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Microlocal properties of sheaves and complex WKB.

Alexander GETMANENKO * Dmitry TAMARKIN T

April 4, 2012

Abstract

Kashiwara-Schapira style sheaf theory is used to justify analytic continuability of solutions of
the Laplace transformed Schrédinger equation with a small parameter. This partially proves the
description of the Stokes phenomenon for WKB asymptotics predicted by Voros in 1983.

1 Introduction

In this paper we are going to study the following PDE on one unknown function ¥ in two complex
variables z, s:

— U, + V(w)\ljss = 07 (1)

where V(z) is a given polynomial; the weakest possible assumptions on V(z) will be formulated in

Sec 2711

This equation is related to the Schrédinger equation
— h2p(a, h) + V(@)p(x, h) = 0 (2)
by means of the Laplace transform 1/h — 0s. According to resurgent analysis, the analytic behavior

of ¥(x, s) determines quasi-classical asymptotics of solutions of .

A multivalued solution V¥ of ([1)) can be specified by means of prescribing its initial values. Our problem
is now as follows. Consider a class of initial value problems for with a fixed type of the analytic
behavior of the initial data; we are to find a manifold where solutions of these problems are defined.

1.1 Cauchy problem

We study the Cauchy problem for of the following type. We fix a point ¢y € C and prescribe
U(xzg,s) = 1o(s) and aqla(i’s) 2=z, = ¥1(s) as multivalued analytic functions of s. Let us now give a
more precise account.
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1.1.1 Initial data

Fix an acute angle a € (0,7/2). Let S, := (0, 00) X (—a, «+27) be an open sector of aperture 27+ 2a.
Let mg, : Sq — C be the covering map g, (r,¢) = re'®. The map mg, induces a complex structure
on S, so that mg, is a local biholomorphism. The initial conditions are given by two holomorphic
functions

1o and ¥ on Sg. (3)

1.2 Multi-valued solution to a multi-valued Cauchy problem

We first fix a complex surface S along with a local biholomorphism ps : S — C x C. Let us also fix a
map

h:Sq =S (4)

fitting into the following commutative diagram

C_"LCxC

W]

Sy —> 8
where iy, : C — C x C is given by the formula iz, (s) = (xo, s).
The equation gets transferred onto S by means of a local biholomorphism ps. Call this equation
”the transferred equation”.

The coordinates (x, s) on C x C give rise to local coordinates on §. Given a function ¥ on S, we then

)
have a well defined derivative B as a holomorphic function on §.
x

We sz:g/that a solution ¥ of the transferred equation is a solution of the Cauchy problem with initial

v
data onS,if\I/ohzwo;g—xoh:¢1.

1.3 Formulation of the result

Our main result is a construction of a complex surface S and a map h as in , such that for every
choice of the initial data, there exists a unique solution ¥ of the Cauchy problem on S.

We prove (Sec. [3.16]) that the surface S is “extends infinitely in the direction of K”, where K € C is
the following cone: ‘
K :={re®:r>0,—a < ¢ <a}. (5)

Let us give a more precise formulation. Fix a point z € C such that V(z) # 0. Consider a one-
dimensional complex manifold §% := pgl(a: x C), where the projection onto =z x C gives a local
biholomorphism P* : §* — C. Let U C C be an open parallelogram whose sides are parallel to
vectors e’ and e~**. Let o : U — S% be a section of P?. Let also r_, C K be the ray [0, 00).e7%.

We prove that



Theorem 1.1 There exists a set I' C C satisfying:

1) for every point s € C, the intersection (s — K) NI is at most finite,
2)UC (U+K)\T +r_y);

3) o extends uniquely onto (U + K)\(I' +r_,).

This theorem is proved in Sec it easily follows from Theorem [3.12] as explained after its formu-
lation.

Theorem [1.1] assumes existence of a nonempty set U and a section o; this fact is the content of the

theorem [B.12

Our construction of S, as well as the proof of the above Theorem [I.1], are based on sheaf-theoretical
methods [KS]. The relation between linear PDEs and sheaves is well known and consitutes the subject
of Algebraic Analysis. Our paper is also motivated by the classical work of Voros [V83] Sec.6] where
an explicit description singularities of solutions of was derived heuristically, see [V83], p.213, line
15 from the bottom; additional insights came from [ShSt] and [G09]. Important works on this problem
using methods of hard analysis include [AKT91] and [KK11].

In the next subsection, we will briefly describe the idea of our sheaf-theoretic approach.

1.4 Introducing sheaves

We start with introducing a covering space X of C, and defining the so-called action function on X.

1.4.1 A covering space X

Let TP be the set of zeros of V(x) — “turning points” of V(z). We assume throughout the paper that
TP is finite. We also assume zg ¢ TP. Let X be the universal covering of C\T'P. We can choose a
determination of \/V (x) and its primitive S(z) = [*/V(£)d¢ on X. It will be more convenient for
us to use the notation z := S(z). Since dS(z) is nowhere vanishing on X, we can use z as a local
coordinate on X. As above, we denote by s the coordinate on C, so that (z, s) are local coordinates
on X x C.

Equation gets transfered onto X x C and in the coordinates (z, s) it looks as follows:
— VU, +U,+lot. =0 (6)
where l.o.t. stands for a differential operator of order < 1 applied to ¥. We now pass to a sheaf-

theoretical consideration.

1.4.2 Solution sheaf and its singular support

Let Sol be the solution sheaf of @ According to [KS, Th.11.3.3], the singular support of Sol is of a
very special form which is determined by the highest order term of @ (see Sec. for more details).
More specifically, let (z, s,(dz + ods) be local coordinates on T*(X x C). Then

S.5.8S0l € Qx :={(z,8,(dz+0ds) : (=cor(=—0}. (7)



It turns out that this condition contains enough information on Sol in order to deal with solving the
Cauchy problem. In fact, at this stage, we abstact from our PDE, and only remember that its solution
sheaf has its singular support as specified.

1.4.3 Initial value problem in sheaf-theoretical terms

Choose and fix a preimage xg € X of zp. Define a map g : S, — X x C by setting ¢(5) := (x0,7s,, (5)).
Cauchy-Kowalewski theorem implies that the initial conditions are in 1-to-1 correspondence with
elements of I'(S,, g~ 1Sol), see Sec. for more detail.

As explained in the same Sec., the latter group can be identified with R® Homy xc(Rgi1Zs,, 2], Sol).
Therefore, the initial data can be interpreted as a map

my : Rg\Zs, [—2] — Sol, (8)

see .

1.4.4 Semi-orhogonal decomposition of RgZs, [—2].

Let D(X xC) be the bounded derived category of sheaves of abelian groups on X xC. Let C C D(X xC)
be the full triangulated subcategory consisting of all objects whose singular support is contained in
Qx as in . Let -C € D(X x C) be the so-called left semi-orthogonal complement to C, i.e. a full
subcategory consisting of all objects Y such that Rhom(Y, X) =0 for all X € C. We prove

Theorem 1.2 1) There exists the following distinguished triangle in D(X x C):
— Rg!ZSQ[—Q] 3 d— 4 i%

where ® € C, § € +C (“semi-orthogonal decomposition”);

2) Stalks of ® at every point of X x C have no negative cohomology.

This theorem coincides (up-to slight reformulations) with Theorem The object ® and the map
io : RgiZs, [—2] — @ are constructed in Sec[3.613.13] The bulk of the paper (Sec. [4}-Sec. [6) is devoted
to showing that the constructed object ® and a map i satisfy the above theorem.

It is well known that the distinguished triangle in part 1 of Th[I.2], if exists, is unique up to a unique
isomorphism, meaning that ® is defined uniquely. It also follows that the precomposition with ig:

ip :o— : ROHomyyxc(®,Sol) — R°Hom(RgZs,[—2],Sol)
is an isomorphism of groups. This implies that the map my, cf. , uniquely factors as follows:

RgZs. [-2] & % Sol.

Let ®g := 7<¢®. Condition 2) of Theorem implies that @ is a sheaf of abelian groups. We have
a composition
(mw)o : (I)() — ® — Sol.



1.4.5 Etale space of ®; and solving the initial data problem

Let S’ be the étale space of ®;. We have a local homeomorphism ps: : &’ — X x C so that we
have a unique complex structure on &’ making ps: into a local biholomorphism. It turns out, that
the map (my)o gives rise to a solution of the transferred equation on S’. Indeed, every such a
solution can be equivalently described as an element in ¥ € I'(S; pg,lSol). We also have a canonical
section p € T'(S';ps' ®o) (by the construction of the étale space); the map (my)o induces a map
v p§,1<I>0 — pg,lSol, and we set ¥ := v(p).

It is now straigtforward (Sec. [3.5.2) to prove that thus constructed solution ¥ is a solution on S’ of
the Cauchy problem with the initial data (3).

By choosing an appropriate connected component S of 8’ we finish the construction.

2 Conventions and Notations

Throughout the paper, we fix an acute angle a € (0,7/2).

