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Abstract

Kashiwara-Schapira style sheaf theory is used to justify analytic continuability of solutions of
the Laplace transformed Schrödinger equation with a small parameter. This partially proves the
description of the Stokes phenomenon for WKB asymptotics predicted by Voros in 1983.

1 Introduction

In this paper we are going to study the following PDE on one unknown function Ψ in two complex
variables x, s:

−Ψxx + V (x)Ψss = 0, (1)

where V (x) is a given polynomial; the weakest possible assumptions on V (x) will be formulated in
Sec.2.7.1.

This equation is related to the Schrödinger equation

− h2∂2
xψ(x, h) + V (x)ψ(x, h) = 0 (2)

by means of the Laplace transform 1/h 7→ ∂s. According to resurgent analysis, the analytic behavior
of Ψ(x, s) determines quasi-classical asymptotics of solutions of (2).

A multivalued solution Ψ of (1) can be specified by means of prescribing its initial values. Our problem
is now as follows. Consider a class of initial value problems for (1) with a fixed type of the analytic
behavior of the initial data; we are to find a manifold where solutions of these problems are defined.

1.1 Cauchy problem

We study the Cauchy problem for (1) of the following type. We fix a point x0 ∈ C and prescribe

Ψ(x0, s) = ψ0(s) and ∂Ψ(x,s)
∂x |x=x0 = ψ1(s) as multivalued analytic functions of s. Let us now give a

more precise account.
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1.1.1 Initial data

Fix an acute angle α ∈ (0, π/2). Let Sα := (0,∞)×(−α, α+2π) be an open sector of aperture 2π+2α.
Let πSα : Sα → C be the covering map πSα(r, φ) := reiφ. The map πSα induces a complex structure
on Sα so that πSα is a local biholomorphism. The initial conditions are given by two holomorphic
functions

ψ0 and ψ1 on Sα. (3)

1.2 Multi-valued solution to a multi-valued Cauchy problem

We first fix a complex surface S along with a local biholomorphism pS : S → C×C. Let us also fix a
map

h : Sα → S (4)

fitting into the following commutative diagram

C
ix0 // C× C

Sα
h //

πSα

OO

S

pS

OO

where ix0 : C→ C× C is given by the formula ix0(s) = (x0, s).

The equation (1) gets transferred onto S by means of a local biholomorphism pS . Call this equation
”the transferred equation”.

The coordinates (x, s) on C×C give rise to local coordinates on S. Given a function Ψ on S, we then

have a well defined derivative
∂Ψ

∂x
as a holomorphic function on S.

We say that a solution Ψ of the transferred equation is a solution of the Cauchy problem with initial

data (3) on S, if Ψ ◦ h = ψ0;
∂Ψ

∂x
◦ h = ψ1.

1.3 Formulation of the result

Our main result is a construction of a complex surface S and a map h as in (4), such that for every
choice of the initial data, there exists a unique solution Ψ of the Cauchy problem on S.

We prove (Sec. 3.16) that the surface S is “extends infinitely in the direction of K”, where K ∈ C is
the following cone:

K := {reiφ; r ≥ 0;−α ≤ φ ≤ α}. (5)

Let us give a more precise formulation. Fix a point x ∈ C such that V (x) 6= 0. Consider a one-
dimensional complex manifold Sx := p−1

S (x × C), where the projection onto x × C gives a local
biholomorphism P x : Sx → C. Let U ⊂ C be an open parallelogram whose sides are parallel to
vectors eiα and e−iα. Let σ : U→ Sx be a section of P x. Let also r−α ⊂ K be the ray [0,∞).e−iα.

We prove that
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Theorem 1.1 There exists a set Γ ⊂ C satisfying:

1) for every point s ∈ C, the intersection (s−K) ∩ Γ is at most finite,

2) U ⊂ (U +K)\(Γ + r−α);

3) σ extends uniquely onto (U +K)\(Γ + r−α).

This theorem is proved in Sec.3.16: it easily follows from Theorem 3.12, as explained after its formu-
lation.

Theorem 1.1 assumes existence of a nonempty set U and a section σ; this fact is the content of the
theorem 3.12.

Our construction of S, as well as the proof of the above Theorem 1.1, are based on sheaf-theoretical
methods [KS]. The relation between linear PDEs and sheaves is well known and consitutes the subject
of Algebraic Analysis. Our paper is also motivated by the classical work of Voros [V83, Sec.6] where
an explicit description singularities of solutions of (1) was derived heuristically, see [V83], p.213, line
15 from the bottom; additional insights came from [ShSt] and [G09]. Important works on this problem
using methods of hard analysis include [AKT91] and [KK11].

In the next subsection, we will briefly describe the idea of our sheaf-theoretic approach.

1.4 Introducing sheaves

We start with introducing a covering space X of C, and defining the so-called action function on X.

1.4.1 A covering space X

Let TP be the set of zeros of V (x) – “turning points” of V (x). We assume throughout the paper that
TP is finite. We also assume x0 6∈ TP. Let X be the universal covering of C\TP . We can choose a
determination of

√
V (x) and its primitive S(x) =

∫ x√
V (ξ)dξ on X. It will be more convenient for

us to use the notation z := S(x). Since dS(x) is nowhere vanishing on X, we can use z as a local
coordinate on X. As above, we denote by s the coordinate on C, so that (z, s) are local coordinates
on X × C.

Equation (1) gets transfered onto X × C and in the coordinates (z, s) it looks as follows:

−Ψzz + Ψss + l.o.t. = 0 (6)

where l.o.t. stands for a differential operator of order ≤ 1 applied to Ψ. We now pass to a sheaf-
theoretical consideration.

1.4.2 Solution sheaf and its singular support

Let Sol be the solution sheaf of (6). According to [KS, Th.11.3.3], the singular support of Sol is of a
very special form which is determined by the highest order term of (6) (see Sec. 3.2 for more details).
More specifically, let (z, s, ζdz + σds) be local coordinates on T ∗(X × C). Then

S.S. Sol ⊂ ΩX := {(z, s, ζdz + σds) : ζ = σ or ζ = −σ}. (7)
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It turns out that this condition contains enough information on Sol in order to deal with solving the
Cauchy problem. In fact, at this stage, we abstact from our PDE, and only remember that its solution
sheaf has its singular support as specified.

1.4.3 Initial value problem in sheaf-theoretical terms

Choose and fix a preimage x0 ∈ X of x0. Define a map g : Sα → X×C by setting g(s̃) := (x0, πSα(s̃)).
Cauchy-Kowalewski theorem implies that the initial conditions (3) are in 1-to-1 correspondence with
elements of Γ(Sα, g

−1Sol), see Sec. 3.3 for more detail.

As explained in the same Sec., the latter group can be identified with R0 HomX×C(Rg!ZSα [−2], Sol).
Therefore, the initial data (3) can be interpreted as a map

mψ : Rg!ZSα [−2]→ Sol, (8)

see (22).

1.4.4 Semi-orhogonal decomposition of Rg!ZSα [−2].

Let D(X×C) be the bounded derived category of sheaves of abelian groups onX×C. Let C ⊂ D(X×C)
be the full triangulated subcategory consisting of all objects whose singular support is contained in
ΩX as in (7). Let ⊥C ⊂ D(X × C) be the so-called left semi-orthogonal complement to C, i.e. a full
subcategory consisting of all objects Y such that R hom(Y,X) = 0 for all X ∈ C. We prove

Theorem 1.2 1) There exists the following distinguished triangle in D(X × C):

→ Rg!ZSα [−2]
iΦ→ Φ→ δ

+1→

where Φ ∈ C, δ ∈ ⊥C (“semi-orthogonal decomposition”);

2) Stalks of Φ at every point of X × C have no negative cohomology.

This theorem coincides (up-to slight reformulations) with Theorem 3.2. The object Φ and the map
iΦ : Rg!ZSα [−2]→ Φ are constructed in Sec 3.6-3.13. The bulk of the paper (Sec. 4–Sec. 6) is devoted
to showing that the constructed object Φ and a map iΦ satisfy the above theorem.

It is well known that the distinguished triangle in part 1 of Th.1.2 , if exists, is unique up to a unique
isomorphism, meaning that Φ is defined uniquely. It also follows that the precomposition with iΦ:

iΦ : ◦− : R0 HomX×C(Φ, Sol) → R0 Hom(Rg!ZSα [−2], Sol)

is an isomorphism of groups. This implies that the map mψ, cf. (8), uniquely factors as follows:

Rg!ZSα [−2] → Φ
mψ→ Sol.

Let Φ0 := τ≤0Φ. Condition 2) of Theorem 1.2 implies that Φ0 is a sheaf of abelian groups. We have
a composition

(mψ)0 : Φ0 → Φ→ Sol.
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1.4.5 Étale space of Φ0 and solving the initial data problem

Let S ′ be the étale space of Φ0. We have a local homeomorphism pS′ : S ′ → X × C so that we
have a unique complex structure on S ′ making pS′ into a local biholomorphism. It turns out, that
the map (mψ)0 gives rise to a solution of the transferred equation on S ′. Indeed, every such a
solution can be equivalently described as an element in Ψ ∈ Γ(S ′; p−1

S′ Sol). We also have a canonical
section ρ ∈ Γ(S ′; p−1

S′ Φ0) (by the construction of the étale space); the map (mψ)0 induces a map
ν : p−1

S′ Φ0 → p−1
S′ Sol, and we set Ψ := ν(ρ).

It is now straigtforward (Sec. 3.5.2) to prove that thus constructed solution Ψ is a solution on S ′ of
the Cauchy problem with the initial data (3).

By choosing an appropriate connected component S of S ′ we finish the construction.

2 Conventions and Notations

Throughout the paper, we fix an acute angle α ∈ (0, π/2).

2.1 Various subsets of C

We introduce the following subsets of C:

— K is the closed cone consisting of all complex numbers whose argument belongs to [−α, α],
including 0;

— rα := eiα.[0,∞); r−α := e−iα.[0,∞);

2.2 Sector Sα

We set Sα := {τ ∈ C : −α < Im τ < 2π + α}. Let πSα : Sα → C be the map given by πSα(τ) := eτ .
Some complex analysts call Sα an étale open sector with aperture 2π + 2α.

2.3 Potential V (x). Stokes curves. Assumptions

Throughout the paper, we fix an entire function V (x) on C. We assume that V (x) has only finitely
many zeros which are traditionally called ’turning points’.

The conditions in Sec 2.3.2 below will be also assumed throughout the paper.

2.3.1 Stokes curves and further assumptions

Let w ∈ C, V (w) = 0 be a k-fold zero of V (x). We define an α-Stokes curve z(t), 0 ≤ t < C,
emanating from w as follows:

—z(t) is a smooth curve with z(0) = w and −V (z)(dz/dt)2 ∈ e2iαR>0.

The following facts are well known, [EvFe].

1) There are exactly k + 2 α-Stokes curves emanating from w.
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2) One can choose C (to be a positive real number or +∞) in such a way that either z(C) := lim
t→C

coincides with another turning point of V (x), or z(C) =∞. In the latter case we say that the Stokes
curve terminates at infinity.

2.3.2 Further assumptions

We will assume the following properties of V (z).

a) All α- and (−α)-Stokes curves terminate at infinity.

b) Every α-Stokes curve intersects only finitely many −α-Stokes curves, and every (−α)-Stokes curve
intersects only finitely many α-Stokes curves.

It is well known in the complex WKB theory that for every polynomial V (x) one can find an α
satisfying these assumptions.

2.4 Universal cover X

Let U be the complement in C to the (finite) set of turning points of the potential V (x). α-Stokes
curves split U into regions called α-Stokes regions; similarly, one can define −α-regions. Throughout
the paper, we denote by X the universal cover of U , and by pX : X → U → C the covering map.

2.5 Initial point x0

We fix a point x0 ∈ X. We assume that pX(x0) does not belong to any of α- or −α-Stokes lines.

2.6 Action function on X

Fix a choice of
√
V (x) on U and a function

z : X → C : dz(x) =
√
V (x)dx. (9)

It follows that dz is nowhere vanishing, i.e. z is a local coordinate near every point of X. The function
z has the meaning of the action function. We use the notation z because z will play the role of a local
coordinate on X. The function z should not be confused with the map map pX : X → C.

2.7 Subdivision of X into α-strips

Let P ⊂ U be a closed α-Stokes region on U , that is, P is one of the regions into which the complex
plane C is subdivided by α-Stokes curves.

Let us now switch to the universal cover p : X → U . It follows that p−1P splits into a disjoint union
of its connected components P =

∐
γ∈ΓP

Pγ , where p : Pγ
∼→ P. Call each such Pγ (for every α-Stokes

region P) an α-strip. By [EvFe, §2.2], the function z maps each α-strip homeomorphically into a

6



I m b e
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Figure 1: Three types of α-strips

generalized strip on C, i.e. a subset of C of one of the following types, fig. 1. Here the removed points
ζt, ζb correspond to the turning points of V (x).

Throughout the paper α-strips will be denoted by means of the letter P with different subscripts. We
will often identify α strips with their images in C under z.

2.7.1 Weakest Possible Assumptions on V (x)

The results and proofs of our paper also hold true for any entire function V (x) with finitely many
zeros, satisfying the following condition that corresponds to Condition A of [EvFe, §2.2]:

lim
x→∞;x∈C

|S(x)| =∞

for any curve C in C satisfying argS(x) = ±α.

2.7.2 Boundary rays

Let P1, P2 be α-strips and P1 ∩ P2 6= ∅. Then ` = P1 ∩ P2 is a ray on X which is identified by means
of z with either ĉ(`) + eiα.(0,∞) ⊂ C or ĉ(`) − eiα.(0,∞) ⊂ C, where ĉ(`) is a complex number. We
denote by Lα the set of all such rays, to be called boundary α-rays. Every boundary α- ray belongs to
the boundaries of exactly two α-strips; the boundary of every α-strip is a disjoint union of boundary
α-rays. Boundary α-rays will be often denoted by the letter ` with different subscripts.

We say that a boundary α-ray ` goes to the left if its image under z is ĉ(`)− eiα.(0,∞). Otherwise we
say that a boundary α-ray ` goes to the right. Accordingly, we get a splitting Lα = Lαleft t Lαright.

2.7.3 Strips form a tree

Consider a graph whose vertices are α-strips and we join two distinct vertices with an edge if the
corresponding strips intersect (along some boundary α-ray). Since X is simply connected, it follows
that this graph is a tree.
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Figure 2: Intersection of an α-strip with several (−α)-strips. Thick gray lines indicate branch cuts
arising from the many sheets of the projection X → Cx.

2.8 (−α)-Strips

One has a similar decomposition of X into (−α)-strips which are defined based on −α-Stokes regions
of X. Throughout the paper, −α-strips will be denoted by means of the letter Π with different
subscripts. Similar to above, every −α-strip is homeomorphically mapped under z into a generalized
strip whose each boundary ray is parallel to the line e−iα.R. We define boundary −α rays in a similar
way (as intersection rays of two −α-strips). The function z identifies each boundary ray ` with either
ĉ(`) + e−iα.(0,∞) (we then say ` goes to the right), or ĉ(`) − e−iα.(0,∞) (` goes to the left). We
denote the set of all boundary −α-rays by L−α. We have a splitting L−α = L−αleft t L

−α
right. Bounday

−α-rays will be denoted by the letter ` with various subscripts.

2.9 Interaction of α and −α-strips

Choose a (red) α-strip and look at all (−α)-strips (blue) that intersect it. These (−α)-strips cut the
α-strips into parallelograms and two semi-infinite parallelograms, e.g., fig. 2.

2.10 Categories

For a topological space M , we denote by D(M) the bounded derived category of sheaves of abelian
groups on M .

2.10.1 Sub-categories CY ; ⊥CY

Let Y be a one dimensional complex manifold equipped with a local biholomorphism z : Y → C. For
example, Y = X.

We then refer to points of T ∗(Y × C) as follows (y, s, ζdz, σds), where y ∈ Y , s ∈ C and ζ, σ ∈ C, so
that (y, s) ∈ Y × C and (ζ, σ) define the following real 1-form on Y × C:

(ζdz + ζdz + σds+ σds)/2.
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Let us fix a closed subset ΩY ⊂ T ∗(Y × C) to consist of all points (y, s, ζ, σ), where ζ = ±σ.

We denote by CY ⊂ D(Y × C) the full triangulated subcategory consisting of all objects F with
S.S.(F ) ⊂ CY . We denote by ⊥CY ⊂ D(Y × C) the full subcategory consisting of all objects G such
that R hom(G,F ) = 0 for all F ∈ CY .

2.11 Sheaves

Let Y be a topological space endowed with a continuous map z : Y → C. If Y ⊂ X, then we always
assume that z : Y → C is the restriction of the action function z : X → C. We define the following
sheaves on Y × C:

ΛK+
Y := Z{(y,s)|s+z(y)∈K ; ΛK−Y := Z{(y,s)|s−z(y)∈K}.

3 Statement of the problem and Main resuts

We start this section with giving a precise formulation for the problem of analytic continuation of
solutions to (1). It turns out to be more convenient to transfer this PDE to X × C by means of the
covering map pX : X → C.

Next, we give a sheaf-theoretical reformulation of the probem, and explain how the solution (i.e. a
complex surface S along with a local biholomorphism pS : S → X × C) can be deduced from of a
certain semi-orthogonal decomposition Theorem 3.2. The rest of this section is devoted to proving
basic properties of S modulo Theorem 3.2, namely Hausdorffness and infinite continuabilty in the
direction of K, which are the main results of this paper. To this end we need an explicit construction
of the distinguished triangle of the semi-orthogonal decomposition in Theorem 3.2. This triangle is
obtained via combining four other distinguished triangles.

It now remains to prove Theorem 3.2, which is now reduced to showing that each of the above
mentioned four triangles (and hence the combined triangle) gives a semi-orthogonal decomposition.
This is done in the rest of the paper.

3.1 Transfer of the equation −Ψxx + V (x)Ψss = 0 to X × C

Our main equation (1) can be transferred to X × C via the covering map p× IdC : X × C→ U × C.
We will use the action function z on X as in (9). Recall that z is a local coordinate near every point
of X. Our notation is summarized in fig.3.

It is easy to see that the transferred equation has the following form

−Ψzz + Ψss + l.o.t = 0, (10)

where l.o.t stands for the differential operator of order ≤ 1 applied to Ψ.

Let Sol be the sheaf of solutions of our transferred equation: Sol is a sheaf of abelian groups on X×C.

9
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3.2 Singular support of the solution sheaf Sol

It is well known that to every linear PDE on a manifold M one can put into correspondence a DM -
module, where DM is the sheaf of differential operators on M ; the solution sheaf of the PDE will then
match with the solution sheaf of the DM module.

In our situation, let us rewrite the equation (10) in the form LΨ = 0 for an appropriate linear
differential operator L on X × C. Define a DX×C-module M as follows

M = DX×C/DX×CL.

We then have an obvious isomorphism

Sol→ HomDX×C(M;OX×C). (11)

Indeed, every solution Ψ of (10) on an open subset U ⊂ X × C gives rise to a DX×C-module map

lΨ : DX×C|U → OX×C|U

where lΨ(T ) := TΨ. Then, for any T ′ ∈ DX×C(U), lΨ(T ′L) = T ′LΨ = 0. Hence, lΨ descends to a
map

lΨ :M|U → OX×C|U ,

which determines the map (11). It is straightforward to see that thus constructed map (11) is in fact
an isomorphism of sheaves.

The usefulness of this fact comes from a Kashiwara-Schapira’s theorem on singular support of the
object

RHomDX×C(M;OX×C) ∈ D(X × C) (12)

(derived solution sheaf of M). Let us now prove that this object is quasi-isomorphic to Sol.

The object (12) can be conveniently computed by means of the following free resolution R of M:

(R) : 0→ DX×C
λ→ DX×C → 0,

where the map λ is as follows: λ(T ) = TL. We obtain that the object HomDX×C(M;OX×C) is
represented in Db(X × C) by the two term complex

HomDX×C(R;OX×C)

10



which is the same as
0→ OX×C

L→ OX×C → 0. (13)

It is classically known, e.g. [Sch, Th.3.1.1], that the action of the operator L is locally surjective,
meaning that we have a short exact sequence of sheaves

0→ Sol→ OX×C
L→ OX×C → 0.

This means that the complex of sheaves (13) is quasi-isomorphic to Sol so that finally

Sol ∼= R homDX×C(M;OX×C).

Kashiwara-Schapira’s theorem [KS, Th.11.3.3] says that the singular support of the object (12) equals
the characteristic variety of the DX×C-module M. In our situation, this characteristic variety is
well-known to be equal to the zero set of the principal symbol of the operator L. This set is

{(z, s, ζdz + σds) : ζ = ±σ} ⊂ T ∗(X × C), (14)

which is the same as ΩX from Sec. 2.10.1. Thus, by Kashiwara-Schapira’s theorem, [KS, Th 11.3.3],
we conclude that

S.S.Sol = ΩX , Sol ∈ CX ,

where CX is defined in Sec. 2.10.1.

3.3 Initial conditions

Let x0 ∈ X be an initial point satifying the assumptions from Sec 2.5. Let us pose a Cauchy problem
for the equation (10) similar to Sec. 1.2.

Let Sα and πSα : Sα → C be the same as in Sec 2.2. Set q := IdX × πSα : X × Sα → X × C. The
equation (10) gets transfered to X × Sα by means of the map q. The transfered equation is of the
form

L′Ψ = 0, (15)

where Ψ is an unknown function on X × Sα and L′ is a linear differential operator

L′ = −Ψzz + e−2τΨττ + l.o.t,

and all coefficients of L′ are holomorphic on X × Sα because ∂s = e−τ∂τ . The solution sheaf of this
equation is canonically isomorphic to q−1Sol.

Let us fix two holomorphic functions ψ0, ψ1 on Sα and pose the initial conditions by requiring

Ψ(x0, s) = ψ0(s) and ∂zΨ(x0, s) = ψ1(s), s ∈ Sα.

Cauchy-Kowalewski theorem implies that there exists a neighborhood

U ⊂ X × Sα (16)

on which there exists a unique solution Ψ ∈ Γ(U, q−1Sol) of our Cauchy problem. We have a natural
map

Γ(U, q−1Sol)→ Γ(x0 × Sα, q−1Sol|x0×Sα) = Γ(Sα; g−1Sol),

11



where
g : Sα → X × C : g(s) = (x0, πSα(s)). (17)

Thus, our initial data give rise to an element

ψ ∈ Γ(Sα; g−1Sol). (18)

3.3.1 Definition of a solution

Let us formulate the definition of a multivalued solution of the initial value problem in the sheaf-
theoretical language.

Suppose we are given a complex surface Σ endowed with a local biholomorphism pΣ : Σ → X × C.
We can now transfer our differential equation from X ×C to Σ. The solution sheaf of the transferred
equation is then SolΣ := p−1

Σ Sol.

In order to transfer the initial condition (18), let us fix a factorization h of the map g:

Sα
h→ Σ

pΣ→ X × C, (19)

where h is a complex-analytic map. We then have

Γ(Sα; g−1Sol) = Γ(Sα;h−1p−1
Σ Sol) = Γ(Sα;h−1SolΣ).

The initial condition ψ now gives rise to an element ψΣ ∈ Γ(Sα;h−1SolΣ).

Let us now formulate the notion of a solution to this problem.

We have a restriction map res : Γ(Σ;SolΣ)→ Γ(Sα;h−1SolΣ), which is defined as follows:

res : Γ(Σ;SolΣ) = hom(ZΣ;SolΣ)→ hom(h−1ZΣ;h−1SolΣ) = hom(ZSα ;h−1SolΣ) = Γ(Sα;h−1SolΣ).

We call an element Ψ ∈ Γ(Σ;SolΣ) a solution of the initial value problem with the initial data ψ, if
res(Ψ) = ψΣ. Since SolΣ is a sub-sheaf of OΣ ( the sheaf of analytic functions), the unicity of analytic
continuation implies:

Claim 3.1 Suppose Σ is connected. For every initial condition ψ, the initial value problem has at
most a unique solution.

3.3.2 Equivalent formulation

One can define a notion of a solution to the initial value problem directly in terms of the initial

data ψ0, ψ1: we can require that a solution Ψ should satisfy: Ψ ◦ h = ψ0;
∂Ψ

∂z
◦h = ψ1. It is clear

that this new notion of a solution coincides with the one from the previous subsection. Indeed, the
restriction of Ψ onto the neighborhood U as in (16) must coincide with the solution provided by the
Cauchy-Kowalewski theorem.

The notion of solution from this (or previous) subsection is related to the notion of solution from Sec
1.1 as follows. First of all we have dz =

√
V (x)dx, where

√
V (x) is a nowhere vanishing holomorphic

function on X. Set ψ0 = ψ0 and ψ1(s) =
√
V (x0)ψ1(s). We then see that the notion of solution of

the Cauchy problem with the initial data ψ0, ψ1, as in Sec 1.1, coincides with the current notion of
solution of the initial value problem given by the initial data ψ0, ψ1.

12



3.3.3 Formulation of the analytic continuation problem

Our analytic continuation problem is now as follows. Find a connected complex surface S along with a
complex analytic local diffeomorphism pS : S → X×C and a factorization g = hpS , where h : Sα → S
is as in the previous subsection, satisfying: given any initial condition ψ as in (18), there should exist
a solution to the initial value problem with the initial data ψ. By Claim 3.1, this solution is then
unique.

3.4 Semi-orthogonal decomposition of F0

Our main tool in solving the analytic continuation problem is a certain semi-orthogonal decomposition
theorem, to be now stated.

Let F0 = Rg!ZSα [−2]; let CX ,⊥CX be the same as in Sec. 2.10.1.

Theorem 3.2 1) There exists a distinguished triangle

→ F0
iΦ→ Φ→ δ

+1−→ (20)

where Φ ∈ CX and δ ∈ ⊥CX .

2) The object Φ belongs to D≥0(X × C) (that is: the stalks of Φ at every point of X × C have no
negative cohomology).

Remark. The distinguished rectangle (20) is called “left semi-orthogonal decomposition of F0”. It is
well known that such a triangle, if exists, is unique up-to a unique isomorphism.

We will devote the rest of this section by deducing a solution to the analytic continuation problem
from this theorem.

3.4.1 Factorization of the initial condition

Since g : Sα → X × C is locally a closed embedding of codimension 2, whose normal bundle is
canonically trivialized, we have a natural transformation of functors

κ : g−1 → g![2]. (21)

Since Sol is microsupported on ΩX , one can easily check that Sol is non-characteristic with respect
to g. Accoriding to [KS, Prop.5.4.13], κ induces an isomorphism g−1Sol→ g!Sol[2]. We now have an
isomorphism

Γ(Sα; g−1Sol) = R0 hom(ZSα ; g−1Sol) = R0 hom(ZSα ; g!Sol[2]) = R0 hom(Rg!ZSα [−2];Sol). (22)

Let us denote the images of ψ under these identifications as follows:

νψ : ZSα → g−1Sol;

m′ψ : ZSα → g!Sol[2];

mψ : g!ZSα [−2]→ Sol.

13



Since Sol ∈ C, the semi-orthogonal decomposition theorem 20 implies that mψ uniquely factors as

mψ : Rg!ZSα [−2]
iΦ→ Φ

ψ′→ Sol. (23)

The map iΦ defines, by the conjugacy, a map I′ : ZSα → g!Φ[2]. Let also ψ1 : g!Φ[2] → g!Sol[2] be
the map induced by ψ′. The equation (23) now implies the following factorization (by the conjugacy
between Rg! and g!):

m′ψ : ZSα
I′→ g!Φ[2]

ψ1→ g!Sol[2]. (24)

Since Φ[2] is microsupported within ΩX , the transformation κ, cf. (21), induces an isomorphism
κΦ : g−1Φ → g!Φ[2] so that we have a unique map I : ZSα → g−1Φ such that I′ = κΦI. Let
ψ̃ : g−1Φ→ g−1Sol be the map induced by ψ′. We can now rewrite (24) as follows:

νψ : ZSα
I→ g−1Φ

ψ̃→ g−1Sol. (25)

3.4.2 Truncation

The second statement of the theorem implies that Φ0 := τ≤0Φ is a sheaf of abelian groups. The
canonical map c : τ≤0Φ→ Φ induces a map c′ : g−1Φ0 → g−1Φ.

Let us show that

Proposition 3.3 The map I factorizes uniquely through c′.

Proof.

We have a distinguished triangle

+1→ g−1Φ0
c′→ g−1Φ→ g−1τ>0Φ

+1→,

which induces a long exact sequence

· · ·R−1 hom(ZSα ; g−1τ>0Φ)→ R0 hom(ZSα ; g−1Φ0)
∗→ R0 hom(ZSα ; g−1Φ)→ R0 hom(ZSα ; g−1τ>0Φ) · · · .

where the arrow ∗ is given by the composition with c′. Since the functor g−1 is exact, g−1τ>0Φ ∈
D>0(Sα) so that R≤0 hom(ZSα ; g−1τ>0Φ) = 0, meaning that the map ∗ is an isomorhism. This implies
the statement. 2

Denote by
I0 : ZSα → g−1Φ0 (26)

the factorization map (unique by the above Proposition):

I : ZSα
I0→ g−1Φ0

c′→ g−1Φ.

