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1 Introduction

In this paper we give a purely algebraic proof of a variant of the theorem of Kontse-
vich [3] stating that the deformation complex of a d-algebra shifted by d is naturally
a (d + 1)-algebra.

By a d-algebra structure on a vector space V over a field of characteristic zero we
mean the analogue of Poisson algebra with its bracket of degree 1−d. Our definition
coincides with the usual one for d ≥ 2. Nevertheless, in this paper ’1-algebra’ means
’usual Poisson algebra’, not ’associative algebra’.

Kontsevich’s definition of d-algebra [3] is as follows: a d-algebra is an algebra over
the chain operad of the operad of little d-disks. But in the same paper he proves
that over any field of characteristic zero this chain operad is quasi-isomorphic to
its homology operad. Thus, our theorem is a particular, characteristic zero case of
Kontsevich’s theorem.

Let us outline the idea of the proof. First, let us discuss the notion of a defor-
mation Lie algebra of a d-algebra. As in the case of associative, Lie, commutative
etc. algebras, first, we need the definition of a homotopy d-algebra, which can be
found with the help of the theory of Koszul operads [2]. The key point is that the
operad governing d-algebras is Koszul as it was shown in [1]. The definition of the
structure of a homotopy d-algebra on a complex V says that it is the same as a
differential on the cofree d-coalgebra Cofreed(V [−d]) cogenerated by V [−d]. Struc-
tures of usual d-algebra correspond to quadratic differentials on Cofreed(V [−d]).
Let X be a d-algebra. Denote by X∨ the d-coalgebra Cofreed(V [−d]) equipped
with the quadratic differential corresponding to the d-algebra structure on X. The
reader familiar with the definition of homotopy associative ( Lie, commutative, etc.)
algebra will see that the definition of homotopy d-algebra is similar. The analogue
of X∨ in those cases is called the bar complex of X.1



The deformation complex def (X) of a d-algebra X is just the differential graded
Lie algebra of derivations of X∨. This object admits a more ’geometric’ definition
in terms of the infinitesimal neighborhood of the identity in the ’algebraic group’
AutX∨. Let us explain the meaning of this. We will use the technical notion of
coproartinian cocommutative coalgebra (Section 2.4.1) which is dual to the notion
of proartinian local commutative algebra. Now, note that the tensor product of
a d-coalgebra and a cocommutative coalgebra is naturally a d-coalgebra. Define
a functor F ′ from the opposite to the category of coproartinian cocommutative
coalgebras to the category of sets by setting F ′(a) = Homd−coalg(X

∨ ⊗ a, X∨). One
sees that the composition of any two elements from F ′(a) is well defined. Thus, F ′

is actually a functor taking values in the category of monoids. Since we need the
neighborhood of identity, define a subfunctor F of F ′ by taking as F (a) only those
morphisms X∨⊗a → X∨ for which the through map X∨ → X∨⊗a → X∨ is identity.
Here the first arrow is induced by the canonical inclusion of the ground field k to a.
One sees that F takes values in groups. It turns out that F viewed as a functor to
the category of sets is representable: there exists a cocommutative coalgebra A such
that F (a) ∼= Hom(a, A) naturally in a. The associative composition law F ×F → F
defines an associative map of cocommutative coalgebras A ⊗ A → A making A a
bialgebra. One sees that A ∼= U(def (X)), U meaning the universal enveloping
algebra.

One can modify the above construction. Let X, Y be d-algebras and φ : X∨ →
Y ∨ a morphism. Define a functor

F φ
X,Y : Coproartalgop → Sets

by setting F φ
X,Y (a) ⊂ Homd-coalg(X

∨ ⊗ a, Y ∨), where we take only those morphisms
for which the through map X∨ → X∨ ⊗ a → Y ∨ is φ. Again, this functor is
representable. Denote the corresponding coproartinian coalgebra by Homφ

c (X, Y ).
Let

X∨ φ
→ Y ∨ ψ

→ Z∨

be the sequence of morphisms. Then we have a natural composition

Homφ
c (X, Y ) ⊗ Homψ

c (Y, Z) → Homψ◦φ
c (X, Z). (1)

