
f(x) sin(nx)

∣∣∣π
−π
− 1

nπ

∫ π

−π
f ′(x) sin(nx) dx.

The first term is zero, and 1
π

∫ π
−π f

′(x) sin(nx) dx in the second term is precisely the Fourier coeffi-
cient bn(f ′) of f ′, so

an(f) = − 1

n

(
1

π

∫ π

−π
f ′(x) sin(nx) dx

)
= − 1

n
bn(f ′).

A similar integration by parts computation (which will now use the fact that f is periodic to deal
with the first term) gives

bn(f) =
1

π

∫ π

−π
f(x) sin(nx) dx =

1

nπ

∫ π

−π
f ′(x) cos(nx) dx =

1

n
an(f ′).

(So, taking derivatives exchanges the roles of an and bn, up to some easy factor.) Thus we get

nan(f) = −bn(f ′) and nbn(f) = an(f ′),

so since the Fourier coefficients of f ′ approach zero by Riemann-Lebesgue, so do nan(f) and nbn(f ′).
More integration by parts applications will show that if f is C2 then n2an, n

2bn → 0, if f is C3

then n3an, n
3bn → 0, and so on, so that higher-orders of differentiability give better rates of decay

of Fourier coefficients.

Back to convergence. Last time we derived the expression

(SNf)(x) = (f ? DN )(x) =
1

π

∫ π

−π
f(x− t)DN (t) dt

for the partial sums of a Fourier series, where DN is the N -th order Dirichlet kernel and ? is
convolution. To write (f ? DN )(x)− f(x) in a useful way, we use the fact that∫ π

−π
D0(t) dt =

∫ π

−π

1

2
dt = π

and ∫ π

−π
DN (t) dt =

∫ π

−π

(
1

2
+

N∑
n=1

cos(nt)

)
dt = π +

N∑
n=1

∫ π

−π
cos(nt) dt = π +

N∑
n=1

0 = π

for N ≥ 1. (Thus, the Dirichlet kernels satisfy the first property required of a “good” kernel,
appropriately modified for the interval [−π, π] as opposed to [−1, 1] as on the last homework.) This
gives

1

π

∫ π

−π
DN (t) dt = 1 for all N ≥ 0,

so

(f ? DN )(x)− f(x) =
1

π

∫ π

−π
f(x− t)DN (t) dt− f(x)

1

π

∫ π

−π
DN (t) dt︸ ︷︷ ︸
1
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=
1

π

∫ π

−π
f(x− t)DN (t) dt− 1

π

∫ π

−π
f(x)DN (t) dt

=
1

π

∫ π

−π
[f(x− t)− f(x)]DN (t) dt.

Showing convergence of Fourier series thus comes down to make this final expression small.
If the DN did form a good kernel, we would be finished (assuming f is continuous), as we’ve

stated previously. But the DN do not form a good kernel, specifically because the property which
asks that the integrals ∫ π

−π
|DN (t)| dt

be bounded by some common M > 0 fails. (This was needed in the good kernel problem on the
homework since at some point you have to use continuity to make f(x− t)− f(x) small and need
something like

∫
|t|≤δ |DN (t)| dt ≤ M to deal with the rest of the integral near 0.) The Dirichlet

kernels look like (these are D2, D4, D6, D8)

Each net area is π, and in fact we do have convergence of the integral of |DN | to 0 near the endpoints
away from t = 0, so the third property of “good kernel” will actually hold. The problem is that
DN can take on negative values (for N ≥ 1), which is what allows for “cancellations” to occur so
that the net area remains 1 always, but after we take absolute values, all negative values get flipped
above, and in fact this causes the areas to explode to ∞ as N increases:

So, no possible bound on the integrals of all the absolute values, so no good kernel. Sad days.

Lipschitz is enough. Instead of relying a general good kernel argument, we instead use the decay
of the Fourier coefficients as given by Riemann-Lebesgue to derive a convergence result, specifically
one for functions which are Lipschitz continuous. To say that f is Lipschitz means that there exists
C > 0 such that

|f(x)− f(y)| ≤ C|x− y| for all x, y.

This implies ordinary continuity (in fact uniform continuity), and is actually a property we’ve seen
a few times throughout the quarter: contractions, for example, are the case where C < 1, and if f
is C1 on some [a, b] we can bound the derivative in a mean value application

|f(x)− f(y)| = |f ′(c)||x− y|

to get the Lipschitz condition. So, a fairly mild restriction in the end.
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We will prove that if f is Lipschitz, then the Fourier series of f converges to f pointwise. (It is
in fact true that the Fourier series will converge uniformly as well. We’ll point out at the end what
would be needed in order to get uniform convergence.) We have

(f ? DN )(x)− f(x) =
1

π

∫ π

−π
[f(x− t)− f(x)]DN (t) dt.

After the use of some various trig identities (that we will skip), it turns out that the Dirchlet kernel
can be written as

DN (t) =
sin[(n+ 1

2)t]

2 sin t
2

for t 6= 0, and DN (0) = 1
2 +N.

(The value at 0, or more generally any even multiple of π where sin t
2 is zero, can be found from

the original definition of DN as 1
2 plus a sum of cosines. We’ll ignore the value at 0 though since it

will not affect the integral anyway. Note that this Dirchlet kernel differs slightly from the version
Rudin gives because of the 2 in the denominator, which stems from the fact that Rudin is doing
all this for complex-valued functions and not just real-valued. Not a big deal.) With this, we have

(f ? DN )(x)− f(x) =
1

π

∫ π

−π
[f(x− t)− f(x)]

sin(Nt+ t
2)

2 sin t
2

dt

Using the angle addition formula for sin(A + B), we can write sin(Nt + t
2) as a product of two

cosines plus a product of two signs, and after doing so and breaking up the integral (and moving
the location of the 2 sin t

2 in the denominator) we get that the expression above is

1

π

∫ π

−π

(
f(x− t)− f(t)

2 sin t
2

)
cos( t2) cos(Nt) dt+

1

π

∫ π

−π

(
f(x− t)− f(t)

2 sin t
2

)
sin( t2) sin(Nt) dt.

For simplicity of notation, let us do as Rudin does and set

g(t) =
f(x− t)− f(x)

2 sin t
2

,

(technically only valid for t 6= 0, but no matter, just set g(0) = 0) so that

(f ? DN )(x)− f(x) =
1

π

∫ π

−π
g(t) cos( t2) cos(Nt) dt+

1

π

∫ π

−π
g(t) sin( t2) sin(Nt) dt.

The key point is that the two integrals on the right are precisely Fourier coefficients, but for the
functions g(t) cos( t2) and g(t) sin( t2):

(f ? DN )(x)− f(x) = aN (g(t) cos t
2) + bN (g(t) sin t

2).

Riemann-Lebesgue implies that these coefficients go to 0, and hence (f ?DN )(x)→ f(x) as desired,
almost: this works as long as we know that g is integrable, since we need g(t) cos t

2 and g(t) sin t
2 to

be integrable in order to talk about Fourier coefficients and be able to apply Riemann-Lebesgue.
In terms of the Riemann-Lebesgue theorem (not lemma!), we can see for sure that

g(t) =
f(x− t)− f(x)

2 sin t
2

fails to be continuous only possibly at the points where f (in the numerator) fails to be continuous
or maybe also at t = 0, which is the only point where the denominator is zero in [−π, π]. Thus, if
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f is integrable, it has a measure zero discontinuity set, so throwing one more point will not change
the measure zero property, and hence g has a measure zero discontinuity set.

But we also need to know that g is bounded, and this is where the Lipschitz condition is needed.
(Rudin just states that g is bounded without making any attempt to actually justify it—it is not
obvious!) The numerator is bounded, but the issue is that the denominator will approach 0 as t
approaches 0, so saying that the fraction is still bounded anyway takes some work. For this we use
the fact that

sin y

y
→ 1 as y → 0.

This gives that ∣∣∣∣sin t
2

t
2

∣∣∣∣ ≥ 1

2
when |t| < δ

for some δ > 0, so on (−δ, δ) we can bound the denominator of g(t) from below by

|2 sin t
2 | ≥ |

t
2 |.

Hence for |t| < δ we have

|g(t)| = |f(x− t)− f(x)|
|2 sin t

2 |
≤ |f(x− t)− f(t)|

|t|
2

≤ C|t|
|t|
2

= 2C,

where we use the Lipschitz property just before the end. Thus g is bounded on a small (−δ, δ),
and it is bounded on the rest of [−π, π] because the denominator does not come close to 0, so g is
bounded on all of [−π, π]. Therefore g is integrable, and our argument is complete, meaning that

SNf = f ? DN → f pointwise if f is Lipschitz.

Actually, we do not need Lipschitz over all of [−π, π] to get a convergence result since our argument
applies to one x at a time: if we only assume a Lipschitz condition at some x (meaning fix x in the
Lipschitz definition and vary the other point), we will get Fourier convergence at least at that x.

In order to turn this into uniform convergence instead, we would need a uniform version of the
Riemann-Lebesgue lemma. The argument above used Riemann-Lebesgue with the function

g(t) =
f(x− t)− f(x)

2 sin t
2

where x is fixed, so for uniform convergence we would instead consider

g(x, t) =
f(x− t)− f(x)

2 sin t
2

as a function of both x and t. We would then need a version of the Riemann-Lebesgue lemma that
guaranteed decay of such “uniform” Fourier coefficients:

an(g(x, t)), bn(g(x, t))→ 0 uniformly.

You will justify such a version on the homework, and then the pointwise convergence argument
here can indeed be turned into uniform convergence.

Example. For the square wave we saw last time with Fourier series

∞∑
k=0

4

(2k + 1)π
sin(2k + 1)x,
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we can now get some concrete values of the sum. The square wave is constant 1 near, say, x = π
2 ,

so it is Lipschitz at π
2 and thus the series above converges to 1 at π

2 :

1 =

∞∑
k=0

4

(2k + 1)π
sin

(
[2k + 1]π

2

)
=

∞∑
k=0

4

(2k + 1)π
(−1)k =

4

π

∞∑
k=0

(−1)k

2k + 1
.

Thus the alternating sum of reciprocals of odd positive integers is

π

4
=

∞∑
k=0

(−1)k

2k + 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · .

(This sum can also be derived via a Taylor series argument for arctanx, which is analytic on R, by
integrating 1

1+x2
=
∑∞

n=0(−1)nx2n.)
The triangular wave function is Lipschitz continuous everywhere, so its Fourier series

π

2
−
∞∑
n=0

4

π(2n+ 1)2
cos([2n+ 1]x)

converges to the value of the triangular wave at all x. At x = π, for example, we thus get

π =
π

2
− 4

π

∞∑
n=0

1

(2n+ 1)2
cos([2n+ 1]π) =

π

2
+

4

π

∞∑
n=0

1

(2n+ 1)2
.

After rearranging, we have

π2

8
=

∞∑
n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+

1

72
+ · · ·

as the sum of squares of reciprocals of odd positive integers. (This can also be derived using a
Taylor series for arcsinx, but I think the Fourier approach is simpler in this case.) Since

∞∑
n=1

1

n2
=

∞∑
n=0

1

(2n+ 1)2
+

∞∑
n=1

1

(2n)2
=
π2

8
+

1

4

∞∑
n=1

1

n2
,

after rearranging we get
∞∑
n=1

1

n2
=
π2

6
.

The series
∑∞

n=1
1
n2 has appeared a few times before (in particular on the homework), and now we

know the definite value.

Cesàro summability. Instead of pursuing full convergence of Fourier series from the get-go, we
can aim for some middle ground via an averaging procedure. If a sequence (an) in R converges to
L, then the sequence of averages of terms in (an) converges to L as well:

an → L implies
a1 + · · ·+ an

n
→ L.

(Proved last quarter, I believe!) The point is that instead of asking about convergence of (an) at
the start, we can first ask about convergence of these averages, which are generally better behaved
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than the an since, in a sense, taking averages has the effect of “smoothing out” the effect of some
poorly behaved an’s. If the sequence of averages diverges, then the original sequence diverges as
well, whereas if the sequence of averages converges, we might not know that the original sequence
converges too, but we at least know what candidate limit it would have to converge to (the same as
the averages) if it were to converge. The averages thus give an initial step towards understanding
convergence.

We can then apply this idea to the sequence of partial sums of a series. We say that
∑∞

n=0 an
is Cesàro summable with Cesàro sum L if the sequence of averages

s0 + · · ·+ sn
n+ 1

of the partial sums sk = a0 + · · ·+ ak—these averages are called the Cesàro means of the series—
converges to L. If a series converges in the usual sense, it will be Cesàro summable with Cesàro
sum equal to the usual sum. Again, Cesàro summable does not imply convergent, but it is a first
step towards convergence.

Fejér kernels. Applying this to a Fourier series gives the following. The partial sums of the
Fourier series of f are

(SNf)(x) =
a0
2

+

N∑
n=1

[an cos(nx) + bn sin(nx)] =
1

π

∫ π

−π
f(x− t)DN (t) dt.

The Cesàro means are thus

(S0f)(x) + · · ·+ (SNf)(x)

N + 1
=

1
π

∫ π
−π f(x− t)[D0(t) + · · ·+DN (t)] dt

N + 1

=
1

π

∫ π

−π
f(x− t)

[
D0(t) + · · ·+DN (t)

N + 1

]
dt.

If we set

KN (t) =
D0(t) + · · ·+DN (t)

N + 1

to be the averages of the Dirichlet kernels, we get that the Cesàro means of the Fourier series are
given by convolution with KN :

(S0f)(x) + · · ·+ (SNf)(x)

N + 1
=

1

π

∫ π

−π
f(x− t)KN (t) dt =: (f ? KN )(x).

The function KN is called the N -th order Fejér kernel. As you showed on the last homework,
the Fejér kernels are a good kernel, and hence, as you showed, if f is continuous we have that

f ? KN → f

uniformly. The upshot is that the Fourier series of a continuous functions is always uniformly Cesàro
summable to that function, a result which is known as Fejér’s theorem. Here are pictures of the
graphs of some Fejér kernels (K2,K4,K6,K8), which illustrate their good kernel properties: their
integral over [−π, π] is always π, which since the Fejér kernels are nonnegative (hence they “smooth
out” the non-good kernel properties of the Dirichlet kernels), gives a bound on the integrals of their
absolute values, and they flatten out away from 0:
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Lecture 19: Limits and Linearity

Warm-Up 1. We prove that polynomials are dense in C([a, b]) for [a, b] ⊆ (−π, π). Of course,
we already know this is true due to the Weierstrass approximation theorem, but the point here is
to give an alternative proof based on the theory of Fourier series. The restriction [a, b] ⊆ (−π, π)
we use here is only needed because polynomials (more generally continuous functions) are not
necessarily 2π-periodic, but this restriction can be removed using Fourier series with periods other
than 2π with different sine and cosine expressions: given any [a, b], use Fourier series with a period
larger than b− a, and the argument we give here will still work. This and the next Warm-Up also
demonstrate that Cesàro summability has applications in its own right regardless of whether or not
the Fourier converges.

The strategy is as follows. Given f ∈ C([a, b]), Fejérs theorem guarantees that we can uniformly
approximate f by the Cesàro means of its Fourier series, which are trigonometric polynomials. (So,
we also avoid having to use Stone-Weierstrass.) Each of these trigonometric polynomials involves
sines and cosines, but sine and cosine are both analytic with global power series expansions, so we
can uniformly approximate them on all of [a, b] using their Taylor polynomials. Putting all of these
approximations together gives a uniform approximation of f by polynomials as desired.

To be precise, let ε > 0 and pick N such that

|f − f ? KN | <
ε

2

where KN is the N -th order Fejér kernel, which is possible because f ?KN → f uniformly by Fejér’s
theorem. Since f ? KN is an average of the trigonometric polynomials SNf (partial sums of the
Fourier series of f), f ? KN is also a trigonometric polynomial, say

(f ? KN )(x) = c0 +

N∑
n=1

(cn cos(nx) + dn sin(nx)).

Since the Taylor polynomials of cosine and sine centered at 0 converge to cosine and sine on all of
R, they do so uniformly on [a, b]; call these Taylor polynomials

Pk(x) =

k∑
n=0

(−1)kx2k

(2k)!
for cosx and Qk(x) =

k∑
n=0

(−1)kx2k+1

(2k + 1)!
for sinx.

Pick K1 and K2 such that

| cos−PK1 | <
ε

4N(max{|c1|, . . . , |cN |}+ 1)
and | sin−QK2 | <

ε

4N(max{|d1|, . . . , |dN |}+ 1)
.

