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Lecture 1: Introduction

The final quarter of this year-long sequence will focus on developing a better notation of integration.
This better notion is known as Lebesgue integration and, as we’ll see, has some crucial properties



that makes it more suitable for various applications than Riemann integration, which you developed
last quarter. The Lebesgue integral depends on the notion of the Lebesgue measure, which provides
a way to measure the “length” of a wide variety of subsets of R.

As one main use of the Lebesgue integral, in the second half of the quarter we will further the
develop the theory of the space L2 you were introduced to last quarter. Indeed, we will give the
real definition of this space (the one you saw last quarter was only a glimpse!), and along the way
we will also give a brief introduction to the subject of functional analysis.

To start, we describe some of the limitations of the Riemann integral, and hint at how the
Lebesgue integral will overcome them.

Riemann and areas under graphs. The standard example of a non-Riemann integrable function
is the function f : [0, 1] → R defined by

f(x) =

!
1 x ∈ Q
0 x /∈ Q.

This is called the indicator function of Q ∩ [0, 1] since it “indicates” which elements are in this
set by assigning 1 to those elements and 0 to others. Recall that this function is not Riemann
integrable since its infimum over any subinterval of [0, 1] is 0 (since the irrationals are dense) and
its supremum is 1 (since the rationals are dense), so all lower Riemann sums are 0 and all upper
Riemann sums are 1.

But, in fact we claim that this function does have a well-defined area under its graph, only
one that the Riemann integrable is not strong enough to detect. Indeed, this area is zero. The
region under the graph of this function consists of vertical line segments of height 1 lying above
each rational in [0, 1] on the x-axis. To see that the “area” of the union of these segments is zero,
fix ε > 0. Enumerate the (countable) elements of Q ∩ [0, 1] as

r1, r2, r3, r4, . . . .

Pick an interval I1 around r1 of length ε/2, an interval I2 around r2 of length ε/22, an interval
around r3 of length ε/23, and in general an interval around rn of length ε/2n. Then for each n take
a rectangle Rn with base In and height 1. This rectangle covers the vertical line segment under the
graph of f corresponding to rn on the x-axis. Thus the union of these segments is covered by the
union of these rectangles, so we should have:

“area” under the graph ≤ area of the union of the Rn.

The area of Rn is the length of In times the height 1, so this area is ε/2n, and thus we have

“area” under the graph ≤ area of the union of the Rn ≤
∞"

n=1

ε

2n
= ε.

But ε > 0 was arbitrary, so we conclude that the “area” under the graph of f must be zero as
claimed. (We are using “area” here since there is a question as to in what sense this area exists.
Essentially, this take this argument as defining this area as zero. This same idea will form the
basis behind the notion of the Lebesgue measure soon enough.) This function will be Lebesgue
integrable, and its Lebesgue integral will be zero.
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Riemann and pointwise convergence. For a second limitation of the Riemann integral, consider
the sequence of functions fn : [0, 1] → R defined by

fn(x) =

!
1 x ∈ {r1, r2, . . . , rn}
0 otherwise,

where the ri denote the same enumeration of the elements of Q ∩ [0, 1] as before. (So, fn is the
indicator function of {r1, r2, . . . , rn}.) Since each rn is nonzero are only a finite number of points,
each fn is Riemann integral with integral 0. However, the fn converge pointwise to the indicator
function f of Q ∩ [0, 1] from the previous example, which is not Riemann integrable. This shows
that Riemann integrability is not preserved under pointwise convergence.

The situation is even worse: even if a pointwise limit is Riemann integrable, the value of the
integrals themselves are not necessarily preserved when taking pointwise limits. Consider now the
sequence of functions fn : [0, 1] → R defined by

fn(x) =

!
n 0 < x < 1

n

0 otherwise.

Each of these is Riemann integrable with Riemann integral

# 1

0
fn(x) dx =

# 1/n

0
ndx = n( 1n) = 1.

The pointwise limit of these functions, however, is the constant zero function (since for any x > 0,
we eventually have fn(x) = 0 once n is large enough so that 1

n < x). This limit is integrable, but
with integral 0 so that # 1

0
fn(x) dx ∕→

# 1

0
0 dx.

Now, the Lebesgue integral will get around this flaw in some sense, but not in absolute sense:
fn → f pointwise with all functions Lebesgue integrable does not imply that the Lebesgue integrals
of the fn converges to the Lebesuge integral of f . But, we will see that in fact there are some mild
assumptions we can impose on the fn so that the values of the Lebesgue integrals do behave nicely
when taking pointwise limits. This is a whole lot better than what is the case with the Riemann
integral, where you need full blown uniform convergence to guarantee such a conclusion.

Riemann and completeness of L2. Finally, last quarter you saw a definition of the space L2 of
square-integrable functions, something like

L2([a, b]) =

$
f : [a, b] → R

%%%%
# b

a
f(x)2 dx exists and is finite

&
.

(Note that the integral used here is the Riemann integral, so by “exists” we mean that f2 is Riemann
integrable.) On this space we have the so-called L2-metric defined by

d(f, g) =

'# b

a
(f(x)− g(x))2 dx

(1/2

,

and this metric space provides the natural setting which underlies the theory of Fourier series.
(Actually, some care here is needed since as written d is technically not a metric, since d(f, g) = 0
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does not imply f = g because there exist many non-negative functions with the property that they
have integral zero and yet are nonzero themselves. We’ll see how to fix this later.)

But this metric space is in fact not complete, in that there exist Cauchy sequences which do
not converge. The issue is that these Cauchy sequences “converge” to a function which is not in
this space, namely one which is not Riemann integrable. To get true completeness we must instead
consider the Lebesgue-analog of this space, which, as we see, will be complete. We will revisit this
space and the theory of Fourier series later, and see the correct context behind it all.

Plan for the course. Our goal then is to develop first the theory of the Lebesgue measure (and
measure theory more generally), then the Lebesgue integral, and finally the structure of L2. After
this we have some leeway. My hope is to also consider some other well-known spaces besides L2,
such as the Lp spaces which are the standard examples of what are called Banach spaces, and in so
doing see a glimpse of functional analysis. Time permitting, we might also very briefly touch upon
the subject of ergodic theory.

But before all of this, we will actually come back to some MATH 321-2 material, and finish the
discussion of differentiability you began last quarter. Specifically, we will study the Inverse and
Implicit Function Theorems in more detail than what you saw last quarter already. These theorems
will not play a big role once we move to measure theory, although the Inverse Function Theorem
will at least show up briefly when considering the change of variables formula. Nonetheless, these
theorems are crucial pieces in any analyst’s toolbox, so they are worth being familiar with. If
nothing else, they will give us a chance to understand the role that contractions and fixed-point
problems play in analysis in general, which is certainly a worthy goal.

Lecture 2: Contractions

Warm-Up. Suppose that X is a metric space and that (pn) is a sequence in X such that

d(pn, pn+1) ≤ cn for all n

where 0 < K < 1 is fixed. We show that (pn) is Cauchy. Note that then if X is complete, (pn) in
fact converges.

Let ε > 0. Since
)

cn is a convergent geometric series, by the Cauchy criterion for series
convergence there exists N such that

|cn + cn+1 + · · ·+ cn+k| < ε for n ≥ N, k > 0.

Now, for k > 0 we have

d(pn, pn+k) ≤ d(pn, pn+1) + d(pn+1, pn+k)

≤ d(pn, pn+1) + d(pn+1, pn+2) + d(pn+2, pn+k)

...

≤ d(pn, pn+1) + d(pn+1, pn+2) + · · ·+ d(pn+k−1, pn+k)

after repeated applications of the triangle inequality. Thus if n ≥ N and k > 0, we have

d(pn, pn+k) ≤ d(pn, pn+1) + d(pn+1, pn+2) + · · ·+ d(pn+k−1, pn+k)

≤ cn + cn+1 + · · ·+ cn+k−1

= |cn + cn+1 + · · ·+ cn+k−1|
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< ε,

which shows that (pn) is Cauchy.

Banach Contraction Principle. The proof we will give of the Inverse Function Theorem uses
heavily the notion of a contraction. A contraction on a metric space X is a function f : X → X
for which there exists 0 < C < 1 such that

d(f(p), f(q)) ≤ Cd(p, q) for all p, q ∈ X.

Thus, f “contracts” distances, and the “contraction factor” K is the same regardless of the points
used. The key fact we will need is the Banach Contraction Principle, which states that any
contraction on a complete metric space has a unique fixed point, where a fixed point is a point
p ∈ X such that f(p) = p.

Here is the proof. The fact that the fixed point, once we know it exists, is unique is a simple
consequence of the contraction property: if f(p) = p and f(q) = q, so that p and q are both fixed
points of f , then

d(f(p), f(q)) ≤ Cd(p, q) comes d(p, q) ≤ Cd(p, q).

But 0 < C < 1, so this inequality above holds forces d(p, q) = 0, so that p = q and f has at most
one fixed point.

To show that a fixed point exists, pick any q ∈ X. Consider the sequence of iterates

q, f(q), f(f(q)), . . . , fn(q), . . . ,

where fn(q) denotes the point obtained by applying f repeatedly n times. Then the contraction
condition implies that

d(fn(q), fn+1(q)) ≤ Cd(fn−1(q), fn(q)) ≤ C2d(fn−2(q), fn−1(q)),

and inductively we get
d(fn(q), fn+1(q)) ≤ Cnd(q, f(q)) for all n.

If d(q, f(q)) = 0, then q = f(q) so q is the fixed point we want. Otherwise, we can divide by
d(q, f(q)) to get

d(fn(q), fn+1(q)

d(q, f(q)
≤ Cn,

and the argument in the Warm-Up implies that the sequence of iterates fn(q) is Cauchy. (The
additional factor of d(q, f(q)) in the denominator does not affect this argument since it is just a
constant.) Since X is complete, these iterates converge to some p ∈ X.

Now, the contraction property implies that f is continuous, so since fn(q) → p we have
f(fn(q)) → f(p). But f(fn(q)) looks like

f(q), f(f(q)), f(f(f(q))), . . .

and hence is a subsequence of (fn(q)) itself and thus also converges to p. Since limits of a convergent
sequence are unique, we get f(p) = p, and thus p is a fixed point of f .

Application to ODEs. Before moving on to the Inverse Function Theorem next time, we give a
first application of this contraction principle in the theory of differential equations. Truth be told,
this is one of my favorite applications of all time, since it illustrates the core of what mathematics
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is all about: take a problem that seems intractable at first, rephrase it in a way which opens up
a whole new way of approaching it, and then use some known result in this new perspective to
immediately solve your original problem.

The problem we consider is that of showing that the following differential equation with initial
condition has a unique solution:

y′(x) = 3|y(x)|− log(esin(cosx) + 1), y(1) = 1.

A solution in this case is a differentiable function y of x satisfying both the first condition on y′

and the condition y(1) = 1 as well. If we had some simpler differential equation such as y′ = y
we would know that any function of the form y = cex was a solution, and specifying an initial
condition would single out what the value of the constant c should be. However, here we have no
hope of writing down an explicit solution of this differential equation due to its complicated nature,
so we need a more clever approach to show that a function satisfying the above conditions exists.