Now we can take the advantage of the fact that there is a natural tensor prod-
uct on the category of d-coalgebras. This means that the functor F φ

X,Y can be
extended to the category of coproartinian d-coalgebras (the definition remains the
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same but we allow a to be any coproartinian d-coalgebra). This functor is also
representable. Denote the corresponding coproartinian d-coalgebra by Homφ(X, Y ).
One sees that this construction is similar to the one of internal homomorphisms.
The only difference is that we work in the formal neighborhood of a given mor-
phism. The most interesting case for us is HomId(X, X). The analogue of the
composition morphism (1) provides us with an associative map of d-coalgebras
HomId(X, X) ⊗ HomId(X, X) → HomId(X, X). We call this structure d-bialgebra.
One sees that as a d-coalgebra (the differential is ignored) HomId(X, X) is isomor-
phic to the cofree d-coalgebra cogenerated by def (X) (viewed as a graded vector
space). The differential and the associative product look more sofisticated.

Remark Note that the same construction is applicable to the category of asso-
ciative algebras. In this case HomId(X, X) is the Hopf algebra isomorphic to the
Hopf algebra on the tensor coalgebra T (C•(X, X)[1]) defined in [1] (the so-called
B∞-structure).

Our next step is to show that the structure of a d-bialgebra on a cofree d-
coalgebra cogenerated by a complex K implies the structure of (d + 1)-algebra on
K[−d]. Contrary to the case of associative algebras this can be done in an easy
purely algebraic way. This result applied to HomId(X, X) gives the desired (d + 1)-
algebra structure on def (X)[−d].

Here is the content of the sections. We start with the quick review of d-algebras,
their homotopy theory, and their deformations. Also we introduce the notion of
the coproartinian coalgebra which is the dual to the notion of proartinian algebra.
In Section 2 we construct the functor F φ

X,Y and show that it is representable. The
corollary of this is the fact that we have a structure of d-bialgebra on a cofree d-
coalgebra cogenerated by the deformation complex of a d-algebra. In section 3 we
prove that this structure implies the desired structure of (d + 1)-algebra on the
shifted deformation complex.

The author would like to thank B. L. Tsygan and P. Bressler for their help.

2 d-Algebras, homotopy d-algebras, and their de-

formations

In this section we will recall the notions outlined in its title. All the definitions are
parallel to the ones for associative, commutative, or Lie algebras.
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2.1 d-Algebras

A structure of d-algebra on a complex V of vector spaces over a field k of character-
istic zero is given by

1 a dg commutative associative product · : S2V → V ;

2 a map
{} : Λ2(V [d − 1]) → V [d − 1], (2)

which turns V [d − 1] into DGLA (Differential Graded Lie Algebra).

By abuse of notation we will also denote by {, } the degree 1 − d map S2V → V if
d is odd (Λ2V → V if d is even) corresponding to the map (2).

These operations must satisfy the Leibnitz identity

{ab, c} = a{b, c} + (−1)|b|(|c|+d−1){a, c}b.

A d-algebra with unit is a d-algebra with a marked element 1 which is the unit
with respect to the product and its bracket with any element vanishes. The structure
of d-algebra (resp. d-algebra with unit) is governed by an operad which is denoted
by e′d (resp. ed). This means that a d-algebra (resp. d-algebra with unit) is the
same as an algebra over the operad e′d (resp. ed). As usual, we define a morphism
of d-algebras (with unit) V and W as a morphism of complexes V → W which
respects all the operations (and the units). Therefore, we have the categories d-alg
of d-algebras and d-alg1 of d-algebras with unit.

2.2 d-Coalgebras

This structure is dual to the structure of d-algebra. A structure of d-coalgebra (with
counit) on a complex V is specified by a dg cocommutative coassociative coproduct
∆ : V → S2V (with counit) ǫ : V → k and a Lie cobracket δ : V [1−d] → Λ2V [1−d],
satisfying the conditions dual to the ones for d-algebras. d-Coalgebras (resp. d-
coalgebras with counit) form a category d-coalg (resp. d-coalg1).