(The +1 is there just to avoid the dumb case where everything is zero.) Then

R(x) := c0 +
N∑
n=1

(cnPK1(nx) + dnQK2(nx))
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is a polynomial and

|f −R| ≤ |f − f ? KN |+ |f ? Kn −R|

<
ε

2
+

∣∣∣∣∣
N∑
n=1

[cn(cos−PK1) + dn(sin−QK2)]

∣∣∣∣∣
≤ ε

2
+

N∑
n=1

[|cn|| cos−PK1)|+ |dn|| sin−QK2 |]

<
ε

2
+

N∑
n=1

( ε

4N
+

ε

4N

)
= ε,

so f can be uniformly approximated by polynomials within any ε > 0.

Warm-Up 2. We prove Parseval’s theorem

a20
2

+
∞∑
n=1

(a2n + b2n) =
1

π

∫ π

−π
f(x)2 dx

for f continuous on [−π, π] (with same values at ±π) where an, bn are the Fourier coefficients of
f . In fact, Parseval’s theorem holds more generally for f integrable, but this requires a little more
work to justify, which we will leave to discussion section. (Parseval’s theorem is just an infinite-
dimensional analog of the Pythagorean theorem. In the form f =

∑∞
n=0 〈f, φn〉φn of the Fourier

series of f where we use orthonormal functions φn—so 1√
2π
, cosx√

π
, sinx√

π
, etc—Parseval’s theorem

looks like
∞∑
n=0

〈f, φn〉2 = 〈f, f〉2 .

The usual Pythagorean theorem in Rn says that if

(x · u1)u1 + · · ·+ (x · un)un = x

with respect to an orthonormal basis u1, . . . ,un, then

(x · u1)
2 + · · ·+ (x · un)2 = x · x = ‖x‖2 ,

so indeed we are looking at an infinite version of this.)
Bessel’s inequality already gives

a20
2

+

∞∑
n=1

(a2n + b2n) ≤ 1

π

∫ π

−π
f(x)2 dx,

so we need only justify the opposite inequality. From the derivation of Bessel’s inequality, we have

1

π

∫ π

−π
(f − SNf)2 =

1

π

∫ π

−π
f2 −

(
a20
2

+

N∑
n=1

(a2n + b2n)

)
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for each N , where SNf is the N -th order Fourier partial sum. The Cesáro mean f ? KN is a
trigonometric polynomial of order N , so since the SNf minimize integrals of squares, we have

1

π

∫ π

−π
f2 −

(
a20
2

+
N∑
n=1

(a2n + b2n)

)
=

1

π

∫ π

−π
(f − SNf)2 ≤ 1

π

∫ π

−π
(f − f ? KN )2.

The integrands on the right converge to 0 as N →∞ since f ? Kn → f uniformly, so taking limits
above gives

1

π

∫ π

−π
f2 −

(
a20
2

+
∞∑
n=1

(a2n + b2n)

)
≤ 0,

which is the desired remaining inequality, so Parseval’s theorem holds. (To get Parseval for inte-
grable f , we have to know that integrals of arbitrary integrable functions can be approximated by
integrals of continuous functions. Again, we’ll leave the details to discussion section.)

Componentwise limits and continuity. We now move to studying differentiability in Rn, which
is our final topic of the quarter. The notion of a limit in Rn plays a key role, so we begin by revisiting
the main ideas. (Limits of functions between arbitrary metric spaces was covered at the start of
Chapter 4 in Rudin, but it is worth being clear about what this looks like in Euclidean space.)

Given a function f : U ⊆ Rn → Rm defined on an open subset U of Rn (when m > 1 we often
say that f is vector-valued), for a ∈ U we say that limx→a f(x) = L ∈ Rm if for all ε > 0 there
exists δ > 0 such that

‖f(x)− L‖ < ε when 0 < ‖x− a‖ < δ.

Here, the first ‖·‖ is the Euclidean distance in Rm and the second ‖·‖ is the Euclidean distance in
Rn. Note first that, from this, the “approach via different paths” technique you would have seen in
a multivariable calculus course is valid: if γ(t) is any continuous path passing through a = γ(t0),
the values of γ(t) eventually (for t close enough to t0) fall within the range 0 < ‖x− a‖ < δ, so
‖f(γ(t))− L‖ < ε for those values and hence the limit of f when we approach a only along γ is L.
As a consequence, if different choices for γ give different limits, then limx→a f(x) does not exist.

The main point for our purposes is that such limits can be determined component-by-component
in the sense that if we denote the components of f by f = (f1, . . . , fm), where each fm is scalar-
valued, then

lim
x→a

f(x) = L if and only if lim
x→a

fi(x) = Li

where the Li are the components of L = (L1, . . . , Lm). Thus, considering limits into Rm reduces
to considering limits into R, which are usually simpler to get a handle on. This fact follows from
the inequalities

|xi − yi| =
√

(xi − yi)2 ≤
√

(x1 − y1)2 + · · ·+ (xm − ym)2 ≤
√
m ·max{|xi − yi|}

for (x1, . . . , xm), (y1, . . . , ym) ∈ Rm, so Euclidean distance in Rm can be made small if and only if
componentwise distances in R can be made small. From this we then get that continuity occurs
componentwise as well, meaning that f = (f1, . . . , fm) : U → Rm is continuous if and only if each
fi : U → R is continuous.

Here is an example. Set f : R2 → R2 to be

f(x, y) =

{(
xy(x2−y2)
x2+y2

, ex
3+y3

)
if (x, y) 6= (0, 0)

(0, 1) if (x, y) = (0, 0).
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We claim that
lim

(x,y)→(0,0)
f(x, y) = (0, 1) = f(0, 0),

so that f is continuous at (0, 0). Since limits can be computed componentwise, this is comes down
to knowing that

lim
(x,y)→(0,0)

xy(x2 − y2)
x2 + y2

= 0 and lim
(x,y)→(0,0)

ex
3+y3 = 1.

The second just follows from continuity of the exponential function and of x3 + y3. For the first,
we use

|x| =
√
x2 ≤

√
x2 + y2 and similarly |y| ≤

√
x2 + y2.

Then ∣∣∣∣xy(x2 − y2)
x2 + y2

∣∣∣∣ ≤ ∣∣∣∣(x2 + y2)(x2 − y2)
x2 + y2

∣∣∣∣ = |x2 − y2|,

which goes to 0 as (x, y)→ (0, 0), so xy(x2−y2)
x2+y2

does as well.

Linear transformations. Differentiability is all about approximating nonlinear things by linear
ones, so before saying what differentiability means in Rn, we must know what we mean by “linear”
here. The answer comes from linear algebra: a function T : Rn → Rm is linear (or is a linear
transformation if it preserves addition and scalar multiplication in the sense that

T (x + y) = T (x) + T (y) and T (cx) = cT (x) for all x, y ∈ Rn, c ∈ R.

As you would have seen in a linear algebra course, being linear is equivalent to the existence of an
m× n matrix A such that T (x) = Ax for all x ∈ Rn.

From this we can easily see that linear transformations are always continuous. Indeed, if we
denote the entries of A by aij and those of x by xi, then Ax looks like

Ax =

a11 · · · a1n
...

. . .
...

am1 · · · amn


x1...
xn

 =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 .
The components of T , being polynomials, are thus all continuous, so T is continuous. As we’ll see,
linear transformations play the role of “derivatives” in the higher-dimensional setting.

Operator norms. We will need to be able to control the size of expressions involving linear
transformations. We might first ask whether a given linear transformation T : Rn → Rm is
bounded, but this can never be the case if T 6= 0 using our usual definition of “bounded”: for x
such that T (x) 6= 0, we get

‖T (cx)‖ = ‖cT (x)‖ = |c| ‖T (x)‖ → ∞ as |c| → ∞,

so the image of T 6= 0 in Rm is never bounded. To get a meaningful bound we must restrict the
types of vectors x we consider, and thus we define the operator norm of T (x) = Ax (also called the
operator norm of A) as

‖T‖ := sup
‖x‖=1

‖T (x)‖ .

That is, we ask for a bound on T but only among things of norm 1. Since the unit sphere {‖x‖ = 1}
is compact in Rn and T is continuous, ‖T‖ achieves a maximum among such points by the extreme
value theorem, and this maximum is the supremum above, which is thus finite.
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The precise value of ‖T‖ will not be important to know, but you will show in discussion section
that it is actually the square root of the largest eigenvalue of the matrix ATA. What is important
is the following inequality it satisfies, which is what will allow us to bound expressions involving
linear transformations. If x 6= 0, then x

‖x‖ has norm 1, so we get∥∥∥T ( x
‖x‖)

∥∥∥ ≤ ‖T‖ .
On the other hand, ∥∥∥T ( x

‖x‖)
∥∥∥ =

∥∥∥ 1
‖x‖T (x)

∥∥∥ = 1
‖x‖ ‖T (x)‖

by lineraity, so
1

‖x‖
‖T (x)‖ ≤ ‖T‖ , and hence ‖T (x)‖ ≤ ‖T‖ ‖x‖ .

This also holds for x = 0 since T (0) = 0, so ‖T (x)‖ ≤ ‖T‖ ‖x‖ for all x ∈ Rn. This is sometimes
called the Cauchy-Schwarz inequality for the operator norm due so its similarities to the usual
Cauchy-Schwarz inequality: |x · y| ≤ ‖x‖ ‖y‖. (In fact, the two inequalities say the same thing in
the case where m = 1, so that A =

[
a1 · · · an

]
has only one row, as a consequence of the last

problem on the next homework.) The Cauchy-Schwarz inequality thus says that, geometrically,
‖T‖ is the largest factor by which T can scale vectors.

Note one immediate consequence of all this. For x,y ∈ Rn, we have

‖T (x)− T (y)‖ = ‖T (x− y)‖ ≤ ‖T‖ ‖x− y‖ ,

which says that linear transformations are Lipschitz and hence uniformly continuous.

Lecture 20: Differentiability in Rn

Warm-Up 1. We justify some basic properties of the operator norm, namely that

‖AB‖ ≤ ‖A‖ ‖B‖ , ‖cA‖ = |c| ‖A‖ , and ‖A+B‖ ≤ ‖A‖+ ‖B‖

for all matrices A and B (of appropriate sizes so that the sums and products make sense) and
c ∈ R. For ‖x‖ = 1, we have

‖(AB)x‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖ = ‖A‖ ‖B‖ ,

so the maximum of the things on the left is bounded by the thing on the right, which gives the first
property. Next,

‖cA(x)‖ = |c| ‖Ax‖ ,

so the maximum of the things on the left for ‖x‖ = 1, which is ‖cA‖, equals the maximum of the
things on the right, which is |c| ‖A‖, and this is the second property. Finally, if ‖x‖ = 1,

‖(A+B)x‖ = ‖Ax +Bx‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ ‖A‖+ ‖B‖ ,

which implies ‖A+B‖ ≤ ‖A‖+ ‖B‖.

Warm-Up 2. The final property above implies that ‖A−B‖ satisfies triangle inequality:

‖A−B‖ = ‖(A− C) + (C −B)‖ ≤ ‖A− C‖+ ‖C −B‖ .
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Since the only matrix of norm 0 is the zero matrix (if the norm is 0, by scaling you can show that
the matrix sends every vector to the zero vector), this shows that the space of m× n matrices is a
metric space with respect to the distance ‖A−B‖. We will work with this metric space in just a few
examples dealing with differentiability later, so it will not play a major role for us, but nonetheless
we now justify some topological properties of this space—or rather of some of its subsets—just to
get a feel for what it looks like.

For example, the set of invertible n×n matrices is open in the metric space of all n×n matrices
equipped with the operator norm. Rudin gives a proof of this, and then a proof of the fact that
the map sending such a matrix to its inverse is continuous, using the operator norm directly. This
requires a careful study of the operator norm, but instead we take the approach stated in the last
problem on the current homework that topological questions dealing with the operator norm are
equivalent to those dealing with the Euclidean norm instead. The point is that we can think if an
n×n matrix as a vector in Rn2

by arranging its entries as one single long column, and we can then
instead consider the usual Euclidean norm on this vector. The Euclidean norm obtained in this
way is not the same as the operator norm (except for in very special cases, see the homework), but
they are related by some inequalities that imply that “open” with repsect to the operator norm is
equivalent to “open” with respect to the Euclidean norm. As a consequence, “continuous” means
the same thing in both contexts as well.

A square matrix is invertible if and only if its determinant is nonzero, so the set of invertible
n×n matrices—typically denoted by GLn(R)—is the preimage of R\{0} = (−∞, 0)∪ (0,∞) under
the function

det : {n× n matrices} → R

that sends a matrix to its determinant. This determinant function is continuous since determinants
can be written as polynomial expressions in the entries of the matrix, and polynomials are always
continuous. (For example, det

[
a b
c d

]
= ad − bc is a quadratic polynomial in the entries a, b, c, d,

and the determinant of a 3× 3 matrix will be a cubic polynomial in the entries.) The preimage of
an open set under a continuous function is open, so we get that the set U of invertible matrices is
open among all matrices of the same size. The function U → U that sends a matrix to its inverse
is continuous because its components are continuous since the entries of A−1 can be written as
fractions of polynomials whose the denominators are the (nonzero) determinant; for example,[

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
=

[
d/(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

]
,

and similar expressions for larger matrices.
Here are some other examples. The set of n×n matrices of determinant 1—typically denoted by

SLn(R)—is closed (in the metric space sense) in the space of all matrices of the same size. This uses
the same continuous determinant argument: this set is the preimage of {1} under the determinant
function, and preimages of closed sets are closed. The set of orthogonal n × n matrices—denoted
by On(R)—which are matrices with orthonormal columns, or equivalently satisfying QTQ = 1, is,
we claim, compact. Indeed, this set is bounded since the Euclidean norm of the corresponding
vector in Rn2

is bounded because all columns are meant to have length 1. Moreover, this set is
compact because it is the preimage of a closed set under a continuous function: the entries of QTQ
are all polynomials in the entries of Q, so the map Q 7→ QTQ is continuous as a map from the
space of n×n matrices to itself, and the set of orthogonal matrices is the preimage of the closed set
{I}. Since the set of orthogonal matrices is closed and bounded (in Rn2

), it is compact, and hence
still compact with respect to the operator norm. (Note, as a constrast, that the set of matrices
of determinant 1 is not compact since it is not bounded: in the 2 × 2 case, for example, we can
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ensure ad− bc = 1 holds for a arbitrarily large and hence unbounded as long as we in turn make d
appropriately small.)

The set of orthogonal matrices is not connected (again in the metric space sense), however,
since the subset of orthogonal matrices of determinant 1 and the subset of orthogonal matrices
of determinant −1 (any orthogonal matrix has determinant ±1) are each open, nonempty, and
disjoint from one another. If we restrict to the set of orthogonal matrices of determinant 1—
denoted SOn(R)—however, this is now connected and compact!

Differentiability. To motivate the definition of differentiability in higher dimensions, let us start
with the single-variable case, where derivatives are meant to give linear approximations. This
means that something like

f(x) ≈ f(a) + f ′(a)(x− a) for x ≈ a

should be true. The precise way of saying this is that the difference (or “error”)

f(x)− [f(a) + f ′(a)(x− a)]

should go to 0 as x→ a “more rapidly” than x− a does in the sense that

lim
x→a

f(x)− [f(a) + f ′(a)(x− a)]

x− a
= 0.

Manipulating this expression yields

lim
x→a

f(x)− [f(a) + f ′(a)(x− a)]

x− a
= 0 ⇐⇒ lim

x→a

f(x)− f(a)

x− a
= f ′(a),

so we can take the former as the definition of what it means for f to be differentiable at a, or more
precisely the statement that there exists f ′(a) ∈ R—which we call the derivative of f at a—for
which first limit is zero as the definition.

For a function f : U ⊆ Rn → Rm, we then expect a similar “linear approximation” property to
hold if f is to be differentiable:

f(x) ≈ f(a) + f ′(a)(x− a) for x ≈ a.

But what type of object should the “derivative f ′(a)” here be? The vectors x and a are in U ⊆ Rn,
while f(x), f(a)iRm, so f ′(a) should be something that will transform vectors in Rn into vectors
in Rm in a “linear” way, so that f ′(a) should actually be a linear transformation Rn → Rm, or in
other words an m×n matrix! We thus say that f is differentiable at a ∈ U if there exists an m×n
matrix (equivalently linear transformation B : Rn → Rm) such that

lim
h→0

f(a + h)− [f(a) +Bh]

‖h‖
= 0.