2.1 Various subsets of C

We introduce the following subsets of C:

— K is the closed cone consisting of all complex numbers whose argument belongs to [—«,a],
including 0;

— Ty = e0,00); T_g = €.[0, 00);

2.2 Sector S,

We set So:={7€C: —a<Im7 <27+ a}. Let mg, : So — C be the map given by mg, (1) :=€”.
Some complex analysts call S, an étale open sector with aperture 27 + 2a.

2.3 Potential V(z). Stokes curves. Assumptions

Throughout the paper, we fix an entire function V(z) on C. We assume that V' (x) has only finitely
many zeros which are traditionally called 'turning points’.

The conditions in Sec below will be also assumed throughout the paper.

2.3.1 Stokes curves and further assumptions

Let w € C, V(w) = 0 be a k-fold zero of V(z). We define an a-Stokes curve z(t), 0 < t < C,
emanating from w as follows:

—2(t) is a smooth curve with z(0) = w and —V (z)(dz/dt)? € e**R~o.
The following facts are well known, [EvFe].

1) There are exactly k + 2 a-Stokes curves emanating from w.



2) One can choose C' (to be a positive real number or +00) in such a way that either z(C) := tlin(l;
%

coincides with another turning point of V' (z), or z(C) = co. In the latter case we say that the Stokes
curve terminates at infinity.

2.3.2 Further assumptions

We will assume the following properties of V (z).
a) All a- and (—a)-Stokes curves terminate at infinity.

b) Every a-Stokes curve intersects only finitely many —a-Stokes curves, and every (—a«)-Stokes curve
intersects only finitely many a-Stokes curves.

It is well known in the complex WKB theory that for every polynomial V(x) one can find an «
satisfying these assumptions.

2.4 Universal cover X

Let U be the complement in C to the (finite) set of turning points of the potential V' (z). a-Stokes
curves split U into regions called a-Stokes regions; similarly, one can define —a-regions. Throughout
the paper, we denote by X the universal cover of U, and by px : X — U — C the covering map.

2.5 Initial point z,

We fix a point zy € X. We assume that px(xg) does not belong to any of a- or —a-Stokes lines.

2.6 Action function on X

Fix a choice of /V(x) on U and a function

z: X =>C : dz(x)=+V(r)de. 9)

It follows that dz is nowhere vanishing, i.e. z is a local coordinate near every point of X. The function
z has the meaning of the action function. We use the notation z because z will play the role of a local
coordinate on X. The function z should not be confused with the map map px : X — C.

2.7 Subdivision of X into a-strips

Let P C U be a closed a-Stokes region on U, that is, P is one of the regions into which the complex
plane C is subdivided by a-Stokes curves.

Let us now switch to the universal cover p : X — U. It follows that p~'P splits into a disjoint union
of its connected components P = Hwer P,, where p : P, 5 P. Call each such P, (for every a-Stokes
region P) an a-strip. By [EvFel §2.2], the function z maps each a-strip homeomorphically into a
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Figure 1: Three types of a-strips

generalized strip on C, i.e. a subset of C of one of the following types, fig. [I Here the removed points
(¢, (p correspond to the turning points of V().

Throughout the paper a-strips will be denoted by means of the letter P with different subscripts. We
will often identify « strips with their images in C under z.

2.7.1 Weakest Possible Assumptions on V (z)

The results and proofs of our paper also hold true for any entire function V(x) with finitely many
zeros, satisfying the following condition that corresponds to Condition A of [EvFe, §2.2]:
lim |S(x)| =0

z—o0;x€C

for any curve C in C satisfying arg S(z) = +a.

2.7.2 Boundary rays

Let Py, P> be a-strips and P N Py # (). Then £ = Py N P, is a ray on X which is identified by means
of z with either ¢(¢) + €**.(0,00) C C or é(f) — €'*.(0,00) C C, where &(¢) is a complex number. We
denote by L% the set of all such rays, to be called boundary a-rays. Every boundary a- ray belongs to
the boundaries of exactly two a-strips; the boundary of every a-strip is a disjoint union of boundary
a-rays. Boundary a-rays will be often denoted by the letter ¢ with different subscripts.

We say that a boundary a-ray ¢ goes to the left if its image under z is é(£) — €'*.(0, 00). Otherwise we
say that a boundary a-ray £ goes to the right. Accordingly, we get a splitting £ = Litg LI LT ;.

2.7.3 Strips form a tree

Consider a graph whose vertices are a-strips and we join two distinct vertices with an edge if the
corresponding strips intersect (along some boundary a-ray). Since X is simply connected, it follows
that this graph is a tree.



Figure 2: Intersection of an a-strip with several (—a)-strips. Thick gray lines indicate branch cuts
arising from the many sheets of the projection X — C,.

2.8 (—a)-Strips

One has a similar decomposition of X into (—«)-strips which are defined based on —a-Stokes regions
of X. Throughout the paper, —a-strips will be denoted by means of the letter II with different
subscripts. Similar to above, every —a-strip is homeomorphically mapped under z into a generalized
strip whose each boundary ray is parallel to the line e~**.R. We define boundary —a rays in a similar
way (as intersection rays of two —a-strips). The function z identifies each boundary ray ¢ with either
é(f) + e7%.(0,00) (we then say £ goes to the right), or é(£) — e~*.(0,00) (¢ goes to the left). We
denote the set of all boundary —a-rays by £~*. We have a splitting L7 = £, g LI E;igaht. Bounday
—a-rays will be denoted by the letter ¢ with various subscripts.

2.9 Interaction of o and —a-strips

Choose a (red) a-strip and look at all (—«)-strips (blue) that intersect it. These (—a)-strips cut the
a-strips into parallelograms and two semi-infinite parallelograms, e.g., fig.

2.10 Categories

For a topological space M, we denote by D(M) the bounded derived category of sheaves of abelian
groups on M.

2.10.1 Sub-categories C¥; +CY

Let Y be a one dimensional complex manifold equipped with a local biholomorphism z : Y — C. For
example, Y = X.

We then refer to points of T*(Y x C) as follows (y, s,(dz,0ds), where y € Y, s € C and (,0 € C, so
that (y,s) € Y x C and ((, o) define the following real 1-form on Y x C:

(Cdz + (dz + ods + 7ds) /2.



Let us fix a closed subset 0y C T*(Y x C) to consist of all points (y, s,(, o), where {( = +o.

We denote by C¥ ¢ D(Y x C) the full triangulated subcategory consisting of all objects F with
S.S.(F) c €Y. We denote by +CY € D(Y x C) the full subcategory consisting of all objects G' such
that Rhom(G,F) =0 for all F € CY.

2.11 Sheaves

Let Y be a topological space endowed with a continuous map z: Y — C. If Y C X, then we always
assume that z : Y — C is the restriction of the action function z : X — C. We define the following
sheaves on Y x C:

K+ ._ . K- ._
ApT = Liys)s+2eks Ay = Li(ys)|s—z(y)ek}-

3 Statement of the problem and Main resuts

We start this section with giving a precise formulation for the problem of analytic continuation of
solutions to (I). It turns out to be more convenient to transfer this PDE to X x C by means of the
covering map px : X — C.

Next, we give a sheaf-theoretical reformulation of the probem, and explain how the solution (i.e. a
complex surface S along with a local biholomorphism ps : § — X x C) can be deduced from of a
certain semi-orthogonal decomposition Theorem The rest of this section is devoted to proving
basic properties of & modulo Theorem namely Hausdorffness and infinite continuabilty in the
direction of K, which are the main results of this paper. To this end we need an explicit construction
of the distinguished triangle of the semi-orthogonal decomposition in Theorem This triangle is
obtained via combining four other distinguished triangles.

It now remains to prove Theorem which is now reduced to showing that each of the above
mentioned four triangles (and hence the combined triangle) gives a semi-orthogonal decomposition.
This is done in the rest of the paper.

3.1 Transfer of the equation —V,, + V(2)¥,, =0 to X x C

Our main equation can be transferred to X x C via the covering map p x Id¢c : X xC - U x C.
We will use the action function z on X as in (9). Recall that z is a local coordinate near every point
of X. Our notation is summarized in fig[3]

It is easy to see that the transferred equation has the following form
—U,, + Vg +l.ot =0, (10)

where l.o.t stands for the differential operator of order < 1 applied to V.

Let Sol be the sheaf of solutions of our transferred equation: Sol is a sheaf of abelian groups on X x C.



Figure 3

3.2 Singular support of the solution sheaf Sol

It is well known that to every linear PDE on a manifold M one can put into correspondence a Dj;-
module, where D, is the sheaf of differential operators on M; the solution sheaf of the PDE will then
match with the solution sheaf of the Dj; module.

In our situation, let us rewrite the equation in the form LY = 0 for an appropriate linear
differential operator L on X x C. Define a Dx «c-module M as follows

M =Dxyc/DxxcL.

We then have an obvious isomorphism
Sol = Homp, ,.(M;Oxxc). (11)
Indeed, every solution ¥ of on an open subset U C X x C gives rise to a Dx xc-module map

ly : Dxxclv = Oxxclu

where Iy (T) := TW. Then, for any 7" € Dxxc(U), lg(T'L) = T'"LY = 0. Hence, ly descends to a
map
by : M|y — Oxxclu,

which determines the map . It is straightforward to see that thus constructed map is in fact
an isomorphism of sheaves.