2.3 Free d-algebras

Let Complexes be the category of complexes and their morphisms of degree zero.
We have the forgetful functor Obl : d-alg1 → complexes which takes a d-algebra to
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its underlying complex. This functor has the left adjoint. We will denote it Freed
or simply Free. The theory of operads says that

Freed(V ) =
∞⊕

n=0

ed(n) ⊗Sn
V ⊗n.

For a complex V , let FreeLie(V ) denote the free graded Lie algebra generated
by V with the differential induced by the one on V . Denote by OblFreeLie(V ) the
underlying complex of FreeLie(V ). Then on the level of complexes we have the
canonical isomorphism

S•(FreeLie(V [d])[−d]) ∼= OblFreed(V ).

2.4 Cofree coproartinian d-coalgebras

Similarly, we have the forgetful functor Obl : d-coalg → complexes. Unfortunately,
it does not have an adjoint functor. The reason is that the linear dual to the free
d-algebra generated by even finite dimensional space V is not a d-coalgebra. This
can be cured either by passage to the category of topological d-coalgebras or by
passage to coproartinian coalgebras. We choose the second option.

2.4.1 Coproartinian d-coalgebras

A d-coalgebra with counit V is called coproartinian if there exists an exhaustive in-
creasing filtration F of V by sub-coalgebras with counit and the following conditions
are satisfied.

1 F 0V is a one-dimensional coalgebra.

2 Let 1 ∈ F 0V be a unique element such that ǫ(1) = 1, where ǫ is the
counit. Then for any x ∈ F 1V we have

∆x = 1 ⊗ x + x ⊗ 1; (3)

δx = 0, (4)

and for any x ∈ F iV, i ≥ 2 we have

∆x − 1 ⊗ x − x ⊗ 1 ∈ F i−1V ⊗ F i−1V (5)

and
δx ∈ F i−1V ⊗ F i−1V. (6)
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LEMMA 2.1 If V is a coproartinian coalgebra, it has the only grouplike element
e. Therefore, all filtrations on V that make it coproartinian have the same term
F 0V = ke.

Proof. Let F be a filtration on V that makes it coproartinian. Then we take the
element 1 ∈ F 0V such that ǫ(1) = 1, as we did it in the definition of coproartinian
coalgebras. It is grouplike. Let i be the minimal number such that F i(V ) contains
a grouplike element x 6= 1. Clearly, i > 0. We have from (5) that

(x − 1) ⊗ (x − 1) = ∆x − 1 ⊗ x − x ⊗ 1 + 1 ⊗ 1 ∈ T 2F i−1(V ).

Therefore, x − 1 ∈ F i−1V and x ∈ F i−1V . Contradiction.

LEMMA 2.2 Let W be a coproartinian coalgebra and let sn : W → HomSn
(ed(n), W⊗n)

be the structure maps of W as a d-coalgebra. Let

s′n : W → HomSn
(ed(n), (W/F 0W )⊗n)

be the composition of sn with the n-th tensor power of the projection W → W/F 0W .
Then s′n(F

kW ) = 0 whenever n > k.

Denote by d-coart the full subcategory of d-coalg1 formed by coproartinian
coalgebras. Define the forgetful functor Obl : d-coart → complexes by setting
Obl(V ) = V/F 0V . This is a well-defined functor by Lemma 2.1.

PROPOSITION 2.3 The forgetful functor Obl has the right adjoint

Proof. Define the right adjojnt functor Cofreed as

Cofreed(V ) =

∞⊕

n=0

HomSn
(ed(n), V ⊗n).

The structure morphisms of ed define the canonical d-coalgebra structure on it.
Also, we have a filtration on it by the tensor powers of V . So, it is a coproar-
tinian coalgebra. Denote p :

⊕∞
n=0 HomSn

(ed(n), V ⊗n) → V the projection onto
HomS1

(ed(1), V ) ∼= V .
Let W be another coproartinian coalgebra. Consider Homd-coart(W, Cofreed(V )).