The point is that we can rephrase the problem of solving this differential equation as a fixed
point problem, and then figure out how to apply the contraction principle. After integrating both
sides, we see that a function y satisfies

y′(x) = 3|y(x)|− log(esin(cosx) + 1)

if and only if it satisfies

y(x) = c+

# x

1
[3|y(t)|− log(esin(cos t) + 1)] dt

for some constant c. Indeed, if y is continuous, the Fundamental Theorem of calculus implies that
the integral expression on the right is differentiable and that its derivative is the integrand evaluated
at t = x; thus taking derivatives of both sides indeed gives our original differential equation. (Note
that if we assume only that y is continuous, it might not be clear that the derivative of the left
side y even exists, but the point is that it will as a consequence of the fact that this left side equals
the differentiable expression given on the right side.) The constant c is determined by the initial
condition y(1) = 1: since an integral from 1 to 1 is always zero, we need c = 1 in order to have
y(1) = 1. Thus, the upshot is that a function f satisfies

y′(x) = 3|y(x)|− log(esin(cosx) + 1) with initial condition f(1) = 1

if and only if it satisfies the integral equation:

y(x) = 1 +

# x

1
[3|y(t)|− log(esin(cos t) + 1)] dt.

So our goal is now to show that there is a function satisfying this integral equation. Indeed,
consider the metric space C[a, b] of continuous functions [a, b] → R, for some to-be-determined
interval [a, b] ∋ 1, equipped with the sup metric. Define the map T : C[a, b] → C[a, b] by setting,
for each f ∈ C[a, b], Tf to be the function on [a, b] whose value at x ∈ [a, b] is:

(Tf)(x) = 1 +

# x

1
[3|f(t)|− log(esin(cos t) + 1)] dt.

Note here that this function Tf is continuous since the function defined by the integral on the right
is continuous. Then, saying that y satisfies

y(x) = 1 +

# x

1
[3|y(t)|− log(esin(cos t) + 1)] dt
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is the same as saying that the function Ty equals y itself! Thus, showing that this integral equation
has a solution for y is the same as showing that this map T has a fixed point!!!

To show that T has a fixed point, we show that we can arrange for it to be a contraction by
choosing [a, b] appropriately. (Recall that C[a, b] is complete with respect to the sup metric, so
that the Banach contraction principle will indeed be applicable.) For f, g ∈ C[a, b] and x ∈ [a, b],
we have that |(Tf)(x)− (Tg)(x)| equals

%%%%

'
1 +

# x

1
[3|f(t)|− log(esin(cos t) + 1)] dt

(
−

'
1 +

# x

1
[3|g(t)|− log(esin(cos t) + 1)] dt

(%%%% ,

which simplifies to %%%%
# x

1
3(|f(t)|− |g(t)|) dt

%%%% .

Then

|(Tf)(x)− (Tg)(x)| =
%%%%
# x

1
3(|f(t)|− |g(t)|) dt

%%%%

≤
# max{1,x}

min{1,x}
3||f(t)|− |g(t)|| dt

≤
# max{1,x}

min{1,x}
3|f(t)− g(t)| dt

where we use ||p| − |q|| ≤ |p − q| at the end. (Note that we must use the min and max of 1 and
x in the integral bounds since we allow for both x < 1 and x > 1 as possibilities: x ∈ [a, b] and
[a, b] contains 1, but we cannot be sure about the relation between 1 and x.) But for each t ∈ [a, b],
|f(t)−g(t)| ≤ d(f, g) since d(f, g) is the supremum of such expressions as t varies throughout [a, b],
and thus:

|(Tf)(x)− (Tg)(x)| ≤
# max{1,x}

min{1,x}
3|f(t)− g(t)| dt

≤
# max{1,x}

min{1,x}
3d(f, g) dt

= 3|1− x|d(f, g)
≤ 3(b− a)d(f, g),

where we use in the last step that the fact that 1, x ∈ [a, b].
Hence the number 3(b−a)d(f, g) is an upper bound for all expressions |(Tf)(x)− (Tg)(x)| as x

varies in [a, b], so 3(b− a)d(f, g) is larger than or equal to the supremum of such expresions, which
is the sup distance d(Tf, Tg):

d(Tf, Tg) ≤ 3(b− a)d(f, g).

Thus, as long as a < b satisfy 3(b−a) < 1, the map T as defined above is a contraction from C[a, b]
to itself. Since C[a, b] is complete, this gives a unique fixed point y of T , which, as discussed before,
gives a unique solution of our original differential equation. Note that this solution is in the end
only guaranteed to exist on the interval [a, b] ∋ 1 since it is only on this interval that we got the
necessary contraction property, so this should actually be included in the original statement of our
differential equation problem: the given differential equation with initial condition has a unique
solution defined on some interval containing the initial point 1.
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Picard iteration. The work above only shows that the given differential equation has a solution,
but we can still ask whether it is possible to determine what the solution concretely is. Although
we cannot determine the solution explicitly, it turns out we can in fact approximate the solution
however well we want. The key is in the proof of the Banach Contraction Principle: the fixed
point is obtained as the limit of the sequence defined by starting with any point and repeatedly
applying contraction. Thus, in our case, if we start with any continuous function g : [a, b] → R (say
a constant one), the functions obtained by repeatedly applying T :

g, T (g), T (T (g)), . . . ,

will eventually provide better and better approximations of the fixed point of T , and hence of the
solution of the differential equation we’re interested in. This approximation method is known as
Picard iteration, and is a basic technique for approximating solutions of differential equations. (The
general version of the “existence and uniqueness theorem” for differential equations is known as
the Picard-Lindelöf theorem, and you will prove it on the homework.)

To see this all in action in a simpler example, consider the following initial value problem:

y′ = y, y(0) = 1.

Of course, we know that the solution should be y = ex. But, let us see what happens using the
iterates described above. A function y satisfying this initial value problem is the same as one
satisfying

y(x) = 1 +

# x

0
y(t) dt.

Take the right side to define a function Ty, where T is then some mapping from continuous functions
to continuous functions. Take the constant function 1, and consider the sequence of iterates

1, T1, T 21, T 31, . . . .

The function T1 is

(T1)(x) = 1 +

# x

0
1 dt = 1 + x.

The next iterate is obtained by substituting (T1)(x) = 1 + x in place of y in 1 +
* x
0 y(t) dt, so it is

(T 21)(x) = 1 +

# x

0
(1 + t) dt = 1 + t+

x2

2
.

The next iterate is

(T 31)(x) = 1 +

# x

0
(1 + t+ t2

2 ) dt = 1 + x+ x2

2 + x3

3! .

And so on, you might recognize that the the iterates being produced are precisely the Taylor
polynomials of ex centered at 0, which do indeed converge to ex!

Thus, the proof of the Banach Contraction Principle gives the expected answer in this case:
the iterates 1, T1, T 21, . . . converge to the solution of y′ = y, y(0) = 1. Most amazingly, we could
have chosen any function to start with apart from 1, and this would still be true; for examples, the
iterates

sinx, T (sinx), T 2(sinx), T 3(sinx), . . .

will also converge to ex, and these are a lot more complicated than the Taylor polynomials above!
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Lecture 3: Inverse Functions

***TO BE FINISHED***

Lecture 4: Implicit Functions

***TO BE FINISHED***

Lecture 5: Step Functions

***TO BE FINISHED***

Lecture 6: Regulated Integrals

***TO BE FINISHED***

Lecture 7: Outer Measure

Warm-Up. We show that uniform limits of regulated functions are regulated. ***TO BE FIN-
ISHED***

Measures. We now seek to define a “better” of notion of integration. As we’ve discussed before,
this better notion will come from a general notion of “length” of subsets of R, so that’s where we
will start. We want to define a measure µ, which at first we will consider to be a function

µ : 2R → [0,∞].

Here 2R denotes the power set of R, which is the set of all subsets of R. (If you’ve never seen this
notation before, no big deal, just treat it literally as denoting the set of all subsets of R. Ask me
elsewhere if you’d like to see why this is indeed the correct notation to use for this set of subsets!)
We will interpret the value µ(A) of this function on A ⊆ R as the “length” of A. Note that we
allow for this value to be infinite, as will be the case with µ(R) = ∞ for example.

Now, if we want this to match our intuition as to what length should be, we will ask that µ
satisfy the following properties:

• For any bounded interval I, µ(I) = len(I). (So, µ gives the answer we expect for intervals.)

• For any A ⊆ R and x ∈ R, µ(A+ x) = µ(A), where A+ x is the set of translates of elements
of A by x. (We say that µ is translation invariant, so that “moving” a set from one location
to another shouldn’t change its “length”.)

• If A ⊆ B, then µ(A) ≤ µ(B). (We refer to this property as monotonicity, so that the “length”
of a subset is no larger than the length of the larger set.)

• If A1, A2, A3, . . . is a countable collection of subsets of R, then

µ(

∞+

k=1

Ak) ≤
∞"

k=1

µ(Ak).

We refer to this property as countable subadditivity. Moreover, if the Ak are pairwise disjoint,
then the inequality above should actually be an equality, which we call countable additivity.
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And there you have it. Note that all of these properties are indeed true if we consider only
intervals as the subsets of R we care about, so it is reasonable to expect that they hold more
generally. Alas, we will soon argue that there is no such function µ defined on the entirety of 2R,
and that if we want to demand that these properties hold, we will have to restrict the domain of µ
to only certain subsets. In terms of a theory of integration, however, this restriction will be a fairly
mild one and won’t cause any real issues.

Null/zero sets. To get a sense of what such a “measure” might look like, we first give a name to
those sets that will have “measure zero”. We say that A ⊆ R is a null set (also called a zero set)
if for every ε > 0, there exists a countable covering {Ik} of A by open intervals such that

"

n

len(Ik) < ε.

(To be clear, when we say “countable covering” we mean a covering by countably many sets, not
one so that the union of all sets in that covering is a countable set itself.) The intuition is that
whatever µ(A) should be, it should satisfy

µ(A) ≤ µ(
+

k

Ik) ≤
"

k

µ(Ik),

where the first inequality is monotonicity and the second is countable subadditivity. But µ gives
length on intervals, so the final sum is

)
k len(Ik) < ε, so we should have µ(A) < ε. Since this will

hold for all ε > 0, µ(A)—if it is defined—will be zero.
Here are some examples. First, any finite set is a null set. Indeed, if A = {x1, . . . , xn} has n

elements, for any ε > 0 pick an open interval Ik of length ε
2n around xk. Then the Ik cover A and

n"

k=1

len(Ik) =

n"

k=1

ε

2n
=

ε

2
,

which is less than ε. Hence A is a null set.
More generally, any countable set is a null set. (So, for instance, Q is a null set. This is actually

an argument we gave back on the first day of class when motivating the desire to have a more
general theory of integration.) Suppose A is countable and enumerate its elements as

r1, r2, r3, . . . .

Fix ε > 0 and for each k pick an open interval Ik around rk of length less than ε
2k
. Then

∞"

k=1

len(Ik) <

∞"

k=1

ε

2k
= ε,

which shows that A is a null set. (Any series such that
)

k ak = 1 could have been used here
instead of

)
k

1
2k

= 1, but this particular geometric series is a fairly standard choice. Take note of
this “ ε

2k
” argument since it tends to show up quite often in measure theory, analogously to how “ ε

2”
arguments show up often when discussing sequences, limits, and other things.) A similar argument
to this shows that countable unions of null sets are always null sets, where again by “countable
union” we mean a union of countably many null sets, not countability of the resulting union.

At this point one might ask whether there are any null sets which are not countable? Sure: the
Cantor set is a null set, as we will show next time.
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Outer measure. Finally we come to main definition of interest, that we’ve been building up
towards. We define the Lebesgue outer measure of A ⊆ R to be

µ∗(A) := inf

!
"

k

len(Ik)

%%%%% {Ik} is a countable covering of A by open intervals

,
.

