
Math 395: Category Theory
Northwestern University, Lecture Notes

Written by Santiago Cañez

These are lecture notes for an undergraduate seminar covering Category Theory, taught by the
author at Northwestern University. The book we roughly follow is “Category Theory in Context”
by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which
topics are presented and what from the book we actually emphasize. We also include things we
look at in class which aren’t in the book, but otherwise various standard definitions and examples
are left to the book. Watch out for typos! Comments and suggestions are welcome.

Contents

Introduction to Categories 1

Special Morphisms, Products 3

Coproducts, Opposite Categories 7

Functors, Fullness and Faithfulness 9

Coproduct Examples, Concreteness 12

Natural Isomorphisms, Representability 14

More Representable Examples 17

Equivalences between Categories 19

Yoneda Lemma, Functors as Objects 21

Equalizers and Coequalizers 25

Some Functor Properties, An Equivalence Example 28

Segal’s Category, Coequalizer Examples 29

Limits and Colimits 29

More on Limits/Colimits 29

More Limit/Colimit Examples 30

Continuous Functors, Adjoints 30

Limits as Equalizers, Sheaves 30

Fun with Squares, Pullback Examples 30

More Adjoint Examples 30

Stone-Cech 30

Group and Monoid Objects 30

Monads 30

Algebras 30

Ultrafilters 30

Introduction to Categories

Category theory provides a framework through which we can relate a construction/fact in one area
of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction,
where we can truly single out what about a given problem is specific to that problem, and what
is a reflection of a more general phenomenom which appears elsewhere. Practically this is done by
phrasing as many constructions/facts as possible in terms of “arrows”, where the point is that by
doing so relations between different objects of mathematics are simpler to see.

Definition of a Category. The precise definition of a category is spelled-out in the book in
Section 1.1. The key points is that a category consists of a collection of “objects”, a collection of
“morphisms” between objects, and a way to “compose” morphisms to get other morphisms in a
way which is associative and admits identities.

Standard examples. The main examples of categories we’ll care about can also be found in the
book, such as:

• Set, the category of sets where morphisms are given by ordinary functions,

• Grp, the category of groups where morphisms are given by group homomorphisms,

• Top, the category of topological spaces where morphisms are given by continuous maps,

• Vect, the category of vector spaces over some fixed field (which should be included as part
of the notation) where morphisms are given by linear transformations.

Another example. All of the above are examples of what are called concrete categories. This is a
term we’ll define later, but it essentially means that the objects of the categories above are all sets
possibly equipped with additional structure, and that the morphisms are just ordinary functions
between sets possibly satisfying some additional condition. (For instance, an object in Grp is a set
equipped with a group operation, and a morphism in Grp is simply a function f : G → H between
groups which satisfies the additional condition that it be a group homomorphism.)

But, even though these types of examples are the main ones we’ll care about, a category can
be a much more general type of object. For instance, let us describe the category called BZ. This
category has only one object, which we will denote by ∗ and think of as a single “point”. According
to the definition of a category, we should then have, for this one object, a collection of morphisms
Mor(∗, ∗), which in this case we declare to be Z:

Mor(∗, ∗) := Z.

That is, we interpret each element of Z as being a “morphism” from ∗ to ∗. Now, of course, there
is only one possible function from ∗ to ∗—namely the one that sends the single element ∗ of the
domain to the single element ∗ of the codomain—so here we are considering “morphisms” which
do not represent ordinary functions. Visually, we interpret each morphism as an arrow beginning
and ending at the single object ∗:

∗

0

1

2

3

2

Now, in order for this to be category we also need a notion of “composition”, which in this case
since there is only one object amounts to a map of the form:

Mor(∗, ∗)×Mor(∗, ∗) → Mor(∗, ∗),

which in our case becomes
Z× Z → Z.

We take this map to be ordinary addition + on Z. (So, “composing” the arrow labeled 1 in the
picture above with the arrow labeled 2 results in the arrow labeled 3.) The point is that this is
NOT “composition of functions” in the usual sense, but will give a valid “composition” operation
in the category BZ as long as it satisfies the properties required in the definition of a category. One
such requirement is that composition be associative, which is satisfied since + is indeed associative.
The second requirement is that exist a morphism id∗ ∈ Mor(∗, ∗) which acts as an identity for the
“composition” we’ve defined. In this case, this identity morphism is id∗ = 0, that is the integer
0 in Mor(∗, ∗) = Z. Saying that this is the “identity morphism” with respect to “composition” in
this case simply says that is the identity element for addition.

Thus we get a category BZ as claimed, albeit one where the notion of “morphism” and “compo-
sition” are more general than simply “function” and ordinary composition. In fact, we can already
now give a “categorical” characterization of a well-known algebraic object: a (locally small) cat-
egory one with a single object is precisely what is known as a monoid, which is a set equipped
with an associative binary operation which admits an identity element. The monoid in question
is precisely the set Mor(∗, ∗), and the associative operation which turns this into a monoid is the
“composition” of the category in question. (A locally small category is one where each collection
of morphisms is actually a set, which is needed here in order to guarantee that Mor(∗, ∗) is a set on
which we can define a binary operation.) So for instance, any group can be viewed as a category
with one object, where the group elements give the “morphisms” from that one object to itself.
(Of course, a group gives a special type of category where every morphism is in fact “invertible”.
A small category where every morphism is invertible is called a groupoid, so a group is nothing but
a groupoid with one object. We’ll talk more about groupoids later on.)

A final example. Here is one final example we’ll consider from time to time, which is again a
category where the “morphisms” are not simply functions. The category Rel of relations has as
objects ordinary sets, but as morphisms relations between sets:

f ∈ Mor(A,B) is a relation from A to B, which is a subset f of A×B.

The usual graph of a function from A to B gives an example of such a relation, so we can say that
Rel contains Set as a subcategory, but not all relations come from graphs of functions. In general,
we can think of a relation as a “partially-defined, possibly multivalued function” if we interpret
(a, b) being in the relation f as saying that “f sends a to b”.

Composition in Rel comes from ordinary composition of relations: given a relation f : A → B
and a relation g : B → C, we define their composition g ◦ f : A → C to be:

g ◦ f := {(a, c) ∈ A× C | there exists b ∈ B such that (a, b) ∈ f and (b, c) ∈ g}.

So, g ◦ f consists of all pairs of elements of A and C which are “related” to a common element
of B. In the case where f and g are graphs of ordinary functions, this composition of relations
reproduces the ordinary notion of composing functions: if (a, b) ∈ f and (b, c) ∈ g, then b = f(a)

3

and c = g(b) (here we abuse notation by denoting the function of which f is graph by the symbol
f itself), so

c = g(b) = g(f(a)) = (g ◦ f)(a),

meaning that (a, c) ∈ g ◦ f precisely when c = (g ◦ f)(a). Composition of relations is associative,
and you can check that graphs of ordinary identity functions:

graph(idA) = {(a, a) ∈ A×A | a ∈ A}

give the identity morphisms. (I spent much time as graduate student trying to do “geometry” with
a certain category of relations, so this is an example near and dear to my heart.)

Special Morphisms, Products

Isomorphisms. A morphism f ∈ Mor(A,B) between two objects A and B in a category is an
isomorphism or is invertible if it has an inverse: there exists a morphism g ∈ Mor(B,A) such that
gf = idA and fg = idB, where idA ∈ Mor(A,A) and idB ∈ Mor(B,B) are the identity morphisms
which are assumed to exist as part of the definition of a category. We say that A and B are
isomorphic, and we write A ∼= B, if there exists an isomorphism between them.

This general categorical notion of isomorphism reduces to the one you would expect in the
standard examples: isomorphisms in Set are bijective functions, in Grp they are bijective group
homomorphisms, in Vect they are invertible linear transformations, and in Top they are homeo-
moprhisms, i.e. continuous bijections with continuous inverses.

A category of metric spaces. Now, consider the category MetC of metric spaces where mor-
phisms are given by continuous functions. In this category the notion of “isomorphism” again
means homeomorphism, so two metric spaces are isomorphic in this category when they are home-
omorphic. However, often when considering whether or not two metric spaces are the “same” we
have another definition in mind, that of two metric spaces being isometric: X is isometric to Y if
there exists a bijective isometry between them, which is a bijective map f : X → Y which preserves
distance in the sense that

dY (f(p), f(q)) = dX(p, q) for all p, q ∈ X.

After all, in a metric space you have more data than simply “open sets” (which is all that a
homeomorphism detects), so it would be good to have a notion of “sameness” which incorporated
the extra data of distance as well.

The goal is then to construct a category of metric spaces where “isomorphic” indeed means
isometric, and we can do so simply by restricting the types of continuous maps we consider. The
category Met has metric spaces as objects, but now a morphism f : X → Y is taken to be a
function which does not “enlarge” distance in the sense that

dY (f(p), f(q)) ≤ dX(p, q) for all p, q ∈ X.

Maps with this property are often called metric maps. Any metric map is actually continuous, so
Met is a subcategory of MetC . (The subscript C used in MetC is meant to denote “continuous”,
indicating that we take arbitrary continuous maps as morphisms.) In this category now, for f :
X → Y to be an isomorphism requires that f and its inverse f−1 both be metric maps, so:

dY (f(p), f(q)) ≤ dX(p, q) and dX(f−1(s), f−1(t)) ≤ dY (s, t)

4

for all p, q ∈ X and s, t ∈ Y . But writing s and t as s = f(p) and t = f(q), the second condition
becomes dX(p, q) ≤ dY (f(s), f(t)), and the two inequalities together thus imply

dY (f(p), f(q)) = dX(p, q) for all p, q ∈ X

so that f : X → Y is actually an isometry. The moral is that certain properties one might want
can be achieved by changing the morphisms you consider.