Here, x := a + h is a point that will be “close” to a as h = x − a gets small, and the numerator
is the error in approximating the value f(a + h) at this nearby point by the linear expression
f(a) + Bh = f(a) + B(x− a); to say that f is differentiable is to say that this error decays more
quickly than does ‖h‖ = ‖x− a‖. If this is true, we call the matrix B the derivative of f at a, and
denote it by f ′(a) = B. (We will show next time that this B, if it exists, is unique, and can be
determined explicitly from the partial derivatives of f .)
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Note that this definition gives the expected result when m = n = 1: B = (b) is then a 1 × 1
matrix, and this new definition of differentiable becomes

lim
x→a

f(x)− [f(a) + b(x− a)]

x− a
= 0 ⇐⇒ lim

x→a

f(x)− f(a)

x− a
= b,

so we recover the previous definition in the single-variable case. In the single-variable case the word
“matrix” never appears because you only ever deal with 1× 1 matrices anyway, but they’re there!

Example. Define f : R2 → R2 by

f(x, y) = (x2 + y2, xy + y).

We show that f is differentiable at (0, 1) with derivative f ′(0, 1) = [ 0 2
1 1 ]. Set a = (0, 1), h = (h, k),

and x = (x, y), so that

f(a + h)− f(a)− f ′(a)h = f(h, k + 1)− f(0, 1)− [ 0 2
1 1 ]

[
h
k

]
= (h2 + [k + 1]2, h(k + 1) + [k + 1])− (1, 1)− (2k, h+ k)

= (h2 + k2 + 2k + 1, hk + k + 1)− (1, 1)− (2k, h+ k)

= (h2 + k2, hk).

(Technically we should not use the notation f ′(a) above until we know that this derivative exists,
and we should instead use B = [ 0 2

1 1 ], but whatever.)
Thus in order to establish differentiability, we must know that

lim
h→0

f(a + h)− f(a)− f ′(a)h

‖h‖
= lim

(h,k)→(0,0)

(h2 + k2, hk)√
h2 + k2

= (0, 0).

But this can be determined componentwise, so we must know that

lim
(h,k)→(0,0)

h2 + k2√
h2 + k2

= 0 and lim
(h,k)→(0,0)

hk√
h2 + k2

= 0.

The first follows from h2+k2√
h2+k2

=
√
h2 + k2, and the second from the bound |h||k| ≤

√
h2 + k2

√
h2 + k2,

so f is differentiable at (0, 1) as claimed with derivative f ′(0, 1) = [ 0 2
1 1 ]. (Why was this the right

matrix to consider in the first place? We’ll see next time.)

Another example. Linear transformations T (x) = Ax are always differentiable with constant
derivative A. Indeed, the numerator in the limit defining differentiability is

T (x + h)− T (x)−Ah = T (x) + T (h)− T (x)−Ah = 0

by linearity, so

lim
h→0

T (x + h)− T (x)−Ah

‖h‖
= lim

h→0

0

‖h‖
= 0.

Hence T is differentiable at any x ∈ Rn and T ′(x) = A. (This is just the higher-dimensional
analog of the fact that f(x) = ax is differentiable and f ′(x) = a is constant. The same is true for
something like T (x) = Ax + b, so linear plus a constant—what are typically referred to as affine
transformations—which is analogous to what happens for f(x) = ax+ b.)
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Differentiable implies continuous. We will build up more on differentiability next time, but
as a start we should know that differentiable implies continuous, just as in the single-variable case.
Suppose f : U ⊆ Rn → Rm is differentiable at x ∈ U with derivative f ′(x), an m×n matrix. Then

lim
h→0

f(x + h)− f(x)− f ′(x)h

‖h‖
= 0,

so in particular there exists δ > 0 such that∥∥∥∥f(x + h)− f(x)− f ′(x)h

‖h‖

∥∥∥∥ < 1 when ‖h‖ < δ.

This gives ∥∥f(x + h)− f(x)− f ′(x)h
∥∥ < ‖h‖ for small ‖h‖ ,

and thus
‖f(x + h)− f(x)‖ ≤ ‖h‖+

∥∥f ′(x)h
∥∥ for small ‖h‖

after a reverse triangle inequality. Using Cauchy-Schwarz on ‖f ′(x)h‖ ≤ ‖f ′(x)‖ ‖h‖, where ‖f ′(x)‖
is an operator norm, we get

‖f(x + h)− f(x)‖ ≤ ‖h‖+
∥∥f ′(x)

∥∥ ‖h‖ = (1 +
∥∥f ′(x)

∥∥) ‖h‖

for small ‖h‖. The right side now goes to 0 as h → 0 (note that 1 + ‖f ′(x)‖ is a fixed constant),
so the left side does as well, which means that

lim
h→0

f(x + h) = f(x),

so that f is continuous at x as claimed.

Lecture 21: Jacobian Matrices

Warm-Up 1. We show that if f is differentiable at x, the derivative matrix f ′(x) is unique in
the sense that there can only be one choice which satisfies the definition of differentiability. Now,
shortly we will derive an explicit description of what the entries in f ′(x) must look anyway, which
also guarantees uniqueness, but the goal here is to give an standalone argument which does not
depend on knowing what f ′(x) is.

Suppose B,B′ are two matrices that satisfy the differentiability definition, so

lim
h→0

f(x + h)− f(x)−Bh

‖h‖
= 0 and lim

h→0

f(x + h)− f(x)−B′h
‖h‖

= 0.

Subtracting gives

lim
h→0

Bh−B′h
‖h‖

− 0

since everything else cancels out. Rewriting and using linearity of B −B′ gives

lim
h→0

(B −B′) h
‖h‖ = 0.

This means for any ε > 0, there exists δ > 0 such that∥∥∥(B −B′) h
‖h‖

∥∥∥ < ε for 0 < ‖h‖ < δ.
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Now, take ‖x‖ = 1. Then h = δ
2x satisfies 0 < ‖h‖ < δ, so we get∥∥(B −B′)x

∥∥ =
∥∥∥(B −B′) h

‖h‖

∥∥∥ < ε.

(If h = δ
2x, dividing h by its norm just recovers x since ‖x‖ = 1.) The operator norm of B −B′ is

the maximum of the things on the left, so this gives∥∥B −B′∥∥ < ε.

Since this holds for all ε > 0, ‖B −B′‖ = 0, so B−B′ = 0 and hence the derivative f ′(x) is unique.

Warm-Up 2. Define f : R2 → R by

f(x, y) =

{
−2x3+3y4

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

We claim that the 1× 2 matrix B =
[
−2 0

]
does not satisfy the definition of differentiability for

f at (0, 0). Now, at this point this is not enough to show that f is not differentiable at (0, 0) since
it does not rule out the possibility that some other 1 × 2 matrix could satisfy the definition, but
in fact we will see afterwards that if f were going to be differentiable at (0, 0), this specific matrix
is the only one that could work. So, this Warm-Up actually is, in the end, showing that f is not
differentiable at (0, 0)

For h = (h, k) 6= 0, we have

f(0 + h)− f(0)−Bh = f(h, k)− f(0, 0)− [−2 0 ]
[
h
k

]
=
−2h3 + 3k4

h2 + k2
− 0− (−2h+ 0)

=
−2h3 + 3k4

h2 + k2
+ 2h

=
3k4 + 2hk2

h2 + k2
.

Thus, the limit in the definition of differentiability looks like

lim
h→0

f(0 + h)− f(0)−Bh

‖h‖
= lim

(h,k)→(0,0)

3k4+2hk2

h2+k2√
h2 + k2

= lim
(h,k)→(0,0)

3k4 + 2hk2

(h2 + k2)
√
h2 + k2

.

If this limit were going to exist and equal 0, we would get a limit value of 0 along any curve we
choose to approach (0, 0) along. But along h = k, this limit restricts to

lim
h→0

3h4 + 2h3

2h2
√

2h2
= lim

h→0

(
3h2

2
√

2|h|
+

2h√
2|h|

)
.

The first term on the right does approach 0 as h → 0, but the limit of the second term does not
exist since h

|h| = ±1 depending on whether h is positive or negative. Hence the limit above does
not exist, and it if does not exist it certainly does not equal 0, so

lim
h→0

f(0 + h)− f(0)−Bh

‖h‖
6= 0
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and hence the differentiability definition fails with candidate matrix B =
[
−2 0

]
.

Deriving the derivative. If f is differentiable at x, we now derive the entries of the (unique)
matrix B satisfying

lim
h→0

f(x + h)− f(x)−Bh

‖h‖
= 0.

First, since this limit exists, we get the same limit value for the restriction of f to any path
passing through 0, so let us take specifically the path formed by the points h = tej as t varies
with j = 1, . . . , n fixed, where ej is the vector which has 1 in the j-th entry and 0 elsewhere. (A
“standard basis vector” in the language of linear algebra.) Along this path, our limit becomes

lim
t→0

f(x+ tej)− f(x)−B(tej)

|t|
= 0

where we use ‖tej‖ = |t| ‖ej‖ = |t| in the denominator.
Now, f : U ⊆ Rn → Rm here is vector-valued (scalar-valued when m = 1), so let us denote its

components by f = (f1, . . . , fm). Limits can be determined componentwise, so we get that

lim
t→0

fi(x + tej)− fo(x)− (Bej)it

t
= 0

for each i = 1, . . . ,m where (Bej)i denotes the i-th component of the vector Bej , and where we use
linearity to say that B(tej) = (Bej)t. (Also, we drop the absolute value on t because the absolute
value does not affect whether a limit does or doesn’t equal 0.) This is now a single-variable (in
terms of t) scalar-valued expression, and so can be manipulated algebraically to get

lim
t→0

fi(x + tej)− fi(x)

t
= (Bej)i.

So, we get two conclusions here: not only does the limit

lim
t→0

fi(x + tej)− fi(x)

t

exist for each i, j, but its value is given by (Bej)i. This limit defines what’s called the partial

derivative ∂fi
∂xj

(x) of fi with respect to xj at x, where the point is that it is the single-derivative of

the function we get by varying only xj in fi(x) and keeping the other coordinates fixed. (We vary
only xj because x + tej and x agree in the other coordinates.) Thus we have

∂fi
∂xj

(x) = (Bej)i.

But the product Bej is precisely the j-th column of B, and hence

∂fi
∂xj

(x) = (Bej)i = the entry in the i-th row and j-th column of B.

Thus, to summarize, if f is differentiable at x, then all partial derivatives of all components of
f exist at x, and f ′(x) is the matrix which has these partial derivatives as its entries.
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Jacobian matrices. We define the Jacobian matrix of f at x to be this matrix of partial derivatives
(assuming they exist), arranged as

Df(x) :=


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 .
The i-th row contains all partial derivatives of the i-th component fi of f , and the j-th column
contains the partial derivatives of all components with respect to xj . (So, change the variable as we
move along the row, and change the component as we move down a column. Note that the resulting
matrix then does have size m×n.) With this we can thus rephrase the definition of differentiability
at x as saying that the Jaocbian matrix Df(x) exists (in other words all partial derivatives exist
at x), and satisfies

lim
h→0

f(x + h)− [f(x) +Df(x)h]

‖h‖
= 0.

(Note that Rudin just continues to use the notation f ′(x) for this derivative, but we prefer to
reserve the prime notation for single-variable derivatives and use Df(x) for the derivative matrix
in order to emphasize that it is an entire matrix, not just a number.)

In the function in the second Warm-Up, ∂f∂x (0, 0) is the derivative of the single-variable function
obtained by varying x and fixing y = 0 at x = 0, so this is the derivative of

f(x, 0) =
−2x3 + 0

x2 + 0
= −2x

at x = 0, which is indeed −2. Similarly, ∂f
∂y (0, 0) is the derivative of

f(0, y) =
0 + 3y4

0 + y2
= 3y2

at y = 0, which is 0. Hence Df(0, 0) exists and equals Df(0, 0) =
[
−2 0

]
, which is precisely

the matrix we showed in the Warm-Up does not satisfy the definition of differentiability. Thus, as
claimed there, f is not differentiable at (0, 0) since this is the matrix that would have to work if it
was going to be differentiable. (This example shows also that existence of partial derivatives does
not guarantee differentiability!)

Example. Set

f(x, y) =


x3+y3√
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

We show that f is differentiable at (0, 0). The partial derivatives at (0, 0) are

∂f

∂x
(0, 0) =

d

dx

∣∣∣∣
x=0

f(x, 0) =
d

dx

∣∣∣∣
x=0

x3√
x2

=
d

dx

∣∣∣∣
x=0

x|x| = 0

∂f

∂y
(0, 0) =

d

dy

∣∣∣∣
y=0

f(0, y) =
d

dy

∣∣∣∣
y=0

y3√
y2

=
d

dy

∣∣∣∣
y=0

y|y| = 0.

Thus Df(0, 0) =
[
0 0

]
, so

f(0 + h)− f(0)−Df(0)h

‖h‖
=
f(h, k)− f(0, 0)− [ 0 0 ]

[
h
k

]
√
h2 + k2
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=

h3+k3√
h2+k2

− 0− 0
√
h2 + k2

=
h3 + k3

h2 + k2
.

Using |h| ≤
√
h2 + k2 and |k| ≤

√
h2 + k2, we can show that the limit of the expression above as

(h, k)→ (0, 0) is 0 as a consequence of the squeeze theorem, so f is indeed differentiable at (0, 0).

Continuous differentiability. We can next try to check differentiability of the function above
at points other than the origin. The partial derivatives at such points are straightforward to
compute using ordinary quotient and change rules, so Jacobian matrices can be found explicitly.
The problem, however, is that checking the limit definition of differentiability at non-origin points
is anything but simple, since the expressesions involved will be fairly messy.

But, there is another approach to differentiability here that avoids having to check the def-
inition directly, based on the fact that the partial derivatives, once you compute them, can be
seen to be continuous at non-origin points. We say that a function f : U ⊆ Rn → Rm is C1, or
continuously differentiable, if all partial derivatives of all components of f exist and are continuous
at all points of U . Note that this is a statement about the behaviour of partial derivatives, which a
priori do not guarantee anything about differentiability of f , but in fact the key result here is that
C1 does imply differentiability. So, existence of partial derivatives alone does not lead to f being
differentiable, but continuity of partial derivatives does. Note that this only works in the

C1 =⇒ differentiable

direction, as differentiability in general only guarantees that partial derivatives exist but not that
they are continuous. (We’ll give an example of this next time.)

We will give the proof of this result next time, as it will lead us down a bit of a rabbit hole into
the mean value theorem and then the chain rule in Rn. For now, let us give perhaps the “proper”
way of thinking about the C1 condition. If f : U ⊆ Rn → Rm has partial derivatives throughout
U , so that the Jacobian matrix Df(x) exists at all x ∈ U , we can consider the map Df that sends
x ∈ U to the m×n matrix Df(x); if we denote the space of all m×n matrices as L(Rn,Rm) (here
L stands for “linear transformation”), then this is a map

Df : U ⊆ Rn → L(Rn,Rm).

If we equip L(Rn,Rm) with the metric induced by the operator norm, we can then ask whether Df
is continuous. But as we’ve stated before, based on a problem on the homework this is the same
as asking whether the same map but viewed as

Df : U ⊆ Rn → L(Rn,Rm) = Rmn,

where we identify matrices with long vectors, is continuous when we consider the usual Euclidean
metric on the right. This is true if and only each component ofDf is continuous, but the components
ofDf are just the partial derivatives of the components of f , and so we get that the C1 condition just
means the same as saying that Df is continuous. Thus, C1 does mean that f has a “continuous
derivative” when we interpret “derivative” and “continuous” correctly. This perspective will be
useful since it says, in particular, that we can make things like

‖Df(x)−Df(y)‖ (this is an operator norm)

small if ‖x− y‖ is small, which will play a role in various results we will see later.
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Lecture 22: Mean Value Theorem

Warm-Up. Suppose f, g : Rn → Rm are differentiable at x ∈ Rn. Define the “dot product”
function f · g : Rn → R by

(f · g)(x) := f(x) · g(x).

(Note that f(x) and g(x) are each vectors in Rm, so that taking their dot product makes sense and
gives a scalar value as a result.) We prove the higher-dimensional product rule, which says that
f · g is differentiable at x and has Jacobian derivative given by

D(f · g)(x) = g(x)TDf(x) + f(x)TDg(x).

Here, g(x)T and f(x)T are 1×n row vectors, and Df(x) and Dg(x) are m×n matrices so the right
side above is defined and results in a 1×n matrix, which is precisely the type of object D(f · g)(x)
should be. We will derive this expression for D(f · g)(x) in the course of proving this product rule,
but note that it makes sense as an analog of the usual product rule since it does look like “g times
derivative of f plus f times derivative of g”. Indeed, if we compute partial derivatives of f(x) ·g(x)
using the usual product rule, we get some terms involving partial derivatives of the components of
f times the components of g, and other terms involving partial derivatives of the components of g
times the components of f , so D(f · g)(x) should consist of such terms.