We can also factorize:

νψ : ZSα
I0→ g−1Φ0

ψ̃◦c′→ g−1Sol.

14



3.5 Etale space of Φ0

3.5.1 Choice of a covering space Σ

Set pΣ : Σ→ X ×C to be the etale space of Φ0. Observe that the etale space of g−1Φ0 is Sα×X×C Σ.
The etale space of ZSα is Sα × Z, so that we have a map

Sα × Z→ Sα ×X×C Σ

over Sα, induced by the map I0. Let us restrict this map to Sα = Sα× 1 and denote by h the through
map

h : Sα = Sα × 1→ Sα × Z→ Sα ×X×C Σ→ Σ. (27)

By the definition of fibered product, we have pΣh = g.

Thus, pΣ : Σ→ X × C and h : Sα → Σ yield a factorization of the map (17), as required by (19).

3.5.2 Solving the initial value problem

Let us show that the initial value problem ψ ∈ Γ(Sα; g−1Sol) has a solution on Σ, in the sense of Sec.
3.3.1, where Σ is as in Sec.3.5.1.

We have a canonical map λ : ZΣ → p−1
Σ Φ0 which comes from the canonical section of p−1

Σ Φ0: over a
point of Σ corresponding to ((x, s), ϕ(x,s) ∈ (Φ0)(x,s)), the stalk of this canonical section equals ϕ(x,s).
Let us apply the functor h−1 and obtain a map

I′ : ZSα = h−1ZΣ → h−1p−1
Σ Φ0 = g−1Φ0.

Lemma 3.4 We have I′ = I.

Proof It is easy to see that for each s ∈ Sα, the map I′ induces the same map on stalks as I. 2

We have a composition Fψ : ZΣ
λ→ p−1

Σ Φ0
ψ̃c′→ p−1

Σ Sol. Let us prove that Fψ is a solution to the
initial value problem. Indeed, applying h−1 induces a map ZSα → g−1Sol which, by virtue of Lemma,
coincides with νψ, which means that Fψ is a solution.

3.5.3 Solving the analytic continuation problem

We replace Σ with its connected component S containing the image of h. It is clear that S is a solution
to the analytic continuation problem as in Sec. 3.3.3.

3.6 Structure of the object Φ.

We construct the semi-orthogonal decomposition of g!ZSα [−2] via representing g!ZSα [−2] as a cone of
some arrow A → B, and then constructing the semi-orthogonal decompositions for A and B; these
decompositions are then glued into the desired decomposition of g!ZSα [−2].
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3.6.1 Decomposition of π!ZSα ∈ D(C)

Let πSα : Sα → C be the projection. We are going to represent πSα!ZSα as a cone of a certain map.
To this end let us introduce the following subsets of C (same as in Sec 2.1)

K = {reiϕ : r ≥ 0; −α ≤ ϕ ≤ α};

rα = {reiϕ : r ≥ 0; ϕ = α};

r−α = {reiϕ : r ≥ 0; ϕ = −α}.

We have natural restriction maps

ZC
ρCK→ ZK

ρKr±α→ Zr±α

in D(C).

The identification ZSα = π!
Sα

ZC induces, by conjugacy, a map

pC : πSα!ZSα → ZC.

We are now up to defining a map pK : πSα!ZSα → ZK . We have

π−1
Sα
K = (0,∞)× (−α;α] t (0,∞)× [2π − α; 2π + α) =: K1 tK2.

Denote by i1 : K1 → Sα the closed embedding. We have natural surjections of sheaves on Sα:
ι1 : ZSα → i1!ZK1 and ι2 : ZSα → i2!ZK2 .

The map πSα induces open embeddings πSαi1 : K1 → K and πSαi2 : K2 → K. We have πSα(K1) =
K\rα; πSαK2 = K\r−α. These open embeddings induce the following embeddings of sheaves on C:
πSα!i1!ZK1 → ZK ; πSα!i2!ZK2 → ZK . Combining these maps with ι1, ι2, we get the following through
map

pK : πSα!ZSα
ι1→ πSα!i1!ZK1 → ZK .

One checks that ρKrαpK = ρCrαpC . Let us now construct the following sequence of maps

ZC
ρCrα // Zrα

0 // πSα!ZSα

pC
::

pK

$$

⊕ ⊕ // 0

ZK
ρKr−α //

−ρKrα

??

Zr−α

(28)

It is clear that the composition of every two consecutive maps is zero. In fact, this sequence is exact,
which can be shown by proving exactness of the induced sequences on stalks for every point z ∈ C.
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Let g′ : C→ X × C be given by g′(s) = (x0, s) so that g = g′πSα . Applying g′! to the exact sequence
above yields the following exact sequence of sheaves:

Zx0×C
// Zx0×rα

0 // g!ZSα

g′!(pC)
::

g′!(pK)

$$

⊕ ⊕ // 0

Zx0×K
g′!(ρKr−α )

//

−g′!(ρKrα )

==

Zx0×r−α

(29)

3.6.2 Semi-orthogonal decomposition for Zx0×C,Zx0×K ,Zx0×r±α

Theorem 3.5 There are objects ΦC, ΦK , Φrα, Φr−α in the category of sheaves of abelian groups and
maps in Db(X × C):

iΦC : Zx0×C[−2]→ ΦC iΦK : Zx0×K [−2]→ ΦK

iΦrα : Zx0×rα [−2]→ Φrα iΦr−α : Zx0×r−α [−2]→ Φr−α

whose cones are in ⊥C and ΦC,ΦK ,Φrα ,Φr−α ∈ C.

Based on this theorem, let us construct a semi-orthogonal decomposition of g!ZSα . Let us rewrite the
sequence (29) as

0→ g!ZSα
ι→ X q→ Y → 0,

where X = Zx0×C ⊕ Zx0×K and Y = Zx0×rα ⊕ Zx0×r−α . By virtue of Theorem 3.5 we have semi-
orthogonal decompositions of X and Y

→ ξ → X [−2]
PX→ X ′ +1→; η → Y[−2]

PY→ Y ′ +1→,

where X ′ = ΦC ⊕ ΦK ∈ C; Y ′ = Φrα ⊕ Φr−α ∈ C; ξ, η ∈ ⊥C. The map PYq : X [−2] → Y ′, by the
univerality of X ′, uniquely factors as

PYq = q′PX (30)

for some q′ : X ′ → Y ′ so that we have a commutative diagram

X [−2]
q //

PX
��

Y[−2]

PY
��

X ′ q′ // Y ′.

We have g!ZSα [−2] ∼= Cone q[−1]. Set Φ := Cone q′[−1]. It is well known that the commutative
diagram above implies existence of a map

iΦ : g!ZSα [−2]→ Φ (31)
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fitting into the following commutative diagram whose rows are distinguished triangles:

// g!ZSα [−2] //

iΦ
��

X [−2]
q //

PX
��

Y[−2]
+1 //

PY
��

// Φ // X ′ q′ // Y ′ +1 //

Furthermore, we have a distinguished triangle

→ Cone(iΦ)→ ConePX → ConePY
+1→,

which implies that δ := Cone(iΦ) ∈ ⊥C satisfies all the conditions of Theorem 3.2.

We will now give an explicit description of the sheaves ΦC,ΦK ,Φr±α , as well as the maps iΦC , iΦK , iΦr±α

from Theorem 3.5. This theorem will be proven below.

3.6.3 ΦC

We set ΦC = ZX×C. We have a codimension 2 embedding

iC,x0 : C→ X × C,

so that we have a natural map
Zx0×C[−2]→ ZX×C,

and we assign iΦC to be this map.

3.7 Notation: convolution functor D(X × C)×D(C)→ D(X × C)

Define a convolution functor

∗ : D(X × C)×D(C) → D(X × C) (32)

as follows. Let F ∈ D(X × C), Σ ∈ D(C). Let

a : X × C× C→ X × C : a(x, s1, s2) = (x, s1 + s2)

Set
F ∗ Σ = Ra!(F � Σ).

3.8 Construction of ΦK

3.8.1 Subdivision into α-strips

Let us split X into α-strips as in Sec. 2.7. We will freely use the notation from this section below.

We will define a sheaf ΦK on X × C via prescribing the following data.

1) For each α-strip P we will define a sheaf ΦK
P on P × C. Recall that by α-strip we always mean a

closed α-strip.
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2) Let P1, P2 be intersecting closed α-strips so that P1∩P2 = ` ∈ Lα. We will construct an isomorphism

ΓP1P2

ΦK
: ΦK

P1
|`×C

∼→ ΦK
P2
|`×C,

where we assume ΓP2P1

ΦK
= (ΓP1P2

ΦK
)−1.

Since every triple of distinct closed α-strips has an empty intersection, the data 1),2) define a sheaf
ΦK unambiguously. More precisely, there exists a sheaf ΦK endowed with the following structure:

— isomorphisms jP : ΦK |P×C
∼→ ΦK

P for every α-strip P satisfying: for every pair of intersecting strips
P1 and P2, P1 ∩ P2 = `, the following maps must conicide:

ΦK |`×C
jP1
|`−→ ΦK

P1
|`×C

Γ
P1P2
ΦK−→ ΦK

P2
|`×C

and

ΦK |`×C
jP2
|`×C−→ ΦK

P2
|`×C.

The sheaf ΦK is unique up-to a unique isomorphism compatible with all the structure maps jP .

3.8.2 Words

We will use the notation from Sec. 2.7.2. Let Wα be the set of words from the alphabet Lα ∪ {L,R}
such that:

1) each word is non-empty and its rightmost letter in L or R

2) every word is either of the form
(`n...`3`2`1L) (33)

where
`1, `3, `5, ... ∈ Lαright, `2, `4, `6, ... ∈ Lαleft

or
(`n...`1R) (34)

where
`1, `3, ... ∈ Lαleft; `2, `4, `6, .. ∈ Lαright

(alternating pattern).

Let Wα = Wα
left ∪Wα

right, where

Wα
left = {(`n...) : `n ∈ Lαleft} ∪ {L}; Wα

right = {(`n...) : `n ∈ Lαright} ∪ {R}.

Let us stress that Wα
left contains words both ending with L and words ending with R, and the same

is true for Wα
right.

19



3.8.3 Sheaves S`, Sw on C

Given a ray ` ∈ Lαleft, let is define the following sheaf on C:

S` := Z{s∈+2ĉ(`)+K}, (35)

Given a ray ` ∈ Lαright, we set
S` := Z{s∈−2ĉ(`)+K}.

Set
SL := Z{s∈z(x0)+K}; SR := Z{s∈−z(x0)+K}. (36)

Let
Sw := S`1 ∗ S`2 ∗ ... ∗ S`n ∗ SL, if w := `1..`nL ∈Wα,

Sw := S`1 ∗ S`2 ∗ ... ∗ S`n ∗ SR, if w := `1...`nR ∈Wα,

where ∗ denotes the convolution functor D(C) ×D(C) → D(C) in the sense of (32). It is clear that
Sw = Zĉ(w)+K , where we set:

ĉ(w) = z(x0)− 2ĉ(`n) + 2ĉ(`n−1)− · · ·+ (−1)nĉ(`1) if w := `1..`nL; (37)

ĉ(w) = −z(x0) + 2ĉ(`n)− 2ĉ(`n−1) + · · · − (−1)nĉ(`1) if w := `1..`nR. (38)

Let us further set
S− := ⊕w∈Wα

right
Sw; S+ := ⊕w∈Wα

left
Sw. (39)

3.8.4 Definition of ΦK
P

For any subset U ⊂ X, we define the following sheaf on U × C:

ΦK
U := ΛK−U ∗ S− ⊕ ΛK+

U ∗ S+, (40)

where ΛK±U := Z{(x,s)|s±z(x)∈K} are the same as in Sec 2.11.

Set ΦK±
U = ΛK±U ∗ S±. In particular, we have defined sheaves ΦK±

P for every α-strip P .

3.8.5 Constructuion of the identification ΓP1P2

ΦK

We have identifications:

ΦK
P1
|`×C = ΦK

P2
|`×C = ΛK+

` ∗ S+ ⊕ ΛK−` ∗ S−.

Let us now construct the gluing maps

ΓP1P2

ΦK
: ΛK+

` ∗ S+ ⊕ ΛK−` ∗ S− → ΛK+
` ∗ S+ ⊕ ΛK−` ∗ S−.

There are two cases.

Case A). Let ` ∈ Lαleft.
Assume that the z-image of P2 is above the z-image of P1 in the complex plane, fig. 4, a).
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Let us define the following morphism of sheaves on `× C

νK` : ΛK−` → S` ∗ ΛK+
` , (41)

or, more explicitly,

νK` : Z{z∈ĉ(`)−eiα.[0,∞), s−z∈K} → Z{s∈2ĉ(`)+K} ∗ Z{z∈ĉ(`)−eiα.[0,∞),s+z∈K}. (42)

We have Z{s∈2ĉ(`)+K} ∗Z{z∈ĉ(`)−eiα.[0,∞),s+z∈K} = Z{z∈ĉ(`)−eiα.[0,∞);s∈−z+2ĉ(`)+K}. The map νK` is thus
determined by a closed embedding

{z ∈ ĉ(`)− eiα.[0,∞); s ∈ −z + 2ĉ(`) +K} ⊂ {z ∈ ĉ(`)− eiα.[0,∞), s− z ∈ K}.

Let us now define a map
NK
` : ΛK−` ∗ S− → ΛK+

` ∗ S+.

as follows. We have ΛK−` ∗ S− =
⊕

w∈Wα
right

ΛK−` ∗ Sw.

We denote

Nw
` : ΛK−` ∗ Sw

νK`→ ΛK+
` ∗ S` ∗ Sw = ΛK+

` ∗ S`w. (43)

Observe that `w ∈Wα
left, so that ΛK+

` ∗S`w is a direct summand of ΛK+
` ∗S+. We therefore can define

NK
` as the direct sum of all Nw

` , w ∈Wα
right.

Let
NK
` : ΛK−` ∗ S− ⊕ ΛK+

` ∗ S+ → ΛK−` ∗ S− ⊕ ΛK+
` ∗ S+

be the extension of NK
` whose all components are zero, except for ΛK−` ∗S− → ΛK+

` ∗S+ which equals
NK
` .

We set
ΓP1P2

ΦK
:= Id + NK

` . (44)

Finally, we set
ΓP2P1

ΦK
:= (ΓP1P2

ΦK
)−1 = Id−NK

` .

Let us now rewrite the definition for the gluing maps in a more uniform way. Let P and P ′ be two
neighboring strips such that P ∩ P ′ goes to the left. Let us define the sign

ϑ(P, P ′) = 1 if P ′ is above P , and ϑ(P, P ′) = −1 if P ′ is below P . (45)

We now have
ΓPP

′

ΦK := Id + ϑ(P, P ′)NK
` . (46)

Case B). Let ` ∈ Lright, fig. 4,b). Assume first that P2 is below P1.

The formulas are similar to the case A but + and − get exchanged. We have a map

νK` : ΛK+
` → ΛK−` ∗ S` (47)

which gives rise to a map

NK
` : ΛK+

` ∗ S+
νK`→ ΛK−` ∗ S` ∗ S+ → ΛK−` ∗ S−. (48)
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Figure 4: Notations in the construction of the sheaf ΦK : a) ` ∈ Lαleft, b) ` ∈ Lαright

Similar to above, we define a map

NK
` : ΛK+

` ∗ S+ ⊕ ΛK−` ∗ S− → ΛK+
` ∗ S+ ⊕ ΛK−` ∗ S−

as the extension of NK
` whose all components are zero except for ΛK+

` ∗S+ → ΛK−` ∗S− which is NK
` .

We set
ΓP1P2

ΦK
:= Id + NK

` ; (49)

ΓP2P1

ΦK
:= (ΓP1P2

ΦK
)−1 = Id−NK

` .

Similarly to above, let us rewrite the definition as follows. Let P and P ′ be two neighboring strips
such that P ∩ P ′ goes to the right. Let us define the sign

ϑ(P, P ′) = 1 if P ′ is below P ; ϑ(P, P ′) = −1 if P is below P ′. (50)

We now have
ΓPP

′

ΦK := Id + ϑ(P, P ′)NK
` . (51)

3.8.6 Description of the map iΦK : Zx0×K [−2]→ ΦK

Let P0 be the strip such that x0 ∈ IntP0.

By construction,
ΦK |IntP0×C = ΛK+

IntP0
∗ S+ ⊕ ΛK−IntP0

∗ S−.

The direct summand inclusions
SL → S+ ; SR → S−

induce maps ΛK+
IntP0

∗ SL → ΛK+
IntP0

∗ S+, ΛK−IntP0
∗ SR → ΛK−IntP0

∗ S−.
We have the following closed embedding of codimension 2:{

x = x0

s ∈ K

}
↪→
{

x ∈ IntP0

s± z(x) ∈ ±z(x0) +K

}
.
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We have the following maps in D(IntP0 × C):

Z x ∈ IntP0

s+ z(x) ∈ z(x0) +K


// ΛK+

IntP0
∗ SL

Z x = x0

s ∈ K


[−2]

66

((

⊕ ⊕ → ΦK |IntP0×C

Z x ∈ IntP0

s− z(x) ∈ −z(x0) +K


// ΛK−IntP0

∗ SR

(52)

We thus have constructed a map

Z x = x0

s ∈ K


[−2] = Zx0×K [−2]→ ΦK |IntP0×C (53)

As Zx0×K [−2] is supported on IntP0, our map extends canonically to a map iΦK : Zx0×K [−2] → ΦK

in D(X × C).

3.9 Alternative construction of ΦK via −α-strips

It is clear that one can repeat all the steps of the previous section using −α-strips instead of α strips.
We denote the resulting sheaf ΨK ; we also get an analogue of the map iΦK , to be denoted by

iΨK : Zx0×K [−2]→ ΨK . (54)

By means of ΨK , we also get a semiorthogonal decomposition of Zx0×K [−2]. This implies the existence
of a unique isomorphism

IΨΦ : ΨK → ΦK (55)

satisfying iΦK = IΨΦiΨK (because of the unicity of semiorthogonal decomposition). We will now
briefly go over the construction of ΨK .

3.9.1 Notation for −α-strips

Let L−α = L−αleft ∪L
−α
right be the set of all intersection rays of −α-strips. L−αleft consists of the rays going

to the left, L−αright consists of the rays going to the right. Every ray ` ∈ L−αleft (resp. ` ∈ L−αright) is of the

form pz(`) = ĉ(`)− (0,∞)e−iα; (resp. pz(`) = ĉ(`) + (0,∞)e−iα) for some ĉ(`) ∈ C.

Let W−α,W−α
left,W

−α
right be defined in the same way as Wα,Wα

left,W
α
right. (W−α

left consists of words

of the form w = `n`n−1...`2`1L or w = `n...`1R where `n ∈ L−αleft and we have an alternating pattern
`n−1 ∈ L−αright, `n−1 ∈ L−αleft,... ; if `1 ∈ L−αright, then the right-most letter of w is L; if `1 ∈ L−αleft then
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the right-most letter of w is R; we also add a one letter word L to W−α
left. ) Similarly to the previous

section, we set
S̃` := Z{s:s∈2ĉ(`)+K} ∈ D(C), ` ∈ L−αleft;

S̃` := Z{s:s∈−2ĉ(`)+K} ∈ D(C), ` ∈ L−αright;

S̃L := Z{s:s∈z(x0)+K} ∈ D(C);

S̃R := Z{s:s∈−z(x0)+K} ∈ D(C)

For w ∈W−α, w = `n...`1(L or R) set

S̃w = S̃`n ∗ S̃`n−1 ∗ ... ∗ S̃`1 ∗ (S̃L or S̃R).

Set
S̃− := ⊕w∈W−α

right
S̃w; S̃+ := ⊕w∈W−α

left
S̃w.

3.9.2 Sheaves ΨK
Π

Let ΛK±U mean the same thing as in Sec.2.11. On every (−α)-strip Π consider the sheaf on Π

ΨK
Π := ΛK+

Π ∗ S̃+ ⊕ ΛK−Π ∗ S̃−.

3.9.3 Gluing maps

Let Π1, Π2 be neighboring strips, Π1 ∩Π2 = `.

Case A. If ` goes to the left, we denote by Π1 the bottom strip, fig. 5, a).
We then define a map

ν̃K` : ΛK−` → ΛK+
` ∗ S̃`

similar to νK` from the previous subsection. The maps ν̃K` induce maps

ÑK
` : ΛK−` ∗ S̃+ → ΛK+

` ∗ S̃−

and
ÑK
` : ΛK+

` ∗ S̃+ ⊕ ΛK−` ∗ S̃− → ΛK+
` ∗ S̃+ → ΛK−` ∗ S̃−,

in the same way as in Sec 3.8.5.

We now set

ΓΠ1Π2

ΨK
:= Id + ÑK

` . (56)

We set ΓΠ2Π1

ΨK
:= (ΓΠ1Π2

ΨK
)−1 = Id− ÑK

` .

Similarly to the previous subsection, we can combine the definitions as follows. Let Π and Π′ be
intersecting −α-strips whose intersection ray ` := Π∩Π′ goes to the left. Define a number ϑ(Π,Π′) = 1
if Π is below Π′ and ϑ(Π,Π′) = −1 otherwise. We then have ΓΠΠ′

ΨK
= Id + ϑ(Π,Π′)NK

` .
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cut

a) b)

Figure 5: Notations in the construction of the sheaf ΨK : a) ` ∈ Lleft, b) ` ∈ Lright

Case B. Analogously, assume that ` = Π1 ∩ Π2 goes to the right and that Π2 is below Π2, fig. 5, b).
Similar to above, we have a map

ν̃K` : ΛK+
` → ΛK−` ∗ S̃`, (57)

which enables us to define maps

ÑK
` : ΛK+

` ∗ S̃+ → ΛK−` ∗ S̃−;

ÑK
` : ΛK+

` ∗ S̃+ ⊕ ΛK−` ∗ S̃− → ΛK+
` ∗ S̃+ ⊕ ΛK−` ∗ S̃−

in the same way as above. We set
ΓΠ1Π2

ΨK
:= Id + ÑK

` ; (58)

ΓΠ2Π1

ΨK
:= (ΓΠ1Π2

ΨK
)−1 = Id− ÑK

` . (59)

Finally, given two intersecting −α-strips Π and Π′ whose intersection ray ` goes to the right, we set
ϑ(Π,Π′) = 1 if Π′ is below Π and ϑ(Π,Π′) = −1 otherwise so that ΓΠΠ′

ΨK
= Id + ϑ(Π,Π′)ÑK

` .

The sheaf ΨK is obtained by gluing of the sheaves ΨΠ along the boundary rays by means of the maps
ΓΠΠ′

ΨK
, similarly to ΦK .

The map
iΨK : Zx0×K [−2]→ ΨK , (60)

same as in (54), is constructed similarly to iΦK .

3.10 The map IΨΦ

We now pass to discussing the identification IΨΦ : ΨK → ΦK as in (55). Explicit formulas for the
map IΨΦ are complicated, see Sec. 7. Let us, however, formulate a result on this map, to be proven
in Sec . 7.

Let P be an α-strip and Π be a −α-strip. Suppose P ∩Π 6= ∅. We have identifications

ΦK |P∩Π = ΦP |P∩Π = ΛK+
P∩Π ∗ S+ ⊕ ΛK−P∩Π ∗ S−;

ΨK |P∩Π = ΨΠ|P∩Π = ΛK+
P∩Π ∗ S̃+ ⊕ ΛK−P∩Π ∗ S̃−.
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Set iΠP := IΨΦ|P∩Π. In view of the above identifications, we can rewrite:

iΠP : ΛK+
P∩Π ∗ S̃+ ⊕ ΛK−P∩Π ∗ S̃− → ΛK+

P∩Π ∗ S+ ⊕ ΛK−P∩Π ∗ S−.

We are now going to take advantage of direct sum decompositions of both parts of this map.

3.10.1 Decomposing iΠP into components

Let us now rewrite both sides of this map as follows.

For a w ∈Wα
left or w ∈W−α

left, we define A(K,w) ⊂ (P ∩Π)× C:

A(K,w) := {(x, s)|s+ pz(x) ∈ ĉ(w) +K},

where ĉ(w) is as in (37), (38).

We then have
ΛK+
P∩Π ∗ S+ ⊕ ΛK−P∩Π ∗ S− =

⊕
w∈Wα

ZA(K,w);

ΛK+
P∩Π ∗ S̃+ ⊕ ΛK−P∩Π ∗ S̃− =

⊕
w̃∈W−α

ZA(K,w̃).

Next,

Hom(
⊕

w̃∈W−α

ZA(K,w̃);
⊕
w∈Wα

ZA(K,w)) =
∏

w̃∈W−α

Hom(ZA(K,w̃);
⊕
w∈Wα

ZA(K,w))

↪→
∏

w̃∈W−α;w∈Wα

Hom(ZA(K,w̃);ZA(K,w)). (61)

In Sec 7.1 we prove that Hom(ZA(K,w̃);ZA(K,w)) = 0 unless A(K,w) ⊂ A(K, w̃), in which case
Hom(ZA(K,w̃);ZA(K,w)) = Z.ew̃,w, where ew̃,w is the homomorphism induced by the embedding
A(K,w) ⊂ A(K, w̃). Elements of

∏
w̃∈W−α;w∈Wα

Hom(ZA(K,w̃);ZA(K,w)) are thus identified with in-

finite sums of the form ∑
w̃,w

nw̃wew̃w, (62)

where nw̃w ∈ Z, and A(K,w) ⊂ A(K, w̃). By Prop.7.2, under the inclusion (61) the set
hom(

⊕
w̃∈W−α

ZA(K,w̃);
⊕

w∈Wα

ZA(K,w)) is identified with the set of all sums as in (62), satisfying

for every point y ∈ (P ∩Π)×C and every w̃ ∈W−α, there are only finitely many w ∈Wα such that
nw̃w 6= 0 and y ∈ A(K,w).

3.10.2 Identification W−α →Wα.

Let us first define an identification A : L−α → Lα. Let ` ∈ L−α. Suppose ` goes to the right. Let
P be the leftmost strip among all α-strips that intersect `. There are exactly two boundary rays of
P , `l and `r such that ĉ(`l) = ĉ(`r) = ĉ(`), `l goes to the left, and `r goes to the right. Let us assign
A(`) = `r.
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Similarly, if ` ∈ L−α, ` goes to the left, we consider the leftmost strip P among all α-strips that
intersect `. There are exactly two boundary rays of P , `l and `r such that

ĉ(`l) = ĉ(`r) = ĉ(`). (63)

`l goes to the left, and `r goes to the right. Let us assign A(`) = `l. The map A extends in the obvious
way to a map A : W−α →Wα: a word `n · · · `1L ∈W−α (resp. `n · · · `1R ∈W−α) is mapped into
A(`n) · · ·A(`1)L (resp. A(`n) · · ·A(`1)R). Because of (63), we have A(K, w̃) = A(K,A(w̃)) for all
w̃ ∈W−α.

3.10.3 Formulation of the result

Let us write iΠP in the form (62):

iΠP =
∑

w̃∈W−α;w∈Wα

nw̃wew̃w. (64)

In order to formulate the result, let us introduce some notation. For w̃ ∈W−α, w̃ = `n · · · `1L ∈W−α

(resp. w̃ = `n · · · `1R ∈W−α), set |w̃| := n, to be the length of w̃ ( in particular |L| = |R| = 0).

Proposition 3.6 1) We have nw̃A(w̃) = (−1)|w̃|;

2) If nw̃w 6= 0 and w 6= A(w̃), then A(K,w) 6= A(K, w̃) (we have a strict embedding A(K,w) ⊂
A(K, w̃)).

This proposition is proven in Sec 7.5.4.

3.11 Description of Φrα

We construct the sheaf Φrα and a map iΦrα in a way very similar to the construction ΦK , using the
decomposition of X into α-strips and replacing K with rα everywhere. We then get sheaves

Λrα±
U := Z{(x,s)|x∈U,s∈C;s±x∈rα}.

Φrα
P := Λrα+

P ∗ S+ ⊕ Λrα−
P ∗ S−.

If ` goes to the left (resp. to the right) we still have a map

νrα
` : Λrα−

` → Λrα+
` ∗ S` resp. νrα

` : Λrα+
` → Λrα−

` ∗ S`,

so that we can define the gluing maps ΓP1P2
Φrα similarly to ΓP1P2

ΦK
.

3.12 Description of Φr−α

In order to construct Φr−α and iΦr−α we switch to −α-strips ( sticking to α-strips leads to a failure
to define the maps ν

r−α
` ). The construction is then similar to the construction of ΨK (just replace K

with r−α everywhere).
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3.13 Constructing the map (30)

Let us construct a map Q, satisfying (30). It will be convenient for us to replace ΦK with the
isomorphic sheaf ΨK .