The usefulness of this fact comes from a Kashiwara-Schapira’s theorem on singular support of the
object
RHomDch(M; Oxxc) € D(X x C) (12)

(derived solution sheaf of M). Let us now prove that this object is quasi-isomorphic to Sol.

The object can be conveniently computed by means of the following free resolution R of M:
(R) : 0= Dxxc > Dxuc — 0,

where the map A is as follows: A(T7) = T'L. We obtain that the object Homp,  .(M;Oxxc) is
represented in D?(X x C) by the two term complex

Homp, (R;Oxxc)

10



which is the same as .
0— Oxxc — Oxxc — 0. (13)

It is classically known, e.g. [Schl Th.3.1.1], that the action of the operator L is locally surjective,
meaning that we have a short exact sequence of sheaves

0 — Sol = Oxxc £) Oxxc — 0.

This means that the complex of sheaves is quasi-isomorphic to Sol so that finally

Sol = RhomDch(M; Oxxc)-

Kashiwara-Schapira’s theorem [KSL Th.11.3.3] says that the singular support of the object equals
the characteristic variety of the Dxyc-module M. In our situation, this characteristic variety is
well-known to be equal to the zero set of the principal symbol of the operator L. This set is

{(2,8,{dz+0ds) : (=40} C T*(X xC), (14)

which is the same as Qx from Sec. [2.10.1f Thus, by Kashiwara-Schapira’s theorem, [KS| Th 11.3.3],
we conclude that
5.8.50l = Qx, SolecCX,

where CX is defined in Sec. [2.10.1]

3.3 Initial conditions

Let x¢p € X be an initial point satifying the assumptions from Sec Let us pose a Cauchy problem
for the equation similar to Sec.

Let S, and 7g, : Sqo — C be the same as in Sec 2.2} Set ¢ :=Idx x 75, : X x S = X x C. The
equation gets transfered to X x S, by means of the map ¢q. The transfered equation is of the
form

L'V =0, (15)
where WU is an unknown function on X x S, and L’ is a linear differential operator
L'=-VU,, +e 20, +lot,

and all coefficients of L’ are holomorphic on X x S, because d; = e~ 79,. The solution sheaf of this
equation is canonically isomorphic to ¢~ Sol.

Let us fix two holomorphic functions g, on S, and pose the initial conditions by requiring

TU(xg,s) = ¥%(s) and 9.¥(xq,s) = 1'(s), s€ Sq.

Cauchy-Kowalewski theorem implies that there exists a neighborhood
UcCX xS, (16)

on which there exists a unique solution ¥ € I'(U, g~'Sol) of our Cauchy problem. We have a natural
map

(U, q 'Sol) — T'(x0 X Sa,q ' S0l|xyx5,) = T'(Sa; g~ Sol),

11



where

9580 XXC : g(s) = (x0,75,(5)). (17)
Thus, our initial data give rise to an element

Y € I'(Sa; g~ 1So0l). (18)

3.3.1 Definition of a solution

Let us formulate the definition of a multivalued solution of the initial value problem in the sheaf-
theoretical language.

Suppose we are given a complex surface ¥ endowed with a local biholomorphism py : ¥ — X x C.
We can now transfer our differential equation from X x C to X. The solution sheaf of the transferred
equation is then Soly, := pngol.

In order to transfer the initial condition (L)), let us fix a factorization h of the map g:

S, B2 B3 X xC, (19)
where h is a complex-analytic map. We then have
T(Sa; g tSo0l) = T(Sa; h 'p5'Sol) = T'(Sy; k™ Soly).
The initial condition 1) now gives rise to an element s, € I'(So; h ™' Sols).

Let us now formulate the notion of a solution to this problem.

We have a restriction map res : I'(X; Soly) — I'(S,; h~1Sols), which is defined as follows:
res : I'(X; Soly) = hom(Zs; Sols) — hom(h ™ Zs; h=1Sols) = hom(Zs, ; h~Sols) = T'(Su; h~1Solx).

We call an element ¥ € T'(3; Sols) a solution of the initial value problem with the initial data 1, if
res(V) = ¢x. Since Soly, is a sub-sheaf of Oy, ( the sheaf of analytic functions), the unicity of analytic
continuation implies:

Claim 3.1 Suppose ¥ is connected. For every initial condition v, the initial value problem has at
most a unique solution.

3.3.2 Equivalent formulation

One can define a notion of a solution to the initial value problem directly in terms of the initial

data ¥°, ' we can require that a solution ¥ should satisfy: ¥ o h = 9°; %oh = ¢l It is clear
that this new notion of a solution coincides with the one from the previous sgbsection. Indeed, the
restriction of ¥ onto the neighborhood U as in must coincide with the solution provided by the
Cauchy-Kowalewski theorem.

The notion of solution from this (or previous) subsection is related to the notion of solution from Sec
as follows. First of all we have dz = /V (z)dz, where \/V (z) is a nowhere vanishing holomorphic
function on X. Set 1o = " and 11(s) = \/V (z0)¥'(s). We then see that the notion of solution of
the Cauchy problem with the initial data g, 1, as in Sec coincides with the current notion of
solution of the initial value problem given by the initial data ¢°, .

12



3.3.3 Formulation of the analytic continuation problem

Our analytic continuation problem is now as follows. Find a connected complex surface S along with a
complex analytic local diffeomorphism ps : S — X x C and a factorization ¢ = hps, where h : So, — S
is as in the previous subsection, satisfying: given any initial condition % as in , there should exist
a solution to the initial value problem with the initial data . By Claim this solution is then
unique.

3.4 Semi-orthogonal decomposition of F

Our main tool in solving the analytic continuation problem is a certain semi-orthogonal decomposition
theorem, to be now stated.

Let Fo = RgiZs, [~2]; let CX,+C¥X be the same as in Sec. [2.10.1

Theorem 3.2 1) There exists a distinguished triangle
S F B o5t (20)

where ® € CX and § € LC¥.

2) The object ® belongs to D>o(X x C) (that is: the stalks of ® at every point of X x C have no
negative cohomology).

Remark. The distinguished rectangle is called “left semi-orthogonal decomposition of Fy”. It is
well known that such a triangle, if exists, is unique up-to a unique isomorphism.

We will devote the rest of this section by deducing a solution to the analytic continuation problem
from this theorem.

3.4.1 Factorization of the initial condition

Since g : S4 — X x C is locally a closed embedding of codimension 2, whose normal bundle is
canonically trivialized, we have a natural transformation of functors

kg = g2 (21)

Since Sol is microsupported on Qx, one can easily check that Sol is non-characteristic with respect
to g. Accoriding to [KS, Prop.5.4.13], & induces an isomorphism g~'Sol — ¢'Sol[2]. We now have an
isomorphism

[(Sy; g 1S0l) = R®hom(Zg, ;g 1 Sol) = R®hom(Zs, ; g'Sol[2]) = R hom(Rg1Zs, [-2]; Sol).  (22)
Let us denote the images of ¥ under these identifications as follows:
vy Ls, — g 1Sol;
my, 2 Ls, — g'Sol[2];

my : @Zs, [—2] — Sol.

13



Since Sol € C, the semi-orthogonal decomposition theorem [20[ implies that m,, uniquely factors as
my : RgZs,[-2) 3 & % Sol. (23)

The map ig defines, by the conjugacy, a map I’ : Zg, — ¢'®[2]. Let also vy : ¢'®[2] — ¢'Sol[2] be
the map induced by ¢’. The equation now implies the following factorization (by the conjugacy
between Rg, and g¢'):

mly: Zs, 5 g'8[2] B ¢'Sol[2]. (24)

Since ®[2] is microsupported within Qx, the transformation s, cf. , induces an isomorphism
Ko g7 '® — ¢'®[2] so that we have a unique map I : Zg, — ¢~ '® such that I' = kgl. Let
Y : g~ ® — g~1Sol be the map induced by 1’. We can now rewrite as follows:

vy Ls, = g7 10 5 g 1S0l. (25)

3.4.2 Truncation

The second statement of the theorem implies that ®¢ := 7<¢® is a sheaf of abelian groups. The
canonical map ¢ : 7<o® — ® induces a map ¢ : g~ 1Py — g1 P.

Let us show that
Proposition 3.3 The map I factorizes uniquely through c.

PROOF.

