Conditional Probability

Math 202, Winter 2021

Disclaimer: These lecture notes are written for class-planning purposes. It is likely that the notes contain typos and mistakes. You are encouraged to let me know when you see any of those.

Last modified: Monday, February 15, 2021, 6:00pm

We have seen several ways to combine two given events. If we have events A and B, we could combine them to form events "A and B" and "A or B," which corresponds to the intersection $A \cap B$ and the union $A \cup B$, respectively. We could also consider the complements $\neg A$ and $\neg B$. In this lecture note, we will explore a new way of combining two given events – by conditioning one on the other.

1 Basic definitions

1.1 Consider two events A and B in a sample space Ω . There may be no obvious relation between these two events, so they may intersect at the most general position as two subsets of Ω , as shown in the following Venn diagram.

Instead of looking at the entire sample space Ω , we focus our attention to all outcomes in the event B, and consider the probability of A given that B has occurred. This has essentially created a new sample space $\Omega_B = B$, where the event we are interested in here is $A \cap B$. To compute the corresponding probability, we would take the ratio

$$\frac{|A \cap B|}{|\Omega_B|} = \frac{|A \cap B|}{|B|}.$$

Dividing both the numerator and the denominator by $|\Omega|$ will get us

$$\frac{|A \cap B|/|\Omega|}{|B|/|\Omega|} = \frac{P(A \cap B)}{P(B)},$$

which we are going to take as the definition of conditional probability.

1.2 Definition (Conditional probability)

Let A and B be two events of the sample space Ω , with P(B) > 0. The **conditional** probability of A given B, denoted by P(A|B), is defined to be

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

1.3 Example

A fair dice is rolled twice. If the first roll is a 6, what is the probability that the second roll is also 6?

The sample space of this random scenario is represented by the following table.

Ω	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Define the events

 $B = \{\text{outcomes with first roll 6}\}, \text{ and } A = \{\text{outcomes with second roll 6}\},$

which are highlighted by blue and orange, respectively, in the table above. We see that

$$|A| = 6$$
, $|B| = 6$, and $|A \cap B| = 1$.

Therefore, the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|} = \frac{1}{6}.$$

This result agrees with our prior understanding that past rolls of 6 does not affect the probability of rolling a 6 (or any number) in the future.

1.4 Example

A fair dice is rolled twice. If the first roll is a 6, what is the probability that the sum of the two rolls is 9?

We once again the following table to represent the sample space of this random scenario.

Ω	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Define the events

 $B = \{\text{outcomes with first roll 6}\}, \text{ and } A = \{\text{outcomes with sum of 9}\},$

which are highlighted by blue and orange, respectively, in the table above. In this case,

$$|A| = 4$$
, $|B| = 6$, $|A \cap B| = 1$, and $|\Omega| = 36$.

We can compute the conditional probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|} = \frac{1}{6}.$$

Comparing this to the unconditional probability of A

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{36} = \frac{1}{9},$$

we got a higher conditional probability. This is a case where the probability of event A depends on the event B.

1.5 Definition (Independent events)

Two events A and B are **independent** if $P(A \cap B) = P(A)P(B)$.

1.6 Example

In Example 1.3, the events A and B are independent, as the probability of rolling two 6s is the product of the probability of rolling 6 at the first roll and the probability of rolling 6 at the second roll.

In Example 1.4, the events A and B are not independent, as $P(A \cap B) = 1/36$, but P(A)P(B) = 1/54.

1.7 Remark

An immediate consequence of probabilistic independence of A and B in terms of conditional probability is that imposing a condition of B on A would not change the probability of A, and $vice\ versa$. Algebraically, we have

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A),$$

and similarly, P(B|A) = P(B). Geometrically speaking, the events A and B can be drawn as *cylinder sets* in two respective coordinates in a (rectangular) Venn diagram.

1.8 Question

A bag contains 2 blue marbles and 3 red marbles. We draw two marbles in a sequence without replacing the first marble into the bag before the second draw. Define the events

 $A = \{\text{outcomes with the first marble being blue}\},$

 $B = \{$ outcomes with the second marble being blue $\}$.

Compute the probabilities P(A), P(B), $P(A \cap B)$, and P(B|A). Are A and B independent events?

1.9 We could employ the same strategy as in Examples 1.3 and 1.4. If we label the marbles 1–5, where 1 and 2 are blue, and the rest are red, the following table represents the sample space of this random scenario.

Ω	1	2	3	4	5
1					
2					
3					
4					
5					

The diagonal entries are blacked out because of the no replacement rule, namely, the two marbles drawn must be distinct. This gives a sample space of size $|\Omega| = 20$. We highlight the events A and B with orange and green, respectively. We have

$$|A| = 8$$
, $|B| = 8$, and $|A \cap B| = 2$.

We can compute the probabilities from here:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{8}{20} = \frac{2}{5}; \quad P(B) = \frac{|B|}{|\Omega|} = \frac{8}{20} = \frac{2}{5};$$

$$P(A \cap B) = \frac{|A \cap B|}{|\Omega|} = \frac{2}{20} = \frac{1}{10};$$

$$P(B|A) = \frac{P(A \cap B)}{P(B)} = \frac{1/10}{2/5} = \frac{1}{4}.$$

We see from these probabilities that A and B are not independent events.

1.10 An alternative strategy that is very useful in probability is to use a *tree diagram* to represent all outcomes and their respective probabilities. Here is the tree diagram we constructed in class.

The probability of A can be read off the diagram at P(A) = 2/5. We can also read off the tree diagram that the conditional probability of event B given event A is P(B|A) = 1/4. The probability of $A \cap B$, which is equivalent to drawing two blue marbles with 0B3R left, is

$$P(A \cap B) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}.$$

The probability of B would be the sum of

$$P(B) = \frac{2}{5} \cdot \frac{1}{4} + \frac{3}{5} \cdot \frac{1}{2} = \frac{2}{5}.$$

from the tree diagram