First, we will construct maps qCrα : ΦC → Φrα ; qKr±α : ΨK → Ψr±α satisfying iΨK = qCrαiΦC ;
iΦr±α = qKr±αiΨK .

We define Q as follows:

Q :

ΦC

⊕

qCrα // Φrα

⊕

ΨK

qKrα

77

qKr−α // Φr−α .

(65)

The categorical definition of the maps in this diagram was discussed in section 3.6.

Let us now pass to constructing the above mentioned maps qCrα and qKr±α .

3.13.1 The map qCrα

We have ΦC = ZX×C so that
hom(ΦC ; Φrα) = Γ(X × C; Φrα)

so that a map qCrα can be defined by means of specifying a section q ∈ Γ(X × C; Φrα). This can be
done strip-wise: we can instead specify, for every closed strip P , sections qP ∈ Γ(P × C; Φrα

P ) which
agree on intresections as follows. Let P1 ∩ P2 = `. We then have restriction maps

|`×C : Γ(Pi × C; Φrα
Pi

)→ Γ(`× C; Φrα
` ), i = 1, 2.

We then should have
qP1 |`×C = qP2 |`×C. (66)

It is clear that any collection of data qP , satisfying (66) for all pairs of neighboring strips, determines
a section q ∈ Γ(X × C; Φrα) in a unique way.

We have Z = Γ(P × C; Λrα±
P ∗ Sw) for all w ∈Wα.

Let us take the direct sum of these identifications over all w ∈Wα so as to get a map

sP : Z[Wα]→ Γ(P × C; Φrα
P ),

where Z[Wα] is the Z-span of the set Wα. Similarly, we define

s` : Z[Wα]→ Γ(`× C; Φrα
` ),

where ` is the intersection ray of a pair of neighboring α-strips . The maps sP , s` are inclusions; denote
by Γ′(P × C; Φrα

P ),Γ′(`× C; Φrα
` ) the images of these inclusions. As easily follows from the definition

of the gluing maps ΓP1P2
Φrα , the restriction maps induce isomorphisms

|`×C : Γ′(P × C; Φrα
P )→ Γ′(`× C; Φrα

` ),

where ` is a boundary ray of P .
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Since the graph formed by α-strips and their intersection rays is a tree, it follows that given an element
qP0 ∈ Γ′(P0 × C; Φrα

P0
), we have unique elements

qP ∈ Γ′(P × C; Φrα
P )

satisfying (66). We set qP0 := sP0(L+R), where L,R are words of of length 1 in Wα viewed as elements
in Z[Wα]. This way we get a section q and a map qCrα . It is clear that Condition iΦrα = qCrαiΦC is
satisfied.

Denote by eP ∈ Z[Wα] a unique element such that sP (eP ) = qP . Denote by WP ⊂ Wα a finite
subset such that

eP =
∑
w∈WP

ePww,

where ePw ∈ Z\0.

3.13.2 Map qKr−α : ΨK → Φr−α

Let us define this map stripwise. For every −α-strip Π we have a map ΛK±Π → Λ
r−α±
Π induced by the

embedding of the corresponding closed subsets of Π×C. Whence induced maps ΛK±Π ∗S̃w → Λ
r−α±
Π ∗S̃w.

Taking a direct sum over all w ∈Wα yields a map

ΛK+
Π ∗ S̃+ ⊕ ΛK−Π ∗ S̃− → Λ

r−α+
Π ∗ S̃+ ⊕ Λ

r−α−
Π ∗ S̃−,

and we assign qKr−α,Π : ΨK
Π → Φ

r−α
Π to be this map. It is clear that thus defined maps agree on all

intersection rays, thereby defining the desired map qKr−α . The condition iΦr−α = qKr−αiΨK is clearly
satisfied.

3.13.3 Map qKrα : ΨK → Φrα

We first construct a map q′Krα
: ΦK → Φrα using α strip in the same way as we constructed qKr−α .

We set
qKrα := q′KrαIΨΦ.

The condition iΦrα = qKrαiΨK is clearly satisfied.

3.13.4 Restriction of Q to a parallelogram

Let P and Π be a pair of intersecting α- and (−α)-strips.

First, in view of identification A, let us write w instead of A−1w ∈W−α. Next, for a w ∈Wα and a
subset ∆ ∈ C, let us define a subset A(∆, w) ⊂ (P ∩Π)×C as follows. If w ∈Wα

left (resp., w ∈Wα
right),

we set A(∆, w) = {(x, s)|s + z(x) ∈ ĉ(w) + ∆} (resp., A(∆, w) = {(x, s)|s − z(x) ∈ ĉ(w) + ∆};
these notations are compatible with those of section 3.10.1. Set A0 := (Π ∩ P ) × C. We then have
identifications

ΦC
Π∩P = ZA0 ;

ΨK
Π∩P =

⊕
w∈W−α

ZA(K,w);
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Φrα
Π∩P =

⊕
w∈Wα

ZA(rα;w);

Φ
r−α
Π∩P =

⊕
w∈W−α

ZA(r−α;w).

Let us now rewrite the maps from diagrams (65) in terms of these identifications.

3.13.5 The map qCrα revisited.

Let ECrα
w : ZA0 → ZA(rα,w) be the map induced by the closed embedding of the corresponding sets.

According to Sec 3.13.1,

qCrα =
∑
w∈WP

ePwE
Crα
w . (67)

3.13.6 The map qKr−α

It follows that the map

qKr−α :
⊕
w∈Wα

ZA(K,w) →
⊕
w∈Wα

ZA(r−α,w)

is a direct sum, over all w ∈Wα, of the maps

ZA(K,w) → ZA(r−α,w),

over all w ∈Wα.

3.13.7 The map qKrα

Let w,w′ ∈ Wα be such that A(K,w) ⊃ A(rα;w′). Let EKrα
ww′ : ZA(K,w) → ZA(rα;w′) be the map

induced by this embedding.

We then have
qKrα =

∑
ww′

nKrα
ww′ E

Krα
ww′ .

Proposition 3.7 1) nKrα
ww = (−1)|w|;

2) for every compact subset L ∈ (P ∩Π)×C and every w ∈Wα, there are only finitely many w′ ∈Wα

such that nww′ 6= 0 and L ∩ A(r−α;w′) 6= ∅;
3) If nKrα

ww′ 6= 0, then we have a strict embedding A(w′,K) ⊂ A(w,K).

Proof. Parts 1) and 3) follow from Sec.3.13.3 and Prop. 3.6, part 2) follows from Prop.7.2. 2

3.14 Σ and S are Hausdorff

Recall that Σ was defined in section 3.5.1 and S in the section 3.5.3.

Let us start with some general observations.
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3.14.1 Generalities on étale spaces

Let F be a sheaf of abelian groups on a Hausdorff topological space X. Call F rigid if its étale space
is Hausdorff. The following facts are easy to check.

1) Let U ⊂ X be a Hausdorff open subset. Then ZU is rigid. Indeed, the corresponding étale space is
(Z\{0})× U ∪ {0} ×X.

2) Every sub-sheaf F1 of a rigid sheaf F is rigid. Indeed, the étale space of F1 is identified with a
closed subspace of a Hausdorff étale space of F .

3) Let 0 → A → B → C → 0 be an exact sequence of sheaves, where A,C are rigid. Then so is B.
Indeed, Let A′ → B′

π→ C ′ be the étale spaces of A,B, and C. Let b1, b2 ∈ B′. Suppose π(b1) 6= π(b2);
we then have separating neighborhoods π(b1) ∈ U1; π(b2) ∈ U2 so that π−1U1, π

−1U2 separate b1 and
b2. Let now π(b1) = π(b2) = c but b1 6= b2. Since π is a local homeomorhisms, there are neigborhoods
Wi of bi in B′ such that Wi are projected homeomorhically into C ′. By possible shrinking we may
achieve that Wi project to the same open subset U ∈ C ′; c ∈ U . so that we have homeomorphisms
π−1
i : U → Wi. We then have a continuous map δ : U → A′, where δ(u) = π−1

2 u − π−1
1 u ∈ Au ⊂ A′.

Since b1 6= b2,δ(c) 6= 0, so that we have a neighborhood U ′ ⊂ U of c on which δ does not vanish. It
now follows that the neighborhoods π−1

i U ′ do separate b1 and b2.

4) Let in : Fn → Fn+1, n ≥ 0 be a directed sequence of embeddings, where F0 and all Fn+1/inFn are
rigid. Then F := lim−→

n

Fn is also rigid. Indeed, 3) implies that all Fn are rigid. Let F ′n, F
′ be the étale

spaces of Fn, F . We have induced maps F ′n → F ′; F ′n → F ′n+1 which induce a map lim−→F ′n → F ′ which
can be easily proven to be a homeomorphism. Since all the maps F ′n → F ′n+1 are closed embeddings,
it follows that F ′ is Hausdorff.

5) Let p : Y → X be a local homeomorphism, where Y is Hausdorff. Let ∅ 6= U ⊂ V ⊂ X be open
sets, where V is connected. Suppose we are given a section s : U → Y . There exist at most one
way to extend s to V . Indeed, let s1, s2 : V → Y be extensions of s. Let us prove that the set
W := {v ∈ V : s1(v) 6= s2(v)} is open. Indeed, let v ∈ W . The points s1(v), s2(v) can be separated
by neighborhoods U1, U2 ⊂ Y . Let U := s1

−1U1 ∩ s2
−1U2; U is a neighborhood of v. It now follows

that si(U) ⊂ Ui, therefore si(U) do not intersect; we have thus found an open neighborhood U ⊂ W
of v, hence W is open.

Let us now prove that W ′ := {v ∈ V : s1(v) = s2(v)} is open. It is clear that si(U) are open subsets
of Y , so that W ′ = s1(U) ∩ s2(U) is open.

Finally, V = W tW ′ and W ′ 6= ∅. This implies W = ∅.

3.14.2 Reduction to rigidity on Π ∩ P

Since S ⊂ Σ is a connected component, it suffices to prove that Σ is Hausdorff. The latter reduces to
showing that p−1

Σ ((P ∩ Π) × C) is Hausdorff for every pair of intersecting α-strip P and −α-strip Π,
which is equivalent to the rigidity of the sheaf Φ0|(Π∩P )×C, which is isomorphic to KerQ.
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3.14.3 Filtration on Φ0|Π∩P×C

Let us choose an arbitrary identification Z>0
∼→ Wα; n 7→ wn. Define a filtration on G := ΦC ⊕

ΨK |Π∩P×C by setting
Gn := ΦC |Π∩P×C ⊕ ZA(K,w1) ⊕ · · · ⊕ ZA(K,wn).

It is clear that
ΦC |Π∩P×C =: G0 ⊂ G1 ⊂ · · · Gn ⊂ · · · ⊂ G

is an exhaustive filtration. It is also clear that Gn ⊂ G is a direct summand. Denote by P Gn : G → Gn
the projection.

Set
FnΦ0 := KerQ|Gn .

It follows that F is an exhaustive filtration of Φ0|Π∩P×C. By Sec. 3.14.1 2), it suffices to show that
each sheaf Fn is rigid.

3.14.4 Sheaf F ′n ⊃ Fn

We have the following projection onto a direct summand

Pn : Φrα
Π∩P ⊕ Φ

r−α
Π∩P →

n⊕
m=1

ZA(rα;wm) ⊕ ZA(r−α;wm) =: Ln.

Let F ′n := KerPnQ|Gn . We have: Fn is a sub-sheaf of F ′n, so that it suffices to show that each F ′n is
rigid.

3.14.5 Further filtrations on Gn,Ln, F ′n

Fix n ∈ Z>0. Let us re-label the words w1, w2, . . . , wn to, say w1,w2, . . . ,wn, so that the following
holds true:

if i > j, then it is impossible that A(K,wi) is a proper subset of A(K,wj).

Since we are dealing with only finitely many words, this is always possible. Let j ≤ n. Set FjGn :=
Z(K,w1) ⊕ · · · ⊕ Z(K,wj) ⊂ Gn. Set FjLn := Zr±α,w1) ⊕ · · · ⊕ ZA(r±α,wj) ⊂ Ln. We also set

Fn+1Gn = Gn; Fn+1Ln = Ln. Let GrjGn; GrjLn be the associated graded quotients.

Proposition 3.7 and Sec. 3.13.6 imply that the map PnQ preserves the filtration F: PnQ : FjGn →
FjLn. Set FjF ′n := KerPnQ|FjGn . It is clear that this way we get a filtration on F ′n. Let GrjF ′n be the
associated graded quotients. Our problem now reduces to proving rigidity of GrjF ′n by Sec. 3.14.1,
3). Since PnQ preserves F, we have

GrjF ′n ⊂ Ker GrjPnQ : GrjGn → GrjLn.

By Sec 3.14.1 2), the problem reduces to showing rigidity of Ker GrjPnQ : GrjGn → GrjLn.
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3.14.6 Finishing the proof

Let j ≤ n. We then have GrjGn = ZA(K,wj); GrjLn = ZA(rα;wj) ⊕ ZA(r−α;wj). By Sec. 3.13.6 and
Proposition 3.7, we have:

GrjPnQ = (−1)|wj |Erα
wj
⊕ Er−α

wj
,

where the morphisms
Er±α

wj
: ZA(K,wj) → ZA(r±α;wj)

are induced by the closed embeddings of the corresponding sets. It now follows that Ker GrjPnQ =
ZA(IntK;wj), which is rigid by Sec. 3.14.1,1).

Let now j = n+ 1. We have Grn+1Ln = 0; Grn+1Gn = ZA0 , so that

Ker GrjPnQ = ZA0 ,

which is also rigid, as a sheaf on (Π ∩ P )× C = A0, by Sec. 3.14.1,1). This finishes the proof.

3.15 Surjectivity of the projection pS : S → X.

In this subsection we will prove

Theorem 3.8 The projection pS : S → X is surjective.

Proof of this theorem will occupy the rest of this subsection. We will construct an open subset U ⊂ Σ
such that

1) U projects surjectively onto X;

2) U is connected;

3) U ∩ h(Sα) 6= ∅, where h : Sα → Σ is as in (27).

Conditions 2),3) imply that U ⊂ S, and Theorem follows.

Let us now construct U and verify 1)-3).

3.15.1 Constructing U

We construct U stripwise. We will freely use the notation from Sec 3.13.1. Let P be an α-strip. Define
a closed subset

A(P ) :=
⋃

w∈WP

A(rα, w) ⊂ P × C ⊂ X × C.

Let U := X ×C\
⋃
P

A(P ), where the union is taken over the set of all α-strips P . Denote by jXU : U →

X × C the open embedding.

Let us now embed U into Σ. We have a natural embedding JU : ZU → ZX×C = ΦC . As follows from
(67), we have qCraJU = 0, which implies that the map JU factors through Ker qCrα :

JU : ZU
JqU
↪→ Ker qCrα → ΦC .
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As follows from the diagram (65), we have a natural embedding

ιq : Ker qCrα ↪→ KerQ, (68)

and we set
JQ := ιqJ

q
U , (69)

which is an injection JQ : ZU ↪→ KerQ = Φ0.

To summarize, we have the following commutative diagram of sheaves on X × C:

(KerQ = Φ0) �
� // ΦC ⊕ ΦK .

ZU

JQ
11

JqU //

JU

44Ker qCrα

* 

ιq

77

// ΦC
* 


77

The map JQ induces an embedding of the étale spaces: U ×Z→ Σ. Let jU : U → Σ be the restriction
of this map onto U × 1 ⊂ U ×Z. This map is a local homeomorphism and an embedding, therefore, j
is an open embedding. Let us identify U with jU (U).

3.15.2 Verifying 1)

Let
PΣ : Σ

pΣ→ X × C πX→ X

be the through map, where where pΣ is the same as in section 3.5.1, and πX is the projection onto a

Cartesian factor. We see that the composition PΣjU coincides with the composition U
JXU→ X×C πX→ X.

Let us check that this map is surjective. Indeed, let x ∈ X. There are at most two α-strips which
contain x. We therefore have: U ∩ x× C is obtained from x× C = C by removing a finite number of
α-rays, which is non-empty.

3.15.3 Verifying 2)

As the sets WP are finite, it easily follows that

— the sets U(P ) := P × C\A(P ) are connected;

— if P1 ∩ P2 6= ∅, then U(P1) ∩ U(P2) 6= ∅. This implies that U is connected.

The rest of the subsection is devoted by verifying 3).

3.15.4 Reformulation of 3)

Recall that the map h : Sα → Σ is induced by the map I0 : ZSα → g−1Φ0, see (26). The injection
jU : U → Σ is induced by the map JQ : ZU → KerQ = Φ0, see (69). Let ix0 : C → X × C be the
embedding ix0(s) = (x0, s). We have g = ix0πSα . Let us denote Ux0 := i−1

x0
U . Observe that Ux0 is

obtained from C by removing a finite number of α-rays.
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Lemma 3.9 There exists a non-empty open subset V ⊂ Ux0 such that:
i) the map πSα induces a homeomorphism π−1

Sα
V → V , so that we have π−1

Sα
ZV = Zπ−1

Sα
V ;

ii) the following diagram of sheaves on Sα commutes

Zπ−1
Sα
V

jV S //

jV U
��

ZSα
I0

��
g−1ZU

g−1(JQ) // g−1Φ0

where the arrow jV S is induced by the open embedding π−1
Sα
V ⊂ Sα, and the arrow jV U is the com-

position Zπ−1
Sα
V = π−1

Sα
ZV

∗→ π−1
Sα

ZUx0
= g−1ZU , where the arrow ∗ is induced by the open embedding

V ⊂ Ux0.

Let us first explain how Lemma implies 3). Indeed, it follows from Lemma that we have a commutative
diagram of topological spaces

π−1
Sα
V

h|
π−1
Sα

V
//

πSα

��

Σ

V ⊂ Ux0

ix0 // U

jU

OO , (70)

where the counterclockwise composition π−1
Sα
V → U coincides with a component of the map of étale

spaces of sheaves induced by jV U .

Then (70) implies that h(Sα) ∩ jU (U) ⊃ jU (ix0V ).

We will now prove the Lemma.

3.15.5 Subset W ⊂ Sα

Let W := π−1
Sα

(C\K) ⊂ Sα. Denote by JW : ZW → ZSα the map induced by the open embedding
jW : W ⊂ Sα. Let us consider the composition hjW , which is induced by the map I0JW : ZW → g−1Φ0.

Denote by π : Φ0 → ΦC ⊕ ΦK the natural embedding (recall that Φ0 = KerQ). Set
π0K := ΠKπ : Φ0 → ΦK , where ΠK : ΦC ⊕ ΦK → ΦK is the projection.

Let us show

Lemma 3.10 We have (g−1π0K)I0JW = 0.

Proof. Indeed, the map π factors as

Φ0
ι→ Φ = ( ConeQ)[−1]

PΦ→ ΦC ⊕ ΦK ,

where the last arrow is the canonical map. Set πK := ΠKPΦ. We have

(g−1π0K)I0 = (g−1ΠK)(g−1π)I0 = (g−1ΠK)(g−1PΦ)g−1ιI0 = (g−1πK)I,
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where I is as in section 3.4.1. Recall that in section 3.4.1 we defined I in such a way that under the
isomorphism g−1Φ = g!Φ[2], the map I corresponds by the conjugacy to the map iΦ : g!ZSα [−2]→ Φ,
where iΦ was constructed in (31).

We claim that:
The map (g−1πK)I corresponds by the conjugacy to πKiΦ. (71)

Indeed, the conjugate to

(g−1πK)I : ZSα
I→ g−1Φ

g−1πK→ g−1ΦK

is defined as nat[2] ◦ (Rg!g
!πK)Rg!I, where nat : Rg!g

!ΦK → ΦK , and the statement (71) reduces to
commutativity of the diagram

Rg!ZSα
Rg!I //

iΦ[2]

��

Rg!g
!Φ[2]

yy

Rg!g
!πK [2] // Rg!g

!ΦK [2]

nat[2]

��
Φ[2]

πK [2]
// ΦK [2]

;

but the triangle is commutative by the properties of adjoint functors, and the square commutes by
functoriality of Rg!g

!.

Denote by
λ : g!ZW [−2]→ g!ZSα [−2]

the map induced by jW , i.e. λ = g!(JW )[−2]. The problem now reduces to showing that πKiΦλ = 0.

By the construction of the map iΦ, the map πKiΦ factors as g!ZSα [−2]
pK→ Zx0×K [−2]

i
ΦK→ ΦK , where

pK is as in (28), so that πKiΦλ = iΦKpKλ. It is easy to see that pKλ = 0, which finishes the proof. 2

It now follows that the map I0JW : ZW → g−1Φ0 factors as

ZW
JW→ g−1 Ker qCrα → g−1Φ0,

where the right arrow is induced by the obvious embedding ιq : Ker qCrα ↪→ Φ0, cf.(68), coming from
the definition Φ0 = KerQ.

3.15.6 Finishing the proof

Recall, see (69), that the map JQ : ZU → Φ0 factors as JQ := ιqJ
q
U .

Suppose that the susbet V ⊂ U from Lemma 3.9 satisfies: π−1
Sα
V ⊂ W . The statement ii) of Lemma

3.9 now follows from the commutativity (which is shown below) of the following diagram

Zπ−1
Sα
V

jVW //

jV U
��

ZW

JW
��

g−1ZU
(JqU )′
// g−1 Ker qCrα

(72)
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where jV U is the same as in the statement of Lemma 3.9, the map jVW is induced by the open
embedding π−1

Sα
V ⊂ W . The map (JqU )′ is induced by JqU , i.e. (JqU )′ = g−1(JqU ). Indeed, once the

commutativity of (72) is known, we obtain the statement ii) by combining commutative diagrams as
follows:

Zπ−1
Sα
V

jVW //

jV U
��

ZW

JW
��

JW

%%
g−1ZU

(JqU )′
//

g−1JQ &&

g−1 Ker qCrα

g−1ιq
��

ZSα

I0yy
g−1Φ0

Let us now prove the commutativity of the diagram (72). We have an injection κ : Ker qCrα → ΦC =
ZX×C which induces an injection κ′ : g−1 Ker qCrα → g−1ZX×C. The commutativity of the above
diagram is equivalent to the commutativity of

Zπ−1
Sα
V

jVW //

jV U
��

ZW

κ′JW
��

g−1ZU
κ′(JqU )′

// g−1ZX×C

(73)

Let us now define
V := (C\K) ∩ Ux0 .

Let us check that V satisfies all the conditions:

a) V is non-empty. The set Ux0 is obtained by removing from C a finite number of α-rays, which
implies non-emptyness of (C\K) ∩ Ux0 .

b) π−1
Sα
V ⊂W —this is clear.

c) πSα : π−1
Sα
V → V is a homeomorphism —clear.

d) Commutativity of (73). We have g−1ZX×C = ZSα . It follows that the composition κ′JW equals
the map ZW → ZSα induced by the inclusion W ⊂ Sα. Next, the map κJU : ZU → ZX×C is induced
by the open embedding jU : U → X × C. The commutativity now follows. This finishes the proof.

3.16 Infinite continuation in the direction of K

We need some definitions

3.16.1 Parallelogram U

Let U ⊂ C be an open parallelogram with vertices A,B,C, and D, such that ~AB and ~DC are collinear
to e−iα and ~BC and ~AD are collinear to eiα.
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3.16.2 Small sets

Let Γ ⊂ C. Call Γ small if for every point c ∈ C, the intersection Γ ∩ c−K is a finite set.

Claim 3.11 Let L ⊂ C be a bounded subset. The set Γ ∩ (L−K) is then also finite.

Proof. Assuming the contrary, let {γ1, γ2, . . . , γn, . . .} ∈ Γ ∩ (L −K) so that γi = ci − zi, zi ∈ K,
ci ∈ L. Since L is bounded, the sequence ci has a convergent sub-sequence cin → c for some c ∈ C.
Let ε ∈ IntK. It follows, that cin ∈ c + ε −K for all n large enough, which contradicts to smallness
of Γ 2

3.16.3 Theorem

Using notation of Sec.3.5, let

pS,X : S ↪→ Σ
pΣ→ X × C

proj

X ,

Sz = p−1
S,X(z),

and
Pz : Sz

pS,X→ z × C = C.

Theorem 3.12 Suppose we have a section σ of Pz:

Sz
Pz // C

U

σ
`` OO

Then there exists a small subset Γ ⊂ U+K such that σ extends to (U+K)\(Γ+r−α) and (Γ+r−α)∩
U = ∅.

Remark For every bounded set L there are only finitely many γ ∈ Γ such that (γ + r−α) ∩L 6= ∅, as
follows from Claim 3.11.

Before proving this theorem, let us observe that it easily implies Theorem 1.1. Indeed, given x ∈ C, we
see that Sx is a disjoint union of all Sz, where pX(z) = x, which reduces Theorem 1.1 to the current
Theorem. The rest of this subsection is devoted to its proof.

3.16.4 Reformulation in terms of sheaves

By basic properties of an étale space of a sheaf, liftings σ as in Theorem, are in 1-to-1 correspondence
with maps of sheaves fσ : ZU → Φ0|z×C.

For every w ∈Wα and a fixed z ∈ X, set Az(K,w) = A(K,w)∩ (z ×C) ⊂ C, where A(K,w) are the
same is in Sec 3.10.1 We define Az(rα, w), Az(r−α, w) in a similar way.
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We then have the following maps:

ZU
fσ→

ZC
q0Crα

//

⊕

⊕
w ZAz(rα,w)

⊕
w ZAz(K,w)

q0
Kr−α
//

−q0Krα
66

⊕
w ZAz(r−α,w)

where q0
Crα , q0

Krα , q0
Kr−α are the restrictions of the maps qCrα , qKrα , qKr−α onto x0 × C. Let Qx0

be the restriction of the map Q onto x0 × C, so that Qx0 is the sum of q0
Crα , −q0

Krα , and q0
Kr−α .

We now have
Qfσ = 0. (74)

3.16.5 Writing fσ in terms of its components

We have components:
fσ(w) : ZU → ZAz(K,w)

fσ(0) : ZU → ZC

we have (if U ∩ Az(K,w) 6= ∅):
hom(ZU;ZAz(K,w)) = Z · gw

where
gw : ZU → ZU∩Az(K,w) → ZAz(K,w) (75)

(the first arrow is induced by the closed embedding U ∩ Az(K,w) ⊂ U; the second arrow is an open
embedding)
if U ∩ Az(K,w) = ∅, then hom(ZU,ZAz(K,w)) = 0.

So,
fσ(w) = nw · gw, where nw ∈ Z, (76)

and fσ(w) = 0 if U ∩ Az(K,w) = ∅.
Analogously, hom(ZU,ZC) = Z · g0, so

f(0) = n0 · g0. (77)

It also follows that:

Claim 3.13 for every point s ∈ U there are only finitely many w such that fσ(w) 6= 0 and s ∈
Az(K,w).

Proof This follows from consideration of the induced map on stalks at s:

(fσ)s : (ZU)s = Z→
⊕

w:s∈Az(K,w)

Z = (
⊕
w∈Wα

Az(K,w))s.

The image of this map must be contained in the direct sum of only finitely many copies of Z, the
statement now follows. 2
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3.16.6 Restriction to a sub-parallelogram V

Let V ⊂ U be a parallelogram, V = AB′C ′D′, such that B′ ∈ (AB), D′ ∈ (AD) (so that C ′ ∈ U).

The restriction
fσ,V := fσ|V : ZV → ZU

fσ→ ZC ⊕
⊕
w

ZAz(K,w)

can thus be expressed as

fσ,V = n0 · g0|V +
∑

w∈Wα

nw · gw|V.

Here gw|V is the following composition:

ZV → ZU
gw→ ZAz(K,w)

and gw is the same as in (75).

Let S ⊂Wα consist of all w such that nw 6= 0 and gw|V 6= 0. We can now rewrite

fσ,V =
∑
w∈S

nw · gw|V (78)

Observe that
gw|V 6= 0 iff V ∩ Az(K,w) 6= ∅. (79)

Next, there are only finitely many w such that f(w) 6= 0 andAz(K,w)∩V 6= ∅. Indeed, Az(K,w)∩V 6=
∅ implies C ′ ∈ Az(K,w), and we can set z = C ′ in Claim 3.13. This shows that S is a finite set.

We comment that restricting from U to V was done in order to obtain this finiteness of S.

3.16.7 Proof of a weaker version of the Theorem

We are going to prove the following statement: there exists a small set Γ ⊂ V +K, such that σ|V∩V
extends to V, where V := (V +K)\(Γ +K).

Define the extensions ZV+K
Gw→ ZAz(K,w) as follows:

Gw : ZV+K
c→ Z(V+K)∩Az(K,w) → ZAz(K,w),

where the map c is the restriction onto a closed subset and the second map is induced by the embedding
of an open subset).

Let G0 : ZV+K → ZC be the map coming from the open embedding of the corresponding sets.