That is, we cover A by arbitrarily many countable intervals, and take the total sum of their lengths
as an “overestimate” of the “length” of A. As we vary the covering we use, and can get this
overestimate to be smaller and smaller, and we then take the infimum of such values as a measure
of the actual “length” of A.

This is an “outer” measure since we are “approximating” from the “outside”, by using open in-
tervals which cover A. (There is a related notion of the Lebesgue inner measure µ∗(A) where
we “approximate” A from the “inside” that we will mention later, as it takes some care to define
correctly.) Note that µ∗(A) always exists for any A ⊆ R if we allow ∞ as a valid value.

So, this outer measure µ∗(A) is the “measure” we want, and intuitively does seem to capture
the “length” of A by approximating it using lengths of intervals. We can verify that outer measure
does indeed have at least some of the properties we laid out earlier that we want “measure” to
satisfy. First, simply by its definition as an infimum, outer measure satisfies monotonicity

A ⊆ B =⇒ µ∗(A) ≤ µ∗(B)

because µ∗(B) is the infimum of a subset of the things of which µ∗(A) is the infimum, since any
open cover of B is also an open cover of A. Also, µ∗ is translation invariant: the intervals in an open
cover of A can be translated to get ones in an open cover of A+ x, and vice versa, and translating
intervals for sure does not alter their lengths. Thus, µ∗(A+ x) and µ∗(A) are literally the infimum
of the same set. (To be clear, we mean that the set of total sums of lengths

)
k len(Ik) for both

are the same, not that the intervals Ik used to produce these sums are the same.)

Vitali sets. So, µ∗ is monotone and translation invariant, and we will see soon enough that it
gives the correct value on intervals and that it is countably subadditive. But, and this is a big but,
it is not additive on all possible countable collections of pairwise disjoint sets. Here is the standard
example that shows what can go wrong.

Consider the collection {Q+x | x ∈ R} of sets of rational translates of real numbers. (For those
of you who have had a course in group theory before, we are considering the cosets of the subgroup
Q of R.) These sets of rational translates partition R into disjoint pieces: the real number x ∈ R
belongs to Q+ x if nothing else, and two sets of translates Q+ x and Q+ y have some nonempty
overlap only if they are completely the same. Indeed, if z ∈ Q+ x and z ∈ Q+ y, then z = r1 + x
and z = r2 + y for some r1, r2 ∈ Q, but then any r + x ∈ Q+ x (with r ∈ Q) can be written as

r + x = r + (z − r1) = r + (r2 + y − r1) = (r + r2 − r1) + y

where r+ r2− r1 ∈ Q, showing that r+x ∈ Q+ y as well. Hence Q+x ⊆ Q+ y if (Q+x)∩ (Q+ y)
is nonempty, and the same argument shows that the opposite containment holds as well. To get a
feel for what this partition is doing, consider the decimal expansion of π:

π = 3.14159...

11



Any number which has a rational difference with π will belong to the same partition class as π, so
for example

π − 3 = 0.14159..., π − 3.1 = 0.04159..., π − 3.14 = 0.00159...

all belong to the same partition class as π. In a sense, this partition class keeps track of only
the “tail” of the decimal expansion of π, and more generally the “tail” of any rational difference
of π. This partition says to essentially ignore the effect of all rational numbers when adding or
subtracting, and only consider real numbers “up to” such rational differences.

Now, by subtracting the “integer part” of a real number, any class Q+x will intersect [0, 1]. For
each partition class, pick such an element of [0, 1], and define the Vitali set to be the set V ⊆ [0, 1]
of these chosen elements. (There are some set-theoretic issues here which should be noted, since
it is not clear how to “pick such an element” for the partition classes all at once. The reason why
we can do this is called the Axiom of Choice, but this is not something we will delve into more
in this course. Ask in office hours if you’d like to learn more about this!) By construction, the
sets of rational translates of two elements in the Vitali set are completely disjoint (since these two
elements were meant to come from different partition classes), and every real number is the rational
translate of an element (uniquely!) of the Vitali set since such sets of translates are meant to give
all partition classes above. To get a sense for what V might consist of, perhaps for

π = 3.14159...

we will pick π − 3 = 0.14159... ∈ [0, 1] to be the representative of the partition class to which π
belongs, while for

e = 2.71828...

perhaps we pick e− 2.7 = 0.01828... as the element in the Vitali set.
The Vitali set is a strange set to wrap your head around, and indeed it is so strange that we

claim it does not have a well-defined notion of “length”! To be clear, the Vitali set certainly has
an outer measure µ∗(V ), as all subsets of R do, but the point is that this particular outer measure
value does not behave in the way you would ordinarily expect of “length” in general. The issue
is that V is, in a sense, too “weirdly distributed” throughout [0, 1] that it makes any attempt to
measure its “length” by approximating intervals fail. (The Vitali set is a 1-dimensional analog of
a “fractal” in the plane, which is also an object for which standard geometric measurements—like
area—don’t quite make sense.) To see this, enumerate the rationals in [−1, 1] as

r1, r2, r3, . . .

and consider the translates V + rk. These translates are all pairwise disjoint since elements of the
Vitali set were chosen to give distinct partition classes above, and we have that the union of these
translates contains all of [0, 1] since each element of [0, 1] belongs to the same partition class as an
element of V , meaning that each element of [0, 1] is the translate of an element of V by a rational
between −1 and 1. (The restriction to rationals between −1 and 1 comes from the fact that V is
itself a subset of [0, 1], so that the difference between an element of V and an element of V falls in
[−1, 1].) Since rk ∈ [−1, 1], we have V + rk ⊆ [0, 1] + rk ⊆ [−1, 2], so altogether we get

[0, 1] ⊆
∞+

k=1

(V + rk) ⊆ [−1, 2].

By monotonicity of outer measure, this gives

µ∗([0, 1]) ≤ µ∗

- ∞+

k=1

(V + rk)

.
≤ µ∗([−1, 2]).
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If countable additivity held in this case, the term in the middle would split up as the sum of the
individual µ∗(V + rk) since the V + rk are pairwise disjoint, so we would have

µ∗([0, 1]) ≤
∞"

k=1

µ∗(V + rk) ≤ µ∗([−1, 2]).

By translation invariance, µ∗(V + rk) = µ∗(V ) for all k, and the outer measure of an interval is its
length, so the inequalities above become

1 ≤
∞"

k=1

µ∗(V ) ≤ 3.

But now this is a problem: if µ∗(V ) = 0, then the sum in the middle is zero and does not fall
between 1 and 3, while if µ∗(V ) > 0, the sum in the middle is infinite, and so again is not between
1 and 3. The conclusion is that countable additivity fails in this case, so that µ∗(V ) = µ∗(V + rk)
does not behave as a usual “length”.

The upshot is that if we want outer measure µ∗ to indeed give a general notion of “length”
satisfying all properties we expect—including additivity—we will have to restrict the types of sets
of which we can take the “length”. The Vitali set is the standard example of a nonmeasurable set,
which is a concept we will define next time and spend a few good days digesting.

Lecture 8: Measurability

Warm-Up 1. We show that the Cantor set is a null set.

Warm-Up 2. We show that the outer measure of a bounded interval is its length.

Sigma algebras.

Measurable sets.

Clean intersections.

Lecture 9: More on Measurability

Warm-Up. We show that A is measurable if and only if

µ∗(A ∩X) + µ∗(Ac ∩X) = µ∗(X)

for all X.

Subaddtivity.

Null sets are measurable.

Rays are measurable.
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Lecture 10: Sigma Algebras

Lecture 11: Regularity

Lecture 12: Simple Functions

Lecture 13: Measurable Functions

Lecture 14: Lebesgue Integration

Lecture 15: Bounded Convergence

Lecture 16: Unbounded Functions

Lecture 17: Absolute Continuity

Lecture 18: Dominated Convergence

Lecture 19: General Functions

Lecture 20: Lp Spaces

Warm-Up.

Towards functional analysis. We now move to the final portion of our course, where we will
focus on studying Lp spaces. Lp spaces are spaces of functions with metrics defined by integrals, and
are the prototypical examples of Banach spaces, which we will define later. The study of Banach
spaces in general make up a large portion of the subject of functional analysis, which we will see
glimpses of. Of particular interest will be the space L2, which is an example of a Hilbert space, and
is where the theory of Fourier series (which we will revisit as needed) finds its natural home.

We should note that our textbook only covers the structure of L2 and does not mention more
general Lp spaces. However, we will see that many of the results the book describes for L2 have
natural counterparts for Lp, with comparable proofs. Thus, we will take the perspective that we
should prove what we can for Lp in general, and only specialize to the L2 case when it is absolutely
necessary. Indeed, to get a real sense of what “functional analysis” is all about, the general Lp is a
much more illustrative example than L2 alone. The fact that the functional analysis of L2 is much
simpler than that for Lp in general is the reason why the theory of Fourier series is even possible,
but of course this statement would make no sense if we didn’t know what Lp was in general.

Functions on finite sets. As a first basic introduction to what we aim to do, let us consider
the finite-dimensional version of Lp. Take X = {1, 2, . . . , n} equipped with the counting measure,
where the measure of a subset of X is the number of elements within it. (We consider here the
σ-algebra of all subsets of X.) We define L2(X) to be the set of all integrable functions X → R,
which, due to the nature of the counting measure (which implies that all functions X → R are
measurable) and the fact that X is finite (which implies the integral of every function with respect
to counting measure is finite), is just the set of all functions X → R.

But, what is a function from X = {1, 2, . . . , n} to R? Such a function f is completely
determined by the values of f(1), f(2), . . . , f(n), and so is fully characterized by the element
(f(1), f(2), . . . , f(n)) of Rn. Thus, as a set, we have that

L2({1, 2, . . . , n}) = Rn.

14



(This is why L2({1, 2, . . . , n}) is a finite-dimensional version of the other Lp spaces we will soon
introduce, which should be viewed as infinite-dimensional analogs of Rn.)

Now, the 2 in L2 refers to a certain norm, namely the L2-norm. We define this as

‖f‖2 :=
-#

{1,2,...,n}
|f |2 dµ

.1/2

.

To be clear, this is an integral taken with respect to counting measure (for now), which are just
ordinary sums: evaluate the integrand at each point in the domain of integration and add them all
together. Thus, in this particular case, we take the value of |f(1)|2, plus the value of |f(2)|2, plus
the value of |f(3)|2, and so on, taking the square root of the result:

‖f‖2 = (|f(1)|2 + · · ·+ |f(n)|2)1/2.

Thus, this is nothing but a fancy way of talking about the usual norm operation on Rn, and we
then get a metric—the L2-metric—by

d2(f, g) := ‖f − g‖2 =
/

|f(1)− g(1)|2 + · · ·+ |f(n)− g(n)|2,

which is the standard Euclidean metric on L2({1, 2, . . . , n}) = Rn.
But there are other norms and hence metrics we can consider on this same set of functions

{1, 2, . . . , n} → R. The L1-norm is defined by

‖f‖1 :=
#

{1,2,...,n}
|f | dµ = |f(1)|+ · · ·+ |f(n)|,

and the L1-metric is then

d1(f, g) := ‖f − g‖1 = |f(1)− g(1)|+ · · ·+ |f(n)− g(n)|.