We approach this using the notion of linear errors, which is also what we will use in proving
the chain rule later. Take a linear expansion of f at x with error ε:

f(x + h) = f(x) +Df(x)h + ε(h).

The error ε(h) is defined to be the difference of the thing on the left with the first two things
on the right, so it is the error/remainder obtained when approximating f(x + h) with the linear
expression f(x)+Df(x)h. In other words, ε(h) is the numerator that appears in the limit definition
of differentiability, so to say that f is differentiable at x means precisely that

ε(h)

‖h‖
→ 0 as h→ 0.

Similarly, we expand g linearly as

g(x + h) = g(x) +Dg(x)h + δ(h)

with error δ which satisfies δ(h)
‖h‖ → 0 since g is differentiable at x.

To determine differentiability of f · g we thus consider a linear expansion of f · g. First we use
the expansion for f to write

(f · g)(x + h) = f(x + h) · g(x + h) = [f(x) +Df(x)h + ε(h) · g(x + h)

= [f(x) +Df(x)h] · g(x + h) + ε(h) · g(x + h),

were in the last step we use the distributive property (a + b) · c = a · c + b · c of dot products. For
the first term in what remains we use the expansion for g to get

f(x + h) · g(x + h) = [f(x) +Df(x)h] · g(x + h) + ε(h) · g(x + h)

= [f(x) +Df(x)h] · [g(x) +Dg(x)h + δ(h)] + ε(h) · g(x + h)

= f(x) · g(x) + [Df(x)h · g(x) + f(x) ·Dg(x)h] + higher-order stuff
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where the higher-order stuff is

[f(x) +Df(x)h] · δ(h) +Df(x)h ·Dg(x)h + ε(h) · g(x + h).

The term Df(x)h · g(x) + f(x) ·Dg(x)h before “higher-order stuff” above comes from taking
those things which are linear in h, which essentially means the terms where h appears only once in
a product; the “higher-order stuff’ thus consists of all the “non-linear” things in h. In general, the
linear terms in an expansion like this are the ones that should describe the value of the derivative,
as is true here since we can write these linear terms as

Df(x)h · g(x) + f(x) ·Dg(x)h = g(x) ·Df(x)h + f(x) ·Dg(x)h

= g(x)TDf(x)h + f(x)TDg(x)h

= [g(x)TDf(x) + f(x)TDg(x)]h

where we use a · b = b · a in the first step and a · b = aTb in the second. Thus, we see that linear
term in this expansion indeed uses the 1 × n matrix g(x)TDf(x) + f(x)TDg(x) we are claiming
is the correct derivative D(f · g)(x) for f · g. (The point is that if we did not have a guess ahead
of time for what this derivative should be, we can derive it by considering the linear terms in such
linear expansions with error.) Thus, we this as what we claim is the correct value of the derivative,
we have that

(f · g)(x + h)− (f · g)(x)− (what we claim is the derivative)h

equals the “higher-order stuff” above, which means that this higher-order stuff is just the linear
error for the function f · g:

error for f · g = [f(x) +Df(x)h] · δ(h) +Df(x)h ·Dg(x)h + ε(h) · g(x + h).

To say that f · g is differentiable at x with derivative D(f · g)(x) = g(x)TDf(x) + f(x)TDg(x) is
then to say that this linear error for f · g goes to 0 when divided by ‖h‖:

[f(x) +Df(x)h] · δ(h) +Df(x)h ·Dg(x)h + ε(h) · g(x + h)

‖h‖
→ 0 as h→ 0.

Proving this is what our argument thus comes down to! Everything up to this point was just about
performing algebraic manipulations in order to obtain an expression for the linear error of f · g at
x with which we can now do some work.

Let us consider each piece of this linear error divided by norm separately:

[f(x) +Df(x)h] · δ(h)

‖h‖
,

Df(x)h ·Dg(x)h

‖h‖
,

ε(h) · g(x + h)

‖h‖
.

We show that each of these goes to 0 as h→ 0 one at a time, which will complete our proof of the
product rule. For the third term, we use the Cauchy-Schwarz inequality (for vectors) to bound as

|ε(h) · g(x + h)|
‖h‖

≤ ‖ε(h)‖
‖h‖

‖g(x + h)‖ .

Since f is differentiable at x, ε(h)
‖h‖ → 0, so the product above will also go to 0 as long as the

‖g(x + h)‖ remains bounded, but since differentiability (of g at x) implies continuity we have

g(x + h)→ g(x) as h→ 0
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and hence
‖ε(h)‖
‖h‖

‖g(x + h)‖ → 0 ‖g(x)‖ = 0

so this term works out. For the first term in the linear error divided by norm, we have

|[f(x) +Df(x)h] · δ(h)|
‖h‖

≤ ‖f(x) +Df(x)h‖ ‖δ(h)‖
‖h‖

.

Linear/matrix transformations are continuous, so the first factor on the right goes to

‖f(x) +Df(x)0‖ = ‖f(x)‖ ,

and hence the entire product goes to 0 since δ(h)
‖h‖ → 0 because g is differentiable at x. This takes

care of the first term in the linear error.
Finally, using Cauchy-Schwarz for vectors and for matrices, for the “quadratic factor” in the

linear error we have

|Df(x)h ·Dg(x)h|
‖h‖

≤ ‖Df(x)h‖ ‖Dg(x)h‖
‖h‖

≤ ‖Df(x)‖ ‖h‖ ‖Dg(x)‖ ‖h‖
‖h‖

= ‖Df(x)‖ ‖Dg(x)‖ ‖h‖ ,

which goes to 0 as h→ 0. Thus we do have

linear error for f · g
‖h‖

=
[f(x) +Df(x)h] · δ(h) +Df(x)h ·Dg(x)h + ε(h) · g(x + h)

‖h‖
→ 0

as h→ 0, so f · g is differentiable at x with derivative as we claimed above.
(This was an elaborate argument! But it is indicative of many types of arguments in this subject

where the goal is to control linear errors. Indeed, we will see the same idea appear in the proof of
the chain rule, and you will use it in proving an analog of the quotient rule on the homework.)

C1 implies differentiable. We now prove that if f : U ⊆ Rn → Rm is C1, then f is differentiable.
Since f is C1, the Jacobian matrix Df(x) at x ∈ U exists and has continuous entries. We must
show that

lim
h→0

f(x + h)− f(x)−Df(x)h

‖h‖
= 0.

It is enough to consider each component of f one at a time, so we show that

lim
h→0

fi(x + h)− fi(x)−Dfi(x)h

‖h‖
.

What we need is a way to relate fi(x + h)− fi(x) to Dfi(x)h, so this requires some type of mean
value theorem application. In fact, the mean value theorem in this case (assuming differentiability)
works just as it did in the single-variable case: there exists c between x and x + h such that

fi(x + h)− fi(x) = Dfi(c)h.

Some remarks are in order. First, it is important that fi is scalar-valued here (i.e., maps into
R) instead of vector-valued, as the mean value theorem does not work in this same way for vector-
valued functions, as we will soon see. This is why we consider each component of f one at a time.
Second, what does saying c is “between” x and x + h mean if all vectors here are in Rn? The
answer is that by “between” here we mean that c is on the line segment between x and x+h, or in
other words that c = x + ch for some c ∈ [0, 1]. But this brings up the issue that, for an arbitrary
open set U , it is not true that all points on the line segment between x,x + h ∈ U themselves
belong to U :
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This is true for convex sets (convexity is precisely the property that the set fully contains line
segments between points in that set), but a general U might not be convex. However, this is easy
to deal with: since U is open, we can find a ball around x ∈ U that remains in U , and open balls
are always convex. When taking the limit h→ 0, it is enough to consider points x + h that belong
this open ball anyway, so the line segment between x and such x + h is guaranteed to be in U .

More importantly, this version of the mean value theorem depends on knowing that f is already
differentiable, so it cannot actually be used for this specific C1 result since the goal is to prove
differentiability itself! So, for this specific result we have to be more clever about how we make use
of “mean value thinking”. Instead, we apply the single-variable mean value theorem “coordinate
by coordinate”: if we fix all coordinates in fi(x1, . . . , xn) except for one, we have

fi(. . . , xj + hj , . . .)− fi(. . . , xj , . . .) =
∂fi
∂xj

(. . . , cj , . . .)hj

for some cj between xj and xj + hj . (Set cj to be the input on the right, which has cj in the j-th
entry and the same entries elsewhere as the inputs on the left.) To get

from fi(x + h) = fi(x1 + h1, . . . , xn + hn) to fi(x) = fi(x1, . . . , xn)

in a way which only changes one coordinate at-a-time, we subtract and add terms which move from
x1 + h1 to x1 while leaving every other coordinate the same, then subtract and terms which move
from x2 + h2 to x2 while leaving the rest the same, then the terms moving from x3 + h3 to x3, and
so on, subtracting and adding intermediate terms along the way:

fi(x + h)− fi(x) =
∑
j

[fi(. . . , xj + hj , . . .)− fi(. . . , xj , . . .)]

where in both function evaluations on the right all inputs before xj + hj are just xk for k < j and
the inputs after are xk + hk for k > j. (In the three-variable case, this looks like

fi(x1 + h1, x2 + h2, x3 + h3)− fi(x1, x2, x3) = fi(x1 + h1, x2 + h2, x3 + h3)− fi(x1, x2 + h2, x3 + h3)

+ fi(x1, x2 + h2, x3 + h3)− fi(x1, x2, x3 + h3)

+ fi(x1, x2, x3 + h3)− fi(x1, x2, x3)

where the terms in each difference on the right only differ in one input.) Applying the single-variable
mean value theorem in each coordinate then gives∑

j

[fi(. . . , xj + hj , . . .)− fi(. . . , xj , . . .)] =
∑
j

∂fi
∂xj

(cj)hj =
[
∂fi
∂x1

(c1) . . . ∂fi
∂xn

(cn)
]
h

where h at the end is a column vector.
Thus we have

fi(x + h)− fi(x)−Dfi(x)h =
[
∂fi
∂x1

(c1) . . . ∂fi
∂xn

(cn)
]

h−
[
∂fi
∂x1

(x) . . . ∂fi
∂xn

(x)
]
h
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=
[
∂fi
∂x1

(c1)− ∂fi
∂x1

(x) . . . ∂fi
∂xn

(cn)− ∂fi
∂x1

(x)
]
h,

so taking norms and dividing by ‖h‖ gives

‖fi(x + h)− fi(x)−Dfi(x)h‖
‖h‖

=

∥∥∥[ ∂fi∂x1
(c1)− ∂fi

∂x1
(x) . . . ∂fi

∂xn
(cn)− ∂fi

∂x1
(x)
]

h
∥∥∥

‖h‖

≤

∥∥∥[ ∂fi∂x1
(c1)− ∂fi

∂x1
(x) . . . ∂fi

∂xn
(cn)− ∂fi

∂x1
(x)
]∥∥∥ ‖h‖

‖h‖

=
∥∥∥[ ∂fi∂x1

(c1)− ∂fi
∂x1

(x) . . . ∂fi
∂xn

(cn)− ∂fi
∂x1

(x)
]∥∥∥ .

By the way in which the cj were defined, where for each we modify only one coordinate compared
to what came before and what comes after using some cj between xj and xj + hj , each cj will be
close to x if x + h is close to x:

Thus by continuity of the ∂fi
∂xj

, each entry in[
∂fi
∂x1

(c1)− ∂fi
∂x1

(x) . . . ∂fi
∂xn

(cn)− ∂fi
∂x1

(x)
]

will approach 0 as h (and hence each cj) approaches 0, so we conclude that

lim
h→0

fi(x + h)− fi(x)−Dfi(x)h

‖h‖
= 0,

meaning that f is differentiable at x as claimed.

Example. The fact that C1 implies differentiable is often a quick way to guarantee differentiability,
but not the only way since this is not an equivalence. For example, the function f : R2toR defined
by

f(x, y) =

(x2 + y2) sin( 1√
x2+y2

) if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is differentiable at (0, 0) but its partial derivatives are not continuous at (0, 0), so it is not C1.
Indeed, this function has partial derivatives at the origin which are both 0, so Df(0, 0) = 0, and
then

lim
h→0

f(h)− f(0)−Df(0)h

‖h‖
= lim

h→0

‖h‖2 sin( 1
‖h‖)

‖h‖
= lim

h→0
‖h‖ sin(

1

‖h‖
) = 0,

which gives differentiability. The partial derivatives at non-origin points can be computed using
usual product, chain, and quotient rules, and after doing so it will be clear that they are not
continuous at (0, 0).
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Mean value theorem, scalar-valued version. We now prove the mean value theorem for
scalar-valued functions. The claim is that if f is a scalar-valued differentiable function on an open
convex set E ⊆ Rn, then for any x,x + h ∈ E there exists c between x and x + h (meaning on the
line segment between) such that

f(x + h)− f(x) = Df(c)h.

Note, at least, that all of the sizes match up: Df(c) is a 1×n matrix, and h ∈ Rn is a n×1 column
vector, so the right side above is a 1× 1 scalar, just as the left side should be.

To prove this we make use of the single-variable mean value theorem by turning our multivariable
function into a single-variable one by restricting to the line segment between x and x + h. That is,
consider the function g : [0, 1]→ R defined by

g(t) := f(x + th).

(Convexity of E guarantees that x + th ∈ E for all 0 ≤ t ≤ 1, so the right side above makes sense.)
As t varies from 0 to 1, x + th fills out the desired segment with g(0) = x and g(1) = x + h. The
function g is in fact differentiable by the chain rule, which we will prove next time. (The point is
that g is the composition of the differentiable functions f and t 7→ x + th.) Taking this for granted
now, the single-variable mean value theorem thus gives c ∈ (0, 1) such that

g(1)− g(0) = g′(c)(1− 0).

The left side is f(x + h)− f(x). To compute the derivative on the right, we again use the still-to-
be-proven chain rule: the derivative if f(x + th) is the derivative of f evaluated at x + th times the
derivative of t 7→ x + th, which is just h. (Note that x + th is linear in t.) With this we have

f(x + h)− f(x) = g(1)− g(0) = g′(c) = Df(x + ch)h.

Since c := x + ch is on the line segment between x and x + h, we have our desired claim.

Generalizing mean value. In an ideal world, the mean value theorem would work for differen-
tiable f : E ⊆ Rn → Rm with m > 1 as well (so, f is vector-valued; E is still convex), but alas the
world is not so nice. Certainly the equation one might expect the mean value theorem to give

f(x + h)− f(x) = Df(c)h

has all of the correct sizes: the left side is m× 1 (thinking of vectors as column vectors), Df(c) is
m× n and h is n× 1, so that Df(c)h is indeed m× 1 as well. So the issue is not a technical one
due to dimensions, but rather a fatal flaw. The problem is that, although we can apply the mean
value theorem to each component of f and get equations like

fi(x + h)− fi(x) = Dfi(ci)h,

the ci at which the derivatives are evaluated can change as we move from component to component,
whereas Df(c)—whose rows consist of the Dfi—would required a single c in all rows. (This is
similar to what happens in the proof that C1 implies differentiable, where we get partial derivatives
at evaluated at different cj .)

A standard example of where things do not work is f : [0, 2π]→ R2 defined by

f(t) = (cos t, sin t).
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Then Df(t) =
[− sin t

cos t

]
and f(0) = f(2π), so if the mean value equation did hold we would get

0 = f(2π)− f(0) = Df(t)(2π − 0) = 2π

[
− sin t
cos t

]
.

But there is no t at which sin t and cos t are both zero, so this cannot be. We can get the 0 on the
left if we allow different points at which to evaluate the derivatives in the component of Df , but
not with one point for both.

Mean value theorem, vector-valued version. The best we can do in the vector-valued case
is an inequality rather than an equality in the mean value statement. The claim is that if f is
vector-valued and differentiable on an open and convex E, and if there exists M ≥ 0 which bounds
the operator norm of all Df(x) for x ∈ U , then for any x,a ∈ E we have

‖f(x)− f(a)‖ ≤M ‖x− a‖ .

(In particular, f is Lipschitz.) If you look back at previous mean value applications, you will notice
that in most cases the main takeaway is the inequality obtained by bounding derivative terms
anyway, so having this inequality (as opposed to equality) in the vector-valued case will actually be
good enough for our needs. The assumption that there be M > 0 such that ‖Df(x)‖ ≤M for all x
is not too difficult to justify in practice; for example, if f is C1, then x 7→ ‖Df(x)‖ is continuous,
so we get such a maximum bound M at least on any compact and convex set in the domain E.