Let
Fσ,V := n0G0 +

∑
w∈S

nwGw : ZV+K → ZC ⊕
⊕
w∈Wα

ZAz(K,w),

where the coefficients nw, n0 are the same as in (76), (77). Let JV : ZV → ZV+K be the map coming
from the open embedding of the corresponding sets. We have:

fσ,V = Fσ,VJV. (80)
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Let us now find a a subset V ⊂ V +K such that Q◦Fσ,V|V = 0. This vanishing along with (80) imply
that Fσ,V determines an extension of σ|V onto V.

1) Consider the through map for some w ∈ S:

βw : ZV
fσ,V→

ZC //

⊕

⊕
w∈Wα ZAz(rα;w)

⊕⊕
w∈Wα ZAz(K,w)

55

//
⊕

w∈Wα ZAz(r−α;w)

ρw→ ZAz(r−α,w)

ρw is the projection onto a direct summand, and the middle map is Qz.
By (74), βw = 0; on the other hand, βw = nw · hw, where

hw : ZV
Gw→ ZAz(K,w)

restr→ ZAz(r−α,w).

But hw = 0 iff V ∩ Az(r−α;w) = ∅. So if nw 6= 0, then

V ∩ Az(r−α;w) = ∅. (81)

Since w ∈ S and because of (79), we have

V ∩ Az(K;w) 6= ∅. (82)

From (81) and (82) it follows that (V +K) ∩ Az(r−α;w) = ∅. Hence, we have

ρw ◦ Q ◦ Fσ,V : Z(V+K) → ZAz(r−α,w) = 0. (83)

Let us now consider the maps κ ◦ Q ◦ Fσ,V, where κ is the projection onto ⊕wZAz(rα,w) as shown in
the following diagram:

κ ◦ Q ◦ Fσ,V : ZV+K
Fσ,V→

ZC
qCrα
z //

⊕

⊕
w∈Wα ZAz(rα;w)

⊕⊕
w∈Wα ZAz(K,w)

55

//
⊕

w∈Wα ZAz(r−α;w)

κ→
⊕
w∈Wα

ZAz(rα,w)

Let Mw : ZC → ZAz(rα;w) be the components of the map qCrα
z . Let

∆ = {w′ : ∃w ∈ S : Nww′ 6= 0 or Mw′ 6= 0}⊂Wα.

Here S is as in (78), Nww′ := nA−1(w);w′ , and nw̃;w′ are the same as in Prop. 3.6. (Remark, however,
that the statement of the Prop.3.6 is not used here. )

For each w′ ∈Wα let us write
Az(K,w′) = dw′ +K.

Set Γ := {dw′ : w′ ∈ ∆} ⊂ C. As S is finite (see end of section 3.16.6), for any s ∈ C there are
only finitely many w′ ∈ ∆ : A(K,w′) 3 s. Equivalently there are only finitely many w′ such that
dw′ ∈ s−K so that Γ is small .

Let
πw :

⊕
w′∈Wα

ZAz(rα,w′) → ZAz(rα,w)

be the projection. It follows that πwκQFσ,V 6= 0 only if w ∈ ∆. Set V := V + K\(Γ + K). It
follows that πwκQFV|V = 0, which implies κQFσ,V|V = 0. Taking into account (83), we conclude
QFσ,V|V = 0, i.e. σ|V∩V extends onto V, as we wanted.
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3.16.8 Proof of the theorem for U

Denote by σ′ the extension of σ|V∩V onto V. Observe that the set V ∩ U is connected and that
V ∩ V ⊂ V ∩ U. Thus, σ and σ′ are two extensions of σ|V∩V onto V ∩ U. By Sec 3.14.1 we have
σ|V∩U = σ′|V∩U. Thus, σ extends to V ∪U which is of the required type. 2

4 Orthogonality criterion – a simplified version

The goal of this section is to prove Theorem 4.1 below. This theorem will only be used in the next
Section 5.

4.1 Formulation of the Theorem

Let X be a smooth manifold. We will work on a manifold Y = X × R× R. Let us refer to points of
Y as (x, s1, s2) ∈ X × R× R. Let P1, P2 : Y → X × R be projections

Pi(x, s1, s2) = (x, si).

Let us refer to points of T ∗Y as (x, s1, s2, ω, a1ds1, a2ds2), where ω ∈ T ∗xX; a1ds1 ∈ T ∗s1R; a2ds2 ∈
T ∗s2R. Let ΩY ⊂ T ∗Y be the closed subset consisting of all points (x, s1, s2, ω, a1ds1, a2ds2) where
a1 = 0 or a2 = 0 (or both). Let CY ⊂ D(Y ) be the full subcategory consisting of all objects
microsupported within ΩY . Let ⊥CY be the left orthogonal complement to CY (consisting of all
F ∈ D(Y ) such that RHom(F,G) = 0 for all G ∈ D(Y )).

Theorem 4.1 F ∈ ⊥CY iff RP1!F = RP2!F = 0.

Let us start with proving that F ∈ ⊥CY implies RP1!F = RP2!F = 0. Indeed, given any G ∈ D(X×R),
we have

RHom(RP1!F ;G) = RHom(F, P !
1G).

It is well known that every element (x, s1, s2, ω, a1ds1 + a2ds2) ∈ S.S.(p!
1G) satisfies a2 = 0, i.e.

P !
1G ∈ CY and

RHom(RP1!F ;G) = RHom(F, P !
1G) = 0.

As G is arbitrary, we conclude RP1!F = 0. One can prove the equality RP2!F = 0 in a similar way.

The rest of this section will be devoted to proving the opposite implication:

Theorem 4.2 Let F ∈ D(Y ) satisfy RP1!F = RP2!F = 0. Let G ∈ CY . Then RHom(F,G) = 0.

We start with introducing the major tool, namely a version of Fourier-Sato transform.
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4.2 Fourier-Sato Kernel

Let E be the dual real vector space to R2 so that we have a pairing <,>: R2 × E → R. Let us use
the standard coordinates s1, s2 on R2 and σ1, σ2 on E so that

< (s1, s2), (σ1, σ2) >= s1σ1 + s2σ2.

Let Y2 := X × R2 × R2. Define projections π1, π2 : Y2 → Y :

π1(x, s, s′) = (x, s);

π2(x, s, s′) = (x, s′),

where s = (s1, s2) ∈ R2 and s′ = (s′1, s
′
2) ∈ R2.

Let K ⊂ Y2 × E be the following closed subset

K = {(y, s, s′, σ)|〈s− s′, σ〉 ≥ 0}.

Let us also define the projections

p1 : Y2 × E → Y2
π1→ Y ;

p2 : Y2 × E
π2×idE−→ Y × E.

We then have the following functor: Ψ : D(Y )→ D(Y × E):

Ψ(F ) := Rp2∗RHom(ZK ; p!
1F )

which are modified versions of Fourier-Sato transform. Let us establish certain properties of these
functors (similar to those of Fourier-Sato transform).

4.2.1 Properties of the modified Fourier-Sato transform.

Lemma 4.3 Let πE : Y × E → Y be the projection. We then have a natural isomorphism

F → RπE∗Ψ(F )[2].

Proof Let pE : Y2 × E → Y2 be the projection. We then have

RπE∗Ψ(F ) ∼ Rπ2∗RHom(RpE!ZK ;Rπ!
1F ). (84)

(Indeed, one uses p1 = π1 ◦ pE , the adjunction formula for pE!, and πE ◦ p2 = πE ◦ π2. )

A simple computation shows that we have

RpE!ZK ∼= Z∆[−2].

where ∆ ⊂ Y2 is the diagonal, i.e. the set of all points of the form (x, s, s). The statement now follows.
2
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4.2.2 Singular support estimation

Let us define the following set

C := {(σ1, σ2)|σ1 = 0 or σ2 = 0} ⊂ E. (85)

Let U := E\C.

Lemma 4.4 Suppose G ∈ CY . Then we have:

S.S.(Ψ(G)) ∩ T ∗(Y × U) ⊂ {(x, s, σ, ω, 0, bdσ)} ⊂ T ∗(Y × U),

where (x, s) ∈ X × R2 = Y ; σ ∈ U ; ω ∈ T ∗xX; bdσ ∈ T ∗σU .

Proof. First of all, by [KS, Prop.5.3.9],

S.S.(ZK) = {((s, s′, σ), λd〈s− s′, σ〉) : λ〈s− s′, σ〉 = 0, λ ≥ 0, 〈s− s′, σ〉 ≥ 0}. (86)

By [KS, proof of Prop.5.4.2], S.S.p!
1G is contained in the following subset of T ∗(Y2 × E):

(x, s, s′, σ, ω, ads, 0 · ds′, 0 · dσ),

where (x, s, ω, ads) ∈ ΩY .

Let us now check that
S.S.p!

1G ∩ S.S.ZK ⊂ {zero section}. (87)

Suppose we have an element η in this intersection which does not belong to the zero section. It should
be of the form as in (86). Since η 6= 0, λ > 0 and 〈s− s′, σ〉 = 0. We have

λd〈s− s′, σ〉 = λ〈s− s′, dσ〉+ λ〈ds− ds′, σ〉.

The ds′ component of η is thus −λ〈ds′, σ〉. In order for η ∈ S.S.π!
1G, this component must vanish,

which implies σ = 0. Analogously, dσ-component of η must vanish as well, i.e. s−s′ = 0. This implies
that η is in the zero section, contradiction. This proves (87).

It now follows that
S.S.RHom(ZK ; p!

1G) ⊂ S.S.(p!
1G)− S.S.(ZK)

(where “− ” means subtraction in each fiber of T ∗(Y2 × E)), [KS, Cor.6.4.5]), i.e.

S.S.RHom(ZK ; p!
1G) ⊂

{
(x, s, s′, σ, ω, ads− λd〈s− s′, σ〉)

}
(88)

where
(x, s, ω, ads) ∈ ΩY (89)

and s, s′, σ, λ satisfy the same conditions as in (86).

Now let us estimate
S.S.Rp2∗RHom(ZK ; p!

1G) = S.S.(Ψ(G)).

By [T08, Lemma 3.3], we have: if (a′)0d(s′)0 6= 0 , then

(x0, (s′)0, σ0, ω0, (a′)0d(s′)0 + b0dσ
0) 6∈ S.S.Rp2∗RHom(ZK ; p!

1G)
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as long as:

there exists ε such that RHom(ZK ; p!
1G) is nonsingular at all points (x?, s?, s

′
?, σ?, ω?, a?ds+ a′?ds

′ +
b?dσ), where {

|x? − x0| < ε, any s? ∈ R2, |s′? − (s′)0| < ε, |σ? − σ0| < ε,
|ω? − ω0| < ε, |a?| < ε, |a′? − (a′)0| < ε, |b? − b0| < ε.

(90)

Thus, the proof of the lemma 4.4 reduces to the following statement:

Let (x0, (s′)0, σ0, ω0, (a′)0d(s′)0 + b0dσ
0) ∈ T ∗(Y × E) satisfy:

a) σ0 = (σ0
1, σ

0
2) is such that

σ0
1 6= 0 and σ0

2 6= 0; (91)

b) (a′)0 6= 0.
Then for some ε > 0 there are no solution (x?, s?, s

′
?, σ?, ω?, a?, a

′
?, b?) of the inequalities (90) satisfying

the conditions (coming from (88) ){
x? = x, s? = s, s′? = s′, σ? = σ,
ω? = ω, a? = a− λσ, a′? = λσ, b? = −λ(s− s′), (92)

such that condition of (86) and (89) hold.

Eliminating the variables with ? and conditions on x, ω, b, we must, for fixed 0-variables find ε making
the following list of conditions inconsistent:

1. |s′ − (s′)0| < ε

2. |σ − σ0| < ε

3. |a− λσ| < ε

4. |λσ − (a′)0| < ε

5. a1 = 0 or a2 = 0

6. λ ≥ 0

7. λ〈s− s′, σ〉 = 0

8. 〈s− s′, σ〉 ≥ 0

Indeed, suppose there is a solution to this system of inequalities such that a1 = 0. Then by condition
3, |λσ1| < ε, i.e.

|λ| < ε

|σ1|
(93)

By condition 2,
|σ| < |σ0|+ ε. (94)

Combining condition 4 with (93) and (94), obtain

ε > |(a′)0 − λσ| ≥ |(a′)0| − λ · (|σ0|+ ε) ≥ |(a′)0| − ε

|σ1|
(|σ0|+ ε) (95)
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If we choose ε > 0 to satisfy (cf. condition a) )

ε <
1

2
min{|σ0

1|, |σ0
2|} (96)

then (95) yields

ε > |(a′)0| − 2ε

|σ0
1|

(|σ0|+ ε) (97)

We have assumed a1 = 0 above; if we assume a2 = 0 (cf. condition 5), we get an analogous inequality.
Choosing ε > 0 to satisfy (96) and to violate both (97) and its analog for a2 = 0, finishes the proof.

2

4.2.3

Lemma 4.5 Let G ∈ Ob(CY ). Then Ψ(G)|Y×U = 0.

Proof Let q : Y × U → X × U be the projection q(x, s, σ) = (x, σ). We have a natural map

ι : q−1Rq∗(Ψ(G)|Y×U )→ Ψ(G)|Y×U

By virtue of lemma 4.4 and the fact that the fibers of q are diffeomorphic to R2, we see that ι is an
isomorphism.

It now remains to show that Rq∗(Ψ(G)|Y×U ) = 0.

Let KU := K ∩ (Y2 × U). Let q1 : Y2 × U → Y × U , q2 : Y × U → Y , q3 : Y × U → X × U be the
projections

q1(x, s, s′, σ) = (x, s′, σ);

q2(x, s, σ) = (x, s);

q3(x, s, σ) = (x, σ).

In this notation,
Rq∗(Ψ(G)|Y×U ) = Rq3∗RHomY×U (Rq1!ZKU ; q!

2G).

Finally, we observe that Rq1!ZK×U = 0 (pointwise computation). 2

4.2.4 Representation of G

Let iC : C ⊂ E be the closed embedding; here C is as in (85). Let KC := K ∩ (Y2 × C). Let

pC1 : Y2 × C → Y2
π1→ Y

and
pC2 : Y2 × C

π2×idC−→ Y × C.

Let qC : Y × C → Y be the projection. Let G ∈ CY . It now follows from Lemma 4.5 that Ψ(G) =
(idY × iC)∗(idY × iC)−1Ψ(G), which together with Lemma 4.3 yields a natural isomorphism

G ∼= RqC∗ Rp
C
2∗RHomY2×C(ZKC ; (pC1 )!G)[2].
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So that we have an induced isomorphism

RHom(F,G) ∼= RHom(F ;RqC∗ Rp
C
2∗RHomY2×C(ZKC ; (pC1 )!G))[2].

Let us rewrite the RHS.

First of all, set
πC2 := qCpC2 : Y2 × C → Y : (x, s, s′, σ) 7→ (x, s′).

We then have
RHom(F ;RqC∗ Rp

C
2∗RHomY2×C(ZKC ; (pC1 )!G))

= RHom((πC2 )−1F ;Hom(ZKC ; (pC1 )!G))

= RHom((πC2 )−1F ⊗ ZKC ; (pC1 )!G)).

Next, we factor pC1 = qCπC1 , where

πC1 : Y2 × C
π1×idC−→ Y × C

so that we can continue

RHom((πC2 )−1F ⊗ ZKC ; (pC1 )!G)) = RHomY×C(R(πC1 )!((π
C
2 )−1F ⊗ ZKC ); (qC)!G).

Let us show that F := RπC1!((π
C
2 )−1F ⊗ ZKC ) = 0 under assumtions on F from Theorem 4.2. Indeed,

let (a, 0) ∈ C, a 6= 0. Then, for any F ∈ D(Y ), we have

RP1!F ∼= F|Y×(a,0).

Similarly,
RP2!F ∼= F|Y×(0,a).

Finally,
RP0!F ∼= F|Y×(0,0),

where P0 : Y × C → Y is the projection. Since P0 passes through P1, all the restriction listed vanish
under assumptions from Theorem 4.2. This concludes the proof.

5 Orthogonality criterion for a generalized strip

5.1 Conventions and notations

Let α ∈ (0, π/2) be an acute angle, same as in Sec.1.1.1.

Set e = e−iα; f = eiα so that e, f is a basis of C over R and every complex number z can be uniquely
written as z = xe + yf , x, y ∈ R so that we identify

C ∼→ R2 (98)

using the coordinates (x, y).
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Define a generalized strip which is a set of one of the following types:
First type:

S = {xe + yf : x > γ; y ∈ (A,B)} ⊂ R2 = C, (99)

where −∞ ≤ γ <∞ and −∞ ≤ A < B ≤ ∞.

Second type:
S = {xe + yf : x < γ; y ∈ (A,B)} ⊂ R2 = C, (100)

where −∞ < γ ≤ ∞ and −∞ ≤ A < B ≤ ∞.

5.1.1 Convolution

Let M,N be smooth manifolds Define a convolution bi-functor

∗ : D(M × R2)×D(N × R2)→ D(M ×N × R2)

as follows. Denote

A : M × R2 ×N × R2 →M ×N × R2 : A(m,u, n, v) = (m,n, u+ v) (101)

We now define
F ∗ S := RA!(F �L S).

5.1.2 The category CS.

Let ΩS ⊂ T ∗(S× R2) be a closed conic subset consisting of all points

(x1, y1, x2, y2, a1dx1 + b1dy1; a2dx2 + b2dy2)

where (x1, y1) ∈ S and (a1, b1) = ±(a2, b2) .

In terms of the complex coordinate z = xe + yf and the identification (98) we have:

ΩS = {(z, s, adz + bds|z ∈ S, s ∈ C, a = ±b}.

Let CS ⊂ D(S× R2) be the full subcategory consisting of all objects microsupported within ΩS.

5.1.3 Rays l+ and l−

Let
l+ := {(x, 0)|x ≥ 0} ⊂ R2 ; l− := {(x, 0);x ≤ 0} ⊂ R2,

5.1.4 Projectors P±

Let us define the following projectors P± : S× R2 → R2, where

P±(x1, y1, x2, y2) = (x1 ± x2; y1 ± y2). (102)
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5.2 Formutation of the criterion

Our criterion is then as follows.

Proposition 5.1 Consider constant sheaves Zl± ∈ D(R2). Let F ∈ D(S×R2) and suppose that one
of the natural maps

Zl+ ∗ F → Z0 ∗ F = F (103)

Zl− ∗ F → Z0 ∗ F = F ; (104)

is a quasi-isomorphism.

Suppose that both RP+!F = 0 and RP−!F = 0. Then F ∈ ⊥CS.

The rest of this section is devoted to proving this criterion under the assumption (103). The case
(104) is treated in a fairly similar way and is omitted.

5.3 Fourier-Sato decomposition

Denote by E the dual vector space to R2. We have the standard identification E = R2. Let 〈, 〉 be
the standard pairing E × R2 → R. Let Z ⊂ E × R2; Z = {(ζ, u)|〈ζ, u〉 ≥ 0}.
As was explained above, we have the convolution

∗ : D(E × R2)×D(S× R2)→ D(E × S× R2).

For F ∈ D(S× R2) set
F(F ) := ZZ ∗ F ∈ D(E × S× R2), (105)

where ZZ ∈ D(E × R2) is the constant sheaf on Z. Notice that F(F ) is an analog of (but is not
directly equal to) the Fourier-Sato transform of [KS, Ch.3.7].

Lemma 5.2 (Fourier-Sato decomposition of F ) Consider the projection q : E × S × R2 → S × R2.
Then for any F ∈ D(S× R2), we have a natural isomorphism

Rq!F(F )[2] ∼= F.

Proof. Let us introduce the following projections (where, e.g., p24 means the projection onto the
2-nd and the 4-th factor):

E × S× R2 × R2

p123

vv
p23

�� p234 ))

p24

++
E × S× R2

q
// S× R2 S× R2 × R2

p̃13

oo r // S× R2

Introduce the following closed subset

Z ′ = {(ξ, z, x, y) : 〈ξ, x− y〉 ≥ 0} ⊂ E × S× R2 × R2.
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We can now rewrite:
F(F ) = Rp123!(ZZ′ ⊗ p−1

24 F ),

hence
Rq!F(F ) = Rp̃13!Rp234!(ZZ′ ⊗ p−1

24 F ) =

(projection formula [KS, Prop.2.5.13(ii)] is used)

= Rp̃13!(Rp234!ZZ′ ⊗ r−1F )

We have a natural isomorphism Rp234!ZZ′ ∼= ZS×∆[−2], where ∆ ⊂ R2 × R2 is the diagonal. The
result now follows. 2

5.4 Transfer of the conditions RP±!F = 0 to FF

Claim 5.3 Let F ∈ D(S× R2) satisfy RP±!F = 0. We then have R(idE × P±)!F(F ) = 0.

Proof. Let us pick a point (η, s0) ∈ E × R2 and show that, say, R(idE × P+)!F(F )|(η,s0) = 0. We
have:

R(idE × P+)!F(F )|(η,s0) = RΓc(E × S× R2; (idE × P+)−1Z(η,s0) ⊗L F(F ))

= RΓc(E × S× R2;Z(idE×P+)−1(η,s0) ⊗RA!(ZZ � F ))

[KS, Prop.2.5.13(ii)]
= RΓc(E × R2 × S× R2;ZA−1P−1

+ (η,s0) ⊗ p
−1
12 ZZ ⊗ p

−1
34 F ), (106)

where:
p12 : E × R2 × S× R2 → E × R2

is the projection onto the first two factors;

p34 : E × R2 × S× R2 → S× R2

is the projection onto the last two factors; and finally,

A : E × R2 × S× R2 → E × S×R2 : (η, s1, z, s2) 7→ (η, z, s1 + s2)

(as in (101)).

We have:
A−1(idE × P+)−1(η, s0) = {(η, s1, z, s2)|s1 + s2 + z = s0}.

Note that

ZA−1(idE×P+)−1(η,s0) ⊗ p−1
12 ZZ = ZA−1(idE×P+)−1(η,s0) ⊗ Zp−1

12 Z
= Z(A−1(idE×P+)−1(η,s0))∩p−1

12 Z

and put

T := (A−1(idE × P+)−1(η, s0)) ∩ p−1
12 Z = {(η, s1, z, s2)|s1 + z + s2 = s0; 〈η, s1〉 ≥ 0}.

Denote by i the restriction of p34 to T :

i : T → S× R2 : T 3 (η, s1, z, s2) 7→ (z, s2).
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We see that i is a closed embedding and that

i(T ) = {(z, s)|〈η, s0 − s− z〉 ≥ 0} = P−1
+ K, K = {w|〈η, s0 − w〉 ≥ 0} ⊂ R2,

where P+ : S× R2 → R2 is as in (102).

We thus can continue our computation from (106)

= RΓc(E × R2 × S× R2;ZT ⊗ p−1
34 F )

(using that p−1
34 F ' p!

34F [−4] since the fibers of p34 are homeomorphic to R4 and that Rp34!p
!
34F ' F )

= RΓc(S× R2; (Rp34!ZT )⊗ F [−4]) = RΓc(S× R2;Zi(T ) ⊗ F [−4]) =

= RΓc(S× R2;P−1
+ ZK ⊗ F [−4]) =

[KS, Prop.2.5.13(ii)]
= RΓc(R2;ZK ⊗RP+!F [−4]) = 0.

The equality RP−!FF = 0 can be proven in the same way. 2

5.5 Fourier-Sato decomposition for sheaves satisfying (103)

Define:
Π+ = {(ξ, η) ∈ E|ξ > 0} ⊂ E. (107)

Suppose (103) is the case. Then we have

F(F )
∼→ F(Zl+ ∗ F )

∼→ (ZZ ∗ Zl+) ∗ F. (108)

5.5.1 Computing ZZ ∗ Zl+

Introduce the following subset

Z+ := Z ∩ (Π+ × R2) ⊂ Π+ × R2.

Lemma 5.4 We have an isomorphism

ZZ ∗ Zl+ = ZZ+ . (109)

Proof. The inclusion {0} ↪→ l+ induces a map

ZZ ∗ Zl+ → ZZ ∗ Z0 = ZZ . (110)

It suffices to prove the following two statements:

1) Let x ∈ Z+ ⊂ E × R2. The map

(ZZ ∗ Zl+)x → (ZZ+)x = Z, (111)

induced by (110), is an isomorphism.
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2) Let x ∈ (E × R2)\Z+. Then (ZZ ∗ Zl+)x = 0.

In preparation for the proof of 1) and 2), for a point x := (ζ, v) ∈ E × R2, let us introduce a set

Kx = {(ζ, u1, u2)|(ζ, u1) ∈ Z;u2 ∈ L+;u1 + u2 = v} ⊂ E × R2 × R2,

so that we have
(ZZ ∗ ZL+)x = R•Γc(Kx,ZKx). (112)

Let
Lx{(ζ, u1, u2)|(ζ, u1) ∈ Z;u2 = 0;u1 + u2 = v} ⊂ E × R2 × R2

so that
(ZZ ∗ Z0)x = R•Γc(Lx,ZLx). (113)

We have Lx ⊂ Kx is a closed subset. Under the identifications (112), (113), the map (111) corresponds
to the restriction map

R•Γc(Kx,ZKx)→ R•Γc(Lx,ZLx).

Let v = (v1, v2), ζ = (ξ, η). We then have

Kx = {((ξ, η), (x1, v2), (x2, 0)|ξx1 + ηy1 ≥ 0;x2 ≥ 0;x1 + x2 = v1}.

The subset Lx ⊂ Kx consists of all points with x2 = 0.

The set Kx is identified with the set

K ′x := {(x1, y1) ∈ R2|ξx1 + ηy1 ≥ 0;x1 ≤ v1}.

The set Lx gets identified with the subset L′x of K ′x consisting of all points with x1 = v1.

Let us check 1). Let π : R2 → R be the projection onto the second coordinate. It suffices to check
that the natural map

Rπ!ZK′x → Rπ!ZL′x
(induced by the embedding L′x ⊂ K ′x) is an isomorphism. We further reduce the statement so that it
reads: the following induced map on stalks at every point y ∈ R is an isomorphism:

(Rπ!ZK′x)y → (Rπ!ZL′x)y. (114)

We have
(Rπ!ZK′x)y ∼= RΓc(K

′
xy;ZK′xy); (115)

(Rπ!ZL′x)y ∼= RΓc(L
′
xy;ZL′xy);

where
K ′xy = {(x1, y) ∈ R2|ξx1 + ηy ≥ 0;x1 ≤ v1}; (116)
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L′xy = {(x1, y) ∈ R2|ξx1 + ηy ≥ 0;x1 = v1}.

The map (114) corresponds to the natural map

RΓc(K
′
xy;ZK′xy)→ RΓc(L

′
xy;ZL′xy) (117)

induced by the closed embedding L′xy ⊂ K ′xy.
We have ξ > 0 (because x ∈ Π+ × R2), in which case either both L′xy and K ′xy are empty sets, or
K ′xy is a closed segment and L′xy is its boundary point, which implies that (117) and hence (114) are
isomorphisms.

Let us now check 2). We have ξ ≤ 0. It suffices to check that (Rπ!ZKx)y=0 for all y ∈ R. Using (115),
we can equivalently rewrite this condition as follows:

RΓ(K ′xy;ZK′xy) = 0.

As follows from (116), the condition ξ ≤ 0 implies that K ′xy is homeomorphic to a closed ray, which
implies the statement. 2.

Combining (108) and (109), we immediately obtain:

Corollary 5.5 Suppose F ∈ D(S× R2) satisfies (103). Then

supp F(F ) ⊂ Π+ × S× R2. (118)

Motivated by the corollary 5.5, set

F′(F ) := F(F )|Π+×S×R2 ∈ D(Π+ × S× R2),

so that
F′(F ) = ZZ+ ∗ F. (119)

Let π+ : Π+ × S× R2 → S× R2 be the projection.

Lemma 5.2 and (118) imply the following isomorphism:

F [−2] ∼ Rπ+!F′(F ) = Rπ+!(ZZ+ ∗ F ). (120)

5.5.2 Further reformulation

Let us introduce a map
Q : Π+ → R , Q(ξ, η) = η/ξ.

Let also
q : R× S× R2 → S× R2

be the projection. Finally, let us set

W := {(a, (x, y))|x+ ay ≥ 0} ⊂ R× R2.
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There is a commutative diagram with a Cartesian square:

Z+ × S× R2 ⊂ Π+ × R2 × S× R2
Q×idR2×S×R2

//

2A
��

R× R2 × S× R2

A
��

W × S× R2⊃

Π+ × S× R2
Q×idS×R2

//

π+ ((

R× S× R2,

qww
S× R2

(121)

The map A in this diagram is induced by the addition R2 × R2 → R2.

Lemma 5.6 i) “ZZ+ ∗ F is constant along fibers of Q× idS×R2” in the sense that

ZZ+ ∗ F ∼= (Q× idS×R2)−1(ZW ∗ F ); (122)

ii) If F satisfies (103), then there is a quasi-isomorphism

F ∼= Rq!(ZW ∗ F )[1]. (123)

Proof From the definition of a constant sheaf as a pull-back of Zpt, we have (Q× idR2)−1ZW×S×R2 =
ZZ+×S×R2 ; and then, by the base change [KS, (2.5.6)] in the Cartesian square of (121), we obtain
(122).