We have a distinguished triangle

+1 _ o — +1
— g 1<I>0i>g 1<I>—>g 1T>0(I)—>,

which induces a long exact sequence

- R hom(Zs,; g ' 7-0®) — R hom(Zs, ;9 '®0) = R®hom(Zg, ;g '®) = R hom(Zg, ;g 're®)--- .

where the arrow * is given by the composition with ¢/. Since the functor ¢g—! is exact, g 7 '7oo® €
D-(S,) so that R<®hom(Zg,; g~ '7-0®) = 0, meaning that the map * is an isomorhism. This implies

the statement. O

Denote by
Iy : Zs, =g '@ (26)

the factorization map (unique by the above Proposition):
1:Zs, 8 g 100 S g0

We can also factorize: )
vy 1Ls, g g_lfI)o ¢i§ g_lSol.
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3.5 Etale space of ®,

3.5.1 Choice of a covering space X

Set py. : ¥ — X x C to be the etale space of ®;. Observe that the etale space of g~ '®q is S, X xxc 2.
The etale space of Zg,, is S, X Z, so that we have a map

SaXZ—)Sa XXX(;E

over Sy, induced by the map Iy. Let us restrict this map to S, = S, X 1 and denote by h the through
map
h:Sy=84%X1—=8yXZ—So XxxcX— 2. (27)

By the definition of fibered product, we have psh = g.
Thus, py : X = X xCand h: S, — X yield a factorization of the map , as required by .

3.5.2 Solving the initial value problem

Let us show that the initial value problem 1 € I'(S,; g~'Sol) has a solution on ¥, in the sense of Sec.
where ¥ is as in Sec

We have a canonical map A : Zy — p;CI)O which comes from the canonical section of p;(I)o: over a
point of ¥ corresponding to ((, ), P (z,5) € (P0)(z,s)), the stalk of this canonical section equals ¢y -
Let us apply the functor A~! and obtain a map

I':Zs, =h'Zs — hpg'dg = g 1 ®.

Lemma 3.4 We havel’ =1.

PROOF It is easy to see that for each s € S,, the map I’ induces the same map on stalks as I. O

We have a composition Fy : Zy A pgl@o fat pilSol. Let us prove that F is a solution to the
initial value problem. Indeed, applying h~! induces a map Zg, — g~ Sol which, by virtue of Lemma,
coincides with v, which means that Fy, is a solution.

3.5.3 Solving the analytic continuation problem

We replace X with its connected component S containing the image of h. It is clear that S is a solution
to the analytic continuation problem as in Sec. |3.3.3

3.6 Structure of the object .

We construct the semi-orthogonal decomposition of giZg, [—2] via representing ¢1Zg, [—2] as a cone of
some arrow A — B, and then constructing the semi-orthogonal decompositions for A and B; these
decompositions are then glued into the desired decomposition of giZg,_[—2].
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3.6.1 Decomposition of mZg, € D(C)

Let mg, : So — C be the projection. We are going to represent mg,1Zg, as a cone of a certain map.
To this end let us introduce the following subsets of C (same as in Sec [2.1))

K = {re¥ : r>0; —a<¢<al;
ro = {re” : r>0; ¢ =a};
r o = {re” . r>0; ¢ = —a}.
We have natural restriction maps
Ze "5 zx T 7.,
in D(C).
The identification Zg, = 7T39a Zc induces, by conjugacy, a map

pc : WSQIZSa — Z(c.

We are now up to defining a map pg : 75,1Zs, — Zk. We have
ﬂ'galK = (0,00) X (—aza| U (0,00) X 27 — a; 27 + ) =: K7 U K».

Denote by i1 : K1 — S, the closed embedding. We have natural surjections of sheaves on S,:
L1 Zsa — il!ZKl and L9 Zga — ig;ZKT

The map 7g, induces open embeddings 7g, i1 : K1 — K and wg, iz : Ko — K. We have g, (K1) =
K\ry; ms, K2 = K\r_,. These open embeddings induce the following embeddings of sheaves on C:
Ts Lk, = Li; TS, 1i0lk, — L. Combining these maps with ¢1, 12, we get the following through
map
L .
P TS LS, = TsvinLi, — L.

One checks that pgr, px = pcr,pc. Let us now construct the following sequence of maps

PCrq
Lg —————>1Lr

y’

0 - ﬂSa!ZSa @ ~PKrq @

K
pKr_O,

Ly —1Z

(28)

[e3

0

r_o

It is clear that the composition of every two consecutive maps is zero. In fact, this sequence is exact,
which can be shown by proving exactness of the induced sequences on stalks for every point z € C.
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Let ¢’ : C — X x C be given by ¢'(s) = (x¢, s) so that g = ¢'ms,. Applying g to the exact sequence
above yields the following exact sequence of sheaves:

ZXOX(C %‘ZXOXI'Q (29)

g{(py’

0 ——gZs,

a1 (Prr_,)

Lixyxxk ———— 1

—9/(PKra)

X0 XTI —q

3.6.2 Semi-orthogonal decomposition for Zyx«c,Zx,x K, Zxoxria

Theorem 3.5 There are objects ®C, ®K | dTe O™« in the category of sheaves of abelian groups and
maps in DY(X x C):

igc : Zyoxc|—2] — ®C ikt Logxic[—2] — @K
idra : Doxgxre|—2] = @' igr_a : Dxgxr_, [—2] — BT

whose cones are in ~C and ®C, K dre dr-o € C.

Based on this theorem, let us construct a semi-orthogonal decomposition of giZg,. Let us rewrite the

sequence as

0— gZs, X5V 0,

where X = Zy xc @ Zxyxk and Y = Zxyxr, © Lxoxr_,- By virtue of Theorem [3.5| we have semi-
orthogonal decompositions of X and )

sesxl Bt oy By H
where &' = ®C @ &K € C; )/ = ®'e @ ®'= € C; &, € *C. The map Pyq : X[-2] — V', by the

univerality of X/, uniquely factors as
Pyq=q Px (30)

for some ¢’ : X’ — )’ so that we have a commutative diagram

X[=2] —=V[-2]

| | |7

X1 oy,

We have ¢Zg,[—2] = Coneg[—1]. Set ® := Coneq’[—1]. It is well known that the commutative
diagram above implies existence of a map

1P - g!ZS&[*Z] — P (31)
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fitting into the following commutative diagram whose rows are distinguished triangles:

— 91Zs,[-2] — X[-2]

i | | |7

i Xy

Furthermore, we have a distinguished triangle

— Cone(ip) — Cone Py — Cone Py H,

which implies that & := Cone(ig) € 1C satisfies all the conditions of Theorem

We will now give an explicit description of the sheaves ®C, K &+ as well as the maps igc, igx, igria
from Theorem This theorem will be proven below.

3.6.3 o°
We set € = Zyc. We have a codimension 2 embedding
iC,xo :(C—)XXC,

so that we have a natural map
ZxoxC[_Q] — ZXXC»

and we assign igc to be this map.

3.7 Notation: convolution functor D(X x C) x D(C) — D(X x C)

Define a convolution functor
x : D(X xC)xD(C) - D(X xC) (32)
as follows. Let F € D(X x C), ¥ € D(C). Let
a: X xCxC—XxC : a(z,s1,s2) = (x,51 + s2)
Set
Fx¥ = Ra(FXRYX).

3.8 Construction of &
3.8.1 Subdivision into a-strips

Let us split X into a-strips as in Sec. We will freely use the notation from this section below.
We will define a sheaf &% on X x C via prescribing the following data.

1) For each a-strip P we will define a sheaf CI>§ on P x C. Recall that by a-strip we always mean a
closed a-strip.
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2) Let Py, P; be intersecting closed a-strips so that PiNP, = £ € L% We will construct an isomorphism
PP ~
I ®F |oxe = 5 lexc,

where we assume Fg%fl = (Fgﬁ(PZ)_l.

Since every triple of distinct closed a-strips has an empty intersection, the data 1),2) define a sheaf
®X unambiguously. More precisely, there exists a sheaf ®¥ endowed with the following structure:

— isomorphisms jp : ®X|pyc = (I)g for every a-strip P satisfying: for every pair of intersecting strips
Py and Py, P, N P, = £, the following maps must conicide:

. PPy
K JP1|/z K K K
D7 |pxc — Pp,lexc —— Pp,lexc

and

Jpylexc

(I)K|Z><(C (I){D{Q‘ZX(C-

The sheaf ®¥ is unique up-to a unique isomorphism compatible with all the structure maps jp.

3.8.2 Words

We will use the notation from Sec. Let W be the set of words from the alphabet £L*U {L, R}
such that:

1) each word is non-empty and its rightmost letter in L or R

2) every word is either of the form

(ly...L30o01 L) (33)
where
l1,03,05,... € ﬁgghm lo, 0y, L, ... E‘Clofaft
or
(bn..1R) (34)
where

£1,£3, .. € 'Cf.éft; EQ,€4,€6, .. € ﬁgght
(alternating pattern).
Let W* = W, U Wf{ght, where
Wiet = {(ln-) = fn € Lig} ULLY; Wiigne = {(ln) € € Lijgne} U{R}-
Let us stress that Wi, contains words both ending with L and words ending with R, and the same

M (0%
is true for Wright.
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3.8.3 Sheaves 5y, 5, on C
Given a ray £ € Li., let is define the following sheaf on C:

Se = Lse+26(0)+ K} (35)
Given a ray £ € £?ight, we set
St = Lise—20(0)+ K}
Set
Sp = Lisca(xo)+ K} SR = Lise—z(xo)+K}- (36)

Let
Sw = Sp, *Sey % ...x Sy, *Sp, fw:=40.4,L € W,

Sy = Sgl * 552 * ..k Sgn * SR, ifw:=0..4,Re Wa,

where * denotes the convolution functor D(C) x D(C) — D(C) in the sense of (32)). It is clear that
Sw = Zgw)+K > where we set:

é(w) = Z(Xo) — 2é(£n) =+ Qé(én_l) — 4 (—1)"6(61) ifw:= 61..671[/; (37)
é(w) = —z(xg) + 2¢(bn) — 2¢(bp—1) + -+ — (=1)"¢(l1) if w:= 1.4, R. (38)

Let us further set
S_ = @wewggmsw; St = Duwewe, Sw- (39)

3.8.4 Definition of @g
For any subset U C X, we define the following sheaf on U x C:
Of = Af xS_ @ AT Sy, (40)

where AIU(i := Z{(z,s)|s+=(z)cK} are the same as in Sec m

Set @5 + = AIU< * % S.. In particular, we have defined sheaves @g * for every a-strip P.