Monomorphisms and epimorphisms. The definitions of monomorphism and epimorphism
can be found in Section 1.2 of the book. The standard examples are those in Set, where the
monomorphisms are the injective functions and the epimorphisms are the surjective functions.
Proofs of these facts are left to the homework, as well as the interesting problem of determining the
epimorphisms in Met, or even MetC , or Haus (the category of Hausdorff spaces where morphisms
are arbitrary continuous maps), where the answer is that epimorphism means more than simply
“continuous and surjective”. (As opposed to all of Top, where epimorphism does indeed mean
continuous and surjective.)

So, monomorphisms and epimorphisms should be treated as categorical analogues of “injections”
and “surjections”, although this analogy only goes so far. The thing to note is that we are thus
able to give a complete definition of “injective” for ordinary functions which makes no reference
to elements and is stated only in terms of the relation between an injective function and other
functions; certainly proving that “monomorphism” means “injection” in Set requires working with
elements, but stating the definition of an injection as a monomorphism can be done solely using
“arrows”.

Products. The definition of a product in a category shows up in Section 3.1 of the book, in
the context of the more general notion known of a limit. We’ll discuss this more general notion
eventually, but for now we will only focus on products of two objects at a time. Here is what the
more general notion boils down to in this case, which we’ll take as our definition:

A product of two objects A and B in a category is an object P together with morphisms
pA : P → A and pB : P → B (which we call projections) which satisfy the following
property: given any morphisms f : C → A and g : C → B into A and B from a
common object C, there exists a unique morphism h : C → P such that f = pA ◦h and
g = pB ◦ h. We express this by saying that the following diagram commutes:

C

A B

P
f g

pA pB

∃!h

which means that composing any two composable arrows in the diagram results in the
other arrow with the same domain and codomain. Concretely, there are two ways in this
diagram to get from C to A, via f or via the composition pA ◦ h, and the requirement
is that both give the same morphisms (i.e. f = pA ◦ h) and similarly for the two ways
to get from C to B. The dashed arrow is the one which is required to exist (uniquely
as denoted by the exclamation mark !) in the definition of product.

5

So, the upshot is that for any C and any f and g in the diagram above, there exists a unique
h which makes the diagram commute. The point is that a product gives a way to turn the two
pieces of data f : C → A and g : C → B into the single piece of data h : C → P in a unique
way. Being able to turn a possibly large amount of data into a single piece of data in this way is
one of the benefits the “categorical” perspective provides. Products in categories are often denoted
using the usual A × B notation, even though it is not necessarily true that a product is literally
a set-theoretic Cartesian product, although it is in the standard examples. The map h : C → P
required in the definition is then often denoted by h = f × g.

Examples. In Set, the product of two objects A and B always exists and is indeed the ordinary
Cartesian product A × B. But of course, the definition of product also requires that data of the
projection morphisms, which in this case are simply the usual ones:

pA : (a, b) 󰀁→ a and pB : (a, b) 󰀁→ b.

Given f : C → A and g : C → B, the map h : C → A×B is h(c) = (f(c), g(c)), and you can check
that these constructions satisfy the properties required in the definition. (Note that you would also
have to argue that h defined in this way is the only map which can make the required diagram
commute.)

Products in Grp are given by the usual direct product group structure: G×H with the group
operation defined as

(g1, h1) · (g2, h2) := (g1g2, h1h2).

The projection morphisms are the ordinary ones you would expect as well. But let us actually
now verify that this group structure indeed is, among other possible group structures on G × H,
the one required in the definition of a product. Suppose f : K → G and g : K → H are group
homomorphisms. The key point is that the map h(k) = (f(k), g(k)) which should satisfy the
required product property should itself be a morphism in Grp, meaning a group homomorphism,
and we claim that this is only true for the direct product group structure.

Indeed, we want it to be true that

h(k1k2) = (f(k1k2), g(k1k2)) equal h(k1)h(k2) = (f(k1), g(k1)) · (f(k2)g(k2))

for all k1, k2 ∈ K and some to-be-determined group structure · on G × H. Since f and g are
homomorphisms, this requirement becomes

(f(k1)f(k2), g(k1)g(k2)) = (f(k1), g(k1)) · (f(k2)g(k2)),

which says that · should indeed be componentwise multiplication, at least on the image of f and
g. But recall that the properties required of a product should hold for any K and any f : K → G
and g : K → H; in particular then, it should hold for instances when f and g are surjective, which
shows that the componentwise-multiplication property above should in fact hold on all of G ×H,
so that · is indeed the ordinary direct product structure.

Uniqueness. Notice that in the definition of a product in a category, we used the word “a” as
opposed to “the”: we spoke about a product of A and B instead of the product of A and B. So
we now ask: are products unique? The answer is “no” if we interpret “unique” in the strictest
possible sense, but “yes” if we interpret it correctly. For instance, in the example of Grp, take
now N to be any group which is isomorphic to the direct product G ×H, say with isomorphism
ℓ : N → G ×H. We claim that we can also turn N into a categorical product of G of H, as long

6

as we define appropriate “projections” N → G and N → H: take N → G to be the composition
pG ◦ ℓ and N → H to be pH ◦ ℓ. Given f : K → G and g : K → H as in the definition of a product,
the map h′ : K → N defined by

h′ = ℓ−1 ◦ h

where h : K → G×H is the usual h = f ×g will satisfy the requirement needed to able to conclude
that N is also a product of G and H in Grp. A similar trick works in any category, so that any
object isomorphic a product can also itself be turned into a product.

The correct answer is that products are unique up to unique isomorphism, which means that
given a product P of A and B, any other product P ′ of A and B will in fact be isomorphic to P ,
and in a unique way in the sense that there can exist only one isomorphism P → P ′. The phrase
“unique up to unique isomorphism” is a common one we’ll see again and again: objects defined
by some categorical property are almost never genuinely unique in a strict sense, but they will
essentially be as close to unique as possible.

So, suppose that P and P ′ are both products of A and B, with associated projection morphisms
pA, pB for P and p′A, p

′
B for P ′. Consider the diagram:

P

A B

P ′
pA pB

p′A p′B

∃!h

The morphism h : P → P ′ is the unique one guaranteed to exist by the fact that P ′ is a product
of A and B. Commutativity of this diagram says that pA = p′A ◦ h and pB = p′B ◦ h. A similar
diagram with the roles of P and P ′ reversed which uses the fact that P is a product results in a
unique morphism h′ : P ′ → P satisfying p′A = pA ◦ h′ and p′B = pB ◦ h′.

Now, consider the following diagram:

P

A B

P
pA pB

pA pB

h′ ◦ h

This commutes, which we verify using the properties h and h′ satisfy as follows:

pA ◦ (h′ ◦ h) = (pA ◦ h′) ◦ h = p′A ◦ h = pA

and similar for the morphisms involving B. This shows that h′◦h : P → P satisfies the requirement
in the definition of P being a product. But of course, idP : P → P satisfies this requirement as well,
so since the map satisfying this requirement is assumed to be unique, we must have h′ ◦ h = idP .
Similar reasoning considering h ◦ h′ : P ′ → P ′ shows that h ◦ h′ = id′P , so that h and h′ are indeed
inverses and hence that P and P ′ are isomorphic. The uniqueness of the isomorphism between
them comes from the uniqueness of h in the construction above.

7

Abstract nonsense. It is common to say in the setting above that the fact that products are
unique up to unique isomorphism follows from “abstract nonsense”, which is a succinct way of
saying that it follows solely from the definition of a categorical product itself and not any deeper
mathematical content. In particular, many of the “uniqueness” properties which “products” have
in the settings we might care about—Cartesian products in Set, direct products in Grp, product
topologies in Top—really have nothing to do with how those specific products are defined, but are
just consequences of the “abstract nonsense” of category theory.

But of course, we do not use the phrase “abstract nonsense” in a negative or dismissive way,
since recognizing what types of properties are consequences of “abstract nonsense” goes a long way
towards understanding well the given problem at hand. Soon, you too, will come to appreciate this
notion of abstract nonsense.

Coproducts, Opposite Categories

Initial and terminal objects. The notions of initial and terminal objects in a category are
defined in Section 1.6 of the book, where you can also find standard examples. Here I want to
point out that initial and terminal objects, if they exist, are unique up to unique isomorphism, as
another example of arguing via “abstract nonsense”.

Suppose I and I ′ are both initial objects in some category. By the fact that I is initial there
exists a unique morphism f : I → I ′, and by the fact that I ′ is initial there exists a unique morphism
g : I ′ → I. But then the composition g ◦ f : I → I must equal idI : I → I since the latter is the
only morphism from I to itself because I is initial, and similarly f ◦ g = idI′ . Thus I and I ′ are
unique, and there is a unique isomorphism between them.

Coproducts. The dual concept to that of a product is the notion of a coproduct. (The term
“dual” refers to the phenomena you get when you reverse all arrows in a given construction. For
instance, the notion of a terminal object is dual to that of an initial object, and the notion of an
epimorphism is dual to that of a monomorphism.) Here is the precise definition: a coproduct of an
object A and an object B in a category is an object C together with morphisms iA : A → C and
iB : B → C such that for any object D and morphisms f : A → D and g : B → D, there exists a
unique morphism h : C → D which makes the following diagram commute:

D

A B

C
f g

iA iB

∃!h

By abstract nonsense, if a coproduct of A and B exists it is unique up to unique isomorphism.

Examples. In Set, the coproduct of two sets A and B is the disjoint union A⊔B. (If you haven’t
seen the notion of a disjoint union before, it is essentially the same as the union, only that we don’t
care about whether A and B have any overlap: if they do, we treat the common elements as being
“different”. For instance, Z ⊔ Z is not Z, but consists of two copies of each integer; one 0 comes
from the first copy of Z, and another comes from the second, but these are different “zeroes”.)
Given f : A → D and g → D, the unique map A ⊔B → D is defined by applying f to elements of

8

A and g to elements of B. (Note that if we simply took the ordinary union A∪B as the candidate
for the coproduct when A and B were not disjoint, the required map h : A ∪ B → D would not
exist since h would have to send any element x ∈ A ∩ B to both f(x) and g(x) in order to make
the required diagram commutative.)