To prove (123), write

F
(120)
= Rπ+!(ZZ+ ∗ F )[2]

(122)
= Rπ+!(Q× idS×R2)−1(ZW ∗ F )[2] =

= Rπ+!(Q× idS×R2)−1RA!(ZW �F )[2]=Rq!R(Q× idS×R2)!(Q× idS×R2)−1RA!(ZW �F )[2]
Q−1 = Q![−1]

=

= Rq!R(Q× idS×R2)!(Q× idS×R2)!(ZW ∗ F )[1]=Rq!(ZW ∗ F )[1].

2

5.5.3 Rewriting the map (123)

Define a map l : R× R2 → R, where R is another copy of R, as follows: l(a, x, y) := x+ ay.

Let
L : R× S× R2 → R× S×R;

be given by L(a, z, u) = (a, z, l(a, u)).

Let W ′ ⊂ R× R2 ×R be given by

W ′ = {(a, (x1, y1), t)|t− x− ay ≥ 0}.
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Let
pS : R× S× R2 ×R→ R× R2 ×R;

pR×R : R× S× R2 ×R→ S× R2;

and
pR2 : R× S× R2 ×R→ R× S×R

be projections.

We have the following cartesian diagram:

(a, u1, z, u2) � //

∈

(a, z, u2, `(a, u1 + u2))

∈
(a, u1, z, u2)

_

��

∈ R× R2 × S× R2

A
��

L̃ //

2

R× S× R2 ×R
pR2

��

3 (a, z, u, t)
_

��
(a, z, u1 + u2) ∈ R× S× R2 L // R× S×R 3 (a, z, t)

(a, z, u) � //

∈

(a, z, `(a, u))
∈

(124)

and W × R2
u2
× S = L̃−1(W ′ × S).

By the base change [KS, (2.5.6)] applied to the diagram (124), we have for all F satisfying (103):

ZW ∗ F = L−1RpR2!(p
−1
R×RF ⊗ p

−1
S ZW ′). (125)

Denote
ΦF := ZW ∗ F := RpR2!(p

−1
R×RF ⊗ p

−1
S ZW ′) ∈ D(R× S×R).

5.5.4 Transferring Claim 5.3 to ΦF

Let P ′± : R× S×R→ R×R be given by

P ′±(a, (x, y), t) = (a, x+ ay ± t). (126)

Lemma 5.7 If F ∈ D(S× R2) satisfies both (103) and RP+!F = 0 then

RP ′+!(ΦF ) = 0. (127)

Analogously, if F satisfies both (104) and RP−!F = 0, then RP ′−!(ΦF ) = 0.
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Proof of Lemma 5.7. Extend the diagram (124) as follows:

R× R2 × S× R2 L̃ //

A
��

R× S× R2 × R
pR2

��
E × S× R2

idE×P+

��

Π+ × S× R2
Q×idS×R2

//

idΠ+
×P+

��

? _
ι×idoo R× S× R2 L //

idR×P+

��

R× S×R

P ′+
��

E × R2 Π+ × R2
Q×idR2 //? _

ι×idoo R× R2 L′ // R×R

(a,w) � //

∈

(a, `(a,w))

∈

(128)

where ι : Π+ ↪→ E is the open inclusion.

We have Z+ = Z ∩ (ι × idR2)Π+ and ZZ+ = (i × idR2)−1ZZ . Thus by the base change [KS, (2.5.6)],
ZZ+ ∗ F ∈ D(Π+ × S× R2) is quasi-isomorphic to (ι× idS×R2)−1(ZZ ∗ F ). Thus,

R(idΠ+ × P+)!(ZZ+ ∗ F )
[KS, (2.5.6)]

= (ι× idR2)−1R(idE × P+)!(ZZ ∗ F )
Claim 5.3

= 0.

But on the other hand,

F(F )
(119)
= ZZ+ ∗ F

(122)
= (Q× idS×R2)−1(ZW ∗ F )

(125)
= (Q× idS×R2)−1L−1ΦF

hence
R(idΠ+ × P+)!(Q× idS×R2)−1L−1ΦF = 0,

or applying the base change [KS, (2.5.6)] to the middle and right bottom squares of (128), we have

(Q× idR2)−1(L′)−1RP ′+!(ΦF ) = 0.

Since both maps (Q × idR2) and L′ are locally trivial fibrations with a vector space as a fiber, we
conclude that RP ′+!ΦF = 0. 2

5.6 Rewriting the condition of orthogonality to C

Let F satisfy the conditions of Proposition 5.1 (assuming (103). Let H ∈ CS, where CS is defined in
section 5.1.2. Proposition 5.1 now reduces to proving that RHom(F,H) = 0.

Let us investigate RHom(F,H) using the representation (123) of F . We have:

RHom(F,H)
(123)
= RHom(Rq!(ZW ∗ F ), H)[−1]

(125)
= RHom(Rq!L

−1(ΦF );H)[−1]

= RHomR×S×R(ΦF ;RL∗q
!H)[−1]. (129)

Singular support estimate shows that
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Proposition 5.8 We have:
S.S.RL∗q

!H ⊂ ΩH,

where
ΩH :=

⋃
“+” and “-”

{(a, x1, y1, t,R.(d(x1 + ay1)± dt) + R.da)} (130)

and where a ∈ R, (x1, y1) ∈ S, t ∈ R.

Proof Because q is a projection on a direct factor, by [KS, Prop.3.3.2(ii)] we have S.S.q!H = S.S.q−1H
which in turn can be, using [KS, Prop.5.4.13], estimated by (in the notation of that proposition)
tq′(q−1

π (S.S.(H))); thus
S.S.q!H ⊂ {a, z, u, αda+ υdu : ζ = ±υ}.

By [KS, Prop.5.4.4],

S.S.RL∗q
!H ⊂ Lπ(tL′

−1{a, z, u, αda+ ζdz + υdu : ζ = ±υ}).

We have

T ∗(Ra × Sz × R2
u=(x,y))

tL′←− Ra × Sz × R2
u=(x,y) ×(Ra×Sz×Rt) T

∗(Ra × Sz ×Rt)
(a, z, u, αda+ ζdz + ξdx+ ηdy) (a, z, u, αda+ ζdz + τdt)

υ = (ξ, η) t = `(a, u)
dx+ ady + yda ↔ dt.

Thus
S.S.RL∗q

!H ⊂ Lπ({a, z, u, αda+ ζdz + τdt : ζ = ±τ(1, a)}) =

= {a, z, t, αda+ ζdz + τdt : ζ = ±τ(1, a)}

which is equivalent to (130). 2

Thus, Proposition 5.1 follows from the following one:

Claim 5.9 Let ΦF ,H ∈ D(R×S×R) satisfy: RP ′±!ΦF = 0 (where P ′± are as in (126)); S.S.H ⊂ ΩH,
where ΩH is as in (130). Then we have:

RHom(ΦF ;H) = 0.

5.7 Subdivision into 3 cases

We are going to subdivide the space R×S×R with coordinates (a, z, u) into 3 parts according to the
sign of a.
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5.7.1 Subdivision of R× S×R

U+ := (0,∞)× S×R ⊂ R× S×R

U− := (−∞, 0)× S×R ⊂ R× S×R;

U0 := 0× S×R ⊂ R× S×R.

Denote
j± : U± → R× S×R

the corresponding open embeddings and by

i0 : U0 → R× S×R

the corresponding closed embedding.

5.7.2 Subdivision of ΦF

Set
Φ± := j−1

± ΦF ∈ D(U±);

Φ0 := i−1
0 ΦF ∈ D(U0).

We have a distinguished triangle

→ j+!Φ+ ⊕ j−!Φ− → ΦF → i0!Φ0
+1→ . (131)

Let
P
U+
± := P ′±j+; P

U−
± := P ′±j−; PU0 = P ′±i0

be the restrictions of P ′± from (126) onto U+, U−, and U0. Base change theorem implies that

P
U+

±! Φ+ = 0;

P
U−
±! Φ− = 0;

PU0
±! Φ0 = 0.

5.7.3 Subdivision of H

Let H± ∈ D(U±);
H± := j−1

± H.

Let H0 ∈ D(U0);
H0 := i!0H.

Let us estimate the microsupports of these objects. Let

ΩU± := ΩH ∩ T ∗U± ⊂ T ∗U±,

where we assume the embeddings T ∗U± ⊂ T ∗(R× S×R) induced by j±.
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It is immediate that S.S.(H±) ⊂ ΩU± .

Let
Ω0 :=

⋃
“+” and “-”

{(x1, y1, t,R.(dx1 ± dt)} ⊂ T ∗(S×R),

where, same as in (130), (x1, y1) are coordinates on S, and t on R.

Corollary [KS] 6.4.4(ii) implies that
S.S.(H0) ⊂ Ω0.

5.7.4 Subdivision of Claim (5.9)

By virtue of the distinguished triangle in (131), Claim (5.9) gets split into showing the following
vanishings:

RHomR×S×R(j+!Φ+;H) = RHomU+(Φ+;H+) = 0;

RHomR×S×R(j−!Φ−;H) = RHomU−(Φ−;H−) = 0;

RHomR×S×R(i0Φ+;H) = RHomU0(Φ0;H0) = 0.

Our task now reduces to showing the following 3 statements:

Claim 5.10 Let Φ+,H+ ∈ D(U+). Suppose RP
U+

±! Φ+ = 0 and S.S.(H+) ⊂ ΩU+. Then

RHom(Φ+,H+) = 0.

Claim 5.11 Let Φ−,H− ∈ D(U−). Suppose RP
U−
±! Φ+ = 0 and S.S.(H−) ⊂ ΩU−. Then

RHom(Φ−,H−) = 0.

Claim 5.12 Let Φ0,H0 ∈ D(U0). Suppose RPU0
±! Φ0 = 0 and S.S.(H0) ⊂ ΩU0. Then

RHom(Φ0,H0) = 0.

5.7.5 Furhter reduction

Let ♦ be one of the symbols: +,−, or 0. Let I+ := (0,∞); I− := (−∞, 0); I0 := {0}. Let

Q′♦ : U♦ × S×R→ I♦ × R×R

be given by
Q′♦(a, (x, y), t) := (a, x+ ay, t)

(in the case ♦ = 0 we assume a = 0). Denote by V♦ ⊂ R × R × R the image of Q′♦. Depending on
S, V♦ can be of one of the following types:

1) For some linear function f♦ : I♦ → R,

V♦ = {(a, v, t)|a ∈ I♦; v > f(a); }.
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In this case, set U♦ := I♦ × (0,∞)×R; set

Q1 : U♦ → U♦,

Q1(a, (x, y), t) := (a, x+ ay − f(a), t).

2) For some linear function f♦ : I♦ → R,

V♦ = {(a, v, t)|a ∈ I♦; v < f(a)}.

In this case, set U♦ := I♦ × (−∞, 0)×R; set

Q1 : U♦ → U♦;

Q1(a, (x, y), t) := (a, x+ ay − f(a), t).

3)
V♦ = I♦ × R×R.

In this case, set U♦ := I♦ × (−∞,∞)× R; set Q1 : U♦ → U♦,

Q1(a, (x, y), t) := (a, x+ ay, t).

It is easy to see that in each of the cases the map Q1 is surjective; furthermore it is a smooth fibration
with its typical fiber diffeomorphic to R. We also see that the 1-forms from ΩU♦ vanish on fibers of
Q1, which implies that the natural map

H♦ → Q!
1RQ1!H♦

is an isomorphism.

Set
L♦ := RQ1!H♦ ∈ D(U♦).

Define conic closed subsets ΩU± ⊂ T ∗U± as follows:

ΩU± :=
⋃

“+” and “-”

{(a, v, t,R.(dv ± dt) + R.da},

where (a, v, t) ∈ U± ⊂ I± × R×R. Define a conic closed subset ΩU0 ⊂ T ∗U0:

ΩU± :=
⋃

“+” and “-”

{(0, v, t,R.(dv ± dt)}.

It is easy to see that
S.S.(L♦) ⊂ ΩU♦ .
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5.7.6

We have
RHom(Φ♦;H♦) = RHom(Φ♦;Q!

1L♦) = RHomU♦(RQ1!Φ♦;L♦).

SetG♦ := RQ1!Φ♦. Let P
U♦
± : U♦ → R×R be the restrictions of the following maps R×R×R→ R×R:

(a, v, t) 7→ (a, v ± t). (132)

It now follows that
RP

U♦
±! G♦ = 0.

So, we can rewrite Claims 5.10—5.12 as follows.

Claim 5.13 Let G♦,L♦ ∈ D(U♦) satisfy:

RP
U♦
±! G♦ = 0; (133)

S.S.(L♦) ∈ ΩU♦. Then RHom(G♦;L♦) = 0.

5.8 The case U♦ = I♦ × (−∞,∞)×R

This case follows from Theorem 4.1 below. Below, we are going to consider the case U♦ = I♦ ×
(0,∞)× R. The case U♦ = I♦ × (−∞, 0)× R is fairly similar.

5.9 Proof of Claim 5.13 for U♦ = I♦ × (0,∞)× R

As above, our major tool is development of a certain representation of G.

5.9.1 Representation of G

Let V1 ⊂ I♦ × R× (0,∞)× R be given by

V1 = {(a, u, v, t)| |t| < v}. (134)

Let V := I♦ × R× (0,∞)× (0,∞). We have an identification J : V → V1,

J(a, u, ξ1, ξ2) = (a, u,
ξ1 + ξ2

2
,
ξ1 − ξ2

2
). (135)

Let I1 : V1 → I♦ × (0,∞)× R be given by

I1(a, u, v, t) = (a, v, u+ t). (136)

Let I = I1J :

I(a, u, ξ1, ξ2) = (a,
ξ1 + ξ2

2
, u+

ξ1 − ξ2

2
),
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so that ξ1 = v + t; ξ2 = v − t.
Let q1, q2 : V → I♦ × R>0 × R>0,

qi(a, u, ξ1, ξ2) = (a, u, ξi), i = 1, 2. (137)

Let us summarize our notation in the following diagram (a wavy line indicates that a sheaf is defined
over the given space):

(a, u, v, t) � //

∈

(a, v, u+ t)

∈

X × R× (R>0 × R) ⊃ V1 = {(a, u, v, t) : |t| < v} I1 // I♦ × R>0 × R G

H V = I♦ × R× R>0 × R>0 qi
//

I

33

J

OO

I♦ × R× R>0.

(a, u, ξ1, ξ2)

∈

� // (a, u, ξi)

∈

Claim 5.14 Suppose that an object G ∈ D(I♦ × (0,∞) × R) satisfies (133) both with the sign “+”
and with the sign “-”. There exists an object H ∈ D(V ) such that
1) both Rq1!H ∼ 0 and Rq2!H ∼ 0;
(2)RI!H ∼ G.

Remark. Observe that (133) reads as follows: RP 1
±!G = 0, where

P 1
± : I♦ × (0,∞)× R→ R× R : P 1

±(a, v, t) = (a, v ± t), (138)

same as in (132).

Proof of this Claim will occupy the next subsection

5.10 Proof of Claim 5.14

5.10.1 Functors r1 and r2 and their properties

For F ∈ D(I♦ × R× (0,∞)× (0,∞)) we have natural maps (coming from the adjunction)

F → q!
1Rq1!F ; F → q!

2Rq2!F. (139)

Let r1(F ), r2(F ) be the cones of these maps so that we have natural maps (in the conventions of [KS,
Ch.1.4])

r1(F )→ F [1] (140)

r2(F )→ F [1]. (141)

We therefore have a composition map
r1r2F → F [2]. (142)
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Lemma 5.15 We have Rq1!r1r2 = Rq2!r1r2 = 0.

Proof First of all we observe that

Rq1!r1 ∼ 0, Rq2!r2 ∼ 0. (143)

Indeed, the question boils down to showing that Rq1! applied to (139) yields a quasi-isomorphism
Rq1!F

∼→ Rq1!q
!
1Rq1!F .

There is a natural transformation of endofunctors on D(I♦ ×R× (0,∞)): ε : Rq1!q
!
1 → Id (since Rq1!

is left adjoint to q!
1). Since q1 is a projection along (0,∞), it is well known that ε is an isomorphism

of functors. By [MacLane, Ch.IV.1, Th.1(ii)], there is a diagram

Rq1!F

id &&

// Rq1!q
!
1Rq1!F

��
Rq1!F

in which the vertical arrow is induced by ε, which implies that the vertical arrow is an isomorphism,
hence, so is the horizontal arrow. This finishes proof of (143).

Secondly, we have a natural quasi-isomorphism

r1r2 ∼ r2r1. (144)

Indeed, let us represent q1, q2 as convolution with kernels. Let A,B,C be smooth manifolds. We have
the convolution bifunctor ◦ : D(A×B)×D(B × C)→ D(A× C) defined by

F ◦G = RπAC!(π
!
ABF ⊗ π!

BCG). (145)

LetA = R, B1 = B2 = (0,∞), C = pt so that F is a sheaf onA×B1×B2, q1 : A1×B1×B2 → A×B1×C
is the projection along B2.

We have Rq1!F = F ◦ ZB2×C .

Set q♦1 G
∼= q−1

1 G[1] = G ◦ ZC×B2 [1].

Let us construct an isomorphism (natural in F and G)

RHom(Rq1!F ;G)
∼→ RHom(F ; q♦1 G).

Fix one of the two maps I : ∆!ZB2 → ZB2×B2 [1] such that the induced map RP!∆!ZB2 → RP!ZB2×B2 [1]
is an isomorphism, where P : B2 × B2 → B2 is the projection along the second factor. We have an
induced map

α : F
∼=→ F ◦∆!ZB2

I→ F ◦ ZB2×B2 [1]
∼=→ q♦1 Rq1!F

It follows that this map induces an isomorphism

Rq1!F → Rq1!q
♦
1 Rq1!F. (146)

The induced map

RHom(Rq1!F ;G)→ RHom(q♦1 Rq1!F ; q♦1 G)
−◦α−→ RHom(F ; q♦1 G) (147)
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is an isomorphism for all F,G. Indeed, the right arrow is an isomorphism because of (146). The
left arrow is an isomorphism because we have an isomorphism of functors q♦1 G = G � Z[1] and the
statement now follows from the Kuenneth formula.

Thus we have constructed an adjunction between the functors q♦1 and Rq1! in the sense of [MacLane,
Ch.IV.1]. In case G = Rq1!F , the map (147) sends idRq1!F to q!

1(idRq1!F ) ◦ α = α, therefore α is
the universal arrow associated to the adjunction (147) in the sense of [MacLane, Ch.IV.1, p.81]; by
the uniqueness of an adjoint functor, see [MacLane, Cor.1, Ch.IV.1, p.85] and its proof, this means
that α coincides with the “standard” adjunction map (coming from [KS, Ch.3.1]) up to some natural
autoequivalence of the functor q!

1Rq1!. This means that we have a canonical isomorphism of functors
q♦1
∼= q!

1 so that we won’t make difference between q♦1 and q!
1 We have

q!
1Rq1!F = F ◦ (ZB2×C ◦ ZC×B2)[1] = F ◦ ZB2×B2 [1]. (148)

The above consideration shows that r1F = Coneα ' F ◦ L1, where L1 := Cone(I : ∆!ZB2 →
ZB2×B2 [1]).

Analogously, r2F ' F ◦ L2, where L2 := Cone(I : ∆!ZB1 → ZB1×B1 [1]).

Therefore,
r1r2F ' F ◦ [L1 � L2] ' r2r1F,

as we wanted.

We now have: Rq1!r1r2 = 0 because of (143) and

Rq2!r1r2
(144)
= Rq2!r2r1

(143)
= 0. (149)

This accomplishes proof of Lemma. 2

5.10.2 Construction of the object H and proof of the Claim 5.14 1)

We set Φ = I!G and H := r1r2(Φ). Lemma 5.15 says that Rq1!H ∼ 0 and Rq2!H ∼ 0, which proves
part 1) of the Claim 5.14.

5.10.3 Reduction of part 2) of the Claim 5.14

Let us deduce part 2) of the Claim 5.14 from the following statement.

We have a map
ιH : H = r1r2Φ→ Φ[2],

where the right arrow is defined in (142). Let us apply the functor RI! to ιH so as to get a map

RI!H → RI!Φ[2] (150)

Claim 5.16 The map (150) is an isomorhpism.

64



This Claim implies part 2) of the Claim 5.14. Indeed, we can rewrite (150) as follows.

RI!H → RI!Φ[2] = RI!I
!G[2]

∼→ G[2],

where the rightmost arrow is an isomorphism because I is a smooth fibration with fibers diffeomorphic
to R1.

We now pass to proving Claim 5.16.

5.10.4 Subdivision into 3 cases

The map (150) factors as

RI!r1r2(Φ)
(140)→ RI!r2(Φ)[1]

(141)→ RII!Φ[2].

As I!G = Φ and by [KS, Prop.1.4.4.(TR3)], the cone of the right arrow is isomorphic to RI!q
!
2Rq2!I

!G[2].
Analogously, the cone of the left arrow is RI!q

!
1Rq1!r2Φ[1] which, by definition of r2, is the cone of the

natural arrow
RI!q

!
1Rq1!I

!G→ RI!q
!
1Rq1!Rq

!
2Rq2!I

!G.

Thus, isomorphicity of (150) is implied by the following three vanishing statements:

1) RI!q
!
2Rq2!I

!G ∼ 0

2)RI!q
!
1Rq1!I

!G ∼ 0;

3)RI!q
!
1Rq1!q

!
2Rq2!I

!G ∼ 0.

5.10.5 Proof of the 1-st and the 2-nd vanishing

Let V2 := I♦ × R× (0,∞)4. Let π1, π2 : V2 be given by

π1(a, v, ξ1, ξ2, ξ
′
1, ξ
′
2) = (a, v, ξ1, ξ2)

and
π2(a, v, ξ1, ξ2, ξ

′
1, ξ
′
2) = (a, v, ξ′1, ξ

′
2)

Let L2,⊂ V2 be a closed subset of the form:

L2 := {(a, v, ξ1, ξ2, ξ
′
1, ξ
′
2)|ξ2 = ξ′2};

Lemma 5.17 For any F ∈ D(V ) we have

q!
2Rq2!F = Rπ2!(ZLi ⊗ π2

−1F ).

Proof Similar to proof of (148). 2

Let X2 := I♦ × ((0,∞) × R) × ((0,∞) × R). Let πX1 , π
X
2 : X2 → I♦ × (0,∞) × R be the projections

along the 3rd and the 2nd factors respectively. Define closed subsets L± ⊂ X2:

L± = {(a, (s1, t1), (s2, t2)) ∈ I♦ × ((0,∞)× R)× ((0,∞)× R) : s1 ± t1 = s2 ± t2}
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Lemma 5.18 For any F ∈ D(I± × (0,∞)× R),

(P 1
−)−1RP 1

−!F = RπX1! (ZL− ⊗ πX2
−1
F ),

where the map P 1
− was defined in (138).

Proof. The proof is analogous to the proof of lemma 5.17. 2

We now have
RI!q

!
2Rq2!I

!G[−2] ∼ RI!q
−1
2 Rq2!I

−1G

∼ Rπ′1!(ZL2 ⊗ (π′2)−1G), (151)

where π′i = Iπi : V2 → I♦ × (0,∞)× R, as easily follows from Lemma 5.17.

Let us define the following map

J2 : I♦ × R× ((0,∞)× R)× ((0,∞)× R)→ I♦ × ((0,∞)× R)× ((0,∞)× R) = X2

as follows:
J2(a, v, (s1, t1), (s2, t2)) = (a, s1, v + t1, s2, v + t2).

Let us also define a map (which is a closed embedding)

K2 : V2 → I♦ × R× ((0,∞)× R)× ((0,∞)× R)

as follows:

K2(a, v, ξ1, ξ2, ξ
′
1, ξ
′
2) := (a, v,

ξ1 + ξ2

2
;
ξ1 − ξ2

2
,
ξ′1 + ξ′2

2
;
ξ′1 − ξ′2

2
).

It follows that π′1 = πX1 J2K2; π′2 = πX2 J2K2

We can now rewrite (151) as follows:

RI!q
!
2Rq2!I

!G[−2] ∼ RI!q
−1
2 Rq2!I

−1G

∼ RπX1! ((RJ2!RK2!ZL2)⊗ (πX2 )−1G), (152)

Let
L′2 ⊂ I♦ × R× ((0,∞)× R)× ((0,∞)× R)

be a closed subset consisting of all points (a, v, s1, t1, s2, t2) with s1 − t1 = s2 − t2.

It is easy to see that K2(L2) ⊂ L′2 is an open embedding. Indeed, K2(L2) consists of all points
(a, v, s1, t1, s2, t2) with s1 − t1 = s2 − t2 , s1 > |t1|, s2 > |t2|.
Therefore, we have a map RK2!ZL2 → ZL′2 which induces a map

RπX1! ((RJ2!RK2!ZL2)⊗ (πX2 )−1G)→ RπX1! ((RJ2!ZL′2)⊗ (πX2 )−1G). (153)

The cone of this arrow equals
RπX1! (M⊗L(πX2 )−1G),
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where
M ∼ RJ2!ZN ,

and N = L′2\K(L2). Let us now show by a pointwise computation that M ∼ 0. Indeed, let α :=
(a, σ1, τ1, σ2, τ2) ∈ X2) be a point. Let us consider H•(Mα) = H•c (J−1

2 α;Z).

If σ1 − τ1 6= σ2 − τ2, then J−1
2 α = ∅. If σ1 − τ1 = σ2 − τ2 = h, then J−1

2 α gets identified with the set
of all v ∈ R satisfying: either σ1 ≤ |τ1 − v| or σ2 ≤ |τ2 − v|. Let us denote this set by Yα ⊂ R. It
follows that Yα consists of all points v satisfying: h+ v ≤ 0 or h+ v ≥ 2σ, where σ is the maximum
of σ1 and σ2. In other words, Yα is a disjoint union of two closed rays so that H•c (Yα,Z) = 0. This
shows that M ∼ 0.

The map (153) is therefore a quasiisomorphism. In view of (151), the first vanishing will be shown
once we prove that

RπX1! ((RJ2!ZL′2)⊗ (πX2 )−1G) ∼ 0. (154)

But RJ2!ZL′2 = ZL1
−

[−1], and hence the l.h.s. equals (P 1
−)−1RP 1

−!G[−1] which is zero by (133).

The second vanishing is shown analogously.

Proof of the third vanishing Define the following subset

L ⊂ I♦ × R× ((0,∞)× R)× ((0,∞)× R)) :

L = {(a, v, s1, t1, s2, t2)|(a, v, s1, t1), (a, v, s2, t2) ∈ V };

Similar to the proof of the 1-st vanishing, one shows that

RI!q
!
1Rq1!q

!
2Rq2!I

!G[−3] ∼ RπX1! ((RJ2!ZL)⊗ (πX2 )−1G),

where
J2 : I♦ × R× ((0,∞)× R)× ((0,∞)× R))→ X2

and
πX1 , π

X
2 : I♦ × R× ((0,∞)× R)× ((0,∞)× R))→ I♦ × (0,∞)× R

are the same as in the proof of the 1-st vanishing.

Observe that
J2(L) = {(a, (s1, t1), (s2, t2))| |t1 − t2| < s1 + s2}.

the projecion L→ J2(L) is a smooth fibration whose fibers are diffeomorphic to R1; we now see that

RJ2!ZL ∼ ZJ2(L)[−1] ∈ D(X2).

We therefore need to show that
RπX1! (ZJ2(L) ⊗ (πX2 )−1G) ∼ 0

The complement to J2(L) in X2 consists of two components

X2\J2(L) = M+ tM−,

where
M+ = {{(x, (s1, t1), (s2, t2))| t1 − t2 ≥ s1 + s2}
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and
M− = {{(x, (s1, t1), (s2, t2))| t1 − t2 ≤ −s1 − s2}

We thus have a distinguished triangle

→ Rπ1!(ZJ2(L) ⊗ π−1
2 F )→ Rπ1!(ZX2 ⊗ π−1

2 G)→ Rπ1!(ZM+ ⊗ π−1
2 G)⊕Rπ1!(ZM− ⊗ π−1

2 G)→

which comes from a short exact sequence

0→ ZJ2(L) → ZX2 → ZM+ ⊕ ZM− → 0.

The second term of this triangle is quasi-isomorphic to

π−1Rπ!G,

where π : I♦ × (0,∞)×R→ I♦ is the projection. It follows that Rπ!G ∼ 0 because π passes through
P 1

+ (as well as P 2
−) from (133).

We thus need to show that RπX1! (ZM± ⊗ (πX2 )−1G) ∼ 0.

Introduce the following subsets N± ⊂ I♦ × ((0,∞)× R)× R:

N+ = {(a, (s1, t1), y)| t1 ≥ s1 + y}

and
N− = {(a, (s1, t1), y)| t1 ≤ −s1 − y}.