3.8.5 Constructuion of the identification Fgﬁxp?
We have identifications:
DF loxe = OB loxe = AT+ S B AT S
Let us now construct the gluing maps
PO AT xS, @A xS 5 AT xS @A xS

There are two cases.

Case A). Let £ € L.
Assume that the z-image of P; is above the z-image of P; in the complex plane, fig. [4] a).
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Let us define the following morphism of sheaves on £ x C
vl :Aff %Sg*Aer, (41)
or, more explicitly,
VPt Lot —eio [0,00), s—2eK} — Liseac(0)+K} * Lizco(t)—cio.[0,00),512€ K} (42)

We have Zyseou(e)+ iy * Lizee(t)—cio[0,00)5+2€K} = Lizes(t)—ein.[0,00)s6—2+26(0)+ K} The map v/ is thus
determined by a closed embedding

{z€eé(l) —e]0,00);8 € —2+2¢6(0) + K} C {2z € é(f) — €.[0,00), s — 2 € K},

Let us now define a map
NE . Aff * S_ — Agpr * Sy

K- K-
as follows. We have A, ™ x S_ = @wewgght A} % Sy
We denote .
N A= 58, % AR 5 8% S, = AKF 5 Sy, (43)

Observe that fw € Wi, so that Af T %Sy, is a direct summand of Af %S, . We therefore can define
NZK as the direct sum of all N’, w € W

right-
Let
Ny AT xS_ @ Af xS, - A «S_@AfT+5,

be the extension of NV, l;K whose all components are zero, except for Af “xS_ — Af * %S, which equals
NK
e

We set
I =1d + Nf©. (44)

Finally, we set
Pl = (h) ™ =1d - Nf~.

Let us now rewrite the definition for the gluing maps in a more uniform way. Let P and P’ be two
neighboring strips such that P N P’ goes to the left. Let us define the sign

J(P,P') =1if P'is above P, and 9(P, P') = —1 if P’ is below P. (45)

We now have
ik =1d+9(P, PNy . (46)

Case B). Let £ € Lyignt, fig. b). Assume first that P is below P;.

The formulas are similar to the case A but + and — get exchanged. We have a map

v AT o AT xS, (47)
which gives rise to a map
K
NE . A£(+*S+V4A£(7*SZ*S+ — AFT xS, (48)
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cut="

Figure 4: Notations in the construction of the sheaf ®%: a) £ € L&, b) £ € Liign

Similar to above, we define a map
Ny AT xS, @A xS AT xS, @Al x5_

as the extension of N, ZK whose all components are zero except for Af TS, — Af ~ x.S_ which is N(ZK .

We set
ror2 =1d + N (49)

reeb = i) =1d - NJ%

Similarly to above, let us rewrite the definition as follows. Let P and P’ be two neighboring strips
such that P N P’ goes to the right. Let us define the sign

J(P,P') =1if P’ is below P; 9(P, P') = —1 if P is below P'. (50)

We now have
il =1d+9(P, P)NK. (51)

3.8.6 Description of the map igx : Zy,xx|[—2] — &€

Let Py be the strip such that x¢ € IntFp.

By construction,
K _ AK+ K—
D% [mtpyxc = Aqpip, * S+ ® Aep, * 5—.

The direct summand inclusions
St — S+ ;. Sp—> S_

. K+ K+ K— K—
induce maps AImP0 * S — AIntPO * Sy, AIntP0 * Sp — AIntPO *S_.

We have the following closed embedding of codimension 2:
T = Xo o z € Int Py
se K stz(z) € £2(x0) + K |-

22



We have the following maps in D(IntPy x C):

. AK+
Z z € Int Py AIntPO * 5L (52)
s+ z(z) € z(x9) + K
Z S [—2] @ 5> = ®F|mepyxc
se K
K—
z z € IntPy Atnep, * Sk
s—z(x) € —z(x0) + K

We thus have constructed a map

Z T = Xp [=2] = Zxyxk[-2] = (I)K‘IntPOXC (53)
se K

As Zy,xx|—2] is supported on IntP,, our map extends canonically to a map igx : Zyyxi[—2] — @
in D(X x C).

3.9 Alternative construction of ®* via —a-strips

It is clear that one can repeat all the steps of the previous section using —a-strips instead of « strips.
We denote the resulting sheaf ¥¥; we also get an analogue of the map igx, to be denoted by

igx : Doxic|—2] — WK, (54)

By means of X we also get a semiorthogonal decomposition of Zy,x r[—2]. This implies the existence
of a unique isomorphism
Iy : UK — oF (55)

satisfying igx = Iyapiyx (because of the unicity of semiorthogonal decomposition). We will now
briefly go over the construction of W,

3.9.1 Notation for —a-strips

Let L7 =L, g U Er_ight be the set of all intersection rays of —a-strips. £ consists of the rays going

to the left, L;ght consists of ‘Fhe rays going to the right. Every ray £ € Ly g (resp. £ € Er_ight) is of the
form p,(£) = é(£) — (0,00)e™"; (resp. p.(¢) = ¢(£) + (0,00)e™ ") for some é(¢) € C.

Let W=, W, & W_ . be defined in the same way as W W, Wg (W consists of words

right right-
of the form w = £ ly_1...6o01 L or w = £,,...£1 R where ¢, € £, ¢ and we have an alternating pattern
b1 € E;ight, loo1 € Liggr 5 if 4y € ’C;gaht’ then the right-most letter of w is L; if £, € £ then
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the right-most letter of w is R; we also add a one letter word L to W _g. ) Similarly to the previous
section, we set

Sp = Lyssere0+xy € D(C), L€ Ligh
St = Lygse—2e()+ky € D(C), €€ LG
SL = Zissesxo)+x} € D(C);
Sk = Lisse—2(x0)+K} € D(C)
For w e W% w = {,..41(L or R) set

Sw = S’gn * S’gTHl * .. 5151 * (SL or SR)

Set

S_ = @wEW_a Sw; Sy = @wew—asw-

right left

3.9.2 Sheaves \I’IH(
Let A]U( * mean the same thing as in Sec On every (—a)-strip IT consider the sheaf on II

ol = Aﬁﬂ' o @AIH(_ %S5

3.9.3 Gluing maps

Let IIy, IIs be neighboring strips, II; N1l = /.

Case A. If ¢ goes to the left, we denote by II; the bottom strip, fig. |5, a).
We then define a map .
Ui AT = AFT xS,

similar to Vf from the previous subsection. The maps ﬁgK induce maps
N[K:Af_*&r —>A£(+*5'_
and
Nf:AfJF*SUFEBAf**S’, —>Af+*§+ —>A£{7*§,,
in the same way as in Sec [3.8.5]

We now set

I o=1d + Nf. (56)

We set Fg%ﬂl = (F}_I%Km)*1 =1d — NK.
Similarly to the previous subsection, we can combine the definitions as follows. Let IT and IT' be

intersecting —a-strips whose intersection ray ¢ := IINII' goes to the left. Define a number ¢(I1,11') = 1
if IT is below II' and ¢(IT, IT') = —1 otherwise. We then have T = Id + ¢(IT, TI)NX.
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T cut

Figure 5: Notations in the construction of the sheaf W¥: a) £ € L, b) £ € Lright

Case B. Analogously, assume that ¢ = II; N IIy goes to the right and that Iy is below Ilg, fig. [5 b).
Similar to above, we have a map )
75 AT = AT xSy, (57)

which enables us to define maps
NE . Agﬂr xS, — Aff xS_;

Nf:Af‘F*SJF@Af_ % S_ —>Af+*§+@Af_*§_
in the same way as above. We set }
I =1d + Nf; (58)
ryat = (Dyi?) ' =1d — Nj*. (59)
Finally, given two intersecting —a-strips II and II’ whose intersection ray ¢ goes to the right, we set
O(ILIT) = 1 if I" is below IT and ¢(IT,1T') = —1 otherwise so that Il = Id + ¢(II, IT")NX.
The sheaf ¥ is obtained by gluing of the sheaves ¥y along the boundary rays by means of the maps

Fgg/, similarly to ®X.

The map
igx : Do ic|—2] — WK, (60)

same as in (H4)), is constructed similarly to igx.