The composition with p defines the map

p∗ : Homd-coart(W, Cofreed(V )) → HomComplexes(W, V ).
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By Lemma 2.1 F 0W goes to F 0Cofreed(V ) under any coalgebra morphism. There-
fore, the map p∗ induces a map

p′∗ : Homd-coart(W, Cofreed(V )) → HomComplexes(W/F 0(W ), V ),

and we need to prove that this map is an isomorphism. For this, we define a map

q : HomComplexes(W/F 0(W ), V ) → Homd-coart(W, Cofreed(V ))

and show that it is inverse to p′∗. By Lemma 2.2, we have a well defined structure map
s : W → ⊕∞

n=1HomSn
(ed(n), (W/F 0W )⊗n). Let r ∈ HomComplexes(W/F 0(W ), V ).

Define q′(r) as the composition of s and tensor powers of r and set q(r)(w) =
q′(r)(w)+ ǫ(w) ·1, where w ∈ W and 1 is the grouplike element in Cofreed(V ). One
sees that q is a coalgebra morphism and that q is inverse to p′∗. △

2.4.2 Differentials on d-coalgebras

Let W be a d-coalgebra. A graded map D : W → W is called a derivation of W , if
it is a derivation of W with respect to its cocomutative and Lie coalgebra structures
(for a moment, we forget the differential on W ). If the grading |D| = 1, and D2=0,
then D is nothing else but a differential on W . All derivations of W form a graded
Lie algebra Der (W ) with the commutator [D, E] = D ◦ E − (−1)|D||E|E ◦ D, ◦
meaning the composition of maps W → W . The differential d on W is an element
of this Lie algebra, and [d, d] = 0. Define the differental δ on Der (W ) by δx = [d, x].
This turns Der (W ) into a DGLA.

2.4.3 Derivations on cofree coalgebras

Let Cofreed(V ) be the cofree ed-coalgebra cogenerated by a graded space V with
zero differential. Let p : Cofreed(V ) → V be the canonical projection onto cogener-
ators. Let D ∈ Der (Cofreed(V )). Then we have the corestriction cor(D) = p ◦D :
Cofreed(V ) → V .

PROPOSITION 2.4 The map

cor : Der (Cofreed(V )) → Homk(Cofreed(V ), V )

is an isomorphism of graded vector spaces.
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The Cofreed(V ) is graded by the tensor powers of V so that

griCofreed(V ) ∼= HomSi
(ed(i), V

⊗i).

Define a subspace Der 1,2 ⊂ Der (Cofreed(V )) consisting of the elements x such
that cor(x)(gri(Cofreed(V ))) = 0 for all i except 1 and 2.

PROPOSITION 2.5 The set of the elements x ∈ Der 1,2 such that |x| = 1 and
[x, x] = 0 is in 1− 1 correspondence with the structures of differential d-algebras on
the shifted graded vector space V [−d].

Proof. Take the components of cor(x) x1 : V → V and x2 : HomS2
(e(2), V ⊗2) → V .

One sees that x1 is a differential on V and, hence, on V [−d]. Recall that ed(2) is
generated by the elements m, b corresponding to the commutative product and the
bracket. Therefore, j : HomS2

(e(2), V ⊗2) ∼= S2V ⊕Λ2(V [1− d])[d− 1]. Since x2 has
degree 1, it defines under j a map of degree zero k : Λ2(V [−1])[1]⊕S2(V [−d])[d] →
V . The condition [x, x] = 0 is equivalent to the following:

1 each of the restrictions of k

b : Λ2(V [−1])[1] → V and m : S2(V [−d])[d] → V

are compatible with the differential on V defined by x1;

2 The map m is the commutative product on V [−d] and b is the Lie
bracket on V [−1]; the maps m, b define a structure of d-algebra on
V [−d].

Whence the statement of the proposition △

DEFINITION 2.6 For a d-algebra V define the coproartinian d-coalgebra V ∨ as
the coalgebra Cofreed(V [d]) with the differential corresponding to the d-algebra struc-
ture on V ∼= V [d][−d] by Proposition 2.5

2.5 Homotopy d-algebras

DEFINITION 2.7 A structure of homotopy d-algebra on a graded vector space V
is a differential of the coalgebra Cofreed(V [d]) vanishing on 1 ∈ Cofreed(V [d]).