The coproduct of two objects X and Y in Top is again the disjoint union X ⊔ Y , equipped
with the disjoint union topology: an open subset of X ⊔ Y is defined to be the (disjoint) union of
an open subset of X with an open subset of Y . The coproduct of two groups G and H in Grp is
the free product G ∗H, which is further elaborated on in the homework.

The coproduct of two vector spaces V and W in Vect is the direct sum V ⊕W , which is defined
to be the set of formal sums

v + w where v ∈ V and w ∈ W

where addition and scalar multiplication are defined “componentwise”:

(v1 + w1) + (v2 + w2) := (v1 + v2) + (w1 + w2) and r(v + w) = rv + rw.

This is isomorphic to the product V × W with operations also defined componentwise, but it is
customary to speak about the “direct sum” V ⊕W when referring to the coproduct as opposed to
the product; we’ll say why in a bit. The maps iV : V → V ⊕W and iW : W → V ⊕W required as
part of the data of a coproduct are:

iV : v 󰀁→ v + 0W and iW : w 󰀁→ 0V + w.

To verify that V ⊕W is the correct coproduct, take any linear transformations S : V → U and
T : W → U where U is some other vector space. We then need a (unique) linear transformation
h : V ⊕W → U such that

S = h ◦ iV and T = h ◦ iW .

Let us determine what this map must be, thereby not only showing that it exists but also that it
is unique. Let v + w ∈ V ⊕W , which we can write as

v + w = (v + 0W) + (0V + w).

Since h is required to be linear, we have:

h(v + w) = h([v + 0W] + [0V + w]) = h(v + 0W) + h(0V + w).

The first term at the end is (h ◦ iV)v, which must thus be Sv, and the second term is (h ◦ iW)w,
which must be Tw. Thus h = S + T is the map

h = S + T : v + w 󰀁→ Sv + Tw,

which you can verify is indeed linear. Thus V ⊕W does satisfy the property required of a coproduct.
So, the product of two objects in Vect is the same as their coproduct, only that we write the

latter using “sum” notation. Later we will discuss products and coproducts of an arbitrary number
of elements. We will see these as special cases of the general notions of limits and colimits, but
they are defined via similar requirements as products and coproducts of two objects at a time.
In the category of vector spaces, arbitrary products are given by the usual product

󰁔
α Vα with

“componentwise” addition and scalar multiplication, but it turns out that an arbitrary coproduct
is given by the direct sum

󰁏
α Vα, which is defined to be the subspace of

󰁔
α Vα where only finitely

many components are nonzero. (This is in a way analogous to how the product topology on an

9

arbitrary number of topological spaces is defined.) We’ll go over this later, but is the underlying
reason why we use ⊕ instead of × when discussing coproducts.

Encoding data via products/coproducts. We can nicely summarize the definition of products
and coproducts in the following way: the product of A and B is the object with the property that
for any object D we have:

Mor(D,A)×Mor(D,B) = Mor(D, product)

and the coproduct of A and B is the object such that for any object D we have:

Mor(A,D)×Mor(B,D) = Mor(coproductx, D).

The first reflects the fact that products give a unique way to turn two morphisms (f and g in the
definition) mapping into A and B into a single morphism (h in the definition), and the second says
that coproducts give a unique way to turn two morphisms mapping out of A and B into a single
morphism.

Soon enough we will discuss the idea of universality, and the point is that products are “uni-
versal” for maps into A and B, and coproducts are universal for maps from A and B.

Opposite categories. Finally, we give a definition which might seem silly, but is actually quite
useful. Given a category C, the opposite category is the category Cop is the category with the same
objects as C, but where we defined Mor(A,B) in Cop to be Mor(B,A) in C. To be more concrete, we
consider each morphism f : A → B in C to instead be a morphism fop : B → A in Cop. (Perhaps it
would be better to write this as A ← B : fop.) The point is that we don’t actually care about what
f actually is, as, say a function/continuous map/homomorphism/whatever-we only care about its
behavior as an “arrow”. The opposite category Cop only retains information about how arrows
relate to one another, nothing more.

Since arrows are reversed, products in C become coproducts in Cop, and coproduts in C become
coproducts in Cop. Similarly, initial/terminal objects and monomorphisms/epimorphisms in C be-
come terminal/initial objects and epimorphisms/monomorphisms in Cop. Again, the notion of an
opposite category might seem like a strange thing to look at, but we’ll see that it does have uses.

Functors, Fullness and Faithfulness

One more product/coproduct example. Let X be a topological space and define its category
of open sets Op(X) as follows. The objects of Op(X) are simply the open subsets of X, and the
morphisms are given by inclusions; so to be concrete:

Mor(U, V) =

󰀫
{the unique inclusion U ↩→ V } if U ⊆ V

∅ otherwise.

The fact that U ⊆ V and V ⊆ W implies U ⊆ W says that the composition of two morphisms
in this category is still a morphism in this category. The product of U and V in this category
turns out to be their intersection (with “projection morphisms” U ∩ V → U and U ∩ V → V being
inclusions), and the coproduct of U and V turns out to be their (ordinary) union. Note that we
need X to be a topological space in order to guarantee that U ∩ V and U ∪ V are still objects in
this category. More generally, the product of finitely many objects in Op(X) exists and is their
intersection, and the coproduct of an arbitrary number of objects exists and is their union. (We
say that Op(X) has finite products and arbitrary coproducts.)

10

Given a set X and a collection T of subsets of X, we can define a similar category with elements
of T as objects (I guess we should assume that ∅, X ∈ T) and inclusions as morphisms. We then
have that this category has finite products and arbitrary coproducts if and only if T is a topology
on X, so that we can rephrase the definition of a topological space itself solely in categorical terms.
This perspective on what a “topology” is makes it simpler to state the definition of what’s called
a sheaf on a topological space, which is an important construction in various areas of analysis and
geometry. We might discuss this a bit later on.

Functors. As with most things in mathematics, we should care not only about categories as
mathematical structures on their own, but also about “maps” between these structures which
“preserve” said structure. The notion of a (covariant) functor between categories provides such
“maps” in the case at hand, where a functor is a way of sending objects to objects and morphism
to morphisms, in a way which preserves compositions and identities. The precise definition is in
Section 1.3 of the book, as is the definition of a contravariant functor between categories, which
is a functor which reverses the direction of arrows, as opposed to “covariant” ones which preserve
directions. (It is common to use the term “functor” without qualification to mean one which is
covariant. Note that any functor can be made covariant by working with the opposite category: a
contravariant functor C → D is the same as a covariant functor Cop → D.)

All of the standard examples we looked at are in the book: forgetful functors, power set functors,
the dual space functor in Vect, etc. Of particular interest is Example 1.3.9 in the book, which
shows that various types of group actions in different contexts-the usual notion of a group action
on a set, the notion of a continuous action of a group on a topological space, and the notion of
a linear action of a group on a vector space (also known as a representation of the group)-are all
encoded by a functor with domain category BG.

Adjoint functors. Let F : Top → Set be the forgetful functor, and let D : Set → Top be the
functor which sends a set S to the space S equipped with the discrete topology and a function
S → S′ between sets to the same function only now viewed as a continuous map S → S′ between
discrete spaces. These two functors satisfy the following property in relation to one another: giving
a morphism D(S) → Y in Top is the same as giving a morphism S → F (Y) in Set, or more
symbolically

MorTop(D(S), Y) = MorSet(S, F (Y)).

We say that D is left adjoint to F , and that F is right adjoint to D. The point is that adjoint
functors can be used to move data back and forth between two categories.

We’ll talk more about adjoint functors later on, but for now here is one more example. Now
take F : Grp → Set to again be the forgetful functor, and take G : Grp → Set to be the free
group functor which sends a set S to the free group generated by S: G(S) has as elements “words”
s1 . . . sn made up of elements of S with the group operation being “concatenation”. A basic fact
is that giving a group homomorphism from G(S) to some other group H is the same as giving an
ordinary function from S to F (H), which is the required adjoint property:

MorGrp(G(S), H) = MorSet(S, F (H)).

Faithful and full functors. The definitions of what it means for a functor to be faithful and full
are in Section 1.5 of the book, where faithful functors are ones which are injective on morphisms and
full functors are ones which are surjective on morphisms, but where in both cases we refer only to
morphisms which occur between the objects F (A) and F (B) in the target category corresponding to
fixed objects A and B in the source category. (In general, a functor could send two objects A,B in

11

the source category to the same object F (A) = F (B) in the target category, and thus there could be
two morphisms A → C and B → C which are sent to the same morphism F (A) = F (B) → F (C).
Such a thing could still possibly be “faithful” since the non-injectivity here is arising from different
objects in the source.)

Faithfullness and fullness will be nice properties going forward, and here is one hint at how they
might be useful. Say we have a functor F : C → D. The problem is to determine properties on
F which will imply it send products in C to products in D, or coproducts in C to coproducts in
D. So, given the former product diagram below, we want the second diagram to also be a product
diagram:

C

A B

P F−−−→

F (C)

F (A) F (B)

F (P)
f g

pA pB

∃!h

Ff Fg

F (pA) F (pB)

Fh

Of course, in order F (P) to be an actual product of F (A) and F (B) on the right, a similar
commutative diagram property would have to hold for all objects in D in place of F (C) and all
morphisms D → F (A) and D → F (B), not just those of the form Ff and Fg respectively. One
way to guarantee this is to require that all objects in D are of the form F (C) and then for all
morphisms F (C) → F (A) and F (C) → F (B) to be of the form Ff, Fg; the former is true when
the functor F is surjective on objects, and the latter is true when F is full. We are not saying that
these are the only conditions under which F might preserve products, but it definitely seems to
give a sufficient condition at least.