3.10 The map Ilyo

We now pass to discussing the identification Iye : ¥% — &K as in . Explicit formulas for the
map Iye are complicated, see Sec. [} Let us, however, formulate a result on this map, to be proven
in Sec . [

Let P be an a-strip and II be a —a-strip. Suppose P N1II # (). We have identifications
" |prn = ©p|pam = APy * S+ ® ATy + S—;

U pam = Wi |pan = Apdy * Sy @ Ao+ S-.
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Set inp := Iya|pm. In view of the above identifications, we can rewrite:
inp AT % S @ AR So — ABY * Se @ AR+ S-.

We are now going to take advantage of direct sum decompositions of both parts of this map.

3.10.1 Decomposing irjp into components

Let us now rewrite both sides of this map as follows.

For a w € Wiy, or w € W, we define A(K,w) C (PNII) x C:
A(K,w) := {(z,s)]s + pz(x) € é(w) + K},

where ¢(w) is as in (37), (38).
We then have
Agrfn *51 @ Ag{n xS = @ L A(K w);

wEW®
Agg’n * g+ @ Aggﬂ * 5'_ = @ Z.A(K,ﬁ))'
GEW-a
Next,
Hom( P Zaway B Zaxw)= [[ HmZaxasy; B Zarw)
wWEW ~« weEW* weEW & weEW*
= 11 Hom(Z a(k a); Z A1 w))- (61)

DEW— ;e Wo

In Sec we prove that Hom(Z 4k w); ZA(kw)) = 0 unless A(K,w) C A(K,w), in which case
Hom(Z 4k w); ZA(Kw)) = Z-€dw, Where ey is the homomorphism induced by the embedding

A(K,w) C A(K,w). Elements of I1 Hom(Z 4(xw); Za(k,w)) are thus identified with in-
WEW ~ ¢ weWe

Z Npw Ciw (62)
W, W

where ng, € Z, and A(K,w) C A(K,w). By Prop[.2 under the inclusion the set

hom( @  Zk,a); GVBV Z A(Kw)) s identified with the set of all sums as in , satisfying
weEW —« weWe

finite sums of the form

for every point y € (P N1II) x C and every w € W™, there are only finitely many w € W such that
naw # 0 and y € A(K, w).

3.10.2 Identification W~ ¢ — W<,

Let us first define an identification A : L7% — L% Let £ € £L7“. Suppose ¢ goes to the right. Let
P be the leftmost strip among all a-strips that intersect £. There are exactly two boundary rays of
P, {; and ¢, such that ¢(¢;) = ¢é(4,) = ¢(€), £ goes to the left, and £, goes to the right. Let us assign
Al) =1¢,.
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Similarly, if £ € £L7% £ goes to the left, we consider the leftmost strip P among all a-strips that
intersect £. There are exactly two boundary rays of P, ¢; and ¢, such that

&(l) = e(ty) = é(f). (63)

¢; goes to the left, and ¢, goes to the right. Let us assign A (¢) = ¢;. The map A extends in the obvious
way to a map A : W% — W a word 4, ---01L € W~ (resp. £, ---¢1R € W™%) is mapped into
A(lp) - A(f1)L (vesp. A(l,)---A(1)R). Because of (63)), we have A(K, ) = A(K, A(w)) for all
we W™,

3.10.3 Formulation of the result

Let us write iyp in the form (62)):

np = § N Ciw- (64)
BEW—weWe

In order to formulate the result, let us introduce some notation. For w € W=, w =4/, ---{1L € W%
(resp. W =Ly, --- 1R € W™), set || := n, to be the length of @ ( in particular |L| = |R| = 0).
Proposition 3.6 1) We have NpA(5) = (_1)|ﬁ)|;

2) If ngyw # 0 and w # A(w), then A(K,w) # A(K,w) (we have a strict embedding A(K,w) C
A(K,w)).

This proposition is proven in Sec [7.5.4]

3.11 Description of ¢*«

We construct the sheaf ' and a map igra in a way very similar to the construction ®¥ using the
decomposition of X into a-strips and replacing K with r, everywhere. We then get sheaves

ot .
AI['] = Z{(x,s)|x€U,sEC;s:l:xEra}-
Pre = ANt xS @ AT« S_.
If ¢ goes to the left (resp. to the right) we still have a map
vpe s ApeT — AP xSy resp. vpe t AJeT — AJeT % Sy,

so that we can define the gluing maps F§£52 similarly to FgﬁKP 2,

3.12 Description of ¢*-«

In order to construct ®*—« and igr—o we switch to —a-strips ( sticking to a-strips leads to a failure
to define the maps V;*“). The construction is then similar to the construction of ¥ (just replace K
with r_, everywhere).
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3.13 Constructing the map (30

Let us construct a map @, satisfying . It will be convenient for us to replace ®% with the
isomorphic sheaf W/,

First, we will construct maps gcy,, : PC — Pro; OKri, - UK 5 Wr+e gatisfying igx = QCrotaC;
lprta = quiai\I,K.

We define Q as follows:

dCrq

e — T Pre
4dKrq
Q: @ / . (65)
q}(r_a
UE s pre,
The categorical definition of the maps in this diagram was discussed in section [3.6

Let us now pass to constructing the above mentioned maps gcr, and gqxr_,, -

3.13.1 The map qcr,

We have ®¢ = Zy ¢ so that
hom(®%; ®T) = T'(X x C; o)

so that a map goy, can be defined by means of specifying a section q € I'(X x C; ®*). This can be
done strip-wise: we can instead specify, for every closed strip P, sections qp € T'(P x C; ®}%) which
agree on intresections as follows. Let P N P, = . We then have restriction maps

lexc : T(P; x C;@;"i‘) =T xC;®p), i=1,2.

We then should have
ap |exc = ap,lexc. (66)

It is clear that any collection of data qp, satisfying for all pairs of neighboring strips, determines
a section q € I'(X x C; ®") in a unique way.

We have Z = T'(P x C; A% % S,,) for all w € We.

Let us take the direct sum of these identifications over all w € W< so as to get a map
sp: Z[W = T'(P x C; ®}),
where Z[W®] is the Z-span of the set W, Similarly, we define
s0: LW — T'(¢ x C; ®}°),
where ¢ is the intersection ray of a pair of neighboring a-strips . The maps sp, sy are inclusions; denote

by I'(P x C; @), I (¢ x C; ®;*) the images of these inclusions. As easily follows from the definition

of the gluing maps FglraPQ, the restriction maps induce isomorphisms

lexc : F,(P x C; (bl]‘ja) — F,(Z x C; (I);a),

where ¢ is a boundary ray of P.
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Since the graph formed by a-strips and their intersection rays is a tree, it follows that given an element
ap, € I'(Py x C; @}”‘0), we have unique elements

gp € I'(P x C; ®}5)

satisfying . We set qp, := sp,(L+R), where L, R are words of of length 1 in W viewed as elements
in Z|W¢]. This way we get a section q and a map gcr,. It is clear that Condition igra = gor,ige is
satisfied.

Denote by ep € Z[W?] a unique element such that sp(ep) = qp. Denote by Wp € W a finite

subset such that
ep= Y epyw,
weWp

where ep,, € Z\0.

3.13.2 Map qxr_, : UK 5 pr-a

Let us define this map stripwise. For every —a-strip II we have a map A{]( . Arn’ai induced by the
embedding of the corresponding closed subsets of IIxC. Whence induced maps Ag 48, — Arl{ai*gw.
Taking a direct sum over all w € W yields a map

A§+ %Sy @A{I(_ *S_ — AE’“Jr % Sy @ AT * S,

and we assign qrr_, 11 : \I/{T( — CID;[’“ to be this map. It is clear that thus defined maps agree on all
intersection rays, thereby defining the desired map gx,__,. The condition igr—a = qxr__igx is clearly
satisfied.

3.13.3 Map gk, : UK pra

We first construct a map q’Kra : @K — @re using « strip in the same way as we constructed qgr_, .
We set
UKre = Qxr, L0

The condition igra = qxr, tyx is clearly satisfied.

3.13.4 Restriction of Q to a parallelogram

Let P and II be a pair of intersecting a- and (—a)-strips.

First, in view of identification A, let us write w instead of A~lw € W2, Next, for a w € W and a
subset A € C, let us define a subset A(A, w) C (PNII) x C as follows. If w € Wiy (resp., w € Wi,
we set A(A,w) = {(z,s)|s + z(x) € é(w) + A} (resp., A(A,w) = {(z,s)|s — z(z) € é(w) + A};
these notations are compatible with those of section Set Ag := (IIN P) x C. We then have
identifications

C .
<I>HOP = ZAO’

Uip= P Zakw);
weW ~a
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ra _ .
Qrinp = @ ZA(ra;w)’
wWEW

q)rnﬁapz @ ZA(La;w)'
weEW —&

Let us now rewrite the maps from diagrams (65]) in terms of these identifications.

3.13.5 The map qc,, revisited.

Let Egra : Zay = ZA(raw) be the map induced by the closed embedding of the corresponding sets.