Let q1 : I♦ × ((0,∞)× R)× R→ (0,∞)× R and q2 : I♦ × ((0,∞)× R)× R→ R be projections. We
then have

RπX1! (ZM± ⊗ (πX2 )−1G) ∼ Rq1!(ZN± ⊗ q−1
2 RP 1

±!G) ∼ 0

because RP 1
±!G = 0 by (133).

This completes the proof of the 3rd vanishing as well as the proof of Claim 5.14

5.11 Finishing proof of Claim 5.13

Let I♦ × R>0 × R, the target of the map I1 from (136), have coordinates (a, v, η).

Let G,H, I be as in Claim 5.14 and let H ′ be a sheaf on I♦ × R>0 ×R microsupported on the set⋃
“+” and “-”

(a, v, η,R.d(v ± η) + R.da). (155)

We then have
RHom(G,H ′) ∼ RHom(RI!H,H

′) ∼ RHom(H, I!H ′).

By [KS, Prop.5.4.5(i)], it follows from (155) that

S.S.(I!H ′) ⊂ {(a, u, ξ1, ξ2, bda+ wdu+ τ1dξ1 + τ2dξ2 : τ1 = 0 or τ2 = 0}. (156)

68



Set A′ = H, B′ = I!H ′.

Let also q1, q2 : I♦×R× (0,∞)× (0,∞)→ I♦×R× (0,∞) be projections as in (137): qi(a, u, ξ1, ξ2) =
(a, u, ξi).

We then have Rqi!A
′ = 0, i = 1, 2, by Claim 5.14,1), and we have the estimate (156) for B′.

Let us identify diffeomorphically R→ (0,∞). Under this identification, we have two sheaves A,B on
Y × R× R, where Y = I♦ × R, such that

1) Rp1!A = Rp2!A ∼ 0, where p1, p2 : Y × R× R→ R are projections;

2) B is microsupported on the set of points (y, u1, u2, ω + v1du1 + v2du2), where ω ∈ T ∗y Y u1, u2 ∈ R;
v1 = 0 or v2 = 0 (or both).

By Theorem 4.1, RHom(A,B) = 0, which finishes the proof of Claim 5.13, as well as Proposition 5.1.

6 Proof of Theorem 3.5

In section 3.6 -3.13, we have constructed objects ΦK ,Φrα ,Φr−α , as well as maps iΦK : Zx0×K [−2] →
ΦK , iΦrα : Zx0×rα [−2] → Φrα , and iΦr−α : Zx0×r−α [−2] → Φr−α . In order to finish the proof of
Theorem 3.5, it now remains to prove:

1) Each of the objects ΦK ,Φrα ,Φr−α belongs to C, to be done in Sec 6.1.

2) Cones of the maps iΦK , iΦrα , iΦr−α are in ⊥C, to be done in Sec 6.2

We only consider the case of ΦK (and the map iΦK ), because the arguments for the remaning cases
are very similar.

Proof of 2) is based on the orthogonality criterion of the previous section (Proposition 5.1).

6.1 Proof of ΦK ∈ C.

Consider open subsets Σ` ⊂ X, where Σ` is the union of two neighboring open strips IntP1, IntP2 and
their common boundary ray `. It is clear that Σ` form an open covering of X.

Let us consider the restriction estimate ΦK |Σ`×C. It suffices to show that

S.S.(ΦK |Σ`×C) ⊂ ΩX ∩ T ∗(Σ` × C)

for each element Σ` of the open covering. Let us fix the notation: let Σ` = IntP1 t IntP2 t `; let
P ′i := IntPi t `, i = 1, 2, be the closure of Pi in Σ`. Set for brevity

F := ΦK |Σ`×C.

Finally, we introduce the following sheaf on Σ` × C:

ΛK±Σ`
:= Z{z∈Σ` : s±z∈K}.

Let us now suppose for definiteness that ` goes to the left. As follows from the construction of ΦK in
Sec 3.8.4,3.8.5, we have identifications (i = 1, 2):

F |P ′i×C = (ΛK+
Σ`
∗ S+ ⊕ ΛK−Σ`

∗ S−)|P ′i×C.
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Figure 6: A regular sequence – Notation 6.1.

as well as a gluing map (44):

ΓP1P2

ΦK
: (ΛK+

Σ`
∗ S+ ⊕ ΛK−Σ`

∗ S−)|`×C → (ΛK+
Σ`
∗ S+ ⊕ ΛK−Σ`

∗ S−)|`×C

When restricted onto ΛK+
Σ`
∗S+|`×C, this map becomes the identity. This readily implies that we have

an embedding
ΛK+

Σ`
∗ S+ ↪→ F,

whose restriction onto each P ′i is just the identical embedding onto the direct summand. We can
construct a surjection F → ΛK−Σ`

∗ S− in a similar way. All together, we get a short exact sequence

0→ ΛK+
Σ`
∗ S+ → F → ΛK−Σ`

∗ S− → 0,

The marginal terms of this sequence do clearly have their singular support inside ΩX ∩ T ∗(Σ` × C),
cf.(7), hence so does the middle term F . This finishes the proof.

6.2 Proof of orthogonality

In this subsection, we prove that the cone of the map iΦK is in ⊥C. We will exhibit an increasing
exhaustive filtration F of ΦK such that the map iΦ factors through F 0ΦK . Our statement then
reduces to showing that Cone(F0 → F 0ΦK), as well as all successive quotients of F i+1ΦK/F iΦK ,
i ≥ 0, belong to ⊥C.

6.2.1 Regular sequences

Notation 6.1 Let λnλn−1 · · ·λ1 be a nonempty sequence of bounday α-rays.

Call this sequence regular if for each k ≥ 1 the rays λk and λk+1 are different and belong to the closure
of a (unique) α-strip Pk, fig.6. We also assume that P0 is the initial strip (i.e. x0 ∈ P0.

Note that, in general, a ray can occur in a regular sequence several times.

6.2.2 Admissible rays

We will freely use the notation from Sec. 3.8, such as Lα, W , ΛK±.

Let w ∈Wα be of the form `m`m−1 · · · `1{L or R} and let ` ∈ Lα be a boundary α-ray. We call ` λ, w-
admissible, if there exists a k such that ` = λk and and `m`m−1 · · · `1 is a subsequence of λkλk−1 · · ·λ1

(i.e. there is an increasing sequence κ1 < ... < κm such that `1 = λκ1 , ..., `m = λκm).
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Remark 6.2 Let w = lmlm−1 · · · (L or R). If `m = `, then this condition is equivalent to `m`m−1 · · · `1
being a subsequence of λ; it `m 6= `, then the condition is equivalent to ``m`m−1 · · · `1 being a subse-
quence of λ.

6.2.3 Subset Pλ,w

Let P be an α-strip. We define an open subset Pλ,w ⊂ P as follows.

1) if every boundary ray of P is not λ,w-admissible, then we set Pλ,w := ∅.
2) otherwise (there are λ,w-admissible boundary rays of P ) we define Pλ,w as the union of IntP with
all λ,w-admissible boundary rays of P .

6.2.4 Subsheaves ΛK±P,λ,w

Let j := jPλ,w : Pλ,w × C→ P × C be the open embedding.

As in Sec.2.11, let ΛK±P = Z{(z,s): z∈P, s±z∈K}.

Accordingly, we can define subsheaves

ΛK±P,λ,w := j!j
!ΛK±P ⊂ ΛK±P ∈ D(P × C).

Observe that ΛK±P,λ,w = 0 if P has no λ,w-admissible boundary rays.

6.2.5 Subsheaves ΦK,λ
P ⊂ ΦK

P

We have an identification

ΦK |P =
⊕

w∈Wα
right

Sw ∗ ΛK−P ⊕
⊕

w∈Wα
left

Sw ∗ ΛK+
P .

For each regular sequence λ (where λ stands for λnλn−1 . . . λ1), let us construct a sub-sheaf ΦK,λ ⊂ ΦK

as follows. Set
ΦK,λ
P :=

⊕
w∈Wα

right

Sw ∗ ΛK−P,λ,w ⊕
⊕

w∈Wα
left

Sw ∗ ΛK+
P,λ,w (157)

We have an obvious embedding
ΦK,λ
P → ΦK

P .

6.2.6 Sheaves ΦK,λ
P match on the intersections

Let P and P ′ be two intersecting α-strips; let ` = P ∩ P ′. We then have two sub-sheaves of ΦK
` ,

namely ΦK,λ
P |`×C and ΦK,λ

P ′ |`×C. Let us check that these two subsheaves do in fact coincide:

Claim 6.3
ΦK,λ
P |`×C = ΦK,λ

P ′ |`×C
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Proof Let w ∈Wα. Consider the following sheaf: Λ±P,w := ΛK±P,λ,w|`×C. By definition, Λ±P,w = 0 unless

` is λ,w-admissible, in which case Λ±P,w = ΛK±|`.
Let W(`, λ) ⊂ Wα be the subset consisting of all w, where ` is λ,w-admissible. Let W(`, λ) =
W(`, λ)left t S(`, λ)right, where W(`, λ)left = W(`, λ) ∩Wα

left; W(`, λ)right = W(`, λ) ∩Wα
right.

It now follows that ΦK,λ
P |`×C, as a subsheaf of ΦK

P |`×C =
⊕

w∈Wα
left
Sw ∗ ΛK+

` ⊕
⊕

w∈Wα
right

Sw ∗ ΛK−` ,

coincides with the following its direct summand:

ΦK,λ
P |`×C = Φ(`, λ) :=

⊕
w∈W(`,λ)left

Sw ∗ ΛK+
` ⊕

⊕
w∈W(`,λ)right

Sw ∗ ΛK−` .

Analogously, we have an equality
ΦK,λ
P ′ |`×C = Φ(`, λ)

of subsheaves of ⊕
w∈Wα

left

Sw ∗ ΛK+
` ⊕

⊕
w∈Wα

right

Sw ∗ ΛK−` = ΦK
P ′ |`×C.

It now suffices to check that the sub-sheaf Φ(`, λ) is preserved by the gluing map ΓPP
′

ΦK
from Sec 3.8.5.

By definition of ΓPP
′

ΦK
, it suffices to check: let w ∈W(`, λ) and suppose `w ∈Wα (meaning that the

leftmost ray of the word w goes in the opposite direction to `); then `w ∈W(`, λ). Indeed, w ∈W(`, λ),
`w ∈Wα is equivalent to `w being a sub-sequence of λ, which is the same as `w ∈W(`, λ). 2

This Claim implies that there is a unique sub-sheaf ΦK,λ ⊂ ΦK such that ΦK,λ
P = ΦK,λ|P×C for all

α-strips P .

6.2.7 Definition of a filtration on ΦK

Notation 6.4 Choose and fix an infinite regular sequence

. . . λnλn−1 . . . λ2λ1 (158)

such that

—every ray occurs in this sequence infinitely many times;

—the ray λ1 is adjacent to the α-strip P0 containing x0.

Denote by λ(n) the subsequence λnλn−1 . . . λ2λ1.

Set FnΦK := ΦK,λ(n)
. Let us check

Claim 6.5 We have FnΦK ⊂ Fn+1ΦK .

Proof. It suffices to check that FnΦK |P×C ⊂ Fn+1ΦK |P×C for every strip P (as sub-sheaves of
ΦK
P ). It suffices to check that P (λ(n), w) ⊂ P (Λ(n+1), w) for all w, which follows from: if a ray ` is

λ(n), w-admissible, then ` is λ(n+1), w-admissible. This follows from the definition of λ,w-admissibility.
2
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Claim 6.6 Subsheaves FnΦK form an exhaustive filtration of ΦK .

Proof. It suffices to check that
⋃
FnΦK |P×C = ΦK

P . This is implied by: for every w ∈Wα and every
boundary ray ` of P , there exists an n > 0 such that ` ∈ Pλ(n),w, equivalently: ` is λ(n), w-admissible.
Let us prove this statement. By the construction of λ, every finite sequence of rays, is a subsequence
of λ(n) for n large enough (because every ray occurs in the sequence {λi}∞i=1 infinitely many times).
Let w = `m · · · `1(L or R), then the sequence ``m · · · `1 (if ` 6= `m) or `m · · · `1 is a subsequence of λ(n)

for some n, meaning that ` is λ,w-admisssible. 2

6.2.8 Computing F 1ΦK

In this subsection, P∗ denotes the strip adjacent to λ1 and different from P0. We assume that λ1 goes
to the right and that P0 is above P∗ (all other cases are treated in a similar way).

Let us give an explicit description of F 1ΦK . First of all, a ray ` is λ(1), w-admissible iff ` = λ1 and w
is one of the following L,R, λ1L. Therefore, Pλ(1),w 6= ∅ iff: P contains λ1, that is P = P0 or P = P∗,
and w is one of L,R, λ1L. In each of this cases Pλ(1),w = IntP ∪ λ1.

Thus, F 1ΦK is supported on Σ := IntP0 ∩ λ1 ∩ IntP∗. Let P ′0 = IntP0 ∪ λ1; P ′∗ = IntP∗ ∪ λ1. We have

F 1ΦK |P ′∗×C = A∗ ⊕B∗;

F 1ΦK |P ′0×C = A0 ⊕B0,

where A∗ = SR ∗ ΛK−P ′∗
; A0 = SR ∗ ΛK−

P ′0
; B∗ = SL ∗ ΛK+

P ′∗
⊕ Sλ1L ∗ ΛK−P ′∗

; B0 = SL ∗ ΛK+
P ′0
⊕ Sλ1L ∗ ΛK−

P ′0

The gluing map ΓP0P∗
ΦK

maps A0|λ1×C into A∗|λ1×C and B0|λ1×C into B∗|λ1×C, therefore, the sheaves

A∗ and A0 get glued into a sheaf A on Σ, and B∗ and B0 into a sheaf B so that F 1ΦK = A⊕B. One
also sees that A = SR ∗ ΛK−Σ . Let j : IntP0 → Σ be the open embedding.

6.2.9 The map iΨ factorizes through F 1ΦK

Keeping the assumptions of the previous subsection, let us now construct the factorization of the map
iΨ : Zx0×K [−2]→ ΦK through F 1ΦK . The cases when λ1 goes to the left of P∗ is above P0 are treated
in a similar way.

Let j : IntP0 × C→ X × C be the open embedding. By definition, iΨ factors as

Zx0×K [−2]→ j!(SL ∗ ΛK+
IntP0

⊕ SR ∗ ΛK−IntP0
)→ ΦK , (159)

where the first arrow is induced by the following maps in D(IntP0 × C):

ιL : Zx0×K [−2]→ Z{(z,s)|z∈IntP0,s+z∈x0+K} = SL ∗ ΛK+
IntP0

;

ιR : Zx0×K [−2]→ Z{(z,s)|z∈IntP0,s−z∈−x0+K} = SR ∗ ΛK−IntP0
,

which are induced by the closed codimension 2 embeddings of the corresponding sets.
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The right arrow in (159) factors through F 1ΦK as follows. Let as decompose j = j1j0, where j0 :
IntP0 × C → Σ × C and j1 : Σ × C → X × C are the open embeddings. We have natural maps
iA : j0!(SL ∗ ΛK+

IntP0
)→ A; iB : j0!(SR ∗ ΛK−IntP0

→ B. Whence a map

iA ⊕ iB : j0!(SL ∗ ΛK+
IntP0

⊕ SR ∗ ΛK−IntP0
)→ A⊕B = F 1ΦK |Σ×C.

The right arrow in (159) is then obtained by applying j1! to iA ⊕ iB. For future references, let us
consider Cone(Zx0×K [−2]→ F 1ΦK), which is supported on Σ× C. We now see that

Cone(Zx0×K [−2]→ F 1ΦK)|Σ×C

is isomorphic to the Cone of the following composition map in D(Σ× C):

Zx0×K [−2]→ j0!(SL ∗ ΛK+
IntP0

⊕ SR ∗ ΛK−IntP0
)→ A⊕B, (160)

where the right arrow is iA ⊕ iB, and the left arrow is induced by ιL ⊕ ιR.

6.2.10 Computing successive quotients of the filtration

Let us compute the quotients Gn := FnΦK/Fn−1ΦK , n ≥ 2. Our computation will result in decom-
positions (163), (164)

For that purpose, we choose an α strip P and compute the restriction GnP := FnΦK/Fn−1ΦK |P .
Set

P (n,w) := PΛn,w\PΛn−1,w ⊂ P.

P (n,w) is a locally closed subset of P so that we can define the following sheaves on P × C:

ΛK±P (n,w) = Z{(z,s)|z∈P (n,w);s±z∈K}.

We have an identification

GnP =
⊕

w∈Wα
left

Sw ∗ ΛK+
P (n,w) ⊕

⊕
w∈Wα

right

Sw ∗ ΛK−P (n,w).

Let us now describe the sets P (n,w). Below, for a w ∈Wα, we set trim(w) to be the word w with its
rigthmost letter (L or R) removed.

Step 1 Consider all the situations when IntP ⊂ P (n,w)

This occurs iff IntP is part of Pλ(n),w but not Pλ(n−1),w. This is equivalent to the following:

Condition I: n is the minimal number satisfying:

(1) λn is a boundary ray of P ;

(2) trim(w) is a subsequence of λ(n).

Let us reformulate these conditions. Introduce the following notation. For a word w set M(w) to be
the minimal number such that trim(w) is a subsequence of λ(M(w)). For a word w, w 6= {R}, {L}, we
also write w = lw′, where l is the leftmost ray of w.

Let us split our consideration into two cases:
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A) l = λn, (meaning that trim(w) is non-empty);

B)trim(w) is empty or l 6= λn.

Case A). The combination Condition I+Case A) is equivalent to the following combination:

A) (i.e. l = λn), and

A1) M(w) = n, and

A2) λn is a boundary ray of P .

It follows that given a boundary ray r of P different from λn, such an r is not λ(n), w-admissible: the
admissibility would mean that the word rw is a subsequence of λ(n) (see remark 6.2)); since r 6= λn,
rw is also a subsequence of λ(n−1), which implies M(w) < n, contradiction.

Thus, in this case we have P (n,w) = IntP ∪ λn.

Case B)

Let us give an equivalent reformulation of the combination.

Lemma 6.7 Condition I and case B). It is equivalent to the following combination:

B) and

B1) λn is a boundary strip of P , and

B2) M(λnw) = n, and

B3) If trim(w) is non-empty, then l is not a boundary ray of P , and, finally,

B4) M(rw) ≥ n for any boundary ray r of P .

Proof. Let us first derive B1)-B4) from Condition I and B):

B1) is just the condition (1);

B2): (2) and B) imply M(λnw) ≤ n. If M(λnw) < n, then n is not the minimal number satisfying
(1) and (2);

Violation of B3) implies that n− 1 satisfies (1) and (2) — contradiction.
Violaton of B4) implies that M(rw) < n; since the number M(rw) satisfies (1) and (2), we have a
contradiction.

Let us now derive Condition I from B) and B1)-B4).

B1,B2 imply that n satisfies (1) and (2). Suppose n is not minimal, i.e there exists p < n such that
λp is a boundary ray of P and M(w) ≤ p. B3 implies that λp is different from the leftmost ray of w.
Therefore, M(λpw) ≤ p, which is prohibited by B4. 2

Let us now introduce a one more condition B5.

Let Pn−1 be (a unique) α-strip which is adjacent to both λn and λn−1. Let P∗ be the other α-strip
adjacent to λn.

The condition B5 is as follows:

B5)P = P∗.

Let us prove that
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Lemma 6.8 Combination Condition I+ B is equivalent to the combination B,B2, B5.

Proof. Let us first prove that B,B1-B4 imply B5. Since λn is a boundary ray of P , the only
alternative to B5 is P = Pn−1. Then λn−1 is a boundary ray of P and M(λn−1w) ≤ n − 1 which
contradicts to B4.

Let us prove that B,B2, B5 imply B1, B3, B4.

B1: By B5 P∗ = P , and λn is a boundary ray of P∗;

B3,B4: B2 implies that for all p ∈ [M(w);n − 1], λp 6= λn. This implies that P∗ is not adjacent to
any of λp with p ∈ [M(w);n − 1] Indeed, suppose P∗ is adjacent to such a λp. Consider the graph Γ
whose vertices are strips and and whose edges are rays. We have two non-intersecting paths between
Pn−1 and P∗: one of them is λn, we also have a path between Pn−1 and P∗ in the connected graph
composed of the edges λn−1λn−2, · · · , λp, which contradicts to Γ being a tree.

The just proven statement implies B3 and

B4’) M(rw) > n for every boundary ray of P = P∗ which differs from λ(n).

Finally, B2) and B4’) imply B4), which finishes the proof. 2

Finally, we conclude from B4’, that in the situation Condition 1+B we have:

P (n,w) = IntP t λn.

Step 2 Let us now examine the case (call it case C) when P (n,w) is a non-empty union of boundary
rays of P . Since Pλ(n−1),w ⊂ Pλ(n),w, this is equivalent to Pλ(n−1),w being a proper (in particular,
non-empty) subset of Pλ(n),w. As follows from definitions, this is equivalent to:

i’) there is a λ(n−1), w-admissible ray of P ;

ii’) There exists a boundary ray r of P such that r is λ(n), w-admissible, but not λ(n−1), w-admissible.

By Remark 6.2, the condition i’) is equivalent to:

i”) there exists a boundary ray r of P such that either r is the leftmost ray of w and M(w) ≤ n− 1,
or r is not the leftmost ray of w and M(rw) ≤ n− 1.

In any case, i’) implies that M(w) ≤ n− 1.

Also by Remark 6.2, the condition ii’) is equivalent to the following one

ii”) There exists a boundary ray r of P such that either

a) r is not the leftmost ray of w and M(rw) = n;

or

b) r is the leftmost ray of w and M(w) = n.

The case b) contradicts to i’), which implies M(w) ≤ n− 1.

The condition a) implies r = λn and hence λn is one and the only ray in Pλ(n),w.

We thus can reformulate:
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The case C occurs iff

i’) holds and

ii-α) λn is a boundary ray of P ;

ii-β)λn is not the leftmost ray of w;

ii-γ) M(λnw) = n.

In the case C we have P (n,w) = λn.

From ii-γ we conclude that
λp 6= λn for all p ∈ [M(w);n− 1]. (161)

The condition i’ is equivalent to

∃p ∈ [M(w), n− 1] : λp is adjacent to ς̄ . (162)

Let us show that P = Pn−1:
Indeed, by ii-α, the only alternative is P = P∗. In this case, analogously to the proof of B5⇒B4, the
property (161) implies that P∗ is not adjacent to any of λp with p ∈ [M(w);n−1], and that contradicts
(162).

Thus, we have the following condition which is equivalent to i’ and ii’ (the proof of the converse is
trivial):

C1) P = Pn−1; λn is not the leftmost ray of w and M(λnw) = n.

In this case P (n,w) = λn.

Let us summarize our findings. Introduce the following notation. Let Wα
n,left be the set of all words

w in Wα
left such that the leftmost ray of w is not λn and M(λnw) = n. Let Wα

n,right be the similar
thing.

We then have the following three cases when the set P (n,w) is non-empty:

– Conditions A,A1, A2 is satisfied. Equivalently, the following conditions are the case:

a1) P = Pn−1 or P = P∗;

a2) w = λnu, where u ∈Wα
n,left if λn ∈ Lright, and u ∈Wα

n,right if λn ∈ Lleft.

In this situation P (n,w) = IntP ∪ λn.
— B,B2,B5 are satisfied. Equivalently: P = P∗ ; w ∈ Wα

n,left if λn ∈ Lright, and w ∈ Wα
n,right if

λn ∈ Lleft. Then P (n,w) = IntP∗ ∪ λn.
— C1 is satisfied. Equivalently:

b1) P = Pn−1;

b2) w ∈Wα
n,left if λn ∈ Lright, and w ∈Wα

n,right if λn ∈ Lleft.

In this situation, we have P (n,w) = λn.
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6.2.11 Description of Gn

In particular, we see that the sheaf Gn = FnΦK/Fn−1ΦK is supported on the union IntPn−1∩λn∩IntP∗.

Let P ′∗ := IntP∗ ∪ λn. We will now describe the restriction of Gn onto P ′∗.

Suppose that λn ∈ Lleft. We then have

Gn|P ′∗×C =
⊕

w∈Wα
n,right

(Sw ∗ ΛK−P ′∗
⊕ Sλnw ∗ ΛK+

P ′∗
)⊕

⊕
w∈Wα

n,left

Sw ∗ ΛK+
P ′∗

.

For w ∈Wα
n,right, we denote

BP ′∗
w := Sw ∗ ΛK−P ′∗

⊕ Sλnw ∗ ΛK+
P ′∗

;

for w ∈Wα
n,left, we set

AP
′
∗
w := Sw ∗ ΛK+

P ′∗
.

so that we can rewrite
Gn =

⊕
w∈Wα

n,right

BP ′∗
w ⊕

⊕
w∈Wα

n,left

AP
′
∗
w .

In the case λn ∈ Lright, change all signs and all orientations: we have

Gn =
⊕

w∈Wα
n,left

BP ′∗
w ⊕

⊕
w∈Wα

n,right

AP
′
∗
w ,

where for w ∈Wα
n,left, we denote

BP ′∗
w := Sw ∗ ΛK+

P ′∗
⊕ Sλnw ∗ ΛK−P ′∗

;

for w ∈Wα
n,right, we set

AP
′
∗
w := Sw ∗ ΛK−P ′∗

.

(2) Let P ′n−1 be the union of the interior of Pn−1 and λn.

We then have in the case λn ∈ Lleft:

Gn|P ′n−1×C =
⊕

w∈Wα
n,right

B
P ′n−1
w ⊕

⊕
w∈Wα

n,left

A
P ′n−1
w ,

where for w ∈Wα
n,right we set

B
P ′n−1
w := Sw ∗ ΛK−λn ⊕ Sλnw ∗ ΛK+

P ′n−1
;

for w ∈Wα
n,left we set

A
P ′n−1
w := Sw ∗ ΛK+

λn
.
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If λn ∈ Lright, then one has to change all the directions and all the signs:

Gn|P ′n−1×C =
⊕

w∈Wα
n,left

B
P ′n−1
w ⊕

⊕
w∈Wα

n,right

A
P ′n−1
w ,

where for w ∈Wα
n,left we set

B
P ′n−1
w := Sw ∗ ΛK+

λn
⊕ Sλnw ∗ ΛK−

P ′n−1
;

for w ∈Wα
n,right we set

A
P ′n−1
w := Sw ∗ ΛK−λn .

Analyzing the gluing maps, we see that

AP
′
∗
w |λn×C = A

P ′n−1
w |λn×C

as sub-sheaves of Gn|λn×C and similarly for Bw. Therefore, we have well defined sub-sheaves Aw, Bw
of Gn: Aw is defined by the conditions:

Aw|P ′∗×C = AP
′
∗
w ;

Aw|P ′n−1×C = A
P ′n−1
w ,

and similarly for Bw.

Let us stress that Bw|IntPn−1∪λn∪IntPn is not isomorphic to the direct sum of Sw ∗ ΛK+
IntPn−1∪λn∪IntP∗

and Sλnw ∗ ΛK−IntPn−1∪λn∪IntP∗

We have in the case λn ∈ Lleft:

Gn =
⊕

w∈Wα
n,right

Bw ⊕
⊕

w∈Wα
n,left

Aw; (163)

if λn ∈ Lleft, then we have:

Gn =
⊕

w∈Wα
n,left

Bw ⊕
⊕

w∈Wα
n,right

Aw. (164)

6.2.12 Reduction of the orthogonality property

As was explained in Sec 6.2.9, the map map iΦK factors as Z{z=x0,s∈K}[−2]→ F 1ΦK → ΦK .

It therefore suffices to prove that Aw, Bw belong to ⊥CΣ, where Σ = IntPn−1∪λn∪ IntP∗ and that and
Cone(Z{z=x0,s∈K}[−2]→ F 1ΦK) ∈ ⊥CX . As was explained in Sec 6.2.8, the sheaf F 1ΦK is supported
on Σ′ := IntP0 ∩ λ1 ∩

∫
P∗, so that it suffices to show that

Cone(Z{z=x0,s∈K}[−2]→ F 1ΦK)|Σ′×C ∈ ⊥CΣ′

We do it in the rest of the section.

79



P
n-1

P
*λ

n

This ray 
is not 
a part of Σ

Figure 7

6.2.13 Conventions

Suppose that the ray λn is directed to the right so that λn = ĉ(λn) +R>0.e
iα; the case of the opposite

direction is similar.

Assume the situation is as on figure 7, namely, we assume that Pn−1 is above λn and P∗ is below λn.
The argument for the opposite situation is similar.

Define
U := {ĉ(λn) + xeiα + ye−iα ∈ Σ : x, y ∈ R and x > 0};

V := {ĉ(λn) + xeiα + ye−iα ∈ Σ : x, y ∈ R and x ≤ 0}.

6.2.14 Orthogonality of Aw

Because of the assumptions above, we have w ∈Wα
right and

Aw = Sw ∗ ΛK−P ′∗
,

where
ΛK−P ′∗

= Z{(z,s):z∈P ′∗;s−z∈K}.