Almost, there is one more thing to require: the uniqueness of the morphism Fh : F (C) → F (P)
making the diagram on the right commute. Suppose there were two such morphisms Fh and Fh′,
where h and h′ are both morphisms C → P in C. The commutativity of the diagram on the right
gives, for instance:

Ff = F (pA)Fh and Ff = F (pA)Fh′,

which the functorial properites of F turns into

Ff = F (pA ◦ h) and Ff = (pA ◦ h′).

We want h and h′ to make the first diagram commute, in order to be able to apply uniqueness of
the morphism C → P . But this requires know that f = pA ◦ h and f = pA ◦ h′, which would follow
from F being faithful. In this case, it follows that h and h′ both make the first diagram commute
(after we go through a similar argument with g), so the fact that P is a product guarantees that
h = h′, and hence that Fh = Fh′ so that F (P) is an actual product on the right.

So, we conclude that a functor which is full, faithful, and surjective on objects will send products
to products. (Actually, we can relax this a bit by requiring not that every object in D be in the
literal image of F , but only that it be isomorphic to something in the image. A functor with this
property is said to be essentially surjective, which is a concept will see in a related context soon
enough.) Again, this is not an “if and only if” statement, since functors can preserve products (or
coproducts) without being full, faithful, and surjective on objects, but it at least gives a sufficient
condition. Later we will see other ways to guarantee that functors preserve products, which are
related to the existence of adjoints for that given functor.

12

Coproduct Examples, Concreteness

Products and coproducts for metric spaces. The product of two objects in Met, the category
of metric spaces with morphisms given by metric maps, is the Cartesian product X × Y equipped
with the box metric, and the coproduct of X and Y does not exist if both X and Y are nonempty.
This was the topic of a student presentation, and here are some proof sketches.

Given metric spaces (X, dX) and (Y, dY), the box metric d on X × Y is defined by

d((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)).

(The name “box” metric comes from the fact that in R×R = R2 or R3, open balls indeed looks like
“boxes”.) The key requirement needed in the definition of a product is given morphisms S → X
and S → Y , that the map

h : S → X × Y defined by h(s) = (f(s), g(s))

actually be a morphism in Met. This turns into the requirement that

d((f(s), g(s)), ((f(t), g(t))) = max{dX(f(s), f(t)), dY (g(s), g(t))} ≤ dS(s, t) for all s, t ∈ S

given the fact that

dX(f(s), f(t)) ≤ dS(s, t) and dY (g(s), g(t)) ≤ dS(s, t) for all s, t ∈ S.

For the latter inequalities to imply the former, d must (at least up to isometry) be given by the
box metric. Note that the two other “standard” metrics one might put on a product—the taxicab

dX + dY and Euclidean
󰁴

d2X + d2Y metrics—do not satisfy this required “metric map” property,

and so do not give the product in Met.
To see that coproducts do not exist if X,Y are nonempty, suppose instead (P, dP) was a co-

product for X and Y with inclusion morphisms iX : X → P and iY : Y → P . For any n ∈ N
take {0, n} to be a metric space with the absolute value metric d, and let f : X → {0, n} and
g : Y → {0, n} be the constant function 0 and the constant function n respectively. Since P is a
coproduct, there exists h : P → {0, n} such that

h ◦ iX = f and h ◦ iY = g.

But in order for h to actually be a morphism in Met, we must then have:

d(h(iX(x), iY (y)) ≤ dP (iX(x), iY (y)) for any x ∈ X, y ∈ Y,

which translates into
n = |0− n| ≤ dP (iX(x), iY (y)).

But this should then be true for any n ∈ N, which would imply that the distance in P between
an element coming from X and one coming from Y should be infinite, which is nonsense. (Note
that if you altered your definition of “metric” to allow for infinite distance, then a coproduct would
exist: the disjoint union X ⊔Y where you defined the distance between elements of X and Y to be
infinite.)

Coproducts for groups. The coproduct of two groups G and H in Grp is the free product G∗H,
which is defined to be the set of all words consisting of elements of G andH in an alternating fashion

13

with concatenation as the group operation. (When we have to elements of G or two elements of H
next to each other, with use their respective group operations to turn these into single elements of
G or H.) This was also the topic of a student presentation, and here is the basic idea. Given group
homomorphisms g : G → N and k : H → N , that G ∗H is the coproduct comes down to showing
that the map

h : G ∗H → N defined by h(g1h1 . . . gnhn) = f(g1)k(h1) · · · f(gn)k(hn),

and similarly on other possible words in G∗H, is a group homomorphism, which follows essentially
from the definition of the group operation on G ∗H; indeed, this group operation arises precisely
from this requirement.

Now, if we instead tried to use G×H with its standard inclusions G → G×H and H → G×H
as the coproduct, the issue is that the analogous map

h : G×H → N defined by h((g, h)) = f(g)k(h)

would NOT be a homomorphism, because h((g1, h1)(g2, h2)) is not equal to h(g1, h1)h(g2, h2) by
the way in which the group operation is defined on the direct product G × H. However, if we
strict our category to only consist of abelian groups, so that the N ’s we consider in the defini-
tion of coproduct are also abelian, then G × H does serve as a coproduct we can always rewrite
f(g1)k(g1) · · · f(gn)k(gn) as f(g1) · · · f(gn)k(h1) · · · k(hn) in N . I’ll leave it to you to flesh out all
of these details.

Concrete categories. The categories Set, Top, Vect, and Grp all have the property that
their objects are simply sets possibly equipped with extra structure, and that their morphisms are
ordinary set-theoretic functions possibly satisfying some additional requirement. Such categories
are nice since we can often use intuition about sets and functions in their study. A concrete category
is intuitively one where we can think of objects as being “sets” and morphisms as being “functions”,
only that we have to interpret this in the right way.

Here is the definition: a concrete category is a category C equipped with a faithful functor
F : C → Set, which is part of the data. The idea is that such a functor gives us way to turn
an object A ∈ Ob(C) into a set F (A) and a morphism f ∈ MorC(A,B) into a function Ff ∈
MorSet(F (A), F (B)), where the “faithful” requirement says that we do not lose information about
f when doing so, so that we can (essentially) learn everything we need to know about f by studying
Ff instead. In the four examples above, the required faithful functor is simply the forgetful functor,
and indeed in general we think of F as being a “forgetful functor” for the concrete category (C, F).

Examples. Here are two more examples of concrete categories. Let G be a group and consider
the category BG with a single object and elements of G morphisms. As written, this does not
appear to be concrete since morphisms are not honest functions ∗ → ∗, but the point is that this
category can indeed by “concretized” by specifying an appropriate “forgetful functor”. A functor
F : BG → Set is the data of a (left) action of G on a set S := F (∗), and saying this functor is
faithful is what it means to say that this action is faithful: different g, h ∈ G act on S in different
ways, or equivalently that there exists s ∈ S such that gs ∕= hs. Any group has at least one
faithful left action—namely the action on itself given by left multiplication—to BG can always be
equipped with a faithful functor to Set. This is all just a way of phrasing the fact that any group
is isomorphic to a subgroup of a permutation group.

The category Rel of relations can also be “concretized”, even though as written morphisms
A → B are not honest functions. Take F : Rel → Set to be the power set functor, which sends an

14

object in Rel to its power set and a relation f : A → B to the induced function Ff : P (A) → P (B)
defined by:

(Ff)(S) := {b ∈ B | there exists a ∈ S such that (a, b) ∈ f}.

In other words, if you think of the relation f ⊆ A × B as a “possibly not everywhere-defined,
possibly multivalued function”, (Ff)(S) is analogous to taking the image of S. That F is faithful
will be left to the homework.

In fact, most categories you’ll see can be made concrete by specifying an appropriate forgetful
functor, but not all categories can be made concrete in this way. Here is the standard example of a
non-concrete category, which we mention only to say there is such a thing but which we won’t do
anything more with since understanding it better requires knowledge of algebraic topology. The
homotopy category of topological spaces is the category hTop whose objects are topological spaces
and whose morphisms are given by equivalence classes of homotopic maps:

MorhTop(X,Y) := {homotopy classes of continuous maps X → Y }.

(Saying that two maps are homotopic means that you can “deform” one into the other, but we’ll
leave the precise definition to a course in algebraic topology.) It turns out that no functor from
hTop to Set can be faithful, so that hTop cannot be made concrete, but this is actually a deep
and difficult thing to show, so we make no attempt to do so here.

Natural Isomorphisms, Representability

Natural transformations. The definition of a natural transformation η : F ⇒ G between two
(both covariant or both contravariant) functors F,G : C → D is given in Section 1.4 of the book.
The key idea is that a natural transformation gives a way to turn data about F into data about
G in a way which is compatible with all possible morphisms, as expressed by the commutativity of
the diagrams

F (A) F (B)

G(A) G(B)

Ff

ηA ηB

Gf

arising from morphisms f : A → B (or f : B → A in the contravariant case) in C. In the case of a
natural isomoprhism η : F ⇒ G, so that each ηA : F (A) → G(A) is actually an isomorphism in D,
the point is not only that F and G produce isomorphic objects, but they do so in a way which is
compatible with all possible category-theoretic data.

The first standard example of a natural isomorphism is the one between the identity functor on
the category of finite-dimensional and the functor which sends a finite-dimensional vector space V
to V ∗∗, the dual of its dual, induced by the isomorphism V → V ∗∗ defined by

v 󰀁→ (the linear map on V ∗ which sends f to f(v)).

This was the topic of a student presentation, and can be found in Section 1.4 of the book. The
essential reason why this isomorphism is “natural” is that V → V ∗∗ can be defined without reference
to a basis. Contrast this with the the functor which sends V to its (single) dual V ∗: it is still true
that finite-dimensional vector space is isomorphic to its dual, but specifying such an isomorphism

15

requires additional data, which prevents the identity functor from being “naturally isomorphic” to
the single dual functor.