(When considering this particular norm we use the notation L1({1, 2, . . . , n}) for our space.) This
is also known as the taxicab metric, since it measures the distance from one point in Rn to another
when moving only horizontally and vertically, just as a taxicab on the streets would. A basic fact
you can check (which my MATH 321-1 class in the fall did!) is that d2 and d1 actually determine
precisely the same open sets, and the same notion of convergence. More generally, for p ≥ 1 we
can consider the Lp-metric on {1, 2, . . . , n} → R defined by

dp(f, g) =

-#

{1,2,...,n}
|f − g|p dµ

.1/p

= (|f(1)− g(1)|p + · · ·+ |f(n)− g(n)|p)1/p,

which also determines the same notion of open/convergence as d1 or d2, and hence the same version
of analysis. (The fact that the triangle inequality for the Lp-metric on Rn holds is far from obvious,
and takes some real effort to justify. For this it is important that p ≥ 1, as the triangle inequality
does not hold when 0 < p < 1.)

p-norms. General Lp spaces are defined by the exact same setup as above, only by replacing X
by some other domain and replacing µ by some other measure. For the most part, we will only
care about X = [a, b] and Lebesgue measure µ, but the theory works in pretty much the same way
in other settings. For X an interval equipped with Lebesgue measure and p ≥ 1, we thus define
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Lp(X) to be the set of functions f : X → R such that |f |p is integrable, which means that |f |p is
measurable and #

X
|f |p dµ < ∞.

For example, L1(X) is then just the set of Lebesgue integrable functions in the usual sense (recall
that f is integrable as a function of both negative and positive values if and only if |f | is integrable
as a nonnegative function), and L2(X) is the set of so-called square-integrable functions, for which*
f2 dµ < ∞. (Note that 1√

x
∈ L1([0, 1]) and 1√

x
/∈ L2([0, 1]), for example.)

For f ∈ Lp(X), we define its Lp-norm, or simply p-norm for short, by

‖f‖p :=
'#

X
|f |p dµ

(1/p

.

Note that this definition makes sense since the integral used is a finite nonnegative number.
This definition then mimics and generalizes the definition of the Euclidean metric on Rn (i.e.
L2({1, 2, . . . , n}) with counting measure, or other p-norms in finite dimensions. One big difference
is that, although different p-norms on Rn gave the same versions of “analysis”, this will not be true
in infinite-dimensions, and different choices of p can lead to different behaviors.

Taking equivalence classes. We want to use the norm above to get a metric on Lp(X), where
we will define the distance between f and g to be ‖f − g‖p. But there is one subtle issue here which
arises from the fact we are using the Lebesgue integral in defining Lp. Namely, we want it to be
true that

‖f − g‖p = 0 ⇐⇒ f = g

as expected for a metric, but in fact we know that

#

X
|f − g|p dµ = 0 ⇐⇒ f − g = 0 only almost everywhere.

That is, f and g can have zero “distance” between them without being the same, as long as they
are the same off a set of measure zero since this is all the integral detects. For example, a function
which is zero except at a finite number of points will still have norm 0, and hence distance 0 from
the constant zero function.

To get around this, we simply declare by fiat that “almost everywhere” equality is literal equality.
That is, we will treat f and g as being the same element of Lp if they agree almost everywhere. To
be precise, the property of being the “same almost everywhere” defines an equivalence relation on
sets of functions, and we are taking the equivalence classes. Thus, officially, Lp(X) is defined to be
the set of equivalence classes of functions satisfying

*
X |f |p dµ < ∞, where f and g are equivalent

if f = g almost everywhere. With this modification, we then do have

‖f‖p = 0 ⇐⇒ f = 0,

simply because the notation “f = 0” in this context literally means “f = 0 almost everywhere”.
On this space of equivalence classes, ‖f − g‖p does give an honest metric, as we’ll see.

Defining Lp(X) to be made up of equivalence classes might seem like a jump in abstraction at
first, but actually we will usually push these details aside and simply think of elements of Lp(X) as
if they were functions in the normal sense. Technically, though, evaluating an element at a point
doesn’t quite make sense, since for example the value of f(0) depends on which f we pick from
the respective equivalence class; we can always change the specific value of f(0) to be whatever
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we want without changing the element of Lp(X) we are considering. What does make sense is
integration, since the value

*
X f dµ is independent of which f we use in the sense that if f = g

almost everywhere, so that they give the same element of Lp(X), then
*
X f dµ =

*
X g dµ. Thus, the

fact that elements of Lp(X) are not quite honest functions won’t play a big role in our discussion.
(We will see later that, nonetheless, we can in a sense evaluate elements of Lp(X) at certain points,
essentially off a set of measure zero. This will come up when showing that Lp is complete.)

Lecture 21: Hölder and Minkowski

Warm-Up. Define L∞(X) to be the set of essentially bounded functions on X, which are functions
that are bounded almost everywhere. (As with the other Lp spaces, we really take equivalence
classes of essentially bounded functions, so that f = g almost everywhere means that f and g are
the same.) Define the L∞-norm of f ∈ L∞(X) to be the infimum of all essential bounds on M :

‖f‖∞ := inf{M | M is an essential bound on f}.

(This is usually called the essential supremum of f , and gives the supremum of f away from a set
of measure zero. In other words, it’s the supremum of the portion of f which really matters.)

We show that ‖f‖∞ is itself an essential bound on f . This is the L∞ analog of the fact that the
infimum of upper bounds of a bounded function—namely its supremum—is itself an upper bound.
In this latter case, the fact that this infimum is an upper bound is shown by saying that |f(x)| ≤ M
for any x and upper bound M of f , so that each |f(x)| is a lower bound on the set of upper bounds,
and hence must be smaller than or equal to the infimum of upper bounds. Such an argument
doesn’t work in the “essential” setting, however, since we cannot guarantee that |f(x)| ≤ M for
any one specific x, which might lie in the null set on which M does not bound f .

So, we argue as follows. For each n ∈ N, by definition of infimum there exists an essential bound
M of f such that M < ‖f‖∞ + 1

n , so that

|f(x)| ≤ M < ‖f‖∞ +
1

n

off a set En of measure zero. Thus for x ∈
0

nE
c
n = (

1
nEn)

c, we have

|f(x)| ≤ ‖f‖∞ +
1

n

for all n, which implies that |f(x)| ≤ ‖f‖∞. Since each En is a null set,
1

nEn is also a null set, so
this shows that ‖f‖∞ is an essential bound on f .

Conjugate pairs. As we develop the theory of Lp spaces, we will see that certain such spaces are
naturally related to others. To make this (eventual) idea precise, let us introduce now the notion
of a conjugate pair (sometimes called a Hölder conjugate pair) of numbers. For p > 1, we define its
conjugate to be the number q > 1 such that

1

p
+

1

q
= 1.

Moreover, we define the conjugate of 1 to be ∞, and the conjugate of ∞ to be 1, which is motivated
by the idea that 1

∞ should, in a sense, be “zero”, so that 1 + 1
∞ = 1 is true. (Of course, the real

reason why we take ∞ to be conjugate to 1 has to do with the relations between L1 and L∞ we
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will see later. The “motivation” in terms of 1
∞ is only to highlight the relation between p and q in

the case of finite numbers.)
At this point it is not clear at all why the number q defined by 1

p + 1
q = 1 should be of any

special interest, but we will very soon see why. Note that 2 is its own conjugate (since 1
2 +

1
2 = 1),

a fact which underlies much the special structure of L2 we will explore later.

Hölder’s inequality. The inequality we will now state and prove, Hölder’s inequality, is arguably
the most important inequality in the entire theory of Lp spaces. Indeed, for now at least it will be
crucial to proving the triangle inequality for the Lp-metric, which is defined as

dp(f, g) := ‖f − g‖p =
'#

X
|f − g|p dµ

(1/p

.

The point is that the triangle inequality for this soon-to-be metric is not at all obvious, since it
amounts to saying that

'#

X
|f − g|p dµ

(1/p

≤
'#

X
|f − h|p dµ

(1/p

+

'#

X
|f − h|p dµ

(1/p

for any f, g, h ∈ Lp. There is no simple algebraic manipulation of integrals and exponents that
immediately gives rise to this for all p ≥ 1, without the use of Hölder’s inequality.

Here’s Hölder : If f ∈ Lp and g ∈ Lq, with p, q ≥ 1 conjugates, then fg ∈ L1 and

‖fg‖1 ≤ ‖f‖p ‖g‖q .

Thus, the product of a p-power integrable function and a q-power integrable function is integrable
in the usual L1 sense, and the L1-norm is bounded by the product of the p- and q-norms. If you
write what this says in terms of integrals, it looks like

#

X
|fg| dµ ≤

'#

X
|f |p dµ

(1/p'#

X
|g|q dµ

(1/q

,

which again is highly nonobvious since there is no straightforward way of manipulating the expo-
nents and roots. Ultimately, Hölder’s inequality comes from monotonicity of the Lebesgue integral
together with some non-obvious inequalities.

We will take the following inequality for granted: If A,B > 0 and θ > 0, then

AθB1−θ ≤ θA+ (1− θ)B.

Note that when θ = 1
2 , this becomes the standard arithmetic-geometric mean inequality :

√
AB ≤ 1

2
(A+B),

so AθB1−θ ≤ θA + (1 − θ)B can be viewed as a generalization of this to other exponents. This
general version can be proved using convexity of the log function, or by optimizing some appropriate
single-variable function using a derivative. You can easily find the details elsewhere if interested.

First, if ‖f‖p = 0 or ‖g‖q = 0, then f or g are zero almost everywhere, and hence so is fg, so
that fg is integrable and has 1-norm zero. Thus Hölder’s inequality holds in this case. Suppose
now that ‖f‖p = 1 = ‖g‖q. Set A = |f(x)|p, B = |g(x)|q, and θ = 1/p (so that 1− θ = 1/q) in this
inequality to get

|f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q for all x.
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(Incidentally, this is called Young’s inequality. It seems that every useful inequality in analysis has
its own name!) Integrating both sides (monotonicity for the win!) gives

#

X
|fg| dµ ≤ 1

p

#

X
|f |p dµ+

1

q

#

X
|g|q dµ.

But the integrals on the right are equal to ‖f‖p = 1 and ‖g‖q = 1 respectively, since we are assuming
these norms equal 1:

1 = ‖f‖p =
'#

X
|f |p dµ

(1/p

⇐⇒ 1 = ‖f‖pp =
#

X
|f |p dµ.

Thus, we have

#

X
|fg| dµ ≤ 1

p

#

X
|f |p dµ+

1

q

#

X
|g|q dµ =

1

p
(1) +

1

q
(1) =

1

p
+

1

q
= 1.

Hence ‖fg‖1 ≤ 1 = ‖f‖p ‖g‖q, so Hölder’s inequality holds in this case.

Finally, for the general case with ‖f‖p , ‖g‖q > 0, consider f
‖f‖p

∈ Lp and g
‖g‖q

∈ Lq. Each of

these have respective p- or q-norm 1, so by the case above we get

22222
f

‖f‖p
g

‖g‖q

22222
1

≤

22222
f

‖f‖p

22222
p

22222
g

‖g‖q

22222
q

= 1.

Multiplying through by the positive scalar ‖f‖p ‖g‖q then gives Hölder’s inequality ‖fg‖1 ≤ ‖f‖p ‖g‖q.

Lp is a vector space. In the argument above we used the fact that scaling an element of Lp still
gives an element of LP when saying that, for example, f/ ‖f‖p is in Lp. This comes from the fact
that #

X
|f |p dµ < ∞ ⇐⇒

#

X
|cf |p dµ = |c|p

#

X
|f |p dµ < ∞.