We have a short exact sequence:

0→ Sw ∗ ΛK−U∩P ′∗
→ Aw → Sw ∗ ΛK−V ∩P ′∗

→ 0, (165)

where ΛK±U := Z(s,z)|z∈U ;s±z∈K} and similarly for ΛK±V ∩P ′∗
.

(Note that in the case λn ∈ Lleft we need to consider a sequence analogous to (165) with ΛK− instead
of ΛK+.)

The problem is thus reduced to proving that

Sw ∗ ΛK−U∩P ′∗
, Sw ∗ ΛK−V ∩P ′∗

∈ ⊥CΣ. (166)
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Now let us use the following consideration: if j : U ×C→ Σ×C is an open inclusion and if F ∈ ⊥CU ,
then j!F ∈ ⊥CΣ bacause RHom(j!F ;G) ∼= RHom(F ;G|U×C). In application to the situation at hand,
this allows us to reduce (166) to proving

Sw ∗ Λ−U∩P ′∗
|U ∈ ⊥CU (167)

and
Sw ∗ Λ−V |P∗ ∈

⊥CP∗ (168)

which we are going to do using Proposition 5.1.

Proof of (167). Denote F := Sw ∗Λ−U∩P ′∗
|U . We have F = ZS , where S = {(z, s) : z ∈ U ∩P ′∗, s−z ∈

ĉ(w) +K}.
Next, U = {ĉ(λn) + xeiα + ye−iα|x > 0; y ∈ I}, where I is a generalized open interval containing 0, so
that U is a generalized strip and we can apply Proposition 5.1.

We have U ∩ P ′∗ = {ĉ(λn) + xeiα + ye−iα|x > 0; y ≥ 0; y ∈ I}.
Let us now check that F satisfies all the assumptions of Prop. 5.1, which will show that F ∈ ⊥CU .

Namely, we need to show: a) the map Zrα ∗ F → Z{0} ∗ F = F , induced by the embedding 0 ∈ rα, is
an isomorphism,

b) RP+!F = 0;

c) RP−!F = 0.

Proof of a) is easy: the word w contains at least one letter, hence Sw is a convolution of ≥ 1 sheaves of

the type Z{s∈a+K}, a ∈ C. But the map β : Zrα ∗Z{s∈a+K}
'→ Z0 ∗Z{s∈a+K}, induced by the inclusion

0 ∈ rα, is an isomorphism.

Proof of b) It suffices to check that (RP+!F )t = 0 for every point t ∈ C. We have (R•P+!F )t =

H•c (P−1
+ t∩S;Z). Denote Wt := P−1

+ t∩S. The space Wt consists of all points (z, s), where z ∈ U ∩P ′∗;
s + z ∈ K; s − z = t. Since s = z + t, we can exclude s: the space Wt gets identified with a
closed subset W ′t ⊂ U consisting of all points z ∈ U ∩ P ′∗ such that 2z + t ∈ ĉ(w) + K. Let us write
ĉ(w)− t− 2ĉ(λn) = 2(x0e

iα + y0e
−iα). We then see that W ′t consists of all points ĉ(λn) +xeiα + ye−iα,

where x > 0; y ≥ 0; y ∈ I;x ≥ x0; y ≥ y0. It is now easy to see that for all x0, y0, we have
H•c (Wt,Z) = 0.

Proof of c) Similar to above, we need to show that H•c (Vt;Z) = 0, where Vt = P−1
− t ∩ S, for all

t ∈ C. If t /∈ ĉ(w) + K, Vt = ∅. Otherwise, Vt gets identified with U ∩ P ′∗ i.e. the set of all points
(x, y) : x > 0; y ≥ 0; y ∈ I. The statement now follows.

Proof of (168). Set G1 := Sw ∗ Λ−V ∩P ′∗
. We have

V ∩ P ′∗ = {ĉ(λn) + xeiα + ye−iα|x ≤ 0; y ∈ I; y > 0}.

In particular, V ∩ P ′∗ ⊂ IntP∗. Similar to above, it suffices to show that G := G1|IntP∗×C ∈ CIntP∗ .
Since IntP∗ is a generalized strip, we can apply Proposition 5.1. Let us check the assumptions of this
Proposition.

We have G = ZT , where T ⊂ IntP∗ × C consists of all points (z, s), where z = (̂λn) + xeiα + ye−iα;
x ≤ 0; y < 0; y ∈ I; s− z ∈ ĉ(w) +K.
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Figure 8: Proof of (167), part b).

a) We see that the natural map Zrα ∗G→ Z0 ∗G = G is clearly an isomorphism.

b)RP+!G|t = 0 for all t. This is equivalent to H•c (W ′t ,Z) = 0, where W ′t = P−1
+ t∩T . Similar to above,

the set W ′t gets identified with the set of all (x, y), where x ≤ 0; y < 0; y ∈ I; x ≥ x0; y ≥ y0 for some
numbers x0, y0, the statement follows.

c) We need to chech that H•c (V ′t ,Z) = 0, where V ′t = P−1
− t∩T . We see that V ′t = ∅ for all t /∈ ĉ(w)+K.

Otherwise, V ′t gets identified with T .

6.2.15 Orthogonality of Bw

Let U, V be the same subsets of Σ as above. We see that Σ\U = V = V1 t V2, where V1 ⊂ IntP∗,
V2 ⊂ IntPn−1.

For any locally closed subset C ⊂ Σ we set BC := Bw ⊗ ZC×Cs ∈ D(Σ × Cs). We then have a
distinguished triangle

+1→ BV1 ⊕BV2 → Bw → BU
+1→ .

Similarly to section 6.2.14, it suffices to prove that

B′U := BU |U×C ∈ ⊥CU ; (169)

BV1 | ◦
P ∗×C

∈ ⊥CIntP∗ , (170)

BV2 | ◦
Pn−1×C

∈ ⊥CIntPn−1 , (171)

It is clear that U , V1,and V2 are generalized strips so that we can apply Prop. 5.1.

Proof of (169) Let P1 := U ∩ Pn−1; P2 := U ∩ P∗ so that P1,P2 ⊂ U are closed subsets and
P1 ∩P2 = λn.

82



As above, we have
U = {ĉ(λn) + xeiα + ye−iα|x > 0; y ∈ I},

where I ⊂ R is a generalized open interval containing 0. The subset P1 is given by y ≥ 0, and P2 by
y ≤ 0.

We have identifications
B1 := B′U |P1×C = Sw ∗ ΛK+

λn
⊕ Sλnw ∗ ΛK−P1

;

B2 := B′U |P2×C = Sw ∗ ΛK+
P2
⊕ Sλnw ∗ ΛK−P2

.

Whence induced identifications

B1|λn×C = Sw ∗ ΛK+
λn
⊕ Sλnw ∗ ΛK−λn (172)

B2|λn×C = Sw ∗ ΛK+
λn
⊕ Sλnw ∗ ΛK−λn (173)

The gluing map
B1|λn×C → B2|λn×C

is induced by Γ
Pn−1P∗
ΦK

and equals

Γ = Id + n ∈ End(Sw ∗ ΛK+
λn
⊕ Sλnw ∗ ΛK−λn ),

where the only non-zero component of n is

n+− : Sw ∗ ΛK+
λn
→ Sw ∗ Sλn ∗ ΛK−λn = SλnwΛK−λn

is defined by means of the map νKλn from (47).

Let ik : Pk → U , k = 1, 2 and i0 : λn → U be closed embeddings. Denote by ι1 : i1!B1 →
i0!(Sw ∗ΛK+

λn
⊕ Sλnw ∗ΛK−λn ) the natural isomorphism coming from the identification (172). Similarly,

we have a map ι2 : i2!B1 → i0!(Sw ∗ΛK+
λn
⊕Sλnw ∗ΛK−λn ), coming from (173). We can rewrite the above

consideration in terms of the following short exact sequence of sheaves of abelian groups

0→ B′U → i1!B1 ⊕ i2!B2 → i0!(Sw ∗ ΛK+
λn
⊕ Sλnw ∗ ΛK−λn )→ 0. (174)

Where the left arrow is induced by the direct sum of the obvious restriction maps and the right arrow
is −Γι1 ⊕ ι2. Let us denote the components of this map

−Id : i0!Sw ∗ ΛK+
λn
→ i0!Sw ∗ ΛK+

λn
;

−ν : i0!Sw ∗ ΛK+
λn
→ i0!Sλnw ∗ ΛK−λn ;

−r1 : i1!Sλnw ∗ ΛK−P1
→ i0!Sλnw ∗ ΛK−λn ;

r+
2 : i2!Sw ∗ ΛK+

P2
→ i0!Sw ∗ ΛK+

λn
;

r−2 : i2!Sλnw ∗ ΛK−P2
→ i0!Sλnw ∗ ΛK−λn .

Consider the complex B′′ composed of the 2 last terms of the sequence (174), which is quasi-isomorphic
to B′U . This complex has a filtration by the following subcomplexes:
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F 1B′′ is as follows:
i0!Sw ∗ ΛK+

λn

−ν→ i0!Sλnw ∗ ΛK−λn → 0;

F 2B′′ is as follows:

i0!Sw ∗ ΛK+
λn
⊕ i2!Sw ∗ ΛK+

P2
→ i0!(Sw ∗ ΛK+

λn
⊕ Sλnw ∗ ΛK−λn )→ 0

We finally set F 3B′′ = B′′. The associated graded quotients are as follows: F 2/F 1 equals Cone r+
2 [−1],

which is quasi-isomorphic to Sw ∗ ΛK+
IntP2

.

F 3/F 2 equals
i1!Sλnw ∗ ΛK−P1

⊕ i2!Sλnw ∗ ΛK−P2
.

We will need a one more exact sequence. We have subsheaves (direct summands)

Sλnw ∗ ΛK−P1
⊂ B1; Sλnw ∗ ΛK−P2

⊂ B2.

Since the map Γ induces identity on Sλnw∗ΛK−λn , the two subsheaves glue into a subsheaf Sλnw∗ΛK−U ⊂
B′U . It is clear that we have a short exact sequence:

0→ Sλnw ∗ ΛK−U → B′U → i2!Sw ∗ ΛK+
P2
→ 0. (175)

Let us now check the conditions of Prop 5.1. The isomorphicity of the map Zrα ∗ B′U → B′U can be
checked directly.

Let us now show that RP+!B
′
U = 0. Because of the exact sequence (175), it suffices to prove that

RP+!Sw ∗ ΛK+
P2

= 0 and RP+!Sλnw ∗ ΛK−U = 0. This can be checked pointwise in a way similar to the
previous subsection.

Let us now check that RP−!B
′
U = 0. It suffices to show that RP−!, when applied to all associated

graded quotients of the filtration F on B′′, produces zero. The latter can be done pointwise in a way
similar to the previous sections.

Proof of (170), (171) is very similar to the previous subsection.

6.2.16 Orthogonality of Cone(Zz=x0,s∈K [−2]→ F 1ΦK)

The aim of this subsection is to prove that

Cone(Zz=x0,s∈K [−2]→ F 1ΦK) ∈ ⊥CΣ′ . (176)

We will freely use the notation and the results from Sec 6.2.8,6.2.9. As was mentioned above,
Cone(Zz=x0,s∈K [−2] → F 1ΦK) is supported on Σ × C, where Σ = IntP0 ∪ λ1 ∪ IntP∗. The re-
striction Cone(Zz=x0,s∈K [−2] → F 1ΦK)|Σ×C is isomorphic to the Cone of the composition arrow in
(160). Denote the cone of the left arrow in (160) by Γ1 and the cone of the right arrow by ∆. Observe
that Γ1 = j0!Γ, where Γ = Cone(ιL ⊕ ιR); Γ ∈ D(IntP0 × C). The problem now reduces to showing
that Γ ∈ ⊥CIntP0 and ∆ ∈ ⊥CΣ.

Denote AL := Coker iA; BR := Coker iB. Observe that AL is of the form Aw with w = L, and BR is of
the form Bw with w = R, where Aw, Bw are as defined in Sec 6.2.11. It is also clear that ∆ ∼= AL⊕BR.
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Figure 9: Proof of (176), Step b-i)

As follows from the previous two subsections, AL, BR ∈ ⊥CΣ, hence, same is true for ∆. Let us now
show that Γ ∈ ⊥CIntP0 .

By Prop.5.1, it suffices to check statements a),b),c) below:

a) Γ ∗ Z{s∈eiαR≥0} → Γ is an isomorphism: it suffices to check that a similar map applied to each of

Zx0×K [−2], SL ∗ ΛK+
IntP0

, and SR ∗ ΛK−IntP0
is an isomorphism, which is straightforward.

b) RP+!Γ = 0. It is enough to check RP+!Gk = 0, k = 1, 2, where

G1 = SR ∗ Λ−◦
P 0

= Z
{(z,s):z∈

◦
P 0, s−z∈−x0+K}

,

G2 = Cone(Zx0×K [−2]→ SL ∗ Λ+
◦
P 0

and where

SL ∗ Λ+
◦
P 0

= Z
{(z,s):z∈

◦
P 0, s+z∈x0+K}

.

b-i) RP+!G1 = 0. Indeed, by the base change, let us pass to the fiber of P+ over t ∈ C and calculate

RΓc(ZW1) where W1 = {(z, s) ∈ C : z ∈
◦
P 0, s − z ∈ −x0 + K z + s = t}. Eliminating s makes

W1 = {z ∈ C : z ∈
◦
P 0, z ∈ t+x0

2 −K}. For different values of t this set is sketched on fig. 9.
Thus, W1 is either empty or homeomorphic to a closed half-plane, so the result follows.

b-ii) RP+!G2 = 0. Indeed, by the base change, let us pass to the fiber of P+ over t ∈ C and calculate
RΓc(ZW ′2)[−2] → RΓc(ZW2), where W ′2 = {(z, s) ∈ C : z = x0, s ∈ K z + s = t}, W2 = {(z, s) ∈ C :

z ∈
◦
P 0, s+ z ∈ x0 +K z + s = t}. Eliminating s makes

if t− x0 ∈ K : W ′2 = {x0} W2 = {z ∈ C : z ∈
◦
P 0}

otherwise: W ′2 = ∅ W2 = ∅

and the map RΓc(ZW ′2)[−2]→ RΓc(ZW2) is the obvious quasi-isomorphism.

c) RP−!Γ = 0. This can be shown similarly to RP+!Γ = 0.
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7 Identification of ΦK and ΨK

We are going to construct an identification as in (55). Namely, we will construct a map

IΨΦ : ΨK → ΦK

such that
iΦ = IΨΦiΨ, (177)

where iΦ : FK0 → ΦK is the map (53) and iΨ : FK0 → ΨK is the map (60).

The goal of this section is to give an explicit desciption of IΨΦ. This can be done as follows. Let P
be a closed α-strip. Let Π be a closed (−α)-strip such that P ∩Π 6= ∅. We then have identifications

ιΦP |(Π∩P )×C : Λ+ ∗ S+ ⊕ Λ− ∗ S−|(Π∩P )×C = (ΦK |P×C)|(Π∩P )×C = ΦK |(Π∩P )×C

ιΨΠ|(Π∩P )×C : Λ+ ∗ S+ ⊕ Λ− ∗ S−|(Π∩P )×C = (ΨK |Π×C)|(Π∩P )×C = ΨK |(Π∩P )×C

meaning that the restriction IΨΦ|(Π∩P )×C can be rendered as an automorphism JΠP of

ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|(Π∩P )×C in the abelian category of sheaves on (Π ∩ P )× C, so that we have:

IΨΦ|(Π∩P )×C = ιΦP |(Π∩P )×CJΠP ι
−1
ΨΠ|(Π∩P )×C. (178)

We are now motivated for the next subsection.

7.1 Endomorphisms of ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|(P∩Π)×C

We will do the study in a slightly more general context. Let Y be a locally closed connected subset of
C. For a c ∈ C, set

A±c := {(x, s)|s± x ∈ c+K} ⊂ Y × C.

Let W± be sets; set W := W+ tW−. Let cW : W → C be a function. Let w ∈W+. Set Aw := A+
c(w).

For w ∈W− we set Aw := A−c(w). Define the following sheaves on Y × C:

SW :=
⊕
w∈W

ZAw .

Let ci : Wi → C; Wi = W+
i t W

−
i , i = 1, 2; cWi : Wi → C; and let us study a group

HomY×C(SW1 ;SW2).

We have
HomY×C(SW1 ;SW2)

∼→
∏

w1∈W1

HomY×C(ZAw1
;SW2) (179)

Let us focus on HomY×C(ZAw1
;SW2). We have an embedding SW2 ↪→

∏
w2∈W2

ZAw2
which induces

an embedding

ι : HomY×C(ZAw1
;SW2) ↪→ HomY×C(ZAw1

;
∏

w2∈W2

ZAw2
)

86



=
∏

w2∈W2

HomY×C(ZAw1
;ZAw2

). (180)

Let us now compute
HomY×C(ZAw1

;ZAw2
) = H0(Aw2 ;Aw2\Aw1).

We have a homeomorphismAw2
∼= Y×K so thatAw2 is connected andH0(Aw2 ;Aw2\Aw1) is zero unless

Aw2\Aw1 is empty, in which case it equals Z. In other words, we have an isomorphism εw1w2 : Z ∼→
HomY×C(ZAw1

;ZAw2
) if Aw2 ⊂ Aw1 ; otherwise, HomY×C(ZAw1

;ZAw2
) = 0. Set ew1w2 := εw1w2(1).

Every element

ν ∈
∏

w2∈W2

HomY×C(ZAw1
;ZAw2

)

can be uniquely written as ∑
w2

νw1w2ew1w2 ,

where the sum is taken over all w2 such that Aw2 ⊂ Aw1 and νw1w2 are arbitrary integers.

Claim 7.1 The element ν lies in the image of (180) iff for every compact subset L ⊂ Aw1:

there are only finitely many w2 such that νw2w1 = 0 and Aw2 ∩ L 6= 0. (181)

proof We will use the following notation. For every w ∈ W1 or w ∈ W2, let us denote by 1w ∈
Γ(Y × C;ZAw) the canonical section, such that for every y ∈ Y × C, the stalk (1w)y generates the
group (ZAw)y, which is equal to Z if y ∈ Aw and to zero otherwise.

We have
ν(1w1) =

∑
w2∈W2

nw2w11w2 ∈ Γ(Y × C;
∏

w2∈W2

ZAw2
).

Let us now suppose that ν lies in the image of (180). This implies that the restriction ν(1w1)|L ∈
Γ(L;

⊕
w2∈W2

ZAw2
). Since L is compact, we have an isomorphism

⊕
w2∈W2

Γ(L;ZAw2
)→ Γ(L;

⊕
w2∈W2

ZAw2
).

Given a section σ ∈ Γ(L;
⊕

w2∈W2

ZAw2
), denote by σw2 ∈ Γ(L;ZAw2

) the corresponding component of

σ. We have: σw2 = 0 for almost all w2 ∈ W2. We have ν(1w1)w2 = nw2w11w2 |L. The element on the
RHS does not vanish iff nw2w1 6= 0 and L ∩Aw2 6= ∅, which implies the statement.

Conversely, let us assume that for any L there only are finitely many w2 ∈ W2 such that nw2w1 6= 0
and L ∩Aw2 6= ∅. It suffices to show that

ν(1w1) ∈ Γ(Y × C;
⊕

w2∈W2

ZAw2
) ⊂ Γ(Y × C;

∏
w2∈W2

ZAw2
).

Let us choose an open covering of Y × C by precompact sets Ua (i.e. the closure Lα of each Ua in
Y × C must be compact). It suffices to show that ν(1w1) ∈ Γ(Ua;

⊕
w2∈W2

ZAw2
) for each Ua. Then
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it suffices to show that ν(1w1) ∈ Γ(La;
⊕

w2∈W2

ZAw2
). In fact, ν(1w1) ∈ Γ(La;

∏
w2∈W ′2

ZAw2
), where W ′2

consists of all w2 satisfying nw2w1 6= 0, Aw2 ∩ La 6= 0, which is finite, whence the statement. 2.

As follows from the proof of the Claim, ν belongs to the image of (180) iff the condition (181) is
satisfied for a family of compact sets La whose interiors cover X × C.

Proposition 7.2 Elements from HomX×C(SW1 ;SW2) are in 1-to-1 correspondence with the sums∑
w1∈W1,w2∈W2,Aw2⊂Aw1

nw1w2ew1w2 ,

satisfying:

there exists a family of compact subsets La ⊂ X ×C such that the sets IntLa cover X ×C, and: given
a w1 ∈W1 and any La, there are only finitely many w2 ∈W2 such that nw1w2 6= 0 and La ∩Aw2 6= ∅.

7.1.1 Filtration on HomY×C(SW1 ;SW2)

Let ε ∈ K. Let Tε : Y × C→ Y × C be the shift (x, s) 7→ (x, s+ ε). We have Tε(Ac) ⊂ Ac, for every
ε ∈ K, whence an induced map

τε : ZAc → Tε!ZAc = ZTε(Ac).

These maps give rise to a map
τε : SW1 → Tε!SW1 .

It is easy to see that Tε!SW1 = SW ′1 , where W ′1 = W1 and cW ′1 = cW1 + ε, so that Proposition 7.2
applies to Tε!SW1 .

We say that f ∈ F εHomX×C(SW1 ;SW2) if f factors as f = gτε for some g : Tε!SW1 → SW2 . Using
Proposition 7.2, one can check that such a g is unique, if exists.

We write f ≡ f ′ mod F ε if f − f ′ ∈ F εHom(SW1 , SW2).

We also write f ≡ f ′ if f ≡ f ′ mod F ε for some ε ∈ IntK.

Let us prove that the filtration F is complete in the following sense. Let fn ∈ Hom(SW1 ;SW2) be a
sequence of homomorphisms. Let us call fn a Cauchy sequence if:

∀ε ∈ K ∃N(ε) : ∀n,m ≥ N(ε) : fn ≡ fm mod F ε.

We say that fn converges to f if

∀ε ∈ K ∃N(ε) : ∀n ≥ N(ε) : f ≡ fn mod F ε.

Claim 7.3 Every Cauchy sequence fn converges to a unique limit f .

Proof. Let us first construct f . Decompose fn =
∑

w1,w2∈W (fn)w1w2ew1w2 . Let y ∈ X × C and
let n,m ≥ N(ε). Since fn − fm passes through τε, we deduce that (fn)w1w2 − (fm)w1w2 6= 0 only if
Aw2 ⊂ TεAw1 . For every w1, w2 there exists εw1w2 such that this condition is violated, meaning that
for n,m ≥ N(εw1w2), (fn)w1w2 = (fm)w1w2 =: fw1w2 .
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The data fw1w2 define a homomorphism f by virtue of Proposition 7.2. If f ′ is another limit, it follows
that f − f ′ ≡ F ε for all ε which implies fw1w2 = f ′w1w2

for all w1, w2, that is f = f ′. 2

In particular, let γ ∈ End(AW ), γ = Id + n and assume that for some k > 0, nk ∈ F ε for some
ε ∈ IntK ,then γ is invertible, and we can set γ−1 = Id − n + n2 − n3 + ... (the sequence of partial
sums of this series is Cauchy).

We conclude with several Lemmas for the future use.

7.1.2 Lemma on composition

As above, let P be an α-strip and let Π be a −α-strip. Let Y = Π ∩ P and supose Y is a bounded
subset of C, so that the closure of Y is a parallelogram; let us denote its vertices ABCD so that AC is
one of the two diagonals and ~AC ∈ K. It then follows that the closure of P ∩Π equals A+K ∩C−K.
Denote ε := ~AC.

Lemma 7.4 Let W−1 = W+
2 = ∅. And let f : SW1 → SW2 and g : SW2 → SW1 . Then gf ≡ 0 mod F 2ε

and fg ≡ 0 mod F 2ε.

Proof.

Let fw1w2ew1w2 , gw2w1ew2w1 be components of f, g.

Let us consider the compositions fw1w2ew1w2gw′2w1
ew′2w1

In order for this composition to be non-zero,
there should be

Aw2 ⊂ Aw1 ⊂ Aw′2 .

Or, for every z ∈ P ∩Π and s ∈ C we should have the following implications:

s− z ∈ cW2(w2) +K ⇒ s+ z ∈ cW1(w1) +K ⇒ s− z ∈ cW2(w′2) +K.

Set ς := s− z − cw2 . The first implication then reads as:

ς ∈ K ⇒ ς + 2z + cW2(w2)− cW1(w1) ∈ K

or, equivalently, 2A+ cW2(w2)− cW1(w1) ∈ K. Similarly, the second implication can be rewritten as
−2C + cW1(w1) − cW2(w′2) ∈ K. Adding the two conditions yields −2ε + cW2(w2) − cW2(w′2) ∈ K;
cW2 − cW2(w′2) ∈ 2ε+K. This implies that

fw1w2ew1w2gw′2w1
ew′2w1

: ZAw′2 → ZAw2

passes through τ2ε : ZAw′2 → T2ε!ZAw′2 , which implies the statement for fg. Proof for gf is similar. 2.

Let us keep the assumption W1 = W+
1 , W2 = W−2 and consider now the case when X = Π ∩ P is not

bounded. Then at least one of the following is true:

i) there is no A ∈ C such that X ⊂ A+K;

ii) there is no C ∈ C such that X ⊂ C −K.
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Lemma 7.5 Let us keep the same notation as in the previous Lemma. In the case i) we have
Hom(SW1 ;SW2) = 0. In the case ii) we have Hom(SW2 ;SW1) = 0.

Proof. In Case i), given w1 ∈ W1 and w2 ∈ W2, it is impossible that Aw2 ⊂ Aw1 , And similarly for
the Case ii). 2

7.1.3 Lemma on extension

We keep the same assumptions on W1,W2, namely,

W1 = W+
1 , W2 = W−2 .

Let Y be a locally closed non-empty connected subset of C. Let Y + K (resp. Y − K) be the
arithmetic sum (resp. difference) of Y and K. Let Y+, Y− be connected locally closed subsets
satisfying Y ⊂ Y+ ⊂ Y +K; Y ⊂ Y− ⊂ Y −K. Let Z be an arbitrary connected locally closed subset
C containing Y .

Lemma 7.6 1) The restriction maps

HomY+(SW+
1

;SW−2
)→ HomY (SW+

1
;SW−2

);

HomY−(SW−2
;SW+

1
)→ HomY (SW−2

;SW+
1

)

are isomorphisms;

2) the restriction maps
HomZ(SW+

1
;SW+

2
)→ HomY (SW+

1
;SW+

2
);

HomZ(SW−2
;SW−1

)→ HomY (SW−2
;SW−1

)

are isomorphisms.

Proof. 1) Follows from Proposition 7.2: the inclusion Aw2 ⊂ Aw1 , wi ∈ Wi occurs on Y+ × C iff it
occurs on Y × C, and similar for the inclusion Aw1 ⊂ Aw2 on Y− × C.

2) Follows from Proposition 7.2 in a similar way.

2

7.1.4 Decomposition Lemma

Let now Y := ` := c+ (0,∞).eiα be a ray which goes to the right. Let a ∈ C. We have natural maps
λ+
a : ZA+

a
→ ZA−−2c+a

; λ−a : ZA−a → ZA+
2c+a

; coming from the inclusions of the corresponding sets.

Lemma 7.7 Let f : ZA+
a
→ SW2, g : ZA−a → SW1 be a map of sheaves. Then f and g can be uniquely

factored as f = f ′λ+
a ; g = g′λ−a .

Proof. Let w ∈ W2. A simple analysis shows that A+
a ⊂ Aw is equivalent to A−−2c+a ⊃ Aw.

Proposition 7.2 now implies the factorization of f . The factorization of g can be proven similarly. 2
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7.2 Restriction ΦK |Π

As above, let Π be a closed (−α)-strip.

The goal of this subsection is to construct an isomorphism

φΠ : (ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)|Π×C
∼→ ΦK |Π×C. (182)

Denote by
φ±Π : ΛK± ∗ S±|Π×C → ΦK |Π×C

the components.

7.2.1 Notation

Let us number all α-strips that intersect Π as P1, P2, ..., Pn (there are only finitely many such stripes,
Sec 2.3.2) as shown on the picture 10 so that we number the strips from the left to the right. The
strips P1 and Pn are necessarily half planes.

7.2.2 Prescription of φ+
Π|(Π∩P1)×C

We have an identification

ΦK |Π∩P1 = (ΦK |P1)|(Π∩P1)×C = (ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)|(Π∩P1)×C.

This identification gives rise to a map (embedding onto a direct summand):

ΛK+ ∗ S+ → ΦK |(Π∩P1)×C.

We assign φ+
Π|(Π∩P1)×C to be this map.

Remark. In the section 7.2.3 we will inductively extend this definition to the whole Π×C. Construc-
tion of φ−Π will be performed in section 7.2.5. An attempt to construct φ−Π starting from a prescribed
map on (Π ∩ P1)× C fails.
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7.2.3 Extension of φ+
Π to Π×C

For a subset A ⊂ C, set A := (Π ∩A)× C ⊂ Π× C.