Some history. At this point it makes sense to say a bit about the interesting origins of category
theory in the 1950’s. Eilenberg and Mac Lane where studying cohomology (or possible homology,
one of those two) in algebraic topology, which associates algebraic data (a group, ring, or similar)
to a topological space in a way which encodes some of the topology. They had two cohomological
constructions which ended up proving isomorphic results, but they noticed that not only were
the resulting objects the same, but the actual constructions themselves were in some sense the
“same”. They thus then needed a way to formalize this notion, and invented the concept of a
natural transformation to do so, where they interpreted two constructions as being the same as
being compatible with all morphisms.

But this then leads to the question: what types of objects should a natural transformation
occur between? Eilenberg and Mac Lane then had to invent the notion of a “functor” to describe
what a natural transformation went from and what it went to. In their motivating setting, they
invented the notion of a functor to describe more formally properties which their cohomological
constructions were supposed to satisfy. But this then leads to the question: what types of objects
should a functor map between? In other words, what type of data should a functor (cohomological
construction in their example) take as input and should it output? They finally had to thus invent
the notion of a “category” to describe the source and target of a functor, so that their cohomological
constructions could be interpreted as functors from a category of topological spaces to a category
of algebraic objects.

Thus, historically, natural transformations came first, then functors, and then categories! As
with most things in mathematics, categories thus arose from attempts to encode what was being
seen in some concrete examples in a more general and formal setting.

Representable functors. Representable functors are defined in Section 2.1 of the book, but we’ll
give the required definitions here in a, hopefully, simpler to digest manner. The point is that any
object A in a (locally small) category C gives two “natural” functors C → Set, one covariant and
the other contravariant, which, as we’ll see, pretty much encode all data about A itself. We define
hA : C → Set to be the covariant functor defined by

hA(B) := Mor(A,B) on objects, and

hA(B
f−→ C) := the map Mor(A,B)

hAf−−→ Mor(A,C) defined by g 󰀁→ f ◦ g.

We define hA : C → Set to the contravariant functor defined by

hA(B) := Mor(B,A) on objects, and

hA(B
f−→ C) := the map Mor(C,A)

hAf−−→ Mor(B,A) defined by g 󰀁→ g ◦ f.

(The functor hA is called the functor of points of A, and we’ll usually think of it as being a covariant
functor hA : Cop → Set. The functor hA does not have a standard name.) So, hA is defined by
morphisms from A, and hA is defined by morphisms into A. We’ll see later the sense in which such
functors encode all information about the object A.

A functor F : C → Set is representable if is naturally isomorphic to such a functor, so F ∼= hA

for some A in the covariant case, and F ∼= hA for some A in the contravariant case. The idea we’ll
build towards is that we can essentially treat such a functor as being A itself, so that representable

16

functors can be thought as being actual objects in C. For now, here is a key example we’ve seen
before, which we can now formulate using the language of representability.

Given A,B ∈ Ob(C), let F : C → Set be the contravariant functor defined by

F (C) := Mor(C,A)×Mor(C,B) and F (C
f−→ D) = [(g, k) 󰀁→ (g ◦ f, k ◦ f)]

where (g, k) 󰀁→ (g ◦ f, k ◦ f) gives a map Mor(D,A) ×Mor(D,B) → Mor(C,A) ×Mor(C,B), i.e.
F (D) → F (C). In order for this functor to be representable requires the existence of an object in
C satisfying

Mor(C,A)×Mor(C,B) ∼= Mor(C, representing object)

in a way which is compatible with all morphisms, but we have actually already seen this notion
elsewhere: it is essentially the definition of a product A×B for A and B! Indeed, we claim that F
is naturally isomorphic to hA×B, as we now show.

First, to define a natural isomorphism hA×B
∼= F requires for each C ∈ Ob(C) a choice of a

bijection (i.e. isomorphism in Set)

ηC : hA×B(C)
∼=−→ F (C),

which in our case looks like

ηC : Mor(C,A×B))
∼=−→ Mor(C,A)×Mor(C,B).

Take this to be the map

(C
f−→ A×B) 󰀁→ (pA ◦ f, pB ◦ f)

where pA : A × B → A and pB : A × B → B are the two projection morphisms in the definition
of a product. The definition of product implies that this map is invertible, since given k : C → A
and ℓ : C → B, there exists a unique h : C → A × B such that k = pA ◦ h and ℓ = pB ◦ h. For
these bijections to define a natural isomorphism hA×B

∼= F requires that they be compatible with
all morphisms in C, which means that given any g : C → D in C, the following diagram should
commute:

hA×B(C) hA×B(D)

F (C) F (D)

hA×B(g)

ηC ηD

Fg

which in the case at hand looks like:

Mor(C,A×B) Mor(D,A×B)

Mor(C,A)×Mor(C,B) Mor(D,A)×Mor(D,B)

− ◦ g

ηC ηD

(− ◦ g,− ◦ g)

Take an element k : D → A×B in the upper right. Applying the map on top gives the element
k ◦ g in the upper left, and then applying ηC on the left side gives

(pA ◦ (k ◦ g), pB ◦ (k ◦ g))

17

in the lower left. Instead, starting with k : D → A×B in the upper right, applying ηD on the right
gives (pA ◦ k, pB ◦ k), and applying the map on the bottom gives

((pA ◦ k) ◦ g, (pB ◦ k) ◦ g)

in the lower left, which is the same as the previous element in the lower left by the associativity of
composition. Hence the isomorphisms ηC do define a natural isomorphism between hA×B and F .
Again, the point is that you can then interpret the functor F as being the “same” as the product
A×B since both encode the same data.

More Representable Examples

Coproducts. As in the case of products, the definition of coproducts can also be phrased in terms
of a representable functor. Given objects A and B in C, let F : C → Set be the covariant functor
defined by

F (C) := Mor(A,C)×Mor(B,C) and F (C
f−→ D) = [(g, k) 󰀁→ (f ◦ g, f ◦ k)]

where the latter is a function Mor(A,C)×Mor(B,C) → Mor(A,D)×Mor(B,D). This functor is
representable if and only if a coproduct A ⊔ B for A and B exists, and the representing object is
that coproduct; the key is the requirement that we have bijections

Mor(A,C)×Mor(B,C) ∼= Mor(A ⊔B,C)

for all C, which is essentially the defining property a coproduct for A and B should have.

Power set functor, contravariant version. Let P : Set → Set be the contravariant power
set functor, defined on objects by sending a set to its power set, and on morphisms by sending
f : A → B to the preimage function Pf : P (B) → P (A) given by S 󰀁→ f−1(S). In order for this to
be representable requires the existence of a set X with natural bijections

P (A) ∼= Mor(A,X)

for all sets A; that is, a set X so that mapping into X is the same data as specifying a subset of
the domain. We take X = {0, 1} to be a two-element set, and the required bijections

ηA : P (A) → Mor(A, {0, 1}) to be given by S 󰀁→ χS

where XS : A → {0, 1} is the indicator or characteristic function S defined by sending elements
of S to 1 and elements of A − S to 0. The inverse of ηA sends a function g : A → {0, 1} to the
preimage g−1(1) ⊆ A.

To verify that the bijections ηA define the data of a natural isomorphism η : P ⇒ h{0,1}, we
check the commutativity of some diagrams. Given a function f : A → B, consider:

P (A) P (B)

h{0,1}(A) = Mor(A, {0, 1}) h{0,1}(B) = Mor(B, {0, 1})

Pf = f−1

ηA ηB

− ◦ f

18

Take S ∈ P (B) in the upper right. Applying the map on top gives f−1(S) ∈ P (A), and then
applying the map on the left gives χf−1(S) ∈ Mor(A, {0, 1}). On the other hand, applying the map
on the right to S ∈ P (B) gives χS ∈ Mor(B, {0, 1}), and then applying the map on the bottom
gives χS ◦ f ∈ Mor(A, {0, 1}). The two resulting functions χf−1(S),χS ◦ f in the lower left are:

χf−1(S)(x) =

󰀫
1 x ∈ f−1(S)

0 otherwise
and χS(f(x)) =

󰀫
1 f(x) ∈ S

0 otherwise,

so these are the same since x ∈ f−1(S) if and only if f(x) ∈ S. Thus the diagram above commutes,
so P is naturally isomorphic to h{0,1} and hence P is representable.

Power set functor, covariant version. Now consider the covariant power set functor, still
denoted by P : Set → Set, which again sends a set to its power set but now sends a function
f : A → B to the image function Pf : P (A) → P (B) defined by S 󰀁→ f(S). In order for this to
be representable there would have to exist a set X such that P ∼= hX , which translates into having
natural bijections

P (S) ∼= Mor(X,S)

for all sets S. However, in this case there is no natural choice for X as there is no natural way to
detect subsets of S by mapping into S, as opposed to the case of P (S) ∼= Mor(S, {0, 1}).

That no such X exists can be made precise using a simple argument: when S = ∅, P (S) has
cardinality 1, soX would have to be empty as well since otherwise Mor(X,S) would have cardinality
0; but if X is empty, then Mor(∅, S) always cardinality 1 regardless of S, which is clearly not true
of P (S). Thus the covariant power set functor is not representable.

Forgetful on Top. The forgetful functor F : Top → Set is representable. Indeed, a representing
object would have to satisfy

X ∼= Map(object,X)

as sets for any topological space X (where Map denotes the set of continuous maps), and it is
easy to see that a single point satisfies this property: a continuous map f : pt → X is completely
determined by the element f(pt) of X, and any such element gives a continuous map in this way.
Of course, checking that F ∼= hpt requires checking that various diagrams commute, but this is
simple to work out in this case, so we omit it here.

Extracting a topology. With an eye towards the idea that the functors hA, hA should capture
all information about an object A in a category, note that the result above shows that in Top,
hX first of all captures all information about X as a set, since the set X can be extracted from
hX(pt) = Map(pt,X).