Thus, Lp is closed under scalar multiplication.
In fact, it is also closed under addition, so that Lp is actually a vector space. To see this, let

f, g ∈ Lp. (The same p now!) For any x, we have

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p

by the usual triangle inequality for the absolute value. Now, if we let h(x) denote whichever of
f(x) or h(x) is larger, then

(|f(x)|+ |g(x)|)p ≤ (2|h(x)|)p = 2p|h(x)|p ≤ 2p(|f(x)|p + |g(x)|p),

where in the last step we replace |h(x)|p by |f(x)|p + |g(x)|p, which is for sure no smaller since
|h(x)|p is simply one of the two terms being added together. Integrating now gives

#

X
|f + g|p dµ ≤ 2p

#

X
|f |p dµ+ 2p

#

X
|g|p dµ.

The two terms on the right are finite since f, g ∈ Lp, so the term on the left is finite as well and
hence f + g ∈ Lp.
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Minkowski’s inequality. We needed to know that Lp was closed under addition so that we can
make sense of ‖f + g‖p, given f, g ∈ Lp. Minkowski’s inequality is the inequality which says that
this norm behaves in the way we expect of a “norm”, in the sense that

‖f + g‖p ≤ ‖f‖p + ‖g‖p .

This is an analog of the triangle inequality for absolute values, and is what gives the triangle
inequality for the Lp-metric:

‖f − g‖p = ‖(f − h) + (h− g)‖p ≤ ‖f − h‖p + ‖h− g‖p .

Note that this Lp metric is clearly symmetric (switching f and g doesn’t change the value), and
‖f − g‖p = 0 ⇐⇒ f = g by the way in which we technically define Lp using equivalence classes.
Thus, the triangle inequality is only remaining property we need to verify to guarantee we have
a metric. (As mentioned at some point a while back, it is crucial here that p ≥ 1; the triangle
inequality does not hold for the analogous notions when 0 < p < 1.)

The proof of Minkowsi’s inequality comes down to a clever use of Hölder’s inequality. For fixed
x, we have

|f(x) + g(x)|p = |f(x) + g(x)||f(x) + g(x)|p−1

≤ (|f(x)|+ |g(x)|)|f(x) + g(x)|p−1

= |f(x)||(f(x) + g(x))p−1|+ |g(x)||(f(x) + g(x))p−1|.

Integrating then gives
#

|f + g|p dµ ≤
#

|f(f + g)p−1| dµ+

#
|g(f + g)p−1| dµ.

Note that the left side is ‖f + g‖pp. Since 1
p + 1

q = 1, q(p− q) = p, so

#
|(f + g)p−1|q dµ =

#
|f + g|q(p−1) dµ =

#
|f + g|p dµ < ∞

since f + g ∈ Lp. But this thus says that the function (f + g)p−1 is in Lq (!), since its q-th power is
integrable. Thus, f(f + g)p−1 is the product of a function in Lp and a function in Lq, so Hölder’s
inequality gives

#
|f(f + g)p−1| dµ =

22f(f + g)p−1
22
1
≤ ‖f‖p

22(f + g)p−1
22
q
.

The same applies to the integral
*
|g(f + g)p−1| dµ above, so altogether we get

‖f + g‖pp ≤ ‖f‖p
22(f + g)p−1

22
q
+ ‖g‖p

22(f + g)p−1
22
q
= (‖f‖p + ‖g‖p)

22(f + g)p−1
22
q
.

Now,

22(f + g)p−1
22q
q
=

#
(|f + g|p−1)q dµ =

#
(|f + g|q(p−1)) dµ =

#
|f + g|p dµ = ‖f + g‖pp ,

where we again use 1
p + 1

q = 1. Taking q-th roots of both sides gives

22(f + g)p−1
22
q
= ‖f + g‖p/qp .
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(Note the shift in q-norm to p-norm!) But p
q = p− 1, so

‖f + g‖p/qp = ‖f + g‖p−1
p .

Thus we get

‖f + g‖pp ≤ (‖f‖p + ‖g‖p)
22(f + g)p−1

22
q
= (‖f‖p + ‖g‖p) ‖f + g‖p−1

p ,

which after dividing by ‖f + g‖p−1
p gives precisely Minkowski’s inequality. (Whew! No doubt this is

a lot to keep track of, with non-obvious manipulations along the way, but all aimed at manipulating
norms and exponents to move between different p-norms.)

Lecture 22: Lp Convergence

Warm-Up. We show that the Hölder and Minkowski inequalities hold for p = ∞ as well, where for
Hölder’s inequality we take 1 = 1

∞ as the conjugate. (Recall that L∞(X) is the space of essentially
bounded functions on X, and ‖f‖∞ is the essential supremum of f , which is the infimum of the set
of all essential bounds of f .) We need the fact from the Warm-Up last time that ‖f‖∞ is itself an
essential bound of f .

First Hölder. Let f ∈ L1 and g ∈ L∞. Then |g(x)| ≤ ‖g‖∞ almost everywhere, so

|f(x)g(x)| ≤ |f(x)| ‖g‖∞ almost everywhere.

Thus integrating gives
#

|fg| dµ ≤
#

|f | ‖g‖∞ dµ = ‖g‖∞
#

|f | dµ = ‖f‖1 ‖g‖∞.

The right side is finite, so the left side is as well and this gives fg ∈ L1 with ‖fg‖1 ≤ ‖f‖1 ‖g‖∞,
which is Hölder’s inequality.

For Minkowski, let f, g ∈ L∞. Since |f(x)| ≤ ‖f‖∞ almost everywhere and |g(x)| ≤ normg∞
almost everywhere, we have

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞ almost everywhere.

(To be clear, the null sets A and B off of which f and g, respectively, are bounded by their essential
supremums could be different, so this bound on f + g above only holds off of A ∪B, but the point
is that this is still a null set.) This shows that ‖f‖∞ + ‖g‖∞ is an essential bound of f + g, so

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞
because the left side is the infimum of essential bounds.

The fact that Hölder’s and Minkowski’s inequality holds for L∞ is one reason why we treat it in
the same vein as other Lp spaces, even though the definition of this space is different because L∞

is not defined via integrals. The reason why we use the symbol “∞” when describing this space or
its norm has to do with the relation between ‖‖∞ and ‖‖p, where you will show on the homework
that the ∞-norm is in some sense a limit of p-norms as p → ∞.

Lp convergence. We now seek to understand convergence in the space Lp. First we should
understand what it means for functions to be “close” with respect to the Lp metric. The point is
that

‖f − g‖p =
'#

|f − g|p dµ
(1/p
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measures, not really the values of f − g, but instead essentially the “area” between the graphs of
f and g. This area can be small even if the values of f and g can differ by a large amount, at least
over certain portions of the domain. For example, the functions

are “close” in the Lp sense, although f(0) and g(0) can be quite far apart. (Of course, as we said
earlier when introducing equivalence classes, it doesn’t quite make sense to evaluate an element of
Lp at a point anyway, so take the statement above with a grain of salt.) We can in fact make f(0)
arbitrarily far away from g(0), as long as we compensate by making the graphs “narrower” in order
to leave the value of the integral unchanged. (So, large differences between values can only take
place over regions of “small” measures if f are meant to be “close” in Lp.)

The discussion above is meant to highlight the difference between convergence in Lp and point-
wise convergence specifically, where the latter type of convergence is indeed a statement about the
values of a function. But, we really only care about the values “almost everywhere”, so perhaps
there is a more direct relation between Lp convergence and almost everywhere pointwise conver-
gence. In fact, you already saw an instance of this on the homework, where you showed (under
appropriate assumptions) that if fn → f pointwise almost everywhre, then fn → f in the mean.
Convergence “in the mean” was defined as

lim
n→∞

#
|fn − f | dµ = 0,

which we can now recognize is precisely convergence in L1, since the integral above is the L1-norm
of fn−f . Thus, the result is that almost everywhere pointwise convergence implies L1-convergence,
again under appropriate hypotheses.

The converse is not true, as a different problem on the homework showed: convergence in
the mean (i.e. L1 convergence) does not imply almost everywhere pointwise convergence, precisely
because integrals being “close” does not mean values are “close”, even almost everywhere. However,
there was one final part to this homework problem, which showed that we do in fact get almost
everywhere pointwise convergence from L1 convergence, at least for a subsequence of our original
sequence. This is a fact we will generalize next time, and is the key step in showing that Lp

is complete. This will be the ultimate “gleam information about values from information about
areas” statement we can hope to derive.

Riemann L2 not complete. Back on the first day of class we gave as a motivation for introducing
the Lebesgue integral the fact that the “Riemann version” of L2 is in fact not complete, and we
can now make this statement precise. Completeness is a good property to have since it guarantees
that we can take limits and remain within our space, so the fact that the full Lebesgue version of
Lp is complete is crucial in applications.

Let us denote by L2
R the set of Riemann integrable functions f : [0, 1] → R for which

# 1

0
f(x)2 dx < ∞,
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where the integral here is just the Riemann integral. We then consider the metric

‖f − g‖2 =

3# 1

0
|f(x)− g(x)|2 dx

on L2
R. (As in the general L2 setup, we actually need to take equivalence classes of functions when

defining L2
R, since it is possible for a nonnegative Riemann integrable function to have Riemann

integral zero while not being identically zero, only zero almost everywhere.) For each n, set

fn(x) = x−1/41[1/n,1] =

!
x−1/4 1

n ≤ x ≤ 1

0 otherwise.

Each of these are Riemann integrable since they are bounded and piecewise continuous. We claim
that the sequence (fn) is Cauchy in L2

R. Indeed, we have

‖fn+k − fn‖22 =
# 1

0
|fn+k(x)− fn(x)|2 dx

=

# 1

0
x−1/21[1/(n+k),1/n] dx

=

# 1/n

1/(n+k)
x−1/2 dx

=
2√
n
− 2√

n+ k
.

Since the sequence ( 2√
n
) converges in R, it is Cauchy in R, so the computation above implies that

(fn) is Cauchy in L2
R as claimed.

But, we now claim that (fn) does not converge in L2
R, which will show that L2

R is not complete.
For each 0 < a < 1, set gn = fn1(a,1]. Note that for n > 1

a , we have (a, 1] ⊆ [ 1n , 1], so

gn = fn1(a,1] = x−1/41(a,1] for n >
1

a
.

The point is that the sequence gn is eventually constant (!), so that it converges in L2
R (!!!) to the

“eventual constant” x−1/41(a,1]. (Note that this is statement about convergence in L2
R, not pointwise

convergence, which is not the type of convergence we want to consider. In any metric space,
a sequence which is eventually constant will always converge to the constant point it eventually
equals. This is why we introduced gn in the first place, to work with eventually constant sequences.)
Since the L2

R-convergence above holds for all 0 < a < 1, it also holds on (0, 1], so we get that

fn → x−1/4 with respect to L2 on (0, 1].