To prove this general mean value theorem, we make use of the scalar-valued version. Fix
x,a ∈ E and define g : E → R as a function of y ∈ E by

g(y) = (f(x)− f(a) · f(y).

By the scalar mean value theorem, there exists c ∈ E between x and a such that

g(x)− g(a) = Dg(c)(x− a).

The left side is

(f(x)− f(a)) · f(x)︸ ︷︷ ︸
g(x)

− (f(x)− f(a)) · f(a)︸ ︷︷ ︸
g(a)

= (f(x)− f(a)) · (f(x)− f(a)) = ‖f(x)− f(a)‖2 .

By the product rule in the Warm-Up, the derivative of

g(y) = (f(x)− f(a) · f(y)

is “the derivative of f(x)− f(a) dot f(y) plus f(x)− f(a) dot the derivative of Df(y)”, but since
these are derivatives taken with respect to y, the derivative of f(x) − f(a) is zero, so only the
second term survives and

Dg(c)(x− a) = (f(x)− f(a)) ·Df(c)(x− a).

The scalar mean value result above thus becomes

‖f(x)− f(a)‖2 = (f(x)− f(a)) ·Df(c)(x− a).

Taking norms and using Cauchy-Schwarz (for both vectors and matrices) gives

‖f(x)− f(a)‖2 = (f(x)− f(a)) ·Df(c)(x− a) ≤ ‖f(x)− f(a)‖ ‖Df(c)‖ ‖x− a‖ ,

and after bounding ‖Df(c)‖ ≤M and dividing by ‖f(x)− f(a)‖ we get the desired

‖f(x)− f(a)‖ ≤M ‖x− a‖ .
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Lecture 23: Chain Rule and More

Warm-Up. We show that if f : Rn → Rm is differentiable with Df(x) = 0 at all x, then f is
constant. Here is a first approach. Each component of f = (f1, . . . , fm) satisfies Dfi(x) = 0 for all
x, so by the scalar mean value theorem we have

f(x)− f(a) = Dfi(c)(x− a) = 0

for c between x and a, so fi(x) = fi(a) for all a,x. This means that each component fi is constant,
so f is constant as well. For a second approach, we use the vector mean value theorem. Since
‖Df(x)‖ = ‖0‖ = 0 at all points, we have

‖f(x)− f(a)‖ ≤ 0 ‖x− a‖ = 0

for all x and a, so f(x)− f(a) = 0 for all points and hence f is constant.
Now, the same reasoning applies in either approach if we replace the domain Rn with any open

and convex set. However, we have to be careful with non-convex domains. Consider for example a
domain consisting of the union of two disjoint open balls:

A function which has derivative zero at all points in such a domain does not have to be constant
because the “constant” we get over each piece could be different; the derivative a point only depends
on the behavior near that point, so one happens in one piece has no bearing on the derivative on
the other piece. However, if we have a connected open domain, then we can extend the result of
this Warm-Up to get that f must be constant. The proof above does not apply directly if the
domain is not convex, but the intuition is that we can get from one point to any other point via a
collection of convex subsets:

If these convex subsets overlap, the constant that we get as we move from one to another will stay
the same, so f will be constant on the entire domain. You will implement this idea more formally
on the next homework.

Chain rule. We now prove the multivariable chain rule, which we already used last time when
proving the scalar version of the mean value theorem. The claim is that if f is differentiable at x
and g is differentiable at f(x) (all on appropriate domains), then g ◦ f is differentiable at x and

D(g ◦ f)(x) = Dg(f(x))Df(x).
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So, the derivative of a composition is indeed the product of individual derivatives (in the same
order as that occurring in the composition) interpreted as a product of matrices.

To prove this, we use the same notion of linear error as in the proof of the product rule from
last time. We expand f near x as

f(x + h) = f(x) +Df(x)h + ε(h)

and g near f(x) as
g(f(x) + k) = g(f(x)) +Dg(f(x))k + δ(k)

where the linear errors ε(h) and δ(k) satisfy

lim
h→0

ε(h)

‖h‖
= 0 and lim

k→0

δ(k)

‖k‖
= 0

since f and g are differentiable at x and f(x) respectively. With this, we expand g ◦ f near x as

g(f(x + h)) = g(f(x) +Df(x)h + ε(h)

= g(f(x)) +Dg(f(x))[Df(x)h + ε(h)] + δ(k)

= g(f(x)) +Dg(f(x))Df(x)h +Dg(f(x))ε(h) + δ(k)

where in the first step we plugged in the expansion for f(x + h) and in the second we used the
expansion for g(f(x) + k) with k = Df(x)h + ε(h). The term in this expansion for g(f(x + h))
which is linear in h is Dg(f(x))Df(x)h, which is precisely what we are claiming the derivative
transformation for g ◦ f at x should be, which makes sense since derivatives should linear terms
in expansions in general. To show that this is the correct derivative, we must thus show that the
“linear error” in this expansion, which is

Dg(f(x))ε(h) + δ(k),

will go to zero as h→ 0 upon being divided by ‖h‖.
To do this, we consider the two resulting terms

Dg(f(x))ε(h)

‖h‖
and

δ(k)

‖h‖

separately. The first is easy to manage: taking norms gives

‖Dg(f(x))ε(h)‖
‖h‖

≤ ‖Dg(f(x))‖ ‖ε(h)‖
‖h‖

,

which goes to zero since ε(h)
‖h‖ → 0 and ‖Dg(f(x))‖ is fixed. For the second term, we would like to

be able to rewrite as
δ(k)

‖h‖
=
δ(k)

‖k‖
‖k‖
‖h‖

so that we can use δ(k)
‖k‖ → 0. There are a few issues here. First, we only know that δ(k)

‖k‖ → 0
as k → 0 whereas we are now taking the limit as h → 0, but this is not a problem: our value
of k = Df(x)h + ε(h) does indeed go to 0 as h → 0, so δ(k)

‖k‖ → 0 as h → 0. The second issue
is that the rewritten form above only makes sense if k 6= 0 since otherwise the first fraction on
the right does not exist. (When taking h → 0, we are certainly only considering nonzero h, but
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k = Df(x)h + ε(h) might in fact be zero even if h is not.) However, when k = 0, the linear
expansion for g near f(x) from which δ(k) was obtained looks like

g(f(x) + 0) = g(f(x)) +Dg(f(x))h + δ(0),

so that δ(0) = 0 because there is no error in this case as g(f(x)) = g(f(x)) is true on the nose.
Thus, δ(k) = 0 when k = 0, so that we can write

δ(k)

‖h‖
=

{
δ(k)
‖k‖

‖k‖
‖h‖ if k 6= 0

0 if k = 0
.

We can now use δ(k)
‖k‖ → 0 as h (hence k) goes to 0, as long as we know that the remaining ‖k‖‖h‖

term remains bounded. But since k = Df(x)h + ε(h), we have

‖k‖
‖h‖

=
‖Df(x)h + ε(h)‖

‖h‖
≤ ‖Df(x)‖ ‖h‖+ ‖ε(h)‖

‖h‖
= ‖Df(x)‖+

‖ε(h)‖
‖h‖

,

which indeed remains bounded since ε(h)
‖h‖ → 0 and ‖Df(x)‖ is just some number. We thus conclude

that

lim
h→0

g(f(x + h))− g(f(x))−Dg(f(x))Df(x)h

‖h‖
= lim

h→0

Dg(f(x))ε(h) + δ(k)

‖h‖
= 0,

so g ◦ f is differentiable at x with derivative D(g ◦ f)(x) = Dg(f(x))Df(x) as claimed.

Partial derivative version. If we write out the entries of the Jacobian matrices Dg(y) and
Df(x) (we’ll suppress the points at which these are evaluated for the sake of clean notation), the
product Dg(y)Df(x) looks like

Dg(y)Df(x) =


...

...
∂gk
∂y1

· · · ∂gk
∂ym

...
...


· · ·

∂f1
∂xi

· · ·
...

· · · ∂fn
∂xi

· · ·

 = matrix with
∑
j

∂gk
∂yj

∂fj
∂xi

in row k, column i.

Thus, as a consequence of the chain rule equality D(g ◦ f)(x) = Dg(f(x))Df(x), we get

∂(g ◦ f)k
∂xi

=
∂gk
∂y1

∂f1
∂xi

+ · · ·+ ∂gk
∂ym

∂fm
∂xi

.

This is the version of the multivariable chain rule one often sees in a multivariable calculus course,
where the matrix version might not be covered. Indeed, one often draws “dependency tree dia-
grams” like

117



where gk(y) depends on x via y = f(x), and the partial derivatives of gk with respect to the final xi
variables are obtained by following the branches down this tree. The upshot is that this all follows
simply by considering the entries in the matrix (i.e., the true) version of the chain rule.

Derivatives beyond Rn. The notion of differentiability we have developed extends beyond the
setting of Rn alone; any setting in which we have a notion of “linearity” and norm gives rise to
“differentiability” as well. We will not push this very far in this course, but let us consider at least
the following example. With Mn(R) denoting the space of n × n matrices, consider the function
f : Mn(R)→Mn(R) defined by f(X) = X2. We claim that this is differentiable at any X. (Naively,
we might expect that the derivative is f ′(X) = 2X based on what we know in the M1(R) = R case,
but this is not quite right, as we will see.)

To be differentiable at X should mean that there is some type of “derivative” Df(X) satisfying

lim
H→0

f(X +H)− f(X)−Df(X)(H)

‖H‖
= 0,

where the limit is taken with respect to operator norms. But what type of “thing” should Df(X)
be? In the Rn case, Df(x) is a matrix, but the point is that this matrix gives a linear transformation
Rn → Rn and the Df(x)h term appearing in the differentiability definition is the result of applying
this transformation to h. The Df(X)(H) term above should thus be the result of applying some
linear transformation Df(X) to H. Since Df(X)(H) is a little cumbersome to read, we will instead
denote the derivative at X by DfX , so that to be differentiable at X means that there exists a
linear transformation DfX : Mn(R)→Mn(R) such that

lim
H→0

f(X +H)− f(X)−DfX(H)

‖H‖
= 0,

again using operator norms. (If you have not seen the notion of a linear transformation between
spaces of matrices before, the definition is the same as it is in the Rn case: DfX is linear if

DfX(H1 +H2) = DfX(H1) +DfX(H2) and DfX(cH) = cDfX(H)

for H1, H2, H ∈Mn(R) and c ∈ R.)
To find the correct derivative DfX , we expand f(X+H) and extract the terms that are “linear”

in H, just as we have done before. We have

(X +H)2 = (X +H)(X +H) = X2 +XH +HX +H2.

(Note that matrix multiplication is not commutative, so we cannot necessarily combine XH and
HX.) The “linear” terms here are XH and HX, so we expect that DfX(H) = XH + HX; that
is, DfX : Mn(R)→Mn(R) should be the linear transformation which sends H to XH +HX. We
can check that this is indeed linear using properties of matrix multiplication:

DfX(H1 +H2) = X(H1 +H2) + (H1 +H2)X

= XH1 +XH2 +H1X +H2X

= XH1 +H1X +XH2 +H2X

= DfX(H1) +DfX(H2)

DfX(cH) = X(cH) + (cH)X

= cXH + cHX
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= c(XH +HX)

= cDfX(H).

The “nonlinear” term H2 in (X +H)2 is thus the “linear error”, and differentiability should mean
that this go to zero as H → 0. Indeed, we have

f(X +H)− f(X)−DfX(H)

‖H‖
=

(X +H)2 −X2 − (XH +HX)

‖H‖
=

H2

‖H‖
,

and after taking norms and using Cauchy-Schwarz (in the form
∥∥H2

∥∥ = ‖HH‖ ≤ ‖H‖ ‖H‖), we
see that the limit of the final expression as H → 0 is in fact zero. Thus f(X) = X2 is indeed
differentiable at X with derivative DfX defined by DfX(H) = XH + HX. (You will do this all
for the functions f(X) = X3 and f(X) = X−1 on the homework!)

The naive guess “f ′(X) = 2X” is incorrect, but it is in a sense “correct” if we interpret
2X = X + X in the right way, namely where multiply the two terms in X + X by H, once on
the right and once on the left to get XH + HX, which is the correct derivative value DfX(H).
(XH +HX is somehow the “infinitesimal version” of X2, but making sense of this is best left to
a course on what are called manifolds.) However, note that in the n = 1 case, so that M1(R) = R
is the space of 1× 1 matrices—i.e., numbers—we get

Dfx(h) = xh+ hx = 2xh

since multiplication of 1×1 matrices is commutative. Lo-and-behold we see the usual single-variable
derivative f ′(x) = 2x of f(x) = x2 pop up, interpreted here as the linear transformation R → R
which multiples h by 2x. The upshot is that the setting n× n matrices subsumes what you know
about f(x) = x2, but this latter case is somehow too simplistic (since we are dealing with 1 × 1
matrices) to shed light on what is really going on behind the scene.

Lecture 24: Inverse Function Theorem

Warm-Up. We will not do much with higher-order derivatives in the Rn setting, apart from
possibly a problem on the final homework. So, the point of this Warm-Up is just to give one
example of a higher-order derivative result, namely the one fact about second-order derivatives
you would no doubt have seen in a multivariable calculus course, namely the equality of mixed
second-order partial derivatives. This goes by the name of Clairaut’s theorem, which states that if
f is a C2 function (meaning all second-order partial derivatives are continuous), then

∂2f

∂xj ∂xi
=

∂2f

∂xi ∂xj
.

(The second-order partial derivatives of f : U ⊆ Rn → R are the first-order partial derivatives of
Df : U → Rn sending x to Df(x) viewed as a vector in Rn.) To simplify the notation, we consider
only the case of a function f of two variables, which is enough since in the second-order derivatives
above we vary only the two variables xi and xj anyway. (In other words, apply what we are about
to do to the function (x, y) 7→ f(. . . , x, . . . , y, . . .), with x and y in the i-th and j-th locations and
all other variables are fixed.)

For fixed x, y, consider the expression

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)

hk
,
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of which will take the limit as (h, k) → (0, 0). (The numerator evaluates f at the corners of a
rectangle, and the idea is that we will shrink this rectangle when taking the limit. Clairaut’s
theorem essentially comes from first shrinking in the x direction and then y, and then vice versa.)
If we introduce the function

g(t) = f(t, y + k)− f(t, y)

with y, k fixed, the numerator above is g(x+ h)− g(x), so a mean value application gives

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y) = [fx(c, y + k)− fx(c, y)]h

for some c between x and x + h. (Applying the mean value theorem first in the x-coordinate
corresponds to first “shrinking in the x-direction”.) This gives

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)

hk
=

[fx(c, y + k)− fx(c, y)]h

hk
.

Now we apply the mean value theorem in the y-coordinate (c fixed) to get

fx(c, y + k)− fx(c, y) = fxy(c, d)k

for some d between y and y + k. (Here and above we are using subscript notation for the partial
derivatives.) With this we get

[fx(c, y + k)− fx(c, y)]h

hk
=
fxy(c, d)hk

hk
= fxy(c, d).

Since fxy = ∂2f
∂y ∂x is continuous and (c, d) → (x, y) as (h, k) → (0, 0) (because c is between x and

x+ h and d is between y and y + k), we get

lim
(h,k)→(0,0)

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)

hk
= lim

(h,k)→(0,0)
fxy(c, d) = fxy(x, y).

Now go back and shrink in the opposite order, or more precisely apply mean value first in y
and then in x. With the function

`(t) = f(x+ h, t)− f(x, t),

the numerator in our limit is `(y+ k)− `(y), so applying the mean value theorem to this and then
to the resulting fy(x+ h, d)− fy(x, d) will give

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)

hk
= fyx(c, d)

for c between x and x+ h and d between y and y + k. By continuity of fyx, we now get

lim
(h,k)→(0,0)

f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)

hk
= fyx(x, y).

But the limit here is the same limit as before, so we must have fxy(x, y) = fyx(x, y) as claimed.
The assumption that f be C2 is crucial as Clairaut’s theorem does not hold otherwise. (Actually,

it holds assuming that at at least one of fxy or fyx is continuous, but not if neither are continuous.)
The standard example is

f(x, y) =

{
xy(x2−y2)
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).
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A direct computation shows that both fxy and fyx exist at the origin, but fxy(0, 0) = −1 whereas
fyx(0, 0) = 1, so that the mixed second-order partials are not equal. The issue is that neither fxy
nor fyx will be continuous at (0, 0).