We claim that hX actually captures all information about X as a topological space, since the
topology on X can be extracted from hX in the following way. As we saw in the power set example,
we have a bijection

P (X) ∼= Mor(X, {0, 1}).

Now, equip {0, 1} with the topology in which {1} is open but {0} is not. Then a continuous map
f : X → {0, 1} is fully determined by the preimage f−1(1), since to be continuous only requires
that this single preimage be open in X. Moreoever, any open subset of X arises in this way by
taking f to be the indicator function of that open set. Thus we get a bijection

Op(X) ∼= Map(X, {0, 1})

19

where Op(X) denotes the set of open subsets of X, i.e. the topology on X. Hence the topology on
X can be extracted from hX as claimed, so hX and hX do encode all information about X.

This fact can also be interpreted as saying that the contravariant functor which sends a topo-
logical space X to its collection of open subsets (and which sends a continuous map to the map
induced by taking preimages) is representable with representing object {0, 1} equipped with the
topology given above. This will be worked out in a homework problem.

Forgetful on Grp. The forgetful functor Grp → Set is also representable. In this case a
representing object should be a group giving set-theoretic bijections

G ∼= Hom(object,G)

for all groups G, where Hom denotes the set of group homomorphisms. The group Z works:

G ∼= Hom(Z, G)

since a homomorphism φ : Z → G is completely determined by φ(1) since Z is generated by 1, and
there are no restrictions on what φ(1) ∈ G can actually be. The inverse of the desired bijection is
thus φ 󰀁→ φ(1), and it is simple to check that morphisms behave appropriately so that the forgetful
functor in this setting is indeed isomoprhic to hZ.

Forgetful on Ring. The forgetful functor Ring → Set is also representable, where by Ring we
mean the category of rings with identity elements and where morphisms (i.e. ring homomorphisms)
are required to preserve identities. Here we need an object satisfying

R ∼= Hom(object, R)

for all R ∈ Ob(Ring), and we can see that Z[x], the ring of polynomials in the variable x with
coefficients in Z, works. Indeed, given a ring homomorphism φ : Z[x] → R, the fact that φ is
required to preserve identities fully determines φ(n) for any n ∈ Z (since φ(n) = nφ(1)), and hence
since φ preserves multiplication its behavior is fully determined by φ(x), which can be any element
of R. The inverse of the bijection we want is thus φ 󰀁→ φ(x), and it will follow that this forgetful
functor is isomorphic to hZ[x].

Equivalences between Categories

Definitions iso and equiv. Now that we have a notion of a “morphism” between categories,
we can talk about the sense in which two categories are the “same”. The first possible definition
is the “obvious” one you might expect given the definition of “isomorphism” we’ve seen in every
other context until now: we say that C is isomorphic to D if there exist functors F : C → D and
G : D → C such that G ◦ F = idC and F ◦G = idD, where idC and idD are identity functors.

However, this definition turns out to be too restrictive. Indeed, the requirement that the given
compositions equal identity functors says that given an object A in C, the object G(F (A)) be
literally the same as A itself, and similarly for objects in D. But we know that two objects in a
category can be thought of as being the “same” without being literally the same as long as they
are isomorphic. For instance, products/coproducts are not unique in the literal sense, but only in
the sense that they are isomorphic in a unique way. To take another example, the definition of
a functor being representable does not say that F (B) literally be the same as hB(A), only that
they be isomorphic; for sure, the power set P (S) of a set S is not literally the same as the set of
functions S → {0, 1}—it is only the “same” in the sense that they encode the same data.

20

Thus, it makes sense to relax the requirement that A andG(F (A)) in the definition of isomorphic
categories be equal to the requirement that they be isomorphic. This leads to the following, better,
definition of two categories being the “same”: C is equivalent to D if there exist functors F : C → D

and G : D → C such that G ◦ F ∼= idC and F ◦G ∼= idD. So, we require only that, for instance, the
functor G ◦ F be naturally isomorphic to the identity functor on C, which says that for any object
A, G(F (A)) be isomorphic to A in a natural way. We’ll see that this truly is the better notion
of what it means for two categories to be the “same”, and it reflects the idea that all categorical
properties of one category can be transported to the other.

Alternate characterization of equivalences. A functor F : C → D implementing an equiv-
alence between categories is called, unsurprisingly, and equivalence, and the “inverse” functor
G : D → C is still referred to as being its inverse, even though it is not technically an “inverse”
in the sense that compositions give literal identities. But, as in the case of Set, where “invertible”
can be characterized without reference to an inverse as “injective” and “surjective”, so too can
equivalences between categories be characterized without explicit reference to an inverse:

A functor F : C → D is an equivalence if and only it is full, faithful, and essentially
surjective.

We have seen the notions of full and faithful before, and essentially surjective means that any object
in D is isomorphic to something in the image of F : for all D ∈ Ob(D) there exits C ∈ Ob(C) such
that F (C) ∼= D. Justifying this result was the topic of a student presentation, and can be found
in the book in Section 1.5. (Technically, to construct an “inverse” of F requires that we work with
small categories, but whatever.) The bulk of the real work goes into showing that the “inverse”
functor constructed is actually a functor, which comes down to some abstract nonsense argument
via commutative diagrams.

Equivalences preserve everything. We previously saw the notions of full, faithful, and es-
sentially surjective back when thinking about what properties a functor could have which would
guarantee it sent products to products, so the result we proved back then was that equivalences
preserve products. Similarly, equivalences preserve coproducts, and the proof is basically the same
after reversing arrows. A clean way of deriving this is as follows: if F : C → D is an equivalence,
then so is F op : Cop → Dop, so since F op preserves products, F preserves coproducts because
coproducts in a category become products in the opposite category.

In general, an equivalence between categories will preserve whatever categorical notions you
want: monomorphisms, epimorphisms, initial objects, terminal objects, etc, so that equivalent
categories really do have essentially the “same” properties.

Equivalence example. Here is a first example (also found in the book) of equivalent categories
which are not isomorphic. Let FVectR be the category whose objects are finite-dimensional real
vector spaces and whose morphisms are linear transformations. Let MatR be the category of
matrices defined as follows:

• objects in MatR are nonnegative integers,

• a morphism n → m is an m× n matrix with real entries,

• composition in MatR is given by matrix multiplication: given B : n → m and A : m → k—so
B is an m× n matrix and A is a k ×m matrix—the composition A ◦B : n → k is the k × n
matrix AB,

• identity morphisms in MatR are given by identity matrices.

21

We claim that FVectR and MatR are equivalent. First note that they certainly cannot be isomo-
prhic: isomorphisms in MatR exist only between two objects which are literally the same (i.e. an
m×n matrix can be invertible only when m = n), but isomorphisms in FVectn can exist between
objects which are not literally the same. So, there are in a sense not enough objects in MatR to
allow it to be isomorphic to FVectR.

To construct an equivalence, choose one and for all an isomorphism TV : V → RdimV for
every object in FVectR, or equivalently choose once and for all a basis for every V . Define
F : FVectR → MatR by:

V 󰀁→ dimV on objects, and

(T : V → W) 󰀁→ (the standard matrix of SW ◦ T ◦ S−1
V : RdimV → RdimW) on morphisms.

Equivalently, F sends T to the matrix of T relative to the chosen bases for V and W . It is
straightforward to check that this is a functor. The inverse functor G : MatR → VectR is given
by:

n 󰀁→ Rn on objects, and

(m× n matrix A) 󰀁→ (the linear transformation A : Rn → Rm induced by A) on morphisms.

One can check that G is a functor and that F ◦G and G ◦F are naturally isomorphic to identities;
or instead, one can argue that F alone is full, faithful, and essentially surjective. The point is that
G(F (V)) gives back RdimV , so not literally V itself but only something isomorphic to V , which is
why this gives an equivalence of categories and not an isomorphism.

Yoneda Lemma, Functors as Objects

Compact Hausdorff spaces and C∗-algebras. Last time we gave an example of equivalent
categories which were not isomorphic, but in many ways that example is unsatisfactory: when doing
linear algebra, people for sure often work with matrix representations of linear transformations as
the example from last would suggest, but no one in their right mind literally thinks about such
things in terms of the equivalence FVectR → MatR itself. In other words, this equivalence is
essentially “cooked up” for the sake of giving an example, but it does not really give any insight
into the actual mathematics of linear algebra.

So, with that in mind, we will describe another equivalence which actually does have some real
meaning in the sense of producing new ways of thinking about some mathematics. Given a compact
Hausdorff space X, we let C(X) denote the space of continuous, complex-valued functions on X:

C(X) := {f : X → C | f is continuous}.

We can equip the set C(X) with various additional structures. First, it is a complex vector space
under ordinary addition and scalar multiplication of functions. Second, we can multiply two func-
tions together:

(fg)(p) := f(p)g(p),

which turns C(X) into what’s called an algebra over C. (We won’t give the definition of an
“algebra”, but the point is that this multiplication is in some sense “compatible” with the vector
space structure.) Next, any element f of C(X) has a conjugate element f̄ obtained by taking
complex conjugates of the values of f :

f̄(p) := f(p).

22

And finally, we can equip C(X) with a norm via

󰀂f󰀂 := sup
p∈X

|f(p)|

where |·| denotes complex absolute value. (This supremum exists sinceX is compact by the Extreme
Value Theorem.) All of these structures (vector space, algebra multiplication, conjugation, norm)
turn C(X) into what’s called a C∗-algebra. We won’t define this precisely, but the definition encodes
various ways in which these structures are compatible. Actually, C(X) is a unital, commutative C∗-
algebra, where “unital” means that the multiplication has an identity element (namely the constant
function 1), and commutative means that fg = gf . There is a natural notion of homomorphism
between C∗-algebras, which are maps between them which behave nicely with all the structures
involved. In particular, given a continuous map f : X → Y between compact Hausdorff spaces, we
get a C∗-algebra homomorphism f∗ : C(Y) → C(X) given by pre-composition with f : f∗ sends
g ∈ C(Y) to g ◦ f ∈ C(X).