Let us define φ+
Π by constructing maps

j+
k : ΛK+ ∗ S+|Pk → ΦK |Pk ,

which agree on the intersections:

j+
k+1|Pk∩Pk+1

= j+
k |Pk∩Pk+1

. (183)

We have identifications

ιk : ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|Pk → (ΦK |Pk×C)|Pk = ΦK |Pk (184)

coming from the gluing construction of ΦK .

We have
ιk|Pk∩Pk+1

= ιk+1|Pk∩Pk+1
◦ Γ

PkPk+1

ΦK
,

where Γ
PkPk+1

ΦK
is as in (44).

We can now prescribe j+
k in the following form: j+

k = ιk ◦ i+k where

i+k : ΛK+ ∗ S+|Pk → (ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)|Pk .

The agreement conditions (183) now read as:

i+k+1|Pk∩Pk+1
= Γ

PkPk+1

ΦK
i+k |Pk∩Pk+1

. (185)

The assignment from the previous subsection means that i+1 is the identity embedding onto the direct
summand. Let us construct the remaining maps ik inductively. Suppose ik has been already defined.

According to Claim (7.6), the map Γ
PkPk+1

ΦK
i+k |Pk∩Pk+1

extends uniquely to Pk+1 by Claim 7.6

(this is where the choice of + sign is crucial). We assign i+k+1 to be this map. It is clear that thus

defined map i+k+1 satisfies (185) so that the maps j+
k+1 give rise to a well defined map φ+

Π, as we wanted.

Let us denote by i++
k : ΛK+∗S+|Pk → ΛK+∗S+|Pk ; i+−k : ΛK+∗S+|Pk → ΛK−∗S−|Pk ; the components

of the map i+k .

7.2.4 Estimate

For k = 2, ..., n− 1, denote by εk the diagonal vector of the parallellogram Pk ∩Π such that εk ∈ IntK
(there is a unique such a diagonal vector). Let εΠ ∈ IntK be a vector such that εk ∈ εΠ +K for all k.

The following Claim can be now proved by a direct computation.
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Claim 7.8 1) i++
k ≡ 1 mod F εΠ for all k = 1, ..., n.

2) Let RΠ ⊂ {1, 2, ..., n−1} consist of all k s.th. Pk∩Pk+1 goes to the right. We then have a transform

Γ
PkPk+1
+− : ΛK+ ∗ S+|Pk∩Pk+1

→ ΛK− ∗ S−|Pk∩Pk+1
,

where Γ
PkPk+1
+− is the corresponding component of Γ

PkPk+1

ΦK
., which extends uniquely to Pk+1 ∪ ... ∪ Pn.

Γ
PkPk+1
+− is the same as NK

` , where ` = Pk ∩ Pk+1 from (48).

We then have:
i+−k ≡ −

∑
k′∈RΠ; k′<k

Γ
Pk′Pk′+1
+− mod F εΠ . (186)

7.2.5 Construction of φ−Π

The map φ−Π is constructed in a fairly similar way (the major difference is that we need to start the
construction from Pn and then continue to the left until we reach P1.

Similar to above, we define φ−Π in terms of the restrictions to Pk:

φ−Π|Pk = ιk ◦ i−k ,

where ιk is the same as above, see (184), and

i−k : ΛK− ∗ S−|Pk → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|Pk .

We have the following analogue of Claim 7.8.

Claim 7.9 Let εΠ ∈ Int K be as in Claim 7.8. We have 1) i−−k ≡ 1 mod F εΠ for all k = 1, ..., n.
2) Let LΠ ⊂ {1, 2, ..., n− 1} consist of all k s.th. Pk ∩ Pk−1 goes to the left. We then have transform

Γ
Pk−1Pk
−+ : ΛK− ∗ S−|Pk∩Pk−1

→ ΛK+ ∗ S+|Pk∩Pk−1

which extends uniquely to Pk−1 ∪ ... ∪ P1. We then have:

i−+
k ≡ −

∑
k′∈LΠ; k′>k

Γ
Pk′−1Pk′
−+ mod F εΠ .

7.2.6 The map φΠ is an isomorphism

Now that we have constructed the maps φΠ|Pk from (182), let us prove that they are isomorphisms.

We can write
φΠ|Pk = ιk ◦ iΠPk , (187)

where iΠPk is an endomorpism of ΛK+∗S+⊕ΛK−∗S−|Pk whose components i±±k have been constructed
above. We will abbreviate iΠPk = ik. The problem reduces to showing invertibility of ik.
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Let us use the matrix notation

ik =


i++
k i−+

k

i+−k i−−k

 ∈ End


ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
Pk

 .

We have (
i++
k i−+

k

i+−k i−−k

)
≡
(

1 i−+
k

i+−k 1

)
, (188)

as follows from Claims 7.8 and 7.9.

Lemma 7.4 implies that (
0 i−+

k

i+−k 0

)2

=

(
i−+
k ◦ i+−k 0

0 i+−k ◦ i−+
k

)
≡ 0.

It now follows that X :=

(
i++
k i−+

k

i+−k i−−k

)
is invertible (Sec 7.1.1).

We can multiply (188) by X−1 so as to get:

ikX
−1 ≡ Id,

which implies that ikX
−1 and, thereby, ik is invertible. Furthermore, we get:

i−1
k ≡

(
1 −i−+

k

−i+−k 1

)
(189)

7.3 The maps φΠ1, φΠ2 for a pair neighboring strips Π1 and Π2

Consider now the neighboring strips Π1 and Π2 and let ` = Π1 ∩Π2. Let us find the relation between
Φ±Π1
|` and Φ±Π2

|`. Suppose ` goes to the right, fig. 11.
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We have a canonical isomorphism

HΠ1Π2 : (Φ|Π1×C)|` ' (Φ|Π2×C)|`.

Using the isomorphisms φΠ1 , φΠ2 as in (182), we get an isomorphism

ÃΠ1Π2 := φ−1
Π2
|`×C ◦HΠ1Π2 ◦ φΠ1 |`×C :

ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|`×C → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|`×C. (190)

Let P1, P2, ..., Pn be all α-strips which intersect `, fig.11. We then have commutative diagrams

ΛK+ ∗ S+ ⊕ ΛK− ∗ S−
∣∣
`∩Pk

ÃΠ1Π2 //

iΠ1Pk
|` ++

ΛK+ ∗ S+ ⊕ ΛK− ∗ S−
∣∣
`∩Pk

iΠ2Pk
|`ss

ΛK+ ∗ S+ ⊕ ΛK− ∗ S−
∣∣
`∩Pk

which implies that
ÃΠ1Π2 |`∩Pk = (iΠ2Pk |`∩Pk)−1 ◦ iΠ1Pk |`∩Pk .

These formulas determine ÃΠ1Π2 . Let us compute:

iΠ2Pk ◦ ÃΠ1Π2 |`∩Pk = iΠ1Pk |`∩Pk(
1 i−+

Π2Pk
i+−Π2Pk

1

)
◦ ÃΠ1Π2 |`∩Pk ≡

(
1 i−+

Π1Pk
i+−Π1Pk

1

)
.

Formula (188) yields (
1 i−+

Π2Pk
i+−Π2Pk

1

)−1

≡
(

1 −i−+
Π2Pk

−i+−Π2Pk
1

)
.

Therefore,

ÃΠ1Π2 |`∩Pk ≡
(

1 −i−+
Π2Pk

−i+−Π2Pk
1

)
×
(

1 i−+
Π1Pk

i+−Π1Pk
1

)
≡

≡
(

1 i−+
Π1Pk

− i−+
Π2Pk

i+−Π1Pk
− i+−Π2Pk

1

)∣∣∣∣
`∩Pk

(191)

because i+−Π2Pk
◦ i−+

Π1Pk
≡ 0 and i−+

Π2Pk
◦ i+−Π1Pk

≡ 0 by Lemma 7.4

Let us, cf. fig.11, number all the α-strips that meet Π1 or Π2:

PΠ1
−m1

, PΠ1
−m1+1, ..., P

Π1
0 , P1, P2, ..., Pn;

PΠ2
−m2

, PΠ2
−m2+1, ..., P

Π2
0 , P1, P2, ..., Pn.

Let us also set PΠ1
1 := PΠ2

1 := P1. Lemma 7.8 yields,

i+−Π1Pk
≡ −

′∑
l<k

ΓPlPl+1 −
′∑

m≤0

ΓP
Π1
m+1P

Π1
m ;
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i+−Π1Pk
≡ −

′∑
l<k

ΓPlPl+1 −
′∑

m≤0

ΓP
Π2
m P

Π2
m+1 ,

where only those terms are included into the sums, for which the intersection ray of the corresponding
α-strips goes to the right. Hence,

i+−Π1Pk
− i+−Π2Pk

≡
′∑

m≤0

ΓP
Π2
m P

Π2
m+1 −

′∑
m≤0

ΓP
Π1
m P

Π1
m+1 .

Let ` := Π1 ∩Π2 be of the form {ĉ(`) + re−iα r > 0}.
It now follows that

i+−Π1Pk
− i+−Π2Pk

|`∩Pk ≡ −Γ
P

Π1
0 P1

+− . (192)

Thus:

ÃΠ1Π2 |`∩Pk ≡

(
1 ∗

−ΓP
Π1
0 P1 1

)
.

This means that the same is true for ÃΠ1Π2 |`.
Let us write ÃΠ1Π2 in the matrix form.

ÃΠ1Π2 =


Ã++

Π1Π2
Ã−+

Π1Π2

Ã+−
Π1Π2

Ã−−Π1Π2

 :

ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
`

→

ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
`

.

Lemma 7.5 implies that Ã−+
Π1Π2

= 0. Indeed, the corresponding map is defined on an unbounded set
Π1 ∩Π2; since the intersection ray goes to the right, we are under the conditions of the case i) of that
Lemma.

Let us summarize our findings.

Claim 7.10 Let Π1,Π2 be neighboring strips and ` = Π1 ∩ Π2 goes to the right. Assume that Π1 is
above Π2. Then
1) the map

ÃΠ1Π2 :

ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
`

→

ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
`

is of the form

ÃΠ1Π2 =

(
Ã++

Π1Π2
0

Ã+−
Π1Π2

Ã−−Π1Π2

)
;

2) Ã++
Π1Π2

≡ Id ; Ã−−Π1Π2
≡ Id ; Ã+−

Π1Π2
≡ −Γ

P
Π1
0 P1

−+ ; where P1 is the leftmost α-strip that meets both

Π1 and Π2 and PΠ1
0 is the rightmost α-strip that meets Π1 but not Π2.
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Similar result holds true in the case when the intersection ray Π1 ∩ Π2 goes to the left (proof is
omitted).

Claim 7.11 Let Π1,Π2 be neighboring strips and ` = Π1 ∩ Π2 goes to the left. Assume that Π1 is
below Π2. Then
1) the map

ÃΠ1Π2 :

ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
`

→

ΛK+ ∗ S+

⊕

ΛK− ∗ S−

∣∣∣∣∣∣∣∣∣
`

is of the form

ÃΠ1Π2 =

(
Ã++

Π1Π2
Ã−+

Π1Π2

0 Ã−−Π1Π2

)
;

2) Ã++
Π1Π2

≡ Id; Ã−−Π1Π2
≡ Id; Ã−+

Π1Π2
≡ −Γ

P
Π1
0 P1

−+ where P1 is the rightmost α-strip that meets both Π1

and Π2 and PΠ1
0 is the leftmost α-strip that meets Π1 but not Π2.

7.3.1 Identifications

Let ` = Π1 ∩Π2, ` ∈ L−α.

In the notation of section 3.10.2, we can identify S̃`
∼→ SA−1(`); Bw : S̃w

∼→ SA−1(w) for every w ∈ W̃ .
For a word w = `n · · · `1L or w = `n · · · `1R, set |w| := n (we set |L| = |R| = 0).

Let Cw := (−1)|w|Bw : S̃w → SA−1(w).

Let us define identifications
B±,C± : S̃± → S± (193)

where
B±|S̃w = Bw; C±|S̃w = Cw.

We can conclude from 2)s of Claims 7.10, 7.11 that

ÃΠ1Π2 ≡ C−1ΓΠ1Π2

ΨK
C, (194)

where ΓΠ1Π2

ΨK
is as in (58).

7.4 The isomorphism IΨΦ : ΨK → ΦK

Using the above developed results, we will construct a map IΨΦ : ΨK → ΦK which satisfies (177)
(recall that such a map is unique). Equivalently, for each (−α)-strip Π, let us specify maps

IΨΦ,Π : ΨK |Π×C → ΦK |Π×C

which agree on itersections: if Π1 ∩Π2 = ` 6= ∅, then we should have:

IΨΦ,Π1 |`×C = IΨΦ,Π2 |`×C. (195)
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Let us now reformulate condition (177).

Let P0 be an α strip and Π0 be a −α-strip such that x0 ∈ P0 ∩Π0 (these strips are unique).

Denote FK0 := Zx0×K , cf.(29).

Let
i0Φ : FK0 → ΦK |(Π0∩P0)×C;

i0Ψ : FK0 → ΨK |(Π0∩P0)×C

be the restrictions of iΦ, iΨ. Since FK0 is supported on (Π0∩P0)×C, the condition (177) is equivalent
to:

IΨΦ|(Π0∩P0)×Ci
0
Ψ = i0Φ. (196)

We have identifications
ι̃Π : ΛK+ ∗ S̃+ ⊕ ΛK− ∗ S̃−|Π×C → ΨK |Π×C
φΠ : ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|Π×C → ΦK |Π×C.

Here ι̃Π is defined similarly to (184) but for S̃±, ΨK and (−α)-strips instead of S±, ΦK and α-strips;
and φΠ is as in (182).

One can now equivalently look for IΨΦ,Π in the form:

IΨΦ,Π = φΠUΠι̃
−1
Π , (197)

where
UΠ : ΛK+ ∗ S̃+ ⊕ ΛK− ∗ S̃−|Π×C → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|Π×C

is to be calculated.

Since Π satisfies both i) and ii) in Lemma 7.5, we have

HomΠ×C(ΛK± ∗ S̃±; ΛK∓ ∗ S̃∓) = 0.

Thus, we must have:
UΠ(ΛK± ∗ S̃±) ⊂ ΛK± ∗ S±. (198)

Using (190) and (57), we rewrite the gluing condition (195) as follows:

UΠ2 |`×C = ÃΠ1Π2UΠ1 |`×CΓΠ2Π1

ΨK
. (199)

Let us now rewrite the condition (196) (from now on all our maps are restricted onto (Π0 ∩P0)×C,
unless otherwise specified). Let

ν : FK0 → ΛK+ ∗ SL ⊕ ΛK− ∗ SR

be the map given by the left arrow in (52). Let ν+ : FK0 → ΛK+ ∗ SL; ν− : FK0 → ΛK− ∗ SL be the
components of ν.

We have the following obvious embeddings:

IL : ΛK+ ∗ SL → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−; IR : ΛK− ∗ SR → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−;
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ĨL : ΛK+ ∗ SL → ΛK+ ∗ S̃+ ⊕ ΛK− ∗ S̃−; ĨR : ΛK− ∗ SR → ΛK+ ∗ S̃+ ⊕ ΛK− ∗ S̃−.

The formula (187) can now be rewritten as

φΠ0 = ιP0iΠ0P0 .

We, therefore, can split
i0Φ = ιP0(IL ⊕ IR)ν = φΠ0i

−1
Π0P0

(IL ⊕ IR)ν. (200)

Next, we have
i0Ψ = ι̃Π0(ĨL ⊕ ĨR)ν.

Combining (197) and (200), we have

IΨΦ,Π0i
0
Ψ = φ−1

Π0
UΠ0(ĨL ⊕ ĨR)ν;

so that the condition (196) is equivalent to the condition

UΠ0(ĨL ⊕ ĨR)ν = i−1
Π0P0

(IL ⊕ IR)ν as maps FK0 → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|Π0×C . (201)

Denote
i−1
Π0P0

(IL ⊕ IR)ν =: I0.

Let us make this condition (201) more specific.

Lemma 7.12 Let J : FK0 → (ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)[2] be an arbitrary map in D((Π0 ∩ P0) × C).
There exist unique maps

J + : ΛK+ ∗ SL → ΛK+ ∗ S+;

J − : ΛK− ∗ SR → ΛK− ∗ S−
such that

J = (J + ⊕ J −)ν.

Proof We have identifications:

β : RHomC(ZK ; i−1
x0

(ΛK+ ∗ S+ ⊕ ΛK− ∗ S−))
∼→

∼→ RHomC(ZK ; i!x0
(ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)[2])

∼→ RHom(FK0 ; (ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)[2]),

where ix0 : C→ (Π0 ∩ P0)× C is the inclusion s 7→ (x0, s). Consider two more identification

α+ : RHom(ΛK+ ∗SL; ΛK+ ∗S+)
∼→ RHom(i−1

x0
ΛK+ ∗SL; i−1

x0
ΛK+ ∗S+) = RHom(ZK ; i−1

x0
ΛK+ ∗S+);

α− : RHom(ΛK−∗SR; ΛK−∗SR)
∼→ RHom(i−1

x0
ΛK−∗SL; i−1

x0
ΛK−∗S−) = RHom(ZK ; i−1

x0
ΛK−∗S−);

and let α = α+ ⊕ α−. Then we have a chain of identifications

RHom(ΛK+ ∗ SL; ΛK+ ∗ S+)⊕RHom(ΛK− ∗ SR; ΛK− ∗ S−)

α→ RHomC(ZK ; i−1
x0

(ΛK+ ∗ S+ ⊕ ΛK− ∗ S−))

β→ RHom(FK0 ; (ΛK+ ∗ S+ ⊕ ΛK− ∗ S−)[2]).
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Let

γ : RHom(ΛK+∗SL; ΛK+∗S+)⊕RHom(ΛK−∗SR; ΛK−∗S−)→ RHom(FK0 ; ΛK+∗S+⊕ΛK−∗S−)[2])

be given by the pre-composition with ν. One can check that γβ = α so that γ is an isomorphism.

The statement now follows. 2.

Let I±0 denote the maps obtained from I0 by means of lemma 7.12. Observe that the maps I±0
uniquely extend from (Π0 ∩ P0) × C onto Π0 × C. Denote the resulting extensions by the symbol
I± : ΛK± ∗ SL/R|Π0×C → ΛK+ ∗ S+ ⊕ ΛK− ∗ S−|Π0×C.

Rewrite the condition (201) in the form:

UΠ0(ĨL ⊕ ĨR)ν = (I+
0 ⊕ I−0 )ν.

It now follows that the condition (201) (and thus also (177)) will be satisfied iff

UΠ0 |ΛK+∗SL = I+; UΠ0 |ΛK−∗SR = I−. (202)

Indeed, the implicaton (202)⇒ (201) is obvious, and (201)⇒ (202) follows from (198).

7.4.1 Estimate

Let us prove the following estimates:

Claim 7.13
I+ ≡ IL; I− ≡ IR. (203)

Let us bring the current notation into correspondence with that in Lemmas 7.8,7.9. Set Π := Π0. Let
us denote all the α-strips intersecting Π by P0, P1, . . . , Pn in the order from the left to the right, in
the same way as in Lemmas 7.8, 7.9. Suppose that P0 = Pk so that iΠ0P0 = ik in the notation of
Lemmas 7.8,7.9.

Let us now write i−1
Π0P0

= i−1
k = Id + a0, where a0 is an endomorhipsm of ΛK+ ∗ S̃+ ⊕ ΛK− ∗ S̃−. Let

a := a0(IL ⊕ IR)ν. Our statement now reads as a+ ≡ 0; a− ≡ 0.

According to (189), we have

a0 ≡
(

0 −i−+
k

−i+−k 0

)
so that

a = −(i+−k IL ⊕ i−+
k IR)ν. (204)

Let us now examine the map i+−k ILν. We have

i+−k IL : ΛK+ ∗ SL|Π0∩P0×C → ΛK− ∗ S−|Π0∩P0×C =
⊕

w∈Wα
right

ZA(K,w),

where, as in (37), (38), A(K,w) := {(z, s)|s− z ∈ K + ĉ(w)} ⊂ (Π0 ∩P0)× C.

100



As above, let W′
right ⊂Wα

right consists of all w such that A(K,w) ⊂ A(K,L), where

A(K,L) = {(z, s)|s+ z − x0 ∈ K} ⊂ (Π0 ∩P0)× C.

Let Ew : ZA(K,L) → ZA(K,w) be the corresponding map of sheaves. We then have

i+−IL =
∑

w∈W′
right

nwEw,

where for each (z, s) ∈ A(K,L) there are only finitely many w such that nw 6= 0 and (z, s) ∈ A(K,w).

Let A be a unique vertex of the parallelogram Π0 ∩ P0 such that Π0 ∩ P0 ⊂ A + K. The condition
A(K,w) ⊂ A(K,L) is then equivalent to 2A − x0 + ĉ(w) ∈ K, or ĉ(w) + x0 = −2(A − x0) + εw
where εw ∈ K. Observe that x0 − A ∈ IntK because x0 ∈ IntΠ0 ∩ P0. It now follows that for each
w ∈W′

right, the map Ewν
+ : F0 → ZA(K,w) factors as

F0
ν−→ Λ− ∗ SR = ZA(K,R) → Z{(z,s)|s−z+x0+2(A−x0)∈K}

Fw→ Z{(z,s)|s−z+x0+2(A−x0)−εw∈K} = ZA(K,w),

where all the arrows except the leftmost one are induced by the closed embeddings of the corresponding
closed sets. It is easy to check that the sum

∑
nwFw gives rise to a well-defined map

J : Z{(z,s)|s−z+x0+2(A−x0)∈K} →
⊕

w∈Wα
right

A(K,w)

Let δ := 2(A− x0). We have bZ{(z,s)|s−z+x0+2(A−x0)∈K = Tδ∗ZA(K,R). Let τδ : ZA(K,R) → Tδ∗ZA(K,R)

be the map induced by the closed embedding of the corresponding closed sets. We then have a
factorization

i+−k ILν = Jτδν
−,

which implies that (i+−k ILν)+ = Jτδ ≡ 0. Similarly, one can check that (i−+
k IRν)− ≡ 0, which, by

virtue of (204), that a = 0. 2

7.5 Inductive construction of the maps UΠ.

We will now construct the maps UΠ satisfying (199) and (202). Taking into account (198), it is possible
to construct UΠ in terms of its components

UwΠ : ΛK+ ∗ S̃w → ΛK+ ∗ S+, for all w ∈W−α
left;

UwΠ : ΛK− ∗ S̃w → ΛK− ∗ S−, for all w ∈W−α
right.

7.5.1 Rewriting the gluing condition

Let us rewrite the conditions (199).

Case 1: ` goes to the left and w ∈Wα
left (set ± = + on both sides of (205)) or ` goes to the right and

w ∈Wα
right (set ± = − on both sides of (205)) Let us rewrite (199):

UwΠ2
|`×C = ÃΠ1Π2U

w
Π1
|`×C : ΛK± ∗ Sw|` → ΛK± ∗ S±|`×C. (205)
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Every map as on the RHS extends uniquely to Π2 (Lemma 7.6)

so that we can equivalently rewrite

UwΠ2
= (ΓΠ1Π2

ΨK
UwΠ1
|`)ext, (206)

where ext means the extension onto Π2.

Case 2:

` goes to the left and w ∈Wα
right (set ± = −) or ` goes to the right and w ∈Wα

left (set ± = +):
(207)

UwΠ2
|`×C = ΓΠ1Π2

ΨK
(UwΠ1

|`×C ⊕ ϑ(Π2,Π1)U `wΠ1
|`×CNw

` ),

where Nw
` : Λ−` ∗ Sw → Λ+

` ∗ S`w is as in (43).

Recall that Ã∓±Π1Π2
= 0 by Claims 7.10, 7.11, so that we can rewrite the RHS as (using notation from

Sec 3.8.5)
Ã±±Π1Π2

UwΠ1
|`×C + (Ã±∓Π1Π2

UwΠ1
|`×C + Ã∓∓Π1Π2

ϑ(Π2,Π1)U `wΠ1
|`×CNw

` ).

So that we have (by separating + and − components):

UwΠ2
|`×C = Ã±±UwΠ1

|`×C. (208)

Ã±∓Π1Π2
UwΠ1
|`×C + Ã∓∓Π1Π2

ϑ(Π2,Π1)U `wΠ1
|`×CNw

` ) = 0. (209)

As above, (208) can be equivalently rewritten in the same way as (206).

Let us rewrite (209):
U `wΠ1
|`×CNw

` = −ϑ(Π2,Π1)Ã∓∓Π2Π1
Ã±∓Π1Π2

UwΠ1
|`×C.

Given a map K : ΛK± ∗ Sw|` → ΛK∓ ∗ S∓|`, one can uniquely factor it as

K = K′Nw
` ,

where K′ : ΛK∓ ∗ Slw|` → ΛK∓ ∗ S∓|` (Sec 7.1.3) which extends uniquely to a map

K′ext : ΛK∓ ∗ Slw|Π2 → ΛK∓ ∗ S∓|Π2

by Lemma 7.6. In view of this remark, we finally write

U `wΠ1
=
(
−ϑ(Π2,Π1)Ã∓∓Π2Π1

Ã±∓Π1Π2
UwΠ1
|`
)

ext
. (210)

Let us summarize. Gluing conditions (199) can be equivalently formulated as follows:

For every pair of neighboring strips Π1,Π2, ` = Π1∩Π2, we have (206). In the case (207) we also have
(210).

Condition (206) implies that
UwΠ2
|` ≡ UwΠ1

|`. (211)
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7.5.2 Constructing UwΠ

Let us proceed by the induction in the length of w. In the case Π = Π0 and w = L or w = R, UwΠ0
is

determined by (202).

Given an arbitrary strip Π, there is a unique sequence

Π0,Π1, . . . ,Πn = Π (212)

where all Πi are different and Πi ∩ Πi+1 6= ∅ (because the graph formed by the strips is a tree).
Formulas (206) (applied for all pairs Πi,Πi+1) determine ULΠ , U

R
Π for all Π.

Suppose that UwΠ for all words w of length ≤ N . Let w = `w′ be a word of length N + 1 (so that the
length of w′ is N). Let ` = Π1 ∩ Π2. The formulas (210) determine UwΠ1

. Given an arbitrary strip Π
we can join it with Π1 by a path and define UwΠ using (206) in the same way as above.

7.5.3 Estimate

We are going to prove the following estimate. Let Π be a strip. Consider a map C = C+ tC−, cf.
(193). We will prove

Claim 7.14
UwΠ ≡ CIw = (−1)|w|Iw.

Proof. Let us use induction in |w|. If w = L or w = R and Π is arbitrary, the estimate follows
from (211). Suppose that the estimate is the case for all w with |w| ≤ N . Let now |w′| = N + 1 and
w′ = lw, |w| = N . Let ` = Π1 ∩Π2.

Combining 210 and the inductive assumption, we have:

C−1U `wΠ1
≡
(
−ϑ(Π2,Π1)C−1Ã∓∓Π2Π1

Ã±∓Π1Π2
CIw|`

)
ext

(
−ϑ(Π2,Π1)C−1ÃΠ1Π2CIw|`

)
ext

Claims 7.10,7.11
≡

(
−ϑ(Π2,Π1)C−1Ã±∓Π1Π2

CIw|`
)

ext

(
−ϑ(Π2,Π1)C−1ÃΠ1Π2CIw|`

)
ext

(194)
≡ (−ϑ(Π2,Π1)Γ̃wΠ1Π2

|`)ext

≡ (Nw
` )|ext = I`w,

and (211) allows us to extend this equality to other strips. 2

7.5.4 Proof of Proposition (3.6)

Let us first find an expression for the maps JΠP as in (178). We have

IΨΦ,Π|Π∩P×C
(197)
= φΠ|Π∩P×CUΠ|Π∩P×Cι̃−1

Π |Π∩P×C
(187)
= ιΦP |Π∩P×CiΠPUΠ|Π∩P×Cι̃−1

ΨΠ|Π∩P×C. (213)

Comparison with (178) yields:
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JΠP = iΠPUΠ|Π∩P .

We then have (for every w ∈Wα)
JΠP Iw ≡ iΠP Iw(−1)|w|,

by Claim 7.14.

Let us write
iΠP Iw : ZA(K,w) →

⊕
w′∈Wα

ZA(K,w′)

as
iΠP Iw =

∑
w′∈W′

mΠP
ww′eww′ ,

where the sum is taken over all w′ such that A(K,w′) ⊂ A(K,w) and eww′ : ZA(K,w) → ZA(K,w′) is

induced by this embedding. We are to show that mΠP
ww′ 6= 0 implies that A(K,w) 6= A(K,w′). Assume,

on the contrary that A(K,w) = A(K,w′) for w,w′ ∈Wα. Since P ∩Π 6= ∅, this is only possible when
w,w′ ∈Wα

right or w,w′ ∈Wα
left. Suppose w,w′ ∈Wα

right. Lemma 7.8 then implies that either w′ = w,
or ĉ(w′)− ĉ(w) ∈ IntK, i.e. w 6= w′, as we wanted. The case w,w′ ∈Wα

left is treated in the same way
by means of Lemma 7.9. 2
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