Thus if x−1/4 were an element of L2
R, it would have to be what (fn) converged to. (It should be

clear that x−1/4 is the pointwise limit of (fn), but here we are saying it would have to be the L2

limit as well.)
However, x−1/4 is not Riemann integrable on [0, 1] since it is unbounded, and Riemann integrable

functions are always bounded. So, the only possible limit of (fn) is not actually in L2
R, so (fn)

does not converge in LR
2 . Technically, we need a bit more care here, since, due ot the “equivalence

relation” construction of L2
R, there would potentially be some other element of L2

R which did serve
as a valid limit for (fn). However, any such element would have to differ from x−1/4 on at most a
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set of measure zero, but modifying x−1/4 on a set of measure zero will not change the fact that it
is unbounded, so such a modification would still fail to belong to L2

R. (You might object by saying
that x−1/4 is in fact improperly Riemann integrable on [0, 1], a notion which allows for integrating
unbounded functions. Still the results stands, however, that we have a Cauchy sequence in L2

R as
defined using the (proper) Riemann integral that does not converge. But even if we allow improper
Riemann integrals, the space L2

R is not complete: you will see on the homework an example of this
same phenomenon where all functions, including the candidate limit function, are bounded. The
failure of the Riemann version of L2 to be complete is not really about bounded vs unbounded, but
is a reflection of a more serious issue with the Riemann integral itself.)

Strategy for completeness. We will show that Lp (full Lebesgue version) is complete next time,
but let us outline strategy we will use now to set the stage. Given a Cauchy sequence (fn) in Lp,
the goal is to construct f ∈ Lp such that fn → f with respect to the Lp-metric. The first step will
be to extract from (fn) a subsequence which converges pointwise almost everywhere. This is the
idea we’ve alluded to before, that we can extract some information about “values” from information
about “areas”, albeit only for a nicely-controlled subsequence and only almost everywhere. The
pointwise limit of this subsequence is then the limiting function we’re looking for, and we will show
in the process of its construction that it is in Lp.

Second, we show that the pointwise convergence of the subsequence to the limit constructed
above is actually Lp convergence. This is the generalization of the problem from the homework, that
almost everywhere pointwise convergence implies convergence in the mean under mild hypotheses.
(So, “values” being close implies “areas” being close.) Finally, we show that since (fn) is Cauchy
in Lp and it has a convergent subsequence in Lp, the full sequence converges in Lp as well, which
gives completeness. This final step actually holds for metric space in general: if (pn) is Cauchy in
a metric space X and there exists a subsequence converging to p ∈ X, then pn → p as well. (You
probably saw this in the fall!) This last step is “easy”, it is the first two steps that are truly new.

And just what is it about the Lebesgue integral vs the Riemann integral that allows for this all
to work out. The answer, of course, is the Dominated Convergence Theorem! We will actually use
this twice, in the first step (in the form of the Monotone Convergence Theorem) when constructing
the subsequence we want, and then again in the second step when promoting almost everywhere
pointwise convergence to Lp convergence. As we said back when first discussing the convergence
theorems for the Lebesgue integral, the fact that they hold is really the key reason why the Lebesuge
integral is of such importance.

Lecture 23: Completeness

Warm-Up. Suppose fn, f ∈ Lp and fn → f pointwise almost everywhere. We show that if there
exists g ∈ Lp such that |fn| ≤ g almost everywhere, then fn → f in Lp, meaning with respect to the
Lp-metric. (This is the Lp analog of the “convergence in the mean” problem from the homework.)
Note first that if |fn| ≤ g and fn → f pointwise almost everywhere, then |f | ≤ g almost everywhere.

We have
|fn − f |p ≤ (|fn|+ |f |)p ≤ (2g)p = 2pgp.

Since fn → f pointwise almost everywhere, |fn−f | → 0 and then |fn−f |p → 0 almost everywhere.
Thus |fn − f |p is a sequence of functions dominated by an integrable function (since g ∈ Lp)
converging pointwise to 0, so the dominated convergence theorem applies and gives

lim
n→∞

#
|fn − f |p dµ =

#
0 dµ = 0.
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This says that ‖fn − f‖pp → 0, so ‖fn − f‖p → 0 as well, which is convergence of (fn) to f in Lp.

Lp is complete. We now prove that Lp (for 1 ≤ p < ∞) is complete. Let us recall the strategy we
outlined last time: take a Cauchy sequence, extract a subsequence that converges pointwise almost
everywhere, show that this convergence is actually Lp convergence, and then show that the full
sequence converges to the same limit as this subsequence. Note the use of two of our convergence
theorems in the proof.

Suppose (fn) is a Cauchy sequence in Lp. First we pick a subsequence (fnk
) such that

22fnk+1
− fnk

22
p
<

1

2k
for all k.

To do this, we first pick fn1 from among the terms for which ‖fm − fn‖p < 1
2 holds. Then we pick

fn2 from among the terms for which ‖fm − fn‖p < 1
22

holds, increasing n2 if need be to ensure that
n2 > n1. Note that this fn2 is still among the terms for which the previous inequality held, so
that ‖fn2 − fn1‖p < 1

2 . Then we pick fn3 from the among the terms for which ‖fm − fn‖p < 1
23
,

increasing n3 to guarantee that n3 > n2. This term is still among those satisfying the previous
inequality, so ‖fn3 − fn−2‖ < 1

22
. And so on we continue in this manner, picking at the k-th stage

a term fnk
(with nk > nk−1) from the terms satisfying ‖fm − fn‖p < 1

2k
, and then (fnk

) is our
desired subsequence. This is the subsequence we claim will converge pointwise almost everywhere.

Set

f(x) = fn1(x) +

∞"

k=1

(fnk+1
(x)− fnk

(x))

and

g(x) = |fn1(x)|+
∞"

k=1

|fnk+1
(x)− fnk

(x)|.

Note that if we allow ∞ as a valid value of a function, then the series defining g “converges”
everywhere since it is just a sum of nonnegative numbers, so that g is well-defined everywhere, only
with g(x) = ∞ being a possibility. We claim actually that g is finite almost everywhere. To see
this, denote the partial sums of g as

SMg = |fn1 |+
M"

k=1

|fnk+1
− fnk

|,

so that SMg → g as M → ∞ at any x, again allowing ∞ to be a valid limiting value. Then also
(SMg)p → gp at any x.

Now, we have

‖SMg‖p ≤ ‖fn1‖p +
M"

k=1

22fnk+1
− fnk

22
p
< ‖fn1‖p +

M"

k=1

1

2k
,

where the final inequality follows from the choice of the fnk
. But as M → ∞ the sum on the right

converges to a finite value due to its geometric nature, so we get that ‖SMg‖p converges to a finite
value as M → ∞ as well. This means that ‖SMg‖pp does too, so

lim
M→∞

#
(SMg)p dµ < ∞.
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But the (SMg)p form an increasing sequence of measurable functions (as M increases we add more
nonnegative forms, so SMg < SM+1g) converging pointwise to gp, so the fact that the limit above
is finite implies by the monotone convergence theorem that gp is integrable:

#
gp dµ < ∞.

Thus g ∈ Lp, so f , which is dominated by g in the sense that |f | ≤ g, is also in Lp. In particular,
this means that fp, and hence f , can only take on the value ∞ on a set of measure zero, so we can
say that the partial sums of the series defining f converge to f pointwise almost everywhere, no
longer needing to allow ∞ as a value.

Note that if SMf denote the partial sums of f , then

SMf = fn1 +

M"

k=1

(fnk+1
− fnk

) = fnk+1

due to the telescoping nature of the sum. These partial sums converge pointwise to f almost
everywhere, so we have achieved the first aim of our proof: extract a subsequence (fnk

) of (fn)
converging pointwise almost everywhere to a function f in Lp. For the second part, we use the
result of the Warm-Up, which depended on the dominated convergence theorem. Namely, we have
that

|SMf | =

%%%%%fn1 +

M"

k=1

(fnk+1
− fnk

)

%%%%% ≤ |fn1 |+
M"

k=1

|fnk+1
− fnk

| = SMg ≤ g

and |f | ≤ g, so since SMf → f pointwise almost everywhere, the Warm-Up directly implies that
SMf → f in Lp. But SMf = fnk+1

, so the subsequence (fnk
) converges to f in Lp.

Finally, we use the general metric space fact that if a Cauchy sequence has a convergent subse-
quence, then it converges. In this particular case, this comes from

‖fn − f‖p ≤ ‖fn − fnk
‖p + ‖fnk

− f‖p .

Given ε, we can make the first term on the right smaller than ε/2 once n, nk are large enough by
the Cauchy assumption, and we can make the second term smaller than ε/2 by the convergence of
(fnk

) to f . Putting these together gives that ‖fn − f‖p < ε for large enough n, so fn → f in Lp

and hence Lp is complete!
This concludes our proof, which can take a while to digest. The real subtle part is the first

one, where we use the monotone convergence theorem to ensure that a series of nonnegative terms
actually has finite value at almost all points. After this, the rest is a bit more direct. Note that
the book gives essentially the same proof, although only in the case of L2.

Pointwise for subsequence. Let us record the following consequence of the proof, which is the
best we can do in general in terms of relating Lp convergence (i.e., convergence of areas) to pointwise
convergence (i.e., convergence of values): If fn → f in Lp, then there exists a subsequence (fnk

)
which converges pointwise to f almost everywhere. This comes from treating (fn) as the Cauchy
sequence in the proof of completeness, and then extracting the desired subsequence via the proof.

We will also point out that you saw in instance of this on the homework. A recent problem
gave an example of a sequence of integrable functions (i.e., functions in L1) which converged in the
mean to 0, but not pointwise almost everywhere to 0. Nevertheless, the final part of that problem
asked to construct a subsequence of that sequence which did converge pointwise almost everywhere
to 0, which is precisely what the claim above says should happen!
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Banach spaces. Vector spaces which are complete with respect to a norm defined on it are known
as Banach spaces, of which Lp for 1 ≤ p < ∞ is the prototypical example. L∞ is also an example,
as shown on a recent problem from discussion section. In the finite-dimensional setting, Rn is also
a Banach space, although such examples are not as interesting as infinite-dimensional ones. We
will say a bit more next time about why Banach spaces are useful.

The spaces Lp(N) or Lp(Z), with N or Z equipped with counting measure are also complete,
and are hence Banach. These space are usually denoted by ℓp(N) or ℓp(Z), and are called sequence
spaces since their elements are sequences. For example, ℓ1(Z) is the space of sequences such that

∞"

n=−∞
|cn| < ∞,

and ℓ∞(Z) is the space of bounded sequences. (There is no difference between “bounded” and
“essentially bounded” when considering counting measure.)

In certain cases, the norm we are considering actually arises from an inner product via

‖v‖ =
/

〈u, u〉.

An inner product is a generalization of the usual dot product on Rn, and we will give a precise
definition later. Banach spaces whose norms come from inner products are called Hilbert spaces,
and L2 is the key example of this. The fact that the norm on L2 comes from an inner product, and
that it is complete, is something we will explore in the final week.

Lecture 24: Dual Spaces

Warm-Up. Suppose V is a normed vector space, meaning a vector space equipped with a norm.
(To be sure, a norm on V is a function ‖·‖ that assigns a nonnegative real number to each element
of v such that: ‖v‖ = 0 if and only if v = 0, ‖cv‖ = |c| ‖v‖ for any scalar c, and ‖u+ v‖ ≤ ‖u‖+‖v‖.
Any norm gives a metric via ‖u− v‖.) We show that V is a Banach space (i.e., it is complete) if
and only if

convergence of

∞"

n=1

‖vn‖ implies convergence of

∞"

n=1

vn.

The point is that these convergences are happening in different spaces:
)

‖vn‖ is a series in R, so
here we mean usual convergence with respect to the absolute value metric, whereas

)
vn is a series

in V , so for this we mean convergence with respect to the given norm. In general, convergence of
a series of real numbers is simpler to think about than convergence of a series of vectors, so this
characterization of completeness says that for series, convergence in R of norms is indeed enough
to guarantee convergence in V .