According to Sec [3.13.1]
qCr, = Z ePwEgra- (67)
weWp

3.13.6 The map ggr_,

It follows that the map

dKr_, : @ ZA(K,w) — @ ZA(r,a,w)
weEW wEW

is a direct sum, over all w € W<, of the maps

La(Kw) = LA(r—aw)

over all w € W<,

3.13.7 The map gxr,

Let w,w’ € W be such that A(K,w) D A(re;w'). Let EXYs ZA(kw) = L Aoy be the map
induced by this embedding.
We then have

§ : Kr Kr
dKr, = nwwL’1 Eww;l :
ww

Proposition 3.7 1) n&re = (—1)lvl;

2) for every compact subset L € (PNII) x C and every w € W®, there are only finitely many w' € W&
such that ny # 0 and LN A(r_o;w') # 0;

3) If nf;z‘,’ # 0, then we have a strict embedding A(w', K) C A(w, K).

PROOF. Parts 1) and 3) follow from Sec[3.13.3] and Prop. [3.6] part 2) follows from Prop[7.2] O

3.14 Y and S are Hausdorff

Recall that ¥ was defined in section B.5.1l and S in the section 3.5.3

Let us start with some general observations.
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3.14.1 Generalities on étale spaces

Let F be a sheaf of abelian groups on a Hausdorff topological space X. Call F' rigid if its étale space
is Hausdorff. The following facts are easy to check.

1) Let U C X be a Hausdorff open subset. Then Zy is rigid. Indeed, the corresponding étale space is
(Z\{0}) x U U {0} x X.

2) Every sub-sheaf F} of a rigid sheaf F' is rigid. Indeed, the étale space of Fj is identified with a
closed subspace of a Hausdorff étale space of F.

3) Let 0 4 A — B — C — 0 be an exact sequence of sheaves, where A, C are rigid. Then so is B.
Indeed, Let A’ — B’ 5 C’ be the étale spaces of A, B, and C. Let by, by € B’. Suppose 7(b1) # 7(b3);
we then have separating neighborhoods 7(b1) € Uy; m(bs) € Us so that 7~ Uy, 7~ U, separate by and
by. Let now m(b1) = m(b2) = ¢ but by # by. Since 7 is a local homeomorhisms, there are neigborhoods
W; of b; in B’ such that W; are projected homeomorhically into C’. By possible shrinking we may
achieve that W; project to the same open subset U € C’; ¢ € U. so that we have homeomorphisms
7,1 U — W;. We then have a continuous map & : U — A’, where 6(u) = w5 'u — 7y 'u € A, C A’
Since by # ba,0(c) # 0, so that we have a neighborhood U’ C U of ¢ on which § does not vanish. It
now follows that the neighborhoods ;- LU do separate by and bs.

4) Let iy, : Fy, = Fy41, n > 0 be a directed sequence of embeddings, where Fy and all Fy, 11 /i, F,, are
rigid. Then F := lim F%, is also rigid. Indeed, 3) implies that all F), are rigid. Let F,, F' be the étale

n
spaces of F;,, F. We have induced maps F), — F'; F] — F, | which induce a map lim F], — F’ which
can be easily proven to be a homeomorphism. Since all the maps F), — F 1 are closed embeddings,
it follows that F’ is Hausdorff.

5) Let p: Y — X be a local homeomorphism, where Y is Hausdorff. Let ) # U C V C X be open
sets, where V is connected. Suppose we are given a section s : U — Y. There exist at most one
way to extend s to V. Indeed, let s;,s0 : V — Y be extensions of s. Let us prove that the set
W :={v eV :s1(v) # sa(v)} is open. Indeed, let v € W. The points s;(v), s2(v) can be separated
by neighborhoods U;,Us C Y. Let U := s;7'U; N so~'Us; U is a neighborhood of v. It now follows
that s;(U) C U, therefore s;(U) do not intersect; we have thus found an open neighborhood &« C W
of v, hence W is open.

Let us now prove that W/ := {v € V : s1(v) = s2(v)} is open. It is clear that s;(U) are open subsets
of Y, so that W/ = s1(U) N s2(U) is open.

Finally, V.= W U W’ and W’ # (). This implies W = 0.
3.14.2 Reduction to rigidity on IIN P
Since § C X is a connected component, it suffices to prove that 3 is Hausdorff. The latter reduces to

showing that pgl((P N1II) x C) is Hausdorff for every pair of intersecting a-strip P and —a-strip II,
which is equivalent to the rigidity of the sheaf ®¢|(np)xc, which is isomorphic to Ker Q.
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3.14.3 Filtration on ®y|nnpxc

Let us choose an arbitrary identification Z-g — W; n — w,. Define a filtration on G := ®° @
U npxc by setting

It is clear that
3 gnpxc =G cGlc---G"c--- g

is an exhaustive filtration. It is also clear that G" C G is a direct summand. Denote by Pg g = gr
the projection.

Set
F, o := Ker Q|gn.

It follows that F' is an exhaustive filtration of ®¢|gnpxc. By Sec. [3.14.1] 2), it suffices to show that
each sheaf F), is rigid.

3.14.4 Sheaf F| D F,

We have the following projection onto a direct summand

n
P ®fitp & Ofip = €D Zawaiwn) © Za_aiwn) = Ln-

m=1

Let F) := Ker P, Q|gn. We have: F,, is a sub-sheaf of F], so that it suffices to show that each F, is
rigid.

3.14.5 Further filtrations on G", L,,, F,

Fix n € Z~o. Let us re-label the words wy, wo, ..., w, to, say wi,ws, ..., Wy, so that the following
holds true:

if i > j, then it is impossible that A(K,w;) is a proper subset of A(K,w;).

Since we are dealing with only finitely many words, this is always possible. Let j < n. Set FIG" :=
Z(K,wi) @ -+ ® Z(K,w;) C G". Set FIL, := Lyyywy) ® " ® Lp(rigw;) C Ln. We also set
Frtign = gn: F*HIL, = £,. Let Gr/G™; GriL, be the associated graded quotients.

Proposition and Sec. imply that the map P, Q preserves the filtration F: P,Q : FIg" —
FIL,. Set F/F), := Ker P,Q|gjgn. It is clear that this way we get a filtration on F,. Let Gr’ F), be the
associated graded quotients. Our problem now reduces to proving rigidity of Gr/F’ by Sec.
3). Since P,,Q preserves F, we have

Gr'F! c Ker Gr'P,Q : Gr'G" — Gr'L,,.

By Sec [3.14.1{2), the problem reduces to showing rigidity of Ker Gr/P,Q : Gr/G" — Gr/L".
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3.14.6 Finishing the proof

Let j < n. We then have Grig" = ZAK,w;)i GriL, = Z A(ro;w;) D ZA(r_o:wj)- By Sec. |3.13.6) and
Proposition we have: '
Gr'P,Q = (-1)™IEy @ By,
where the morphisms
E:Vj;a : Z.A(K,Wj) — Z.A(

rta;W;)

are induced by the closed embeddings of the corresponding sets. It now follows that Ker Gr'P,Q =
Z A(tns K ;w;)» Which is rigid by Sec. [3.14.1}1).
Let now j = n + 1. We have Gr"*! L, = 0; Gr"tign = Zy,, so that

Ker Gr' P,Q = Z4,,

which is also rigid, as a sheaf on (IIN P) x C = Ay, by Sec. |3.14.1}1). This finishes the proof.

3.15 Surjectivity of the projection ps: S — X.

In this subsection we will prove

Theorem 3.8 The projection ps : S — X is surjective.

Proof of this theorem will occupy the rest of this subsection. We will construct an open subset U C X
such that

1) U projects surjectively onto X;

2) U is connected,;

3) UNK(Ss) # 0, where h : S, — ¥ is as in (27).

Conditions 2),3) imply that & C S, and Theorem follows.

Let us now construct U and verify 1)-3).

3.15.1 Constructing U

We construct U stripwise. We will freely use the notation from Sec Let P be an a-strip. Define
a closed subset
AP):= |J A(ra,w)cPxCcCX xC.
weWp
Let U := X x C\|J A(P), where the union is taken over the set of all a-strips P. Denote by jif : U —
P
X x C the open embedding.

Let us now embed U into ¥. We have a natural embedding Jy; : Zyy — Zxxc = ®¢. As follows from
, we have gcy, Jy = 0, which implies that the map .J;; factors through Ker gy, :

Jq
Ju Ty X Ker qcr, — .
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As follows from the diagram , we have a natural embedding
Lq : Ker gor,, — Ker Q, (68)
and we set
Jo =g}, (69)
which is an injection Jg : Zy — Ker Q = ®y.

To summarize, we have the following commutative diagram of sheaves on X x C:

J (Ker @ = ®o)—— &% @ oK,

Q

- / /

Zy —2 Kerqoy, ———= @
\—a/

Ju

The map Jg induces an embedding of the étale spaces: U x Z — X. Let ji; : Y — 3 be the restriction
of this map onto U x 1 C U x Z. This map is a local homeomorphism and an embedding, therefore, j
is an open embedding. Let us identify & with jp(U).