For a homotopy d-algebra V we denote by V ∨ the corresponding differential cofree
coalgebra.
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DEFINITION 2.8 A morphism of homotopy d-algebras is a morphism of the cor-
responding differential cofree coalgebras.

Thus, homotopy d-algebras form a category.
We see that any d-algebra V defines a homotopy d-algebra V ∨. But the set of

morphisms between two d-algebras viewed as homotopy d-algebras is wider than
the set of usual morphisms between them. In other words, we have an injection
Homd-alg(V, W ) → Homd-coart(V

∨, W∨).
For a homotopy d-algebra V the linear part of the differential d on V ∨ is the

restriction of d onto gr1(V
∨)

def
= gr1(Cofreed(V [d])) ∼= V [d]. It takes values in

gr1V
∨ and defines a differential on V [d]. A structure of a homotopy d-algebra on a

complex V is by definition a differential on Cofreed(V [d]) such that its linear part
coincides with the differential on V .

From the operadic point of view, the structure of a homotopy d-algebra on a
complex is governed by a dg -operad. Denote it by hed. Let e′d be the operad
governing d-algebras without unit. The fact that any usual d-algebra is also a
homotopy d-algebra reflects in a map p : hed → e′d It is known that hed is a free
operad and that p is a quasiisomorphism of operads. Thus hed is a free resolution
of e′d.

2.5.1 Deformation Lie algebra

DEFINITION 2.9 let V be a homotopy ed-algebra. Define its deformation Lie
algebra def (V ) = Der (V ∨) with the differential being the bracket with the differential
on V ∨.

3 Infinitesimal Internal Homomorphisms

In this section first we define the tensor product of (coartinian) ed-coalgebras, and
then construct a substitute for the internal homomorphisms.

3.1 Tensor product of ed-coalgebras with counit

Let V, W be d-coalgebras with counit. Define the d-coalgebra structure on V ⊗ W
as follows. The differential on V ⊗ W is the differential on the tensor product
of complexes. The coproduct is defined by ∆(v ⊗ w) = ǫ∆(v) ⊗ ∆(w) and the
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cocommutator δ(v⊗w) = ǫ(δ(v)⊗∆(w))+ǫ((−1)(d−1)|v|∆(v)⊗δ(w)), where ǫ means
the sign corresponding to the permutation (1324) of the graded tensor factors:

ǫ : V ⊗ V ⊗ W ⊗ W → V ⊗ W ⊗ V ⊗ W.

The counit is the tensor product of counits. One sees that the tensor product of
coproartinian coalgebras is a coproartinian coalgebra.

3.2 Internal homomorphisms

3.2.1 Useful Lemma

Let A be a coproartinian d-coalgebra; B a d-algebra without unit. We have an
injection of d-coalgebras k ∼= F 0A → A. Therefore, the factor A/k is naturally a
d-coalgebra. Then Homk(A/k, B) is a d-algebra, hence, Homk(A/k, B)[d − 1] is a
Lie algebra. For a Lie algebra g denote MC(g) = {x ∈ g1 : dx + [x, x]/2 = 0}.

LEMMA 3.1 There is a natural bijection between the sets Homd-coart(A, B∨) and
MC(Homk(A/k, B)[d − 1]).

Proof. If we forget about the differentials, then

Homd-coart(A, B∨)) ∼= Homk(A/k, B[d]) ∼= Homk(A/k, B)[d − 1]1.

A direct computation shows that the morphisms compatible with the differential
correspond under this identification to the MC(Homk(A/k, B)[d − 1]). △

3.2.2 Coalgebra Hom φ(V, W )

Let S be a coproartinian dg coalgebra. We have a retraction

k ∼= F 0S → S
ǫ
→ k.

Let φ ∈ Homd-coart(V
∨, W∨). The canonical inclusion k → S defines a map

h : Homd-coart(V
∨ ⊗ S, W∨) → Homd-coart(V

∨, W∨).

Set F φ
VW (S) = h−1(φ). F φ

VW is a functor d-coart0 → Sets.