Suppose first that V is complete and let
)

vn be a series in V for which
)

‖vn‖ converges in
R. Denote by SM =

)M
n=1 vn the partial sums of

)
vn. Then for k ≥ 0 we have

‖SM+k − SM‖ =

22222

M+k"

n=M+1

vn

22222 ≤
M+k"

n=M+1

‖vn‖ .

The right side is a difference of partial sums for
)

‖vn‖, so since this series converges in R, we can
make right side smaller than any ε for M large enough. But this then makes the left side smaller
than ε as well for such M , so (SM ) is a Cauchy sequence in V . Since V is complete, this sequences
of partial sums converges V , which is what it means to say that the series

)
vn converges in V .
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The proof of the converse is actually the same as the argument we gave last time when showing
that Lp is complete, only that here we use the assumption of convergence of

)
‖vn‖ implying

convergence of
)

vn as a replacement for the use of any integral convergence theorems specific to
the setting of Lp. To be clear, suppose V has the aforementioned property and let (vn) be a Cauchy
sequence in V . Define a subsequence of (vn) by picking, for each k, terms such that

22vnk+1
− vnk

22 <
1

2k
.

Then set

v = vn1 +

∞"

k=1

(vnk+1
− vnk

).

(Note that at this point we do not yet know that this series converges, so v is not yet a well-defined
element of V .) The corresponding series of norms in R satisfies

‖vn1‖+
∞"

k=1

22vnk+1
− vnk

22 ≤ ‖vn1‖+
∞"

k=1

1

2k
,

so since the series on the right converges, so does the series of (nonnegative) norms on the left.
By our assumption, this means that the series defining v converges as well, in V . (This is the
conclusion of the first part of the Lp completeness proof.)

But the partial sums of the series defining v are

vn1 +

M"

k=1

(vnk+1
− vnk

) = vnM+1 ,

so we have that the subsequence vnk
converges to v in V . (This is the conclusion of the second part

of the Lp completeness proof.) Since (vn) is a Cauchy sequence in V with a subsequence converging
to v ∈ V , (vn) converges to v as well, so V is complete and hence a Banach space.

Why Banach? The result above gives the reason why we care about Banach spaces: they are the
vector spaces in which we have a clear notion of taking infinite sums of vectors. Of course, not all
such infinite sums will converge, but Banach spaces are the spaces for which we have a direct way
of relating convergence of such infinite sums in convergence of a series of numbers instead, which
are much better behaved.

Why should we care about infinite sums of vectors? Because they allow us to talk about infinite
linear combinations like ∞"

n=1

cnvn = c1v1 + c2v2 + c3v3 + · · · .

With infinite linear combinations we can think about a certain notion of an infinite-dimensional
“basis” {v1, v2, v3, . . .} where we try to express arbitrary v ∈ V as expressions such as above. (We
will be more precise about what “basis” means in this context when we talk about L2 and Hilbert
spaces.) As a contrast, if we consider the space of all real sequences

x = (x1, x2, x3, . . .)

as an “infinite” version of Rn, we find that the “standard basis elements”

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . ,
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where ei has a 1 in the i-th location and 0 elsewhere, is not actually a basis since an expression like

x = x1e1 + x2e2 + x3e3 + . . .

has no meaning because this space of sequences has no nice norm defined on all of it. (There are
subspaces that have nice norms, such as the ℓp spaces we mentioned last time, but no norm on
the entire space at once.) If we want to make sense of infinite-dimensional bases in a way that
mimics our expectations coming from considering finite bases, then we need a norm, and better yet
a Banach space so that we can ensure infinite linear combinations exist.

Once we can talk about infinite linear combinations, we can also make sense of infinite-dimensional
linearity of linear transformations. To be linear means that

T (c1v1 + c2v2) = c1T (v1) + c2T (v2),

and it follows from induction that this extends to any finite number of terms:

T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).

But if we want to extend this to infinitely many terms like

T

- ∞"

k=1

ckvk

.
=

∞"

k=1

ckT (vk),

then we need to work with infinite linear combinations, so again there is no way of avoiding the
eventual use of Banach spaces. (Even then, being to exchange the application of T with infinite
sums as above requires more of T , namely that it be continuous. We will discuss continuous linear
maps next.)

To give one final reason why completeness of Lp specifically is important, let us go back to the
second day of class where we discussed contractions and their use in the study of differential equa-
tions. Now we want to consider what are called partial differential equations, which are differential
equations involving multivariable functions and their partial derivatives. It turns out that such
functions often naturally end up being elements of some (or multiple!) Lp, so if we want to use
some contraction property to show that a given partial differential equation might have a solution,
completeness of Lp is essential. Take a graduate level course in partial differential equations to learn
more. (Actually, you need to consider more than just Lp spaces to make this all accurate—you
need to consider what are called Sobolev spaces, which are built from Lp by adding more conditions.
But we’ll leave that to a proper course in analysis of partial differential equations.)

Dual spaces. The final topic dealing with general Lp we will consider before specializing to L2

is that of duality. The notion of a “dual space” depends on the notion of a linear functional, so
we will start here. A linear functional on Lp is nothing but a linear map (in the sense of linear
algebra) from Lp to R. So, a linear functional ℓ : Lp → R satisfies

ℓ(f + g) = ℓ(f) + ℓ(g) and ℓ(cf) = cℓ(f).

But, this notion so far is a purely algebraic one and makes no use of the additional structure we have
on Lp coming from the p-norm. So, what we really want to consider are those linear functionals
that are continuous as maps from the metric space Lp to the metric space R. We define the dual
space (Lp)∗ (sometimes the adjective “continuous” is thrown in front of the word “dual”) of Lp to
be the set of continuous linear functionals on Lp:

(Lp)∗ := {ℓ : Lp → R | ℓ is linear and continuous}.
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Note that this is itself a vector, since we can add linear maps together and multiply them by scalars,
and such sums and scalar multiples will also be continuous.

The reasons for why one should care about dual spaces of vector spaces in general are not ones
we will get into here, but suffice it to say that they play an important role in studying “coordinate-
independent” linear algebra where we avoid picking a basis as much as possible. (Essentially, dual
spaces keep track of all possible coordinates with respect to all possible bases.) For us, we consider
dual spaces because of the special things that happen in the setting of Lp, and later L2 specifically.

Bounded linear functionals. It turns out that for linear maps, there is an easy way to char-
acterize continuity. The fact is that a linear functional ℓ : Lp → R is continuous if and only if it
is bounded. (This is true for linear maps between any normed vector spaces, not just Lp and R.)
But, we have to be careful here about what we mean by saying that a linear map is “bounded”. If
we ask for the usual notion of boundedness, namely

|ℓ(f)| ≤ M for some M > 0 and all f,

then it is only the zero map that can possibly satisfy such a definition. Indeed, if ℓ is nonzero, and
specifically ℓ(f) ∕= 0, then taking |c| → ∞ (c a scalar) in

|ℓ(cf)| = |cℓ(f)| = |c||ℓ(f)|

gives |ℓ(cf)| → ∞, so no finite bound M as that above can exist.
The way around this is to ask for boundedness only among vectors of norm 1, so that a linear

functional ℓ : Lp → R is bounded if there exists M > 0 such that

|ℓ(f)| ≤ M whenever ‖f‖p = 1.

(The same definition applies for linear maps between any normed spaces, and is something you
already saw last quarter when discussing the norm of a matrix in the context of differentiability in
Rn.) For a nonzero vector f not of norm 1, we have that f

‖f‖p
is of norm 1, so

%%%%%ℓ
-

f

‖f‖p

.%%%%% ≤ M, and hence |ℓ(f)| ≤ M ‖f‖p ,

and hence we can interpret “bounded” as saying that there is a restriction on the amount by which
ℓ can scale the norm of an input. The fact that “continuous ⇐⇒ bounded” is true for linear maps
comes from using linearity to get

|ℓ(f)− ℓ(g)| = |ℓ(f − g)|,

so that making the left side small as required by continuity will be equivalent to being able to
control the amount by which ℓ can scale norms. We’ll leave the precise details for you to work out.

So, (Lp)∗ is equivalently the space of bounded linear functionals on Lp. For ℓ ∈ (Lp)∗, the
supremum of |ℓ(f)| as f ranges among all elements in Lp of norm 1 thus exists, and we call this
the functional norm (or operator norm as the same definition applies to any linear map between
normed spaces) of ℓ:

‖ℓ‖ := sup
‖f‖p

|ℓ(f)|.

Another way of saying this is that ‖ℓ‖ is the infimum of all possible M > 0 satisfying |ℓ(f)| ≤
M ‖f‖p, and hence in particular we get |ℓ(f)| ≤ ‖ℓ‖ ‖f‖p. (Again, you likely saw this type of
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inequality last quarter in the context of matrix norms.) The functional “norm” ‖ℓ‖ defined in this
way is indeed a norm in the sense of linear algebra, and it turns out that (Lp)∗ is complete with
respect to this norm, so that it too is a Banach space. We’ll leave the details of verying all this to
elsewhere.

The dual of Lp. The dual (Lp)∗ of Lp is not such a bad space to study since its elements have
a concrete description as bounded linear maps Lp → R, but actually we can do much better. It
turns out that we can more explicitly describe all such bounded linear functionals in terms of the
elements of Lq (!!!), where q is the conjugate of p. This is the ultimate reason why conjugate pairs
are introduced in the first place, namely because of their use in describing dual spaces of Lp spaces.
(Conjugate pairs are also often called dual pairs, exactly for this reason.)

To see this, we first define a map Lq → (Lp)∗. Now, what should such a thing do? It will
take as input a function f ∈ Lq, and output a functional ℓf , meaning a map Lp → R. That is,
Lq → (Lp)∗ should send f ∈ Lq to something that sends g ∈ Lp to a real number. But if we want
to take f ∈ Lq and g ∈ Lp and produce a real number out of them, I claim that we have already
seen the tool needed to do so... Hölder’s inequality! Hölder’s inequality guarantees that

*
fg dµ is

a bona fide real number, since

%%%%
#

fg dµ

%%%% ≤
#

|fg| dµ = ‖fg‖1 ≤ ‖f‖q ‖g‖p < ∞.

Thus, for f ∈ Lq, we set ℓf : Lp → R to be the functional defined by

ℓf (g) =

#
fg dµ for g ∈ Lp.

The map Lq → (Lp)∗ sending f 2→ ℓf thus, in all its glory, looks like

f 2→
'
g 2→

#
fg dµ

(
.

Note that the ℓf thus defined is linear since integration is linear (i.e.,
*
f(g1+g2) dµ =

*
fg1 dµ+*

fg2 dµ and
*
f(cg) dµ = c

*
fg dµ), and it is bounded since

|ℓf (g)| ≤
#

|fg| dµ ≤ ‖f‖q ‖g‖p = ‖f‖q for any ‖g‖p = 1.

This in particular implies that the functional norm of ℓf is bounded by the q-norm of f :

‖ℓf‖ ≤ ‖f‖q .

In fact, the reverse inequality is also true, as we will leave to a problem on the homework. (It comes
down to finding a concrete g ∈ Lp for which |ℓf (g)| in fact equals ‖f‖q.) Thus we get

‖ℓf‖ = ‖f‖q .

This means that the map Lq → (Lp)∗ we’ve defined is an isometry, meaning that it preserves norms,
and hence preserves distance. But this in particular guarantees that this map is injective (!!): if
ℓf1 = ℓf2 for some f1, f2 ∈ Lq, then

‖ℓf1 − ℓf2‖ = 0, so that ‖f1 − f2‖q = 0
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(this uses the fact that f 2→ ℓf is norm-preserving), and hence f1 = f2. (More generally, isometries
between metric spaces are always injective.) Thus, we can think of Lq as being a subspace of (Lp)∗.