We thus have a contravariant functor CHaus → ucC∗-Alg from the category of compact
Hausdorff spaces and the category of unital, commutative C∗-algebras. It turns out that any
unital, commutative C∗-algebra arises in this way, in the sense that given any unital, commutative
C∗-algebra B there exists a compact Hausdorff space X such that C(X) ∼= B as C∗-algebras,
and that morphisms between these algebra arises from continuous maps in the manner describe
above. This says that the functor above is essentially surjective, full, and it turns out that it is
also faithful, so that it is an equivalence! Thus, all information about compact Hausdorff spaces is
completely encoded in information about unital, commtuative C∗-algebras, and indeed one could
learn everything there is to know about a compact Hausdorff space X from its C∗-algebra C(X)
of functions. The fact that the categories CHaus and ucC∗-Alg are equivalent is the starting
point in the subject known as noncommutative geometry, which we’ll say something about a bit
later on. If we drop the requirement that our algebras be unital, it turns out that the category
of commutative C∗-algebras in general is equivalent to the category of locally compact Hausdorff
spaces via essentially the same functor, where we take as morphisms in the category of locally
compact Hausdorff spaces to be continuous functions which “vanish at infinity”.

We are only introducing C∗-algebras to give an example of an interesting, and actually useful
equivalence between categories, but just for the fun of it we’ll note the following. Examples of
noncommutative C∗-algebras come from what are known as “algebras of bounded operators on
Hilbert spaces”, which show up in quantum mechanics as the things which describe physically
observable quantities like position, momentum, and energy. (In fact, all C∗-algebras arise from
Hilbert spaces in this way.) Thus, C∗-algebras show up in mathematical formulations of quantum
mechanics, and the notion of noncommutative geometry mentioned above is at the core of some
attempts to understand the elusive concept known as “quantum geometry”.

Yoneda Lemma. The Yoneda Lemma states that given a (covariant) functor F : C → Set, where
C is locally small, for any A ∈ Ob(C) there exists a bijection

F (A) ∼= Nat(hA, F),

where the right side denotes the set of natural transformations from hA to F . A similar result holds
in the contravariant case, where we get bijections F (A) ∼= Nat(hA, F). (There is also a sense in
which these bijections are themselves natural, but we’ll ignore this bit.) The proof of the Yoneda
Lemma was the topic of a student presentation, and can be found in Section 2.2 of the book.

Here we will get a bit philosophical, and talk about what the point of the Yoneda Lemma
actually is, and later the sense in which it says that we can view arbitrary functors as “non-existent

23

objects” in a category. First, we mention what we will call the “functor of points” approach to
mathematics: a mathematical object can be fully characterized by all morphisms into it. That is,
knowledge of Mor(S,A) for all S is equivalent to knowledge of A itself. Indeed, this is an idea we
mentioned previously in relation to the functors hA—which we previously said is referred to as being
the functor of points of A—and now we seek to push this idea further. In some examples, literal
points of A can be extracted from hA, as in the case of the bijection X ∼= hX(pt) = Map(pt,X) for
a topological space X, or G ∼= hG(Z) = Mor(Z, G) for a group G. Moreover, in these examples, the
rest of the (topological) structure onX or (group) structure on G can also be extracted from hX and
hG respectively. In general, we can view Mor(S,A) as in a sense being “points of A parameterized
by S”, which comes from the idea that in, say, Set, Mor(S,A) = AS is “the product of S-many
copies of A”, so literally points of A “parameterized” by S. In various areas of mathematics, an
element of Mor(S,A) is thought of as being a “generalized” point of A, so that the functor of points
hA detects generalized points of A.

So, an object A is fully encoded by the functor hA. Now we claim that morphisms between
objects are also encoded by such functors. Indeed, in the case where F = hB is itself a functor of
points, the Yoneda result Nat(hA, F) ∼= F (A) becomes:

Nat(hA, hB) ∼= hB(A) = Mor(A,B),

which says precisely that morphisms between the objects A and B can be obtained solely from
the functors hA and hB. (This fact is one reason why one should prefer the contravariant functor
hA to the covariant functor hA: in the covariant case, Nat(hA, F) ∼= F (A) for F = hB becomes
Nat(hA, hB) ∼= hB(A) = Mor(B,A), so that morphisms between two objects get reversed when
characterizing them in terms of representable functors.)

Pushing our philosophy further, we now know that not only objects, but also morphisms between
objects are fully encoded by the functors hA. The final step is to note that we should not only care
about objects and morphisms between them, but that an important part of the data of an object
A is also how arbitrary contravariant functors F : C → Set behave on A, and that this too can be
obtained from hA precisely via the Yoneda result that F (A) ∼= Nat(hA, F)! So, objects, morphisms
between objects, and how arbitrary functors behave on objects are all encoded in knowledge of
the functors hA, so that these functors truly do capture in the most general sense possible all
information about A.

Functors as nonexistent objects. The discussion above is all well and good, but it still doesn’t
quite say why we should care about the fact that we can study on object A by studying hA instead,
in that we still haven’t spoken about what type of insight about A can be gleamed from hA that
wasn’t readily apparent in A itself already. Now we argue that the true point of the Yoneda
Lemma is that it gives a way to think about arbitrary functors F : Cop → Set as “objects” in C

itself, or really as objects in an “enlargement” of C. Certainly for those functors F ∼= hA which are
representable, we can indeed think about F as simply being the object A, but now we claim that
even non-representable F can be thought of as being “nonexistent” objects in C. The upshot is that
often in mathematics we come across things which do not actually exist, but the Yoneda Lemma
gives a way to (indirectly) study such things anyway by interpreting them as functors instead.

The starting point, of course, is that an actual object A is the same as hA, as we have explained
above. Thus, by analogy, we can interpret a non-representable functor F as being an “object” in C

as long as we know what it means to “map” into F from other things which are honestly objects in C.
That is, if F were indeed representable, then F (A) ∼= Nat(hA, F) ∼= Mor(A,F) would characterize
the functor of points of F (here we abuse notation by using the same letter F to denote both a
representable functor and the object which represents it), so now we take Mor(A,F) := F (A) as

24

the definition of the “functor of points” of the non-existent object F ! We are thus taking elements
of F (A) as being what it means to “map” from A into F , even when F is not representable. The
fact that the Yoneda Lemma gives a way to define maps from A into F thus says that F itself is
equipped with the same data that a literal object of A would be equipped with, so why shouldn’t
we interpret F as a being a type of “object” in C as well?

To phrase this another way, note that the Yoneda Lemma gives rise to a functor:

C → Fun(Cop,Set),

where Fun(Cop,Set) denotes the category whose objects are functors from Cop to Set and morphisms
are natural transformation, defined on objects by A 󰀁→ hA and on morphisms by the bijection
Mor(A,B) ∼= Nat(hA, hB) arising from the Yoneda Lemma. That this is actually bijection says
that this functor is full and faithful, so that we can view C as being a subcategory of the functor
category Fun(Cop,Set). (We cay say that C is isomorphic to the subcategory of Fun(Cop,Set)
consisting of the functors hA, or that it is equivalent to the subcategory of Fun(Cop,Set) consisting
of representable functors. This functor C → Fun(Cop,Set) is usually called the Yoneda embedding
of C into Fun(Cop,Set).) Thus, we can view Fun(Cop,Set) as an “enlargment” of C, and the idea
we are trying to make sense of is that other objects in this “larger” category should be interpreted
as “non-existent objects” of C.

Just how far can we actually push this idea that arbitrary functors Cop → Set should be thought
of as being “objects” of C? Pretty far, in fact. For instance, often times in geometry one comes
across a type of “smooth” space on which some group acts, and one is interested in doing “calculus”
on the resulting quotient space, which is the space of orbits under the given group action. The
problem is that such quotient spaces are very often (usually in fact) not “smooth” themselves, so
that the tools from calculus are not readily available. The solution is to nonetheless treat this
quotient as if it were “smooth”, and attempt to do calculus anyway! To make this precise, this
“non-smooth” space actually turns out to have a natural interpretation as a “smooth functor”, and
it is through this functor which we can view this non-smooth space as actually being smooth after
all; so, we are forced to expand our notion of what we mean by “smooth space” by allowing things
which are not spaces in the usual sense, which certainly leads to more abstraction, but the benefit
is that it actually makes sense to do calculus on such “spaces” interpreted as functors.

The discussion above is pretty vague, so here is one final, more concrete example. Recall that
equivalence

CHausop → ucC∗-Alg

between the category of compact Hausdorff spaces and the category of unital, commutative C∗-
algebras mentioned at the start. We now claim that a non-commutative (unital) C∗-algebra should
be interpreted as the algebra of functions on some non-existent “noncommutative compact Haus-
dorff space”, and it is this idea which the subject of noncommutative geometry makes precise. So,
let B be a non-commutative C∗-algebra. Then the functor of points hB gives a functor

ucC∗-Alg → Set

which sends C(X) (where X is some compact Hausdorff space) to Hom(C(X), B), where Hom de-
notes homomorphisms of C∗-algebras, whatever that means. Composing with the previous functor,
we get a functor we’ll denote by B itself:

B : CHausop → Set,

which on objects at least is given by X 󰀁→ Hom(C(X), B). This functor is not representable since
B is not commutative, but the philosophy espoused above suggests we should think of it as giving a

25

way to think of B as an “object” in CHaus anyway, i.e. as a “noncommutative compact Hausdorff
space”. We define a “continuous map” X → B from a true compact Hausdorff space X into
this “non-existent” one B to be precisely the data of a C∗-algebra homomorphism B → C(X).
Again, if B were actually commutative, this would literally be true by the equivalence of categories
given at the start. It turns out that many constructions in CHaus can then be carried over to
such a functor B, giving a way to do “geometry” on this non-existent space solely in terms of the
non-commutative C∗-algebra B itself. Good stuff.