PROPOSITION 3.2 F φ
VW is representable.
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Proof. Denote the coalgebra which represents F φ
VW by Hom φ(V, W ). Let us con-

struct it. Take a d-algebra a = Homk(V
∨, W ). By Lemma 3.1 the morphism

φ defines an element φ′ ∈ MC(a[d − 1]) via the inclusion Hom(V ∨/k, W ) →
Hom(V ∨, W ). We will denote by the same letter the corresponding element of
degree d in a. Let a′ be a d-algebra whose operations are the same as in a but the
differential is d′x = dx + {φ′, x}, where d is the differential on a. We claim that
Hom φ(V, W ) = a′. Indeed, Let b = Homk(V

∨ ⊗ S/k, W ) and c = Hom(V ∨/k, W ).
We have

Homd-coart(V
∨ ⊗ S, W∨) ∼= MC(b[d − 1]).

We have a retraction
c
G
→ b

H
→ c

induced by the canonical retraction k → S → k. Therefore, we have a semidirect
sum of d-algebras

b ∼= c + Homk(S/k, a). (7)

The map of Maurer-Cartan elements induced by H is the map h. Therefore,
F φ
VW (S) can be alternatively described as the set of x ∈ MC(b[d − 1]), H(x) = φ′.

Using the splitting (7), we write x = φ′ + s, s ∈ Homk(S/k, a). The Maurer-Cartan
equation reads as ds + {φ′, s} + {s, s}/2 = 0. This is the same as to say that s
viewed as an element of Homk(S/k, a′) is a morphism of d-coalgebras. △

COROLLARY 3.3 There is a natural map

◦ : Hom φ(U, V ) ⊗ Hom ψ(V, W ) → Hom ψ◦φ(U, W ). (8)

This map is associative, meaning that the maps ◦(◦ ⊗ Id) and ◦(Id ⊗ ◦) from
Hom φ(U, V ) ⊗ Hom ψ(V, W ) ⊗ Hom χ(W, X) to Hom χ◦ψ◦φ(U, X) coincide.

Proof. We have a natural composition map

Homd-coart(U
∨ ⊗ S, V ∨) × Homd-coart(V

∨ ⊗ T, W∨)

→ Homd-coart(U
∨ ⊗ S ⊗ T, W∨).

This map induces a morphism of the functors d-coart0 × d-coart0 → Ens :

F φ
U,V × F ψ

V,W → F ψ◦φ
UW ◦

⊗
, (9)

where
⊗

: d-coart × d-coart → d-coart is the tensor product. We have the element

Id ∈ F φ
U,V (Hom φ(U, V )) ∼= Hom(Hom φ(U, V ), Hom φ(U, V )).

Similarly, we have the element Id ∈ F ψ
V,W (Hom ψ(V, W )). Define the morphism (8)

as the image of Id × Id under the morphism (9). △
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4 Hom Id(V, V ) and def (V ).

4.1 Hom Id(V, V ) is a d-bialgebra

DEFINITION 4.1 A structure of coproartinian d-bialgebra on a complex V is

1 a structure of a coproartinian d-coalgebra on V ;

2 a morphism of coalgebras m : V ⊗ V → V such that it defines an
associative product on V with unit being the grouplike element of V .

PROPOSITION 4.2 Let V be a d-algebra. Then Hom Id(V, V ) is naturally a
coproartinian d-bialgebra.

Proof. The product is given by the composition morphism (8) △

4.2 Restriction of F Id

V V
onto the subcategory of coproartinian

cocommutative coalgebras

DEFINITION 4.3 A coproartinian cocommutative coalgebra is an object of d-coart
such that its cocommutator is 0. Denote by coart the corresponding full subcategory
of d-coart

PROPOSITION 4.4 The inclusion functor I : coart → d-coart has the right
adjoint C. The coalgebra C(a) is the biggest cocommutative subcoalgebra of Kerδ,
where δ is the cocommutator on a

Note that for a coproartinian d-bialgebra X, C(X) is naturally a cocommutative
Hopf algebra.

COROLLARY 4.5 The restriction of the functor F Id
V V to the category of the coal-

gebras is represented by C(Hom Id(V, V )). The associative product on C(Hom Id(V, V ))
corresponds to the composition of functors (9).