Functionals as measures. The amazing fact is that the map Lq → (Lp)∗ we’ve constructed
above is (now we have to be careful and specify that 1 < p < ∞) is actually surjective (!!!), so that
every bounded linear functional Lp → R arises from an element of Lq via integration. That is, the
main result in this story is that Lq is literally (or more precisely, “isometrically isomorphic” to)
the dual of Lp. (The same is true for p = 1, so that L∞ is the dual of L1, but surprisingly L1 is not
the dual of L∞: the dual of L∞ does contain L1 as a subspace, but is in fact larger. You’ll explore
this a bit on the homework.)

To prove that Lq is indeed the full dual of Lp for 1 < p < ∞, we need to know that given a
bounded linear functional ℓ : Lp → ∞ there exists f ∈ Lq such that ℓ = ℓf , which amounts to
saying that

ℓ(g) =

#
fg dµ for all g ∈ Lp.

This is a very difficult thing to do, since we have to produce such an f that works for all g at once
seemingly out of nowhere. Indeed, we will not prove this in full in this course, as it does require
more advanced measure theory than what we’ve covered. (Side note: you should all take graduate
real analysis MATH 410, which covers measure theory in the fall and functional analysis in the
winter. Functional analysis is—surprise surprise—the study of functionals on Banach spaces, and
is precisely what we are seeing a glimpse of now.)

But, even though we will not give a proof of this result, we will say something about the
context which underlies the proof, where we will see a direct connection to something we spoke
about previously. If we are to have an f satisfying

ℓ(g) =

#
fg dµ

for all g ∈ Lq, then in particular if we take g = 1A for some measurable A we get

ℓ(1A) =

#
f1A dµ =

#

A
f dµ.

(Indicator functions are always in Lq, as we will show next time as part of our Warm-Up.) Lo and
behold, we have seen expressions such as

*
A f dµ before, where f is fixed and it is A that varies,

when discussing absolute continuity for Lebesgue measure. Indeed, we spoke about how we could
then view

*
A f dµ as defining a new measure of A, and that is precisely what is going on here: ℓ

is after all giving a way to assign to a measurable set A a number ℓ(1A), which is what a measure
should do. The “measure” obtained in this way

ν(A) := ℓ(1A)

is not quite a measure in the sense we’ve thought of before, specifically because it can take on
negative values in addition to positive ones. This is an example of what’s called a signed measure,
where ν(A) < 0 is allowed. (Think about how when the graph of f is below the x-axis, we
interpret the integral of f as the “signed” area of the region between its graph and the x-axis.)
The important part is that all the other requirements of being a “measure”—such as countable
additivity—do indeed hold, as we will verify next time as a Warm-Up.

So, here is the context we need. We have a bounded linear functional ℓ : Lq → R, and we want
to find f ∈ Lp for which ℓ = ℓf . We use ℓ to define a signed measure

ν(A) := ℓ(1A).
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We then show that this measure is “absolutely continuous” with respect to Lebesgue measure µ,
in the sense that

µ(A) = 0 =⇒ ν(A) = 0.

(This is something we previously spoke about briefly when discussing absolutely continuity as a
statement about making

*
A f dµ small when µ(A) is small. We showed as a Warm-Up back then

that this property is equivalent to saying that any null set with respect to µ is still a null set with
respect to ν. Well actually, we showed it for nonnegative measures, but the same is true for signed
measures as well.) Expressions like

*
A f dµ give examples of absolutely continuous signed measures

with respect to µ, and a result known as the Radon-Nikodym theorem—which we also very briefly
mentioned a while back—guarantees that any measure which is absolutely continuous with respect
to Lebesgue measure is indeed of this form. (The function f for which ν(A) =

*
A f dµ is called the

Radon-Nikodym derivative of ν with respect to µ, and, as we briefly alluded to earlier, does behave
in a sense like a “derivative”.)

Distribution theory. So, for our ν(A) = ℓ(1A), which is absolutely continuous with respect to
Lebesgue measure µ, we thus get a function f such that

ℓ(1A) =

#

A
f dµ.

By building up from indicator functions to simple functions and then to measurable functions, one
can then show that

ℓ(g) =

#

A
fg dµ for all g ∈ Lq,

which, after verifying that f ∈ Lq, gives the amazing result ℓ = ℓf , and hence surjectivity of
Lq → (Lp)∗, we wanted. Simply amazing mind-boggling stuff.

The idea of viewing a linear functional Lq → R as a type of measure is the foundation of
the subject known as distribution theory. Indeed, the overarching idea is that there really is no
difference between “measures” and “functionals” when everything is interpreted in the right way.
Distributions are functionals (or just measures!) defined on spaces of functions, and can be thought
of as generalizations of functions . (Note that a function always gives rise to a distribution, precisely
in the way we constructed ℓf above: f gives the distribution which assigns to g the number

*
fg dµ.

The so-called Dirac delta function, which you might have heard of, is not actually a function as
the name suggests, but is in fact a distribution.) Distributions are crucial tools in various areas
such as mathematical physics and what’s called microlocal analysis, and their study is intimately
connected with the study of Lp spaces and their duals. We’ll leave it at that in this course, but
explore the topic of analysis of partial differential equations (which is essentially what microlocal
analysis is) to learn more.

Lecture 25: Hilbert Spaces

Warm-Up. Suppose ℓ : Lp → R is a bounded linear functional, and define the “measure” ν by
ν(A) = ℓ(1A). We show that ν is countably additive, which is one of the properties required of a
(signed) “measure.” As a quick remark, note that the requirement ν(∅) = 0 of a measure is just the
fact that linear maps send zero to zero: the indicator function of the empty set is the zero function,
and ν(∅) = ℓ(1∅) = ℓ(0) = 0. Countable additivity for ν amounts to the fact that linearity for ℓ
extends to infinite sums, not just finite ones.
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Let {An}n be a pairwise disjoint countable collection of measurable sets, and set

EM =

∞+

n=M+1

An.

Then
1∞

n=1An = EM ∪ A1 ∪ A2 ∪ · · · ∪ AM , so the indicator function of the set on the left is the
sum of indicator functions of the sets on the right. (This uses that the An are pairwise disjoint.)
Thus by linearity of ℓ, which gives finite additivity for ν, we have

ν(

∞+

n=1

An) = ν(EM ) +

M"

n=1

ν(An).

The goal is to show that the first term on the right vanishes as M → ∞, which will result in
ν(
1

nAn) =
)

n ν(An), as required by additivity.
Now, we have

|ν(EM )| = |ℓ(1EM
)| ≤ ‖ℓ‖ ‖1EM

‖p ,

where ‖ℓ‖ is the functional norm of ℓ. (To be clear, for any nonzero f , |ℓ(f/ ‖f‖p)| is bounded by
‖ℓ‖ since f/ ‖f‖p has p-norm 1, and multiplying through by ‖f‖p gives |ℓ(f)| ≤ ‖ℓ‖ ‖f‖p. This is
also an inequality we highlighted last time.) We can compute ‖1EM

‖p explicitly as

'#
1pEM

dµ

(1/p

=

'#
1EM

dµ

(1/p

= µ(EM )1/p.

(So, in particular, the indicator function of any measurable set of finite measure is in Lp for any
p.) Thus we get

|ν(EM )| ≤ ‖ℓ‖µ(EM )1/p.

Since the EM form a decreasing sequence of measurable sets (i.e., EM ⊆ EM+1), we have that

lim
M→∞

µ(EM ) = µ(

∞4

M=1

EM ).

But the intersection of all EM is empty since, by construction, each EM excludes an additional
An; more precisely, all EM are contained in E1, but x ∈ E1 belongs to some An for n ≥ 2, which
is then excluded from En for this n, and hence x is not in the intersection of all the EM . Thus
µ(EM ) → 0 as M → ∞, so ν(EM ) → 0 as well since the |ν(EM )| are bounded by a finite number
‖ℓ‖ times µ(EM )1/p → 0. Hence taking limits in

ν(

∞+

n=1

An) = ν(EM ) +

M"

n=1

ν(An)

gives

ν(

∞+

n=1

An) =

∞"

n=1

ν(An)

as desired.
This all shows that ν(A) := ℓ(1A) does indeed define a (signed) measure. Note that since

|ν(A)| ≤ ‖ℓ‖µ(A)1/p (same reasoning for general A as for EM above), we also see that if A is a null
set with respect to µ, then it will still be a null set with respect to ν. This is what is means to say
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that ν is absolutely continuous with respect to µ, which then guarantees that the “Radon-Nikodym
theorem” kicks in to say that ν is of the form ℓ(1A) = ν(A) =

*
A f dµ for some f ∈ Lq, which is

then the function f that will satisfy ℓ(g) =
*
fg dµ for all g ∈ Lp. Whew!

Hilbert spaces. We bow specialize to the case of L2. To set the stage, let us first properly define
the notion of a Hilbert space. First, an inner product on a vector space H is an assignment of a
real number 〈u, v〉 ∈ R to each pair u, v ∈ H such that

• 〈u, u〉 ≥ 0 for all u ∈ H and 〈u, u〉 = 0 if and only if u = 0;

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ H; and

• 〈c1u1 + c2u2, v〉 = c1 〈u1, v〉+ c2 〈u2, v〉 for all u1, u2, v ∈ H and c1, c2 ∈ R.

These are nothing but the properties one expects of the usual dot product in Rn. Note the final
property says that for fixed v ∈ H, the map H → R defined by u 2→ 〈u, v〉 is a linear functional.

These properties allow us to define a norm on H via ‖u‖ :=
/

〈u, u〉. Indeed, 〈u, u〉 is never
negative, so that it makes sense to take its square root, and ‖u‖ = 0 if and only if u = 0. Next,
‖cu‖ =

/
〈cu, cu〉 =

/
c2 〈u, u〉 = |c| ‖u‖. And finally, the triangle inequality for ‖u‖ follows

from the so-called Cauchy-Schwarz inequality for 〈u, v〉, of which Hölder’s inequality for Lp is a
generalization and which we will come back to next time. The norm ‖u‖ then gives a metric, and
to say that H is a Hilbert space is then to say that H is complete with respect to this metric. Thus,
Hilbert spaces are just Banach spaces whose norms come from inner products.

The standard examples of Hilbert spaces are Rn with the usual dot product, and L2 with the
inner product

〈f, g〉 =
#

fg dµ.

That this is an inner product on L2 can be verified directly using linearity and monotonicity of
the integral, and the fact that 〈f, f〉 =

*
f2 dµ = 0 if and only if f2, and hence f , is zero almost

everywhere. (Recall that L2 is technically defined by taking equivalence classes of functions.) In
fact, the Rn example is a special case of the more general L2 example of L2({1, 2, . . . , n}) where
{1, 2, . . . , n} is equipped with counting measure. The point is that you should view 〈f, g〉 above
for L2 on some interval as doing literally the same thing as the usual dot product: if we view a
function as an “uncountable” vector indexed by x ∈ [a, b] whose “x-th component” is f(x), then
in 〈f, g〉 we multiply corresponding components f(x) and g(x) together, and then “add” these via
the integral as x ranges over [a, b]. That L2 is complete with respect to this inner product is just
the p = 2 case of our general Lp completeness result.

Self-duality.

Orthogonal projections.
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