Equalizers and Coequalizers

More on Yoneda and functors. Let us mention two more things based on the Yoneda Lemma.
First, consider what the Yoneda Lemma says in the case of the category BG for a group G. In this
case there is only one representable functor h∗ to consider, where ∗ is the unique object of BG.
The functor h∗ : BG → Set behaves on objects via h∗(∗) = Mor(∗, ∗) = G, and on morphisms by

g 󰀁→ (h 󰀁→ hg)

where the latter is the map Mor(∗, ∗) → Mor(∗, ∗) given by “pre-composition” with g. Thus the
functor h∗ : BG → Set is precisely the one which encodes the right action of G on itself by
multiplication. The Yoneda Embedding

BG → Fun(BGop,Set)

thus “embeds” this action into a larger category of “actions”. The image of this embedding actually
lands in the subcategory of functors F such that F (∗) = G is the underlying set of the given group,
so we get an embedding of BG into the functors which encode permutations of the set G. Hence,
the Yoneda Embedding in this case amounts to an injective group homomorphism G → Perm(G),
and the fact that such a group homomorphism exists is precisely the statement of Cayley’s Theorem
from group theory. In this way then, the Yoneda Embedding can be viewed as a vast generalization
of Cayley’s Theorem, which says that an arbitrary category can be viewed as subcategory of a
“category of symmetries” of itself.

Second, if G is still a group, recall that the functor hG is meant to encode the same data as
G. But if H is another group, the set of morphisms hG(H) = Hom(H,G) can itself be given a
group structure defined by pointwise multiplication: the product of φ,ψ ∈ hG(H) is defined by
(φψ)(h) := φ(h)ψ(h). The idea is that these group structures all together uniquely characterize the
group structure on G itself. Now, suppose we had a non-representable functor F : Grpop → Set,
which we wanted to view as a “non-existent” object in Grp; so, we want to view F as a type of
“group”. How can we make this precise?

The idea is, as in the case where F actually is representable, a “group” structure on F should
be characterized by group structures on each F (A) =: Mor(A,F) which are all compatible in some
sense. But a group structure on each set F (A) amounts to functions

F (A)× F (A) → F (A) for each A

which satisfy the group axioms. The required “compatibility” of these is expressed by saying that
the data of all such group operations forms a natural transformation F × F ⇒ F , where F × F
denotes the functor which acts on objects as A 󰀁→ F (A) × F (A). Thus, in order to think of F as
a type of “group”, what we actually need is a “multiplication” F × F ⇒ F expressed as a natural
transformation which obeys something similar to the group axioms. We’ll talk about such things

26

later on, where the point is that F should be what’s called a group object in a category of functors.
We’ll see that the definition of an ordinary group can be expressed solely in terms of arrows and
diagrams, so that we can take such diagrams as the definition of “group” in other categories. In
this way, the idea that F can be thought of as a “non-existent group” will be made precise.

Universal properties. Now we return to considering various constructions, where the common
thread underlying all is that of defining an object via a universal property. We have already seen
two examples of such properties: the one defining products and the one defining coproducts. In the
case of a product A × B for A,B ∈ Ob(C), the point is that we have morphisms A × B → A and
A×B → B, and the definition of product says precisely that A×B equipped with these morphisms
is “universal” among all morphisms from an arbitrary object D into A and B, in the sense that the
morphisms D → A and D → B can be obtained in a unique way from the morphisms A×B → A
and A × B → B defining the product. Indeed, this is the point behind the “there exists a unique
morphism h : D → A × B” part of the definition of A × B, which does describe how to obtain
D → A and D → B from the unique h : D → A×B.

Said another way, the point is that we have a diagram

A B

A×B
pA pB

which is universal among all such diagrams in the sense that any other diagram

A B

D
f g

can be obtained from the first in a unique way via a map D → A×B:

A B

D

A B

A×B

f = pA ◦ h g = pB ◦ h pA pB

∃!h

Similarly, the definition of a coproduct A⊔B for A and B says that we have a diagram of the form

A B

A ⊔B

iA iB

which is universal among all such diagrams: there is a unique way to obtain any

A B

D

f g

27

from the first:

A B

A ⊔B

A B

D

iA iB
f = h ◦ iA g = h ◦ iB

∃!h

By abstract nonsense, whenever an object satisfies a universal property, it will be unique up to
unique isomorphism. (The term universal property of universal element can be defined more pre-
cisely using the Yoneda Lemma and the language of representable functors, but for us the informal
idea expressed above will be enough. You can check the book for a more precise formulation if
interested. The point is that a universal property will be characterized by some diagram, and the
functor which assigns to an object all possible such diagrams will be representable the the object
satisfying that universal property, if it exists.)

Equalizers and coequalizers. The first universal properties we will consider beyond that of
products or coproducts are the ones defining the notion of an equalizer and a coequalizer. Given a
pair of morphisms

A B
f

g

an equalizer for the pair is an object E and morphism

E A B
e f

g

satisfying f ◦ e = g ◦ e, which is universal among all such things; a coequalizer for the pair is an
object Q and morphism

QA B
qf

g

satisfying q ◦ f = q ◦ g, which is universal among all such things. (We say that e “equalizes” f and
g, and q “coequalizes” f and g.) To be clear, saying that the equalizer diagram is universal among
all such diagrams means that given

E′ A B
e′ f

g

where f ◦ e′ = g ◦ e′, there exists a unique morphism E′ → E such that the diagram for E′ can be
obtained from the one for E; i.e. so that the following commutes:

E′ E A B
∃! e f

g

e′

The same is true for the definition of a coequalizer, only with all arrows reversed.
The main examples are in Set, where the equalizer is given by

E = {a ∈ A | f(a) = g(a)}

28

and the coequalizer is the quotient (i.e. set of equivalence classes)

Q = B/ ∼

where ∼ is the equivalence generated by the requirement that f(a) ∼ g(a) for all a ∈ A.

Regular monomorphisms and epimorphisms. It turns out that the morphism E → A defining
an equalizer is always a monomorphism, and the morphism B → Q defining a coequalizer is always
an epimorphism, as you will show on an upcoming homework set. In the case of Set, the equalizer
E is a subset of A, and the coequalizer Q is a quotient of B. We say that a monomorphism E → A
is a regular monomorphism if it is the equalizer of some pair of morphisms from A into B, and an
epimorphism B → Q is a regular epimorphism if it is the coequalizer of some pair of morphisms
A into B. We will see that regular epimorphisms can be thought of a generalizations of various
“quotient” constructions, and regular monomorphisms are generalizations of “sub” constructions.
For instance, a regular monomorphism Y → X in Top is precisely (up to homeomorphism) the
inclusion of a subspace Y ⊆ X, and in Grp regular monomorphisms give subgroups.

Some Functor Properties, An Equivalence Example

Some Functor Properties. Problem 5 from Homework 2 was the topic of a student presentation.
Concretely, this problem covered Exercises 1.5.iv, 1.6.iii, and 1.6.iv in the book, which deal with
functors which preserve/reflect/create various types of morphisms. The point was to understand
how to use faithfulness/fullness conditions.

An Equivalence Example. Problem 4 from Homework 2 was the topic of another student
presentation, which is Exercise 1.5.ii in the book. This asked to show that the category of finite
pointed sets Fin∗ was equivalent to the opposite of a certain category Γ defined by Segal: Γ has
finite sets as objects, and a morphism S → T is by definition a function

f : S → P (T)

from S into the power set of T such that if s1 ∕= s2 ∈ S, then f(s1) ∩ f(s2) = ∅. Here we describe
the desired equivalence, but will leave checking all details to the reader.

For n ≥ 0, let [n] := {0, 1, 2, . . . , n}. For simplicity, we will take our finite sets to be of the form
Sn := [n]−{0}, which is enough since any finite set is isomorphic to one of these. We will then take
our finite pointed sets to be [n] for n ≥ 1, where 0 ∈ [n] will always denote the specified basepoint.
The functor F : Γ → Fin∗ is defined as:

Sn 󰀁→ [n] on objects, and

(f : Sn → P (Sm)) 󰀁→ (Ff : [m] → [n]) on morphisms

where Ff : [m] → [n] is given by

(Ff)(i) =

󰀫
j if i ∈ f(j) for some j ∈ Sn

0 if no such j exists.

Note that Ff is well-defined since if there is a j ∈ Sn such that i ∈ f(j), there is only one such j
by the requirement that f(a1) ∩ f(a2) = ∅ when a1 ∕= a2. The point is that we look at the subsets

29

f(j) ⊆ Sm for j ∈ Sn to see if any contain i ∈ [m]: if so, we send i to that j; if not we send i to 0.
In particular, (Ff)(0) = 0 since 0 appears in none of the Sn’s, so Ff does preserve the basepoint.

Define the functor G : Fin∗ → Γ by

[n] 󰀁→ Sn on objects, and

(g : [n] → [m]) 󰀁→ (k 󰀁→ g−1(k)− {0}) on morphisms

where g−1(k) − {0} ⊆ P (Sn) simply denotes the preimage of k ∈ Sm under g with zero excluded,
which defines a function Sm → P (Sn) as required of a morphism in Γ. The check that F and G
are functors, and that they are “inverse” to one another, is, as stated before, left to the reader.

Segal’s Category, Coequalizer Examples

Segal’s Category.

“Spaces” via functors.

Quotient groups as coequalizers.

Quotient spaces as coequalizers.

Limits and Colimits

Diagrams.

Cones and cocones.

Limits and colimits.

Examples.

Pullbacks and pushouts.

More on Limits/Colimits

Constructing limits in Set.

Back to pullbacks.

Inverse limits.

Gluing constructions.

More Limit/Colimit Examples

Coproducts in Vect.

Supremums and infimums.

R∞ and S∞.

Solenoids.

30