Locally, calculus is linear algebra. Before moving on to the final two “big” theorems of
differential analysis, let us setup the context by thinking about the point of calculus in general. I
claim that all of differential calculus is borne out of taking linear-algebraic “infinitesimal” results
that occur point by point and turning them into “local” results about behaviors of non-linear
functions. Indeed, the entire point of viewing a higher-dimensional derivative as a matrix or linear
transformation is to make this perspective precise.

Here is a table of concepts we have seen, or will see, that highlights which linear-algebraic notion
each is meant to be the non-linear version of:

calculus linear algebra

differentiable function linear transformation
chain rule compositions of linear transformations

mean value theorem Cauchy-Schwarz inequality
inverse function theorem solving Ax = b when A is invertible
implicit function theorem solving Ax = b in general

First off, to say that a function is differentiable is exactly to say that it can be well-approximated
by a linear transformation, or more precisely by a linear transformation plus a constant:

f(x + h) ≈ f(x)︸︷︷︸
constant

+Df(x)︸ ︷︷ ︸
linear

h.

Because of this, linear-algebraic properties of the matrix Df(x) (i.e., “infinitesimal” properties of
f at x) should translate to local properties of f near x. The chain rule says that this works for
compositions, where local behavior of a composition g ◦ f comes from infinitesimal behavior of
Dg(f(x))Df(x), which is the composition of the infinitesimal linear transformations Dg(f(x)) and
Df(x). The mean value theorem in the inequality form

‖f(x)− f(a)‖ ≤M ‖x− a‖

is the local version of the Cauchy-Schwarz ineqaulity

‖Df(x)h1 −Df(x)h2‖ = ‖Df(x)(h1 − h2)‖ ≤ ‖Df(x)‖ ‖h1 − h2‖ .

And so it is with our final theorems. I claim that the inverse function theorem is just about
turning the fact that an n × n system of linear equations Ax = b always has a unique solution if
and only if A is invertible into local behavior of f (where the matrix A will be Df(x)), and the
implicit function theorem is the analog of this for m × n systems of linear equations with m > n.
In general, whenever you have some linear-algebraic result about a derivative, you can expect there
to be some calculus/analytic result that it gives rise to!

Solving nonlinear equations. The inverse function theorem is all about solving (systems of)
equations. Consider for example the non-linear equations

xexy − sin y = a

x9y10 + 3 cos(xy) = b.
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The question is whether this has a solution for x, y given a, b. Certainly it is not possible to solve
for x, y explicitly here in terms of a and b, but all we are interested in is knowing whether such a
solution exists. I claim that a unique solution is guaranteed to exist at least for

(a, b) close enough to (e− sin 1, 1 + 3 cos 1).

And even better: the functions x(a, b), y(a, b) which describe the unique solutions (x, y) given (a, b)
close enough to (e− sin 1, 1 + 3 cos 1) will be C1. So, not only can the equations be solved (at least
locally), but they can be solved in a continuously differentiable manner!

The reason why has to do with the derivative of the function

f(x, y) = (xexy − sin y, x9y10 + 3 cos(xy)),

for which (e − sin 1, 1 + 3 cos 1) is actually just the value f(1, 1) at (1, 1). The inverse function
theorem says that if Df(1, 1) is invertible (which it is, as we will check next time), then the
equation f(x, y) = (a, b) can be “inverted” to express (x, y) = g(a, b) in terms of a, b near (1, 1).
Thus, if an n× n equation is “infinitesimally solvable”, then it is locally solvable.

Inverse function theorem. Here is the precise claim. Suppose f : E ⊆ Rn → Rn is C1 and that
Df(a) is invertible at some a ∈ E. Then f is locally invertible near a with C1 inverse, meaning
that there exist open sets U ⊆ E containing a and V ⊆ Rn containing f(a) such that the restriction
f : U → V is invertible with C1 inverse f−1 : V → U :

Moreover, the derivatives of the inverse are given by

D(f−1)(f(x)) = Df(x)−1.

(So, although we will not be able to describe the inverse f−1 in any explicit way, we will be able
to describe its derivatives explicitly—the derivative of the inverse is the inverse of the derivative—
which is good enough at least to get some linear approximations to the inverse!) Intuitively, this
should all indeed be true since for points a + h near a the function f is approximated by

f(a) +Df(a)h,

and if Df(a) is an invertible matrix the right side is an invertible function of h (the inverse comes
from solving y = f(a) + Df(a)h for h in terms of y using matrix operations), so f should be
invertible near a as well.

We will give the full proof next time, but for now we focus on the key observation that makes
it all work. Fix y ∈ Rn. To invert f we need to be able to find a unique x satisfying f(x) = y, as
the candidate inverse will then send y to this x. The goal is to phrase the problem of finding such
x in a way that makes other tools we have developed applicable. Introduce the function

g(x) = x−Df(a)−1(f(x)− y),
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where Df(a)−1 is the inverse matrix we are assuming exists. Then f(x) = y if and only if
f(x) − y = 0, which since Df(a)−1 is invertible is true if and only if Df(a)−1(f(x) − y) = 0,
which is true if and only if g(x) = x, and hence (drumroll) the problem of finding x, and hence
inverting f , becomes a problem about fixed points (!!!) of g:

x satisfies f(x) = y ⇐⇒ x is a fixed point of g.

This will be the reason why proving the inverse function theorem is possible.
In order to understand fixed points of g—in particular their existence and uniqueness—we

should thus (because of the Banach contraction principle) be asking whether g is a contraction.
The mean value theorem gives an inequality like∥∥g(x)− g(x′)

∥∥ ≤M ∥∥x− x′
∥∥ ,

which says that g indeed has the contraction property when the bound M on the derivatives of g
is smaller than 1. The derivative of g(x) = x−Df(a)−1(f(x)− y) is

Dg(x) = I −Df(a)−1Df(x),

where the derivative of the first term in g—the identity function of x—has derivative equal to the
identity matrix I, and the derivative of the second term in g comes from the chain rule and the fact
that the linear transformation h 7→ Df(a)−1h has “constant” derivative Df(a)−1, as we showed in
a Warm-Up a few lectures back. We rewrite this derivative by factoring out Df(a)−1 to get

Dg(x) = Df(a)−1[Df(a)−Df(x)].

(The desire to end up with Df(a)−Df(x) is why we included the inverse of Df(a) in the definition
of g.) Taking norms gives

‖Dg(x)‖ ≤
∥∥Df(a)−1

∥∥ ‖Df(a)−Df(x)‖ .

Since f is C1, we can make ‖Df(a)−Df(x)‖ as small as we want; in particular, there exists
r > 0 such that

‖Df(a)−Df(x)‖ < 1

2 ‖Df(a)‖−1
for ‖x− a‖ < r.

Thus, on the open ball Br(a) we have

‖Dg(x)‖ ≤
∥∥Df(a)−1

∥∥ ‖Df(a)−Df(x)‖ < 1

2
,

which thus implies the contraction property of g. (Boom!) There is still much work to be done to
clarify exactly how we will use this property to invert f , but we will indeed exploit properties of
contractions throughout the proof we will give next time.

Lecture 25: More on Inverses

Warm-Up 1. We show that there exist C1 functions x(a, b) and y(a, b) on some open set in R2

containing (1− sin 1, 1 + 3 cos 1) such that x = x(a, b) and y = y(a, b) satisfy

xexy − sin y = a

x9y10 + 3 cos(xy) = b.
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This finishes the example we introduced last time when motivating the inverse function theorem,
since what we claim here says precisely that the equations above can be solved for (x, y) in terms
of (a, b) in a continuously differentiable manner for (a, b) close enough to (1− sin 1, 1 + 3 cos 1). We
will not be able to say what the solution functions x(a, b), y(a, b) look like explicitly, but we will
know that they exist.

Define f : R2 → R2 by

f(x, y) = (xexy − sin y, x9y10 + 3 cos(xy))

and note that f(1, 1) = (1− sin 1, 1 + 3 cos 1). We have

Df(x, y) =

[
exy + xyexy x2exy − cos y

9x8y10 − 3y sin(xy) 10x9y9 − 3x sin(xy)

]
,

and thus

Df(1, 1) =

[
2e e− cos 1

9− 3 sin 1 10− 3 sin 1

]
.

Since f is C1 (the components of Df computed above are continuous) and Df(1, 1) is invertible (for
example by computing its determinant and seeing that it is nonzero, the inverse function theorem
says that there are open sets U 3 (1, 1) and V 3 f(1, 1) such that

f : U → V is invertible with C1 inverse.

Setting x(a, b) and y(a, b) to be the components of f−1 give our desired functions:

(x(a, b), y(a, b)) := f−1(a, b) for (a, b) ∈ V.

These are C1 since f−1 is C1, and they satisfy

f(x(a, b), y(a, b)) = f(f−1(a, b)) = (a, b),

which is just our original system of 2× 2 nonlinear equations.

Warm-Up 2. Suppose f is invertible, differentiable at x, and that f−1 is differentiable at f(x).
We show that

Df−1(f(x)) = Df(x)−1,

so that “the derivative of the inverse is the inverse of the derivative” when evaluated at the appro-
priate points. This the general version of

(f−1)′(f(x)) =
1

f ′(x)

from single-variable calculus, and guarantees that even if we do not know what f−1 is exactly, we
for sure know what the derivative of f−1 is.

This just comes from the chain rule. We have

f−1(f(x)) = x

by the definition of an inverse. Since f is differentiable at x and f−1 is differentiable at f(x), the
chain rule says that the left side is differentiable at x with derivative given by the product

Df−1(fx))︸ ︷︷ ︸
matrix

Df(x)︸ ︷︷ ︸
matrix

.
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The right side of f−1(f(x)) = x above is the identity function x 7→ x, and so has derivative equal
to the identity matrix; thus after taking derivatives of both sides we get

Df−1(fx))Df(x) = I.

Since both matrices are square matrices, this shows that they are inverses of one another, so

Df−1(f(x)) = Df(x)−1

as claimed.
For example, in the first Warm-Up, we have

Df−1(f(1, 1)) = Df(1, 1)−1

=

[
2e e− cos 1

9− 3 sin 1 10− 3 sin 1

]−1
=

1

11e− 3e sin 1 + 9 cos 1− 3 sin 1 cos 1

[
10− 3 sin 1 −e+ cos 1
−9 + 3 sin 1 2e

]
.

We do not know the functions (x(a, b)), y(a, b)) = f−1(a, b) we showed exist, but we at least know
how to linear approximate them near f(1, 1) = (1− sin 1, 1 + 3 cos 1):[

x(a, b)
y(a, b)

]
≈
[
x(f(1, 1))
y(f(1, 1))

]
+Df−1(f(1, 1))

[
a− [1− sin 1]
b− [1 + 3 cos 1]

]
=

[
1
1

]
+

1

K

[
10− 3 sin 1 −e+ cos 1
−9 + 3 sin 1 2e

] [
a− [1− sin 1]
b− [1 + 3 cos 1]

]
.

where K = 11e − 3e sin 1 + 9 cos 1 − 3 sin 1 cos 1. In most practical applications, having a linear
approximation to the inverse is good enough!

Proof of the inverse function theorem. We will now prove the inverse function theorem. This
is going to be the most elaborate proof we have seen in the entire course, the difficulty of which is
warranted since the implications are so strong! Indeed, the inverse function theorem is truly the
only way we have of even knowing that n× n systems of nonlinear equations have solutions given
that writing down explicit solutions is nearly always impossible. (But, as we saw in the Warm-Up,
it will at least be possible to approximate the solutions, however.) Such a monster result is likely
to have a monster proof! In fact, all key topics we have seen when it comes to differentiation—the
definition of differentiable, the mean value theorem, and the chain rule—will play a role.

The key observation is the one we finished with last time, so let us recall it here. Given y, to
say that x satisfies f(x) = y is to say that x is a fixed point of g(x) := x − Df(a)−1(f(x) − y).
Moreover, it is possible to find r > 0 such that ‖Dg(x)‖ ≤ 1

2 , which uses the chain, for ‖x− a‖ < r,
and hence ∥∥g(x)− g(x′)

∥∥ ≤ 1

2

∥∥x− x′
∥∥ for x,x′ ∈ Br(a),

which uses the mean value theorem. This hints at some contraction property for g, which is what
makes understanding fixed points of g, and hence solutions of f(x) = y, possible.

Let us outline the strategy before jumping into the proof. First, we will construct a local inverse
for f on some U 3 a; this will use the fact that fixed points of contractions, when they exist, are
unique. Second, we will show that f(U) is open, and as a byproduct that f−1 : f(U) → U
is continuous; this will use the full force of the Banach contraction principle on fixed points of
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contractions on complete spaces. Then, we show that the local inverse f−1 thus constructed is
differentiable, which will use some bounds developed from the function g above, and finally we show
that the derivative of the local inverse f−1 is continuous, which will be easy. As a consequence of
the third step, we will also derive the expression for Df−1 found in the second Warm-Up, only here
without assuming differentiability of the inverse beforehand. Buckle up!

Step 1: constructing the local inverse. For fixed y, we have∥∥g(x)− g(x′)
∥∥ ≤ 1

2

∥∥x− x′
∥∥ on some Br(a)

where g(x) := x − Df(a)−1(f(x) − y). So, g is a contraction on Br(a), but we cannot use the
Banach contraction principle here to claim that g has a fixed point for two reasons: 1. Br(a) is not
complete, but this is easy to fix by using the closure instead (Rn is complete and closed subsets
of complete spaces are complete); but the real issue is 2. g does not necessarily map Br(a) (or
its closure) into itself, which was the necessary setup of the Banach contraction principle. (The
iteration process used in the proof of Banach contraction does not work if the contraction does not
map the space into itself!)

So, here we will not use anything about existence of fixed points, but rather the fact that if a
fixed point of g exists, then it must be unique. For this we do not need the space to be mapped
to itself, as the contraction inequality above alone is enough: if g(x) = x and g(x′) = x′, then the
inequality above becomes ∥∥x− x′

∥∥ ≤ 1

2

∥∥x− x′
∥∥ ,

which means ‖x− x′‖ = 0 and hence x = x′. So, the conclusion is that if y is a point for which
f(x) = y does have a solution x, then it only has one; in other words, f is injective on Br(a).

Thus, set U := Br(a). Then f : U → f(U) is injective and surjective (we cut down the codomain
in order to make it surjective), so it is bijective and hence invertible. This gives us our desired local
inverse f−1 : f(U)→ U , with a ∈ U and f(a) ∈ f(U).

Step 2: continuity of the local inverse. Next we show that f(U) is open in Rn. This will then
be the set V := f(U) in the statement of the inverse function theorem, so that f : U → V and
f−1 : V → U . Let y0 ∈ f(U) and pick x0 ∈ U such that f(x0) = y0. We must find a ball around
y0 that is contained in f(U). Let y ∈ B?(y0), where ? denotes some to-be-determined radius. We
want y ∈ f(U), or in other words that there exists x ∈ U such that f(x) = y, and we know from
our fixed-point rephrasing that this is equivalent to showing that g(x) := x −Df(a)−1(f(x) − y)
has a fixed point. Thus, we now care about the existence of a fixed point, whereas in the first step
we only cared about the uniqueness.

Pick some Bs(x0) ⊆ U (recall U is open), and by shrinking the radius we can ensure Bs(x0) ⊆ U .
We know that g : Bs(x0)→ f(U) is a contraction, but in order to guarantee the existence of a fixed
point for g, we now need g to map the complete space Bs(x0) into itself. Thus, we must know that

if x ∈ Bs(x0), then g(x) ∈ Bs(x0), or in other words ‖g(x)− x0‖ ≤ s.

This will achieve via a triangle inequality comparison with g(x0). From the definition of g, we have

‖g(x0)− x0‖ =
∥∥Df(a)−1(f(x0)− y)

∥∥ =
∥∥Df(a)−1(y0 − y)

∥∥ ≤ ∥∥Df(a)−1
∥∥ ‖y − y0‖ .

Thus if we go back and rick the ? radius small enough, we can ensure this final expression is at
most s

2 . So, for y ∈ B 1
2‖Df(a)−1‖

(y0), we have

‖g(x0)− x0‖ ≤
∥∥Df(a)−1

∥∥ ‖y − y0‖ ≤
s

2
.
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By the contraction property g satisfies, for x ∈ Bs(x0) we have

‖g(x)− g(x0)‖ ≤
1

2
‖x− x0‖ ≤

s

2
.

Hence for such x we get

‖g(x)− x0‖ ≤ ‖g(x)− g(x0)‖+ ‖g(x0)− x0‖ ≤
s

2
+
s

2
= s.