On the other hand, since def (V ) is the Lie algebra of the group of authomorphisms
of V ∨, we have
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PROPOSITION 4.6 The restriction of the functor F Id
V V to the category of the

coalgebras is presented by the universal enveloping algebra U(def (V )) viewed as a
cocommutative coalgebra. The associative product on U(def (V )) corresponds to the
morphism of functors (9).

Thus,

COROLLARY 4.7 We have a canonical isomorphism of Hopf algebras C(Hom Id(V, V )) →
U(def (V ))

Let us express C(Hom Id(V, V )) explicitly. Recall that as a d-coalgebra Hom Id(V, V ) ∼=
a′∨, where a′ is the d-algebra Homk(V

∨, V ) with the differential twisted by the core-

striction of Id: V ∨ Id
→ V ∨ cor

→ V which is, of course, just the map cor ∈ a′. One sees
that for a complex X, C(Cofreed(X)) ∼= S(X), where S(X) is a cofree coproar-
tinian cocommutative coalgebra cogenerated by X. Therefore, C(Hom Id(V, V )) ∼=
S(a′[d]). One sees that as a complex a′[d] is isomorphic to def (V ) and that the com-
position S(a′[d]) ∼= C(Hom Id(V, V )) → U(def (V )) is the Poincaré-Birkhoff-Witt
isomorphism.

5 A homotopy (d+1)-algebra structure on def (V, V )

We can summarize our findings in the following way. We have a d-algebra a′, which
as a complex is isomorphic to def (V )[−d]. Also we have the associative product
a′∨ ⊗ a′∨ → a′∨ which turns it into d-bialgebra. Also we know that the restriction
of this product onto S(a′[d]) = C(a′∨) ⊂ a′∨ turns S(a′[d]) into a Hopf algebra and

S(a′[d]) ∼= U(def (V )). (10)

Let us investigate these structures. First, note that a′∨ together with the cocommu-
tative coproduct and the associative product is a cocommutative cofree Hopf algebra.
It is well known that any such an algebra is isomorphic to U(g) for a certain Lie
algebra g. This Lie algebra is formed by the primitive elements of a′∨, its commu-
tator is the commutator with respect to the associative product and its differential
is the restriction of the differential on a′∨. One sees that for any space X the set
of primitive elements of Cofreed(X) is isomorphic to CofreeLie(X[1 − d])[d − 1],
where CofreeLie means ’the cofree Lie coalgebra cogenerated by’. Thus, we have
a Lie algebra structure on the Lie coalgebra CofreeLie(a′[1])[d − 1]. The fact that
S(a′[d]) is a Hopf algebra translates into the fact that CofreeLie(a′[1])[d − 1] is
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a differential Lie bialgebra, meaning that all operations are compatible with the
differential and that the cocycle condition is fulfilled:

δ([x, y]) = [δx, y] + (−1)|x|(d−1)[x, δy]. (11)

Note that the only difference between our bialgebra and usual bialgebras is that the
coproduct has a nonzero grading. The isomorphism (10) means that the restriction
of the commutator on the primitive elements

def (V ) ∼= a′[d] ⊂ CofreeLie(a′[1])[d − 1] (12)

coincides with the commutator on def (V ). Thus, (12) is a morphism of DGLA.
Now take the chain complex S(CofreeLie(a′[1])[d]) of CofreeLie(a′[1])[d − 1]

as a Lie algebra.
Note that we have an isomorphism of graded spaces S(CofreeLie(a′[1])[d]) ∼=

Cofreed+1(a
′[1 + d]). The cocycle condition (11) means that the differential on

S(CofreeLie(a′[1])[d]) is compatible with the coproduct and the cocommutator on
Cofreed+1(a

′[1 + d]). This means that we have a structure of homotopy (d + 1)-
algebra on a complex a′ ∼= def (V )[−d]. The morphism (12) means that the homo-
topy Lie algebra structure on def (V ) induced from the homotopy (d + 1)-structure
on def (V )[−d] coincides with the Lie algebra structure on def (V ) as the defor-
mation Lie algebra. As for the commutative binary operation on def (V ), it is the
same as the commutative product on a′ as a d-algebra. One checks also that the
commutator of a′ as a d-algebra is homotopy trivial.
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