Thus, g maps Bs(x0) into itself, and Bs(x0) is complete, so the Banach contraction principle
guarantees that g has a fixed point, so there exists x ∈ Bs(x0) ⊆ U such that g(x) = x, which is
equivalent to f(x) = y for the y we fixed in B 1

2‖Df(a)−1‖
(y0). Thus y ∈ f(U), so B 1

2‖Df(a)−1‖
(y0) is

contained in f(U) and hence f(U) is open in Rn. Here is the picture of what’s going on:

So, we have our f : U → V , with U 3 a open and V = f(U) 3 f(a) open, and we have the
inverse f−1 : V → U . The same reasoning as above with U replaced by a smaller open subset of
U works just as well, and shows that the image of any open set in U is open in V . This says that
f : U → V is what’s called an open map, which just means a function sending open sets to open
sets. (This gives a proof of the fact that C1 functions with invertible derivatives are always open.)
But to say that f is open means the same thing as saying that f−1 : V → U is continuous, since
the preimage of Z ⊆ U under f−1 is just the image of Z under f .

Step 3: differentiability of the inverse. At this point we only know that f : U → V has
invertible derivative at a ∈ U (by the setup of the inverse function theorem), but we can ensure
invertible derivative everywhere by shrinking U if need be. The set of invertible n × n matrices
is open in the set of all n × n matrices (with respect to the operator norm), so since Df(a) is
invertible, all nearby Df(x) will be invertible too. Since f is C1, we can make Df(x) close to
Df(a) by making x close to a, so if we shrink U , so that x is close enough to a, we will indeed
have that Df(x) is invertible for all x ∈ U .

Now we show that f−1 : V → U is differentiable. Let y ∈ V and let y + k ∈ V . (V is open, so
y + k is in V for small enough k.) Since V = f(U), we can pick x ∈ U and x + h ∈ U such that

f(x) = y and f(x + h) = y + k.

We claim that

lim
kto0

f−1(y + k)− f−1(y)−Df(x)−1k

‖k‖
= 0,

which shows that f−1 is differentiable at y with derivative Df(x)−1. (Thus, as suggested by the
Warm-Up, we get that Df−1(y) = Df(x)−1 = Df(f−1(y))−1 as a consequence of this part.) As
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with other differentiability arguments we have seen, this will come from writing the numerator
above in a way which will make taking the limit possible.

We have f−1(y + k)− f−1(y) = (x + h)− x = h, so

f−1(y + k)− f−1(y)−Df(x)−1k = h−Df(x)−1k = Df(x)−1[Df(x)h− k],

where in the last step we use h = Df(x)−1Df(x)h. But k = (y + k)− y = f(x + h)− f(x), so

Df(x)−1[Df(x)h− k] = Df(x)−1[Df(x)h− f(x + h) + f(x)].

Thus, the limit we want to equal zero looks like

lim
kto0

f−1(y + k)− f−1(y)−Df(x)−1k

‖k‖
= lim

k→0

Df(x)−1[Df(x)h− f(x + h) + f(x)]

‖k‖
.

The key point is that Df(x)h− f(x + h) + f(x), or rather its negative, is precisely the linear error

in expanding f around x, so we know already that Df(x)h−f(x+h)+f(x)
‖h‖ → 0 as h→ 0. Hence taking

the limit above will be possible once we can relate the denominator ‖k‖ to ‖h‖.
We make use of g(x) = x−Df(a)−1(f(x)− y) again to write

g(x + h)− g(x) = [(x + h)−Df(a)−1(f(x + h)− y)]− [x−Df(a)−1(f(x)− y)]

= h−Df(a)−1(f(x + h)− f(x))

= h−Df(a)−1k,

so
∥∥h−Df(a)−1k

∥∥ = ‖g(x + hh)− g(x)‖ ≤ 1
2 ‖h‖, where we once again use the contraction

inequality for g. The reverse triangle inequality gives

‖h‖ −
∥∥Df(a)−1k

∥∥ ≤ 1

2
‖h‖ , so

1

2
‖h‖ ≤

∥∥Df(a)−1k
∥∥ ≤ ∥∥Df(a)−1

∥∥ ‖k‖ .
Thus ‖k‖ ≥ ‖h‖

2‖Df(a)−1‖ , so (almost at the finish line!) we have∥∥f−1(y + k)− f−1(y)−Df(x)−1k
∥∥

‖k‖
=

∥∥Df(x)−1[Df(x)h− f(x + h) + f(x)]
∥∥

‖k‖

≤
∥∥Df(x)−1

∥∥
1/(2 ‖Df(a)−1‖)

‖Df(x)h− f(x + h) + f(x)‖
‖h‖

.

As k→ 0, h = f−1(y+k)−f−1(y)→ 0 as well since f−1 is continuous, so the final expression above
goes to 0 by differentiability of f at x, and thus f−1 is differentiable at y with Df−1(y) = Df(x)−1.
Simply. Astonishing.

Step 4: continuity of the derivative. So, f : U → V is invertible and f−1 : V → U is
differentiable. The remaining claim is that f−1 is C1, meaning that Df−1 is continuous. But

Df−1(y) = Df(f−1(y))−1

is a composition of continuous things (f−1 is continuous by Step 2, Df is continuous since f is C1,
and matrix inversion is a continuous operation), so we get that Df is continuous as well, and so
we... are... done! (And the crowds rejoiced! Simply a tour de force argument of analysis.)
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Lecture 26: Implicit Function Theorem

Warm-Up. The key idea in the proof of the inverse function theorem is that of rephrasing the
problem of finding x satisfying f(x) = y (for x close to a and y close to f(a)) as finding a fixed
point of g(x) = x−Df(a)−1(f(x)− y) instead. The existence of this fixed point—from the proof
of the Banach contraction principle—comes from an iterative argument where for any starting p
near a, the sequence

p, g(p), g(g(p)), g(g(g(p))), . . .

will converge to the fixed point of g, and hence to the x = f−1(y) we want to find. If nothing else,
this can be used to give a sense as to why g(x) = x −Df(a)−1(f(x) − y) was the right thing to
look at. Recall the initial motivation we gave for the inverse function theorem: if

f(x) ≈ f(a) +Df(a)(x− a)

is to hold for x near a, invertibility of the function on the right should correspond to invertibility
of the function on the left. Thus given y = f(x), we have

y ≈ f(a) +Df(a)(x− a), so x ≈ a−Df(a)−1(f(a)− y)

where the second expression comes from solving for x in the first using the inverse of Df(a). Hence
g(a) = a −Df(a)−1(f(a) − y) is a first approximation to x = f−1(y), and we then iterate to get
better approximations using precisely this “infinitesimal inverse” g(x) = x−Df(a)−1(f(x)− y).

Our goal here is to see what this all looks like in the simple case of a single-variable function
f : U ⊆ R→ R. In particular, we take the function f(x) = log(x) on (0,∞) defined by

log(x) =

∫ x

1

1

t
dt.

Now, we know what the inverse should be in this case, namely f−1(y) = ey, but imagine that
we did not know anything about log apart from the definition above, and in particular did not
know that it was the inverse of the exponential function. The goal is to get a sense for why this
should be the case solely from the iterative argument described above. That is, for fixed y (near
f(1) = log(1) =

∫ 1
1

1
t dt = 0, we work out some iterates

1, g(1), g(g(1)), g(g(g(1))), . . .

and see (at least numerically) that they do appear to be converging to f−1(y) = ey. By the
fundamental theorem of calculus, we have

f ′(1) =
1

1
> 0,

so f ′(1) is invertible (as a 1×1 matrix), and hence the inverse function theorem and its proof apply.
The contraction g(x) = x−Df(a)−1(f(x)− y) in this case looks like

g(x) = x− 1(log x− y) = x+ y − log x,

so our iterates starting at 1 look like

1, 1 + y, 1 + 2y − log(1 + y), 1 + 3y − log(1 + y)− log(1 + 2y − log(1 + y)), . . . .

Here are some numerical values of these iterates at some specific values of y near f(1) = 0:
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y 3-rd iterate 10-th iterate 100-th iterate

1 2.47096... 2.70898... 2.71828...
2 4.54005 6.51645... 7.38905...

0.5 1.62795... 1.64869... 1.64872...
−0.5 0.55966... 0.60892... 0.60653...

Sure enough, these values appear to be getting closer and closer to ey, just as the proof of the inverse
function theorem would lead you to believe! (So, hidden within the proof of the inverse function
theorem is a method for approximating the inverse, different from the linear approximation idea
using Df−1 = (Df)−1 we mentioned last time.)

Here is another example. Take f(x) = x2 near x = 2. We have f ′(2) = 4, which is invertible,
so again the inverse function theorem applies. The contraction g in this case is

g(x) = x− 1
4(x2 − y) = x+ 1

4y −
1
4x

2,

so the iterates starting at 2 look like

2, 1 + 1
4y, 1 + 1

2y −
1
4(1 + 1

4y)2, 1 + 3
4y −

1
4(1 + 1

4y)2 − 1
4(1 + 1

2y −
1
4(1 + 1

4y)2), . . .

Computing some of these numerically near f(2) = 4 gives

y 3-rd iterate 10-th iterate 100-th iterate

3 1.73236... 1.73205... 1.73205...
2 1.42089... 1.41421... 1.41421...
5 2.23626... 2.23606... 2.23606...

4.5 2.12133... 2.12132... 212132...

which indeed appear to be converging to
√
y = f−1(y). The math works out! (If you are familiar

with Newton’s method for approximating solutions of equations, what we are doing here is just a
modification of that. Note that the converges appears to happen more quickly for

√
y than it did

for ey, as evidence by the fact that the final columns in the second table are identical.)

Solving general systems. The inverse function theorem dealt with solving systems of (nonlinear)
equations f(x) = y with as many equations as variables. For our final topic, we consider more
general “underdetermined” systems with at least as many variables as equations. Take for example
the system

xu2 + yv2 + xy = 11

xv2 + yu2 − xy = −1

for (x, y, u, v) ∈ R4. We can check that (2, 3, 1, 1) is one solution, and we want to know if there are
other solutions and how they can be obtained.

It is customary to rewrite our equations so that each is set to equal 0:

xu2 + yv2 + xy − 11 = 0

xv2 + yu2 − xy + 1 = 0.

Define F : R4 → R2 to be the function

F (x, y, u, v) = (xu2 + yv2 + xy − 11, xv2 + yu2 − xy + 1),
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so our system of equations is F (x, y, u, v) = (0, 0). The key observation is that the partial Jacobian
matrix DF(u,v), where we take the part of DF obtained by differentiating with respect to u and v
only, is invertible at our solution (2, 3, 1, 1):

DF(u,v)(x, y, u, v) =

[
2xu 2yv
2yu 2xv

]
 DF(u,v)(2, 3, 1, 1) =

[
4 6
6 4

]
is invertible.

The implicit function theorem (to be stated shortly) then guarantees that near (2, 3, 1, 1), there
exist C1 functions u = u(x, y) and v = v(x, y) such that (x, y, u(x, y), v(x, y)) satisfies

F (x, y, u(x, y), v(x, y)) = (0, 0),

thus expressing (u, v) (i.e., solving for u and v) in terms of (x, y) in the system F (x, y, u, v) = (0, 0).
So, not only do we have more solutions (infinitely many more near (2, 3, 1, 1)), they can be

written in terms of x and y alone. The equations u(x, y), v(x, y), together with x, y, define “para-
metric equations” for points in the set of solutions of our system, at least for those points near
(2, 3, 1, 1). This says that, geometrically, the set of solutions of our system is a surface in R4, or
what is modern language called a 2-dimensional submanifold of R4. (k-dimensional manifolds are
objects described by C1, say, parametric equations with k independent parameters.) If we were to
introduce a third constraining equation into our system, we would instead be able to describe three
of our variables in terms of the fourth, and the set of solutions in that case would be a curve (i.e.,
1-dimensional manifold) since points can be parametrized by one parameter alone.

Implicit function theorem. Here, then, is the statement of the implicit function theorem.
Suppose F : Rm × Rn → Rn is C1 (more generally the domain can just be an open subset of
Rm × Rn) and that (a,b) ∈ Rm × Rn satisfies F (a,b) = 0. Denote points in the domain by
(x,y) ∈ Rm×Rn. If the partial Jacobian matrix DFy(a,b) is invertible, then there exists an open
set W ⊆ Rm containing a and a C1 function g : W → Rn such that g(a) = b and

F (x, g(x)) = 0 for all x ∈W.

Moreover, for each x ∈W , the point y = g(x) satisfying F (x,y) = 0 is unique, so g is unique.
Let us digest this. The domain Rm×Rn of F is Rm+n (or an open subset thereof), but we write

it as Rm × Rn in order to separate our variables as x ∈ Rm and y ∈ Rn since these play different
roles in the statement. The equation

F (x,y) = 0

is then a system of n equations (the number of components of F ) in m + n variables (so, more
variables than equations) satisfied by at least (a,b). The claim of the implicit function theorem is
that in F (x,y) = 0 we can essentially (under an invertibility assumption) solve for y in terms x
near (a,b), which is what y = g(x) for x ∈W gives us. The equation F (x,y) = 0 thus “implicitly
defines” y as a function x. The partial Jacobian matrix DFy is taken with respect to the variables
which we are trying to solve for in terms of the remaining variables. This is an n × n matrix, so
the number of equations in our setup determines the number of variables we can expect to be able
to express in terms of the others.

We will prove this next time, where the key step is to find a way to apply the inverse function
theorem. This latter theorem cannot be applied directly since the dimensions in F : Rm×Rn → Rn
do not match up, so we will need a function F̃ : Rm × Rn → Rm × Rn where the dimensions do
match up and which encodes F in an appropriate way.
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Implicit derivatives. As is the case with the inverse function theorem, the implicitly defined
function g : W → Rn we get from the implicit function theorem cannot be described explicitly in
general, but in fact we can give its derivative explicitly, just as what happened with the inverse
function theorem. With the notation above, the claim is that

Dg(x) = −DFy(x, g(x))−1DFx(x, g(x)) for all x ∈W.

The two terms on the right are partial Jacobian matrices, the first n× n and the second n×m, so
the result is n ×m, which is the correct size for Dg(x). The right side is explicit since we know
what F is in the setup. A first clarification is that, while in the setup we only know that DFy is
invertible at (a, g(a)) = (a,b), the fact that F is C1 and that invertibility of matrices is an open
condition (also used in the proof of the inverse function theorem) guarantees that DFy(x, g(x)) is
also invertible for x close to a, so we restrict W if need be so that this holds.

To prove this we differentiate both sides of the equation

F (x, g(x)) = 0

characterizing the implicit function g. The right side differentiates to the zero matrix. For the left
side, we consider the composition of

x 7→ (x, g(x)) and (x,y) 7→ F (x,y).

The derivatives of each of these are[
I

Dg(x)

]
and DF (x,y) =

[
DFx(x,y) DFy(x,y)

]
,

where in the first I denotes an m × m identity matrix (this comes from differentiating the first
component of (x, g(x)) with respect to x) and Dg(x) is n×m, and in the second we break DF up
into the n×m piece DFx where we differentiate with respect to x and the n× n piece DFy where
we differentiate with respect to y. Thus by the chain rule, the derivative of F (x, g(x)) is

[
DFx(x, g(x)) DFy(x, g(x))

] [ I
Dg(x)

]
= DFx(x, g(x)) +DFy(x, g(x))Dg(x).

This should equal the zero matrix since F (x, g(x)) = 0 for all x, so we get

DFx(x, g(x)) +DFy(x, g(x))Dg(x) = 0,

and solving for Dg(x) gives Dg(x) = −DFy(x, g(x))−1DFx(x, g(x)) as claimed. By considering
entries of both sides here, we then get the partial derivatives of g described in terms of those of F .

Relation to linear algebra. We will do more with all this next time, but we finish now with
the linear-algebraic fact of which the implicit function theorem is meant to be the local analog.
Consider the usual method for solving an under-determined system of linear equations, and let us
use the example

x1 + 2x2 + x3 + 4x4 − x5 = 5

3x1 + 6x2 + 5x3 + 10x4 − 4x5 = 14

−x1 − 2x2 + x3 − 2x4 − 4x5 = −2.
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as a guide. To solve this you would use row operations on augmented matrix to reduce down to
“echelon form”, with the end result being that the solutions of the system above are the same as
those of

x1 + 2x2 + 9
2x5 = 1

2

x3 − 3
2x5 = 1

2

x4 − x5 = 2.

Then you express the “pivot” variables x1, x3, x4 in terms of the “free” variables x2, x5 to get your
general solution

x1 = −2x2 − 9
2x5 + 1

2 , x3 = 3
2x5 + 1

2 , x4 = x5 + 1 


x1
x2
x3
x4
x5

 =


−2x2 − 9

2x5 + 1
2

x2
3
2x5 + 1

2
x5 + 1
x5

 .
In retrospect, what is happening here is that the original equations “implicitly define” x1, x3, x4

as functions of x2, x5, and the process of solving gives the explicit expressions for x1, x3, x4 in terms
of x2, x5. Let us rearrange the variables so that the pivot variables are all grouped together at the
start and the free variables at the end; our original system then looks like

[
A B

] [y
x

]
= b

where y are the pivot variables, A the coefficients of the pivot variables, x the free variables, B the
coefficients of the free variables, and b the vector encoding the right sides. After expanding the
left our system looks like

Ay +Bx = b.

Since the y’s are pivot variables, the “partial Jacobian matrix” of F (x,y) = Ay +Bx with respect
to y, which is just A, is invertible, so we can solve for y above to get

y = −A−1Bx +A−1b.

This gives y = g(x) as a function of x, which in the example above looks likex1x3
x5

 = g

([
x2
x5

])
=

−2x2 − 9
2x+4 + 1

2
3
2x4 + 1

2
x4 + 1

 .
This is precisely the content of the implicit function theorem, which seeks to do this same thing

with non-linear equations instead. (In the linear case we can always get an explicit expression for
the implicit g.) Note that the matrix −A−1B describing the linear term in the solution for y above
is just −(DFy)−1(DFx) in this particular example where DFy = A and DFx = B, so the expression
derived for the implicit derivative before is also a reflection of what happens in the linear case. The
upshot is that solving F (x,y) = 0 “infinitesimally” using linear algebra gives rise a local solution.

Lecture 27: More on Implicit Functions

Warm-Up. Suppose F : R3 → R is C1 and that DF (x, y, z) 6= 0 for all (x, y, z) ∈ R3. We
show that F (x, y, z) = 0 then defines a surface in R3, and will derive an equation for the tangent
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plane to this surface at any point. (Part of the goal here is to give precise meaning to the terms
“surface” and “tangent plane”.) The end result is something you would have seen in a multivariable
calculus course, so the intent here is to see how these old results are formally derived from the
implicit function theorem. As we go, we will also work out the details in the example of a sphere
x2 + y2 + z2 = 1 to see what the abstraction says in a concrete, explicit case.

Since DF = [ ∂F
∂x

∂F
∂y

∂F
∂z ] is nonzero at every point, at least one of ∂F∂x ,

∂F
∂y ,

∂F
∂z is nonzero at every

point. Let us consider only the case where ∂F
∂x (x0, y0, z0) 6= 0 since the other cases are similar. Since

∂F
∂x (x0, y0, z0) is invertible (this is a 1×1 matrix), the implicit function theorem says that x = g(y, z)
for a C1 function g defined on an open set W ⊆ R2 containing (y0, z0). For (y, z) ∈W—thus near
(y0, z0)—we then have F (g(y, z), y, z) = 0, so (g(y, z), y, z) gives points on our surface. The fact
that we can describe points satisfying F (x, y, z) = 0 parametrically by C1 functions in terms of two
independent parameters is then what we take to be the definition of “surface”; we get parametric
equations

x = g(y, z), y = y, z = z for (y, z) ∈W

for points on F (x, y, z) = 0 near where ∂F
∂x 6= 0, and near points where ∂F

∂y or ∂F
∂z are nonzero instead

we get parametric equations of the form

x = x, y = g(x, z), z = z or x = x, y = y, z = g(x, y)

respectively. The point is that we can find such equations—which might have to vary as we move
from region to region—valid near all points on F (x, y, z) = 0.

In the case of a sphere, we use F (x, y, z) = x2 + y2 + z2− 1. We have DF = [ 2x 2y 2z ], and near
points where ∂F

∂x = 2x 6= 0, the setup above expresses x as a function of y and z. In this case we
can actually do so explicitly:

x2 + y2 + z2 − 1 = 0 x = ±
√

1− y2 − z2 =: g(y, z).

The ± is uniquely determined by whether x is positive or negative, which is why this only works
when x (equivanlently ∂F

∂x = 2x) is nonzero. If x = 0, then we have to shift to expressing y or z
as functions of the other two variables in a similar way depending on which is guaranteed to be
nonzero. (We cannot have all of x, y, z be zero since (0, 0, 0) is not on the sphere.)

Now we use the part of the implicit function theorem that tells us the derivatives of the
implicitly-defined function x = g(y, z), still in the ∂F

∂x 6= 0 case. We have

Dg(y, z) = −DFx(g(y, z), y, z)−1DF(y,z)(g(y, z), y, z),

which looks like (let us suppress the point at which we are evaluating from the notation for now)[
∂g
∂y

∂g
∂z

]
= −

[
∂F
∂x

]−1 [∂F
∂y

∂F
∂z

]
, so

∂g

∂y
= −Fy

Fx
and

∂g

∂z
= −Fz

Fx
.

(At the end we use subscript notation for partial derivatives for ease of reading.) In the sphere
example, since we have g(y, z) = ±

√
1− y2 − z2 explicitly, we can compute these partials directly:

∂g

∂y
=

−2y

±2
√

1− y2 − z2
= −y

x
and

∂g

∂z
=

−2z

±2
√

1− y2 − z2
= − z

x

where we use x = ±
√

1− y2 − z2. This matches the general computation since in this case
F (x, y, z) = x2 + y2 + z2 = −1, so that Fx = 2x, Fy = 2x, and Fz = 2z. Note also that these can

134



be found the usual implicit differentiation techniques you would have seen in a previous calculus
course: if x is a function of y, differentiating x2 + y2 + z2 = 1 with respect to y gives

2x
∂x

∂y
+ 2y + 0 = 0, so

∂x

∂y
= −y

x
,

and similarly when differentiating with respect to z. (The matrix version Dg = −(DFy)−1(DFx)
of the implicit derivative is just the full formal version of old-school “implicit differentiation”.)

The implicit function x = g(y, z) is C1 and hence differentiable at (y0, z0), so

lim
(y,z)→(y0,z0)

g(y, z)− g(y0, z0)−Dg(y0, z0)
[
y−y0
z−z0

]√
(y − y0)2 + (z − z0)2

= 0.

The graph of the linear approxmation

x = g(y0, z0) +Dg(y0, z0)
[
y−y0
z−z0

]
appearing in the numerator is a plane, and indeed this is what we define to be the “tangent plane”
to the graph of g, and hence to the surface F (x, y, z) = 0, at (x0 = g(y0, z0), y0, z0). (The definition
of differentiable for a function R2 → R2 is just the statement a valid tangent plane to the graph
exists.) If we multiply out Dg(y0, z0)

[
y−y0
z−z0

]
, we get

x = x0 +
∂g

∂y
(y0, z0)(y − y0) +

∂g

∂z
(y0, z0)(z − z0)

as the tangent plane to the surface at (x0, y0, z0).
In the sphere case, this becomes

x = x0 −
y0
x0

(y − y0)−
z0
x0

(y − y0)

when x0 6= 0. Multiplying through by x0 and rearranging gives

x0(x− x0) + y0(y − y0) + z0(z − z0) = 0,

which is indeed the typical equation for tangent planes to sphere. In the general case, with the
implicit derivatives computed before, our tangent plane becomes

x = x0 −
Fy(x0, y0, z0)

Fx(x0, y0, z0)
(y − y0)−

Fz(x0, y0, z0)

Fx(x0, y0, z0)
(y − y0).

(Near points where we instead express y in terms of x, z or z in terms of x, y, we get similar
expressions.) After multiplying through by Fx(x0, y0, z0) and rearranging, we get

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0,

which is then the usual tangent plane equation to the surface F (x, y, z) = 0 at (x0, y0, z0) given in
a multivariable calculus course. The geometric interpretation given in such a course is that this
equation says that the gradient vector ∇F = (Fx, Fy, Fz) is orthogonal to the tangent plane, and
hence the surface, at a given point, so we have now derived this interpretation from first principles
using the implicit function theorem.
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Proof of implicit function theorem. Recall the setup of the implicit function theorem: F is
a C1 function Rm × Rn → Rn, (x,y) = (a,b) satisfies F (a,b) = 0, and DFy(a,b) is invertible.

Define the function F̃ : Rm × Rn → Rm × Rn by

F̃ (x,y) = (x, F (x,y)).

Since F̃ now maps between spaces of the same dimension, we can hope to apply the inverse function
theorem, with the intuition being that the inverse will send (x, F (x,y)) to (x,y), so that if we know
F (x,y) and x, we should be able to recover y in F (x,y) from knowing x.

We have

DF̃ (a,b) =

[
I 0

DFx(a,b) DFy(a,b)

]
,

where the I comes from differentiating the first components of (x, F (x,y)) with respect to x,
0 from differentiating these first x components with respect to y, and the DFx and DFy from
differentiating the remaining F (x,y)-components of (x, F (x,y)). Since DFy(a,b) is invertible, the
(m+ n)× (m+ n) matrix above is invertible too, so the inverse function theorem applies. We get
open sets U, V ∈ Rm ×Rn, with (a,b) ∈ U and (a, F (a,b)) = (a,0) in V , on which F̃ is invertible
with C1 inverse:

The open set W claimed to exist in the implicit function theorem, which will be the domain of the
implicitly-defined function, is defined to be

W := {x ∈ Rm | (x,0) ∈ V }.

This contains the x-coordinates of points in the intersection of V ⊆ Rm×Rn above with Rm×{0}
(taking {0} in the second factor is what will enforce the F (x,y) = 0 equation), and is open in Rm
since V was open in Rm ×Rn. (The distance between two points in W is the same as the distance
between the corresponding points in V since the y-coordinate of each is 0, so a radius giving an
open ball contained in V also gives an open ball contained in W .) To obtain the implicit function
y = g(x), we must extract the y-coordinate of a point (x,y) for which F (x,y) = 0 where x ∈ W ,
but by the construction of W this comes from applying the inverse of F̃ to (x,0) ∈ V and taking
the y-coordinate of the result. Thus, we define g : W → Rn by

g(x) = pry(F̃−1(x,0)) for x ∈W,

where pry denotes the projection map (x,y) → y onto the y-coordinate. This g is C1 since it is

the composition of the C1 maps x 7→ (x,0), F̃−1, and pry, and satisfies

F (x, g(x)) = 0 for all x ∈W
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by the definition of F̃ and definition of g using F̃−1.
The fact that y = g(x) is the unique element which satisfies F (x,y) = 0 comes from injectivity

of F̃ : if y′ is another such element, then

F̃ (x,y′) = (x, F (x,y′)) = (x,0) = (x, F (x,y)) = F̃ (x,y),

so y′ = y = g(x). In particular, g(a) = b since b satisfies F (a,b) = 0, thus completing the proof.

Implicit implies inverse. In this course we have derived the implicit function theorem as a
consequence of the inverse function theorem, which is what Rudin does and is a common thing to
do. But probably just as common is to do it the other way around: prove the implicit function
theorem via a contraction fixed-point argument, and derive the inverse function theorem as a
consequence. The inverse and implicit function theorems are thus equivalent to one another, which
is not surprising since they both amount to solving the same types of equations, with the only
differences between the number of variables vs the number of equations.

So, assuming we have proved the implicit function theorem in some other way, let us derive the
inverse function theorem as a consequence. Given f as in the setup of the inverse function theorem,
set F (x,y) := f(x)− y, which the motivation being that F (x,y) = 0 is then the inverse function
setup f(x) = y where we want to express x in terms of y. With a as in the inverse function setup,
we have F (a, f(a)) = f(a)− f(a) = 0. Since

DFx(a, f(a)) = Df(a)

(note that we differentiate with respect to x here instead of y since it is x that we are trying to
solve for in terms of y as opposed to the other way around; so, the roles of x and y here are reversed
compared to the original way we stated the implicit function theorem) is invertible, the implicit
function theorem says that there exists an open W 3 f(a) and a C1 function g on W such that

F (g(y),y) = 0 for all y ∈W.

Using the definition of F , this becomes f(g(y))− y = 0, or

f(g(y)) = y for all y ∈W.

Thus g satisfies one of the requirements needed to be the inverse of f , with the remaining require-
ment being that g(f(x)) should equal x for all x.

Since f(g(y)) = y for all y ∈ W , g(y) is always in the preimage f−1(W ) of W under f .
This preimage is open since f is continuous, so g is a function W → f−1(W ) and f then goes
f−1(W ) → W . We have a ∈ f−1(W ) since f(a) ∈ W , so f−1(W ) and W are the sets U 3 a and
V 3 f(a) claimed to exist in the inverse function theorem. For any x ∈ f−1(W ), so f(x) ∈W is in
the domain of f , we have

F (x, f(x)) = f(x)− f(x) = 0.

But the uniqueness property of the implicit function g, this means that x must be g(f(x)), so

g(f(x)) = x for all x ∈ f−1(W ).

Thus g : W → f−1(W ) is indeed the inverse of f : f−1(W )→W , so the proof is complete.

Lagrange multipliers. Finally, we give one of the other main applications (in addition to making
geometric notions like “surface” or similar higher-dimensional objects precise) of the implicit func-
tion theorem, or rather we give the simplest case of another main application. Given a function

137



which we to optimize among points satisfying some constraint, the method of Lagrange multipliers
characterizes the points at which local extreme values occur. In the simplest setup, we have a C1

function f : R2 → R and a C1 “constraint” function g : R2 → R. The claim is that if among
points satisfying the constraint g(x, y) = 0 the function f has a local extremum at (x0, y0), and if
Dg(x0, y0) is nonzero, then Df(x0, y0) is a scalar multiple of Dg(x0, y0):

Df(x0, y0) = λDg(x0, y0) for some λ ∈ R.

The method of Lagrange multipliers works by then finding the points satisfying such an equation,
and the optimal points sought will be among these points. (You will prove the simplest “two
constraint” version of this on the last homework, and, if so inclined, the most general version with
any number of constraints as a “bonus” problem.)

In the case at hand, what we want is some λ that satisfies

∂f

∂x
(x0, y0) = λ

∂g

∂x
(x0, y0) and

∂f

∂y
(x0, y0) = λ

∂g

∂y
(x0, y0).

IfDg(x0, y0) =
[

∂g
∂x

(x0,y0)
∂g
∂y

(x0,y0)
]

is nonzero, then at least one of ∂g∂x(x0, y0) or ∂g
∂y (x0, y0) is nonzero;

let us consider only the case were ∂g
∂x(x0, y0) 6= 0 as the other case is very similar. Then we have

no choice as to what λ must be in the first equation as we can solve for it explicitly:

λ =
fx(x0, y0)

gx(x0, y0)

where we use subscript notation for partial derivatives. The claim, then, is that this same λ also
satisfies the desired second equation. To show this we will find a way to relate the derivatives of f
with to those of g using the derivative of an implicitly-defined function.

Since the “partial Jacobian matrix” Dgx(x0, y0) = ∂g
∂x(x0, y0) is invertible (as a 1 × 1 matrix),

the implicit function theorem says that in the constraint equation

g(x, y) = 0

we have x = h(y) for some C1 function h defined on a neighborhood of y0, which also satisfies
x0 = h(y0). Moreover, the derivative of h with respect to y at y0 is

h′(y0) = −gx(h(y0), y0)
−1gy(h(y0), y0) = −gy(x0, y0)

gx(x0, y0)
.

On the other hand, since (h(y), y) satisfies the constraint equation for all y, the function
f(h(y), y) of y has derivative zero because it a local extremum at y0 by assumption. By the
chain rule, this thus gives[

fx(h(y0), y0) fy(h(y0), y0)
] [h′(y0)

1

]
= 0, or fx(h(y0), y0)h

′(y0) + fy(h(y0), y0) = 0.

Hence fy(x0, y0) = −fx(x0, y0)h
′(y0), so substituting the other expression for h′(y0) we derived

before gives

fy(x0, y0) = −
(
−gy(x0, y0)
gx(x0, y0)

)
fx(x0, y0) =

(
fx(x0, y0)

gx(x,y0)

)
gy(x0, y0),

which is precisely the desired equation fy(x0, y0) = λgy(x0, y0)! Thus, for this λ = fx(x0, y0)/gx(x0, y0)
we have Df(x0, y0) = λDg(x0, y0) as claimed. (The implicit function theorem in this case is thus
a tool used to be able to compare certain derivatives to others. The general case of Lagrange
multipliers has “essentially” the same proof.)

Thanks for reading!
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