3.15.2 Verifying 1)
Let
Pe:xBxxCcBE X
be the through map, where where py, is the same as in section and 7y is the projection onto a

X
Cartesian factor. We see that the composition Ps7j;; coincides with the composition I/ Jg XxC™ X.
Let us check that this map is surjective. Indeed, let x € X. There are at most two a-strips which
contain z. We therefore have: & Nz x C is obtained from x x C = C by removing a finite number of
a-rays, which is non-empty.

3.15.3 Verifying 2)

As the sets Wp are finite, it easily follows that

— the sets U(P) := P x C\ A(P) are connected;

— if Py N Py # 0, then U(P1) NU(P») # (. This implies that U is connected.
The rest of the subsection is devoted by verifying 3).

3.15.4 Reformulation of 3)
Recall that the map h : S, — ¥ is induced by the map I : Zg, — g~ '®q, see . The injection
Ju U — ¥ is induced by the map Jg : Zy — Ker Q = ®g, see . Let ix, : C — X x C be the

embedding ix,(s) = (xo,s). We have g = ix,7s,. Let us denote Uy, := iy, U. Observe that Uy, is
obtained from C by removing a finite number of a-rays.
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Lemma 3.9 There exists a non-empty open subset V. C Uy, such that:
i) the map mg, induces a homeomorphism TI'E;V — V', so that we have ﬂngV = anlv;

ii) the following diagram of sheaves on S, commutes

Jjvs

Brgy —— e
ljvu llo
1

where the arrow jyg s induced by the open embedding 7r§alV C Sa, and the arrow jyy is the com-
position nglv = ﬂngV 5 ngZuxo = g 7y, where the arrow  is induced by the open embedding
V ClUy,.

Let us first explain how Lemma implies 3). Indeed, it follows from Lemma that we have a commutative
diagram of topological spaces

Y (70)

where the counterclockwise composition 7T§a1V — U coincides with a component of the map of étale
spaces of sheaves induced by jyy.

Then implies that h(Sy) N ju ) D julix, V).
We will now prove the Lemma.

3.15.5 Subset W C S,

Let W := 7T§:(C\K) C Su. Denote by Jw : Zw — Zg, the map induced by the open embedding
jw : W C S,. Let us consider the composition hjy, which is induced by the map IoJw : Zw — g~ ®p.

Denote by 7 : &g — ®¢ @ ®X the natural embedding (recall that ®g = Ker Q). Set
mor = Hgm: &g — K where I : 8¢ @ &K — &K is the projection.

Let us show
Lemma 3.10 We have (¢ mox ) IoJw = 0.
PROOF. Indeed, the map 7 factors as
Dy 4 & = (ConeQ)[-1] 2 o€ g ok,
where the last arrow is the canonical map. Set g := I[Ix Pp. We have

(97 'morc)Io = (9 ' k) (g ' m)Io = (¢ 'k ) (9 ' Po)g " tdo = (97 'k )1,
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where I is as in section Recall that in section we defined I in such a way that under the
isomorphism ¢g~'® = ¢'®[2], the map I corresponds by the conjugacy to the map ig : giZg, [~2] — @,
where ig was constructed in (31).

We claim that:

1

The map (9~ wx)I corresponds by the conjugacy to Tiig. (71)

Indeed, the conjugate to
—1
K P 4Ls a B
(g b7 :Z a_>1 g 1‘199—;%9 Ko

is defined as nat[2] o (Rgig'mr ) RgiI, where nat : Rgig'®* — ®% and the statement reduces to
commutativity of the diagram

: Rgig'mi [2
RoZs, 2% Rgg'@[2] 22 poglaK)

i [2}l / lnatm

®[2] oK 2]

7r[2]

but the triangle is commutative by the properties of adjoint functors, and the square commutes by
functoriality of Rgig'.

Denote by
A 9Zw|=2) = gZs,[—2]

the map induced by jw, i.e. A = gi(Jw)[—2]. The problem now reduces to showing that mxigA = 0.

By the construction of the map ig, the map wxig factors as giZg, [—2] K Ly x K[ —2] ‘el K where
pK is as in , so that mgipA = igrprA. It is easy to see that pg A = 0, which finishes the proof. O

It now follows that the map IgJy : Zyw — ¢~ ® factors as
Jw -1 -1
Zw — g Kerqgcy, = 9 o,

where the right arrow is induced by the obvious embedding ¢, : Ker ¢or, < Po, cf., coming from
the definition ®g = Ker Q.

3.15.6 Finishing the proof

Recall, see , that the map Jg : Zy — $¢ factors as Jg := qufl.

Suppose that the susbet V' C U from Lemma satisfies: 7T§:V C W. The statement ii) of Lemma
now follows from the commutativity (which is shown below) of the following diagram

J
Lpry ———>Lw (72)

J{jvu lJW
J‘Z)/

9 Zy —* g ' Ker qcr,,
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where jyy; is the same as in the statement of Lemma the map jyw is induced by the open
embedding 75'V C W. The map (J;}) is induced by Jj, ie. (J3) = g~ '(J). Indeed, once the
commutativity of is known, we obtain the statement ii) by combining commutative diagrams as
follows:

J
7 $ZW

TS y
wf ] N
()

9 Zy — g ' Ker qcr, Zs,
g tdg

Let us now prove the commutativity of the diagram . We have an injection & : Ker gcr, — PC =
Zxxc which induces an injection x’ : ¢g7!Kerqcy, — g 'Zxxc. The commutativity of the above
diagram is equivalent to the commutativity of

Z, 1y IV (73)

\Ljvu J{H'Jw
K.//(Jq !

9 %y —% g Zxxc

Let us now define
V= (C\K) NUy,.

Let us check that V satisfies all the conditions:

a) V is non-empty. The set Uy, is obtained by removing from C a finite number of a-rays, which
implies non-emptyness of (C\K) NUx,.

b) 7T§alV C W —this is clear.
c) s, - ngV — V is a homeomorphism —clear.

d) Commutativity of . We have g~ 'Zxxc = Zs,. It follows that the composition /7y equals
the map Zw — Zg,, induced by the inclusion W C S,. Next, the map kJy : Zy — Zxxc is induced
by the open embedding j;; : Y — X x C. The commutativity now follows. This finishes the proof.

3.16 Infinite continuation in the direction of K

We need some definitions

3.16.1 Parallelogram U

Let U C C be an open parallelogram with vertices A, B, C, and D, such that AB and DC are collinear
to e~ and BC and AD are collinear to e*®.
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3.16.2 Small sets
Let I' ¢ C. Call I' small if for every point ¢ € C, the intersection I' N ¢ — K is a finite set.
Claim 3.11 Let L C C be a bounded subset. The set T'N (L — K) is then also finite.

PROOF. Assuming the contrary, let {v1,72,...,Vn,...} € I'N(L — K) so that v, = ¢; — z;, z; € K,
¢; € L. Since L is bounded, the sequence c¢; has a convergent sub-sequence c;, — ¢ for some ¢ € C.
Let ¢ € IntK. It follows, that ¢;, € ¢+ ¢ — K for all n large enough, which contradicts to smallness
of ' O

3.16.3 Theorem

Using notation of Sec[3.5] let
pPs,x - 5‘—>Z§X><(Cp5(€],

SZ :pg,lX(z)v
and
P, S8 axCc=cC.

Theorem 3.12 Suppose we have a section o of P,:

SzL(C
U

Then there exists a small subset I' C U+ K such that o extends to (U+ K)\(I'+r_,) and (F'+r_4)N
U = 0.

Remark For every bounded set L there are only finitely many v € T such that (y+r_,) N L # 0, as

follows from Claim [B.11]

Before proving this theorem, let us observe that it easily implies Theorem Indeed, given z € C, we
see that S% is a disjoint union of all S,, where px(z) = z, which reduces Theorem to the current
Theorem. The rest of this subsection is devoted to its proof.

3.16.4 Reformulation in terms of sheaves

By basic properties of an étale space of a sheaf, liftings ¢ as in Theorem, are in 1-to-1 correspondence
with maps of sheaves f, : Zuy — ®o|.xc-

For every w € W and a fixed z € X, set A,(K,w) = A(K,w)N(z x C) C C, where A(K,w) are the
same is in Sec [3.10.1) We define A, (rqy, w), A, (r_qo,w) in a similar way.
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We then have the following maps:

qOCra

/s

@w Z-Az (I'a 711))

fq —goHre

Ly — ®

q Kr_,
D Za. (kw) - Do ZA(r—ow)

Crq Kro

, goT—= are the restrictions of the maps ¢“*=, ¢®*=, ¢®*-= onto xg x C. Let Qx,
C’ra’ —qura7 and qOKI‘—a_

where qq )

be the restriction of the map Q onto xg x C, so that Oy, is the sum of g
We now have

Qfa = 0. (74)

3.16.5 Writing f, in terms of its components

We have components:
fo(w) @ Zu = ZLa,(kw)
fo(0) : Zy — Z¢
we have (if UNA,(K,w) # 0):
hom(Zu; Z A, (kw)) = Z+ guw
where
Gw + LU = Lun A (Kw) = L (Kw) (75)

(the first arrow is induced by the closed embedding U N A, (K,w) C Uj; the second arrow is an open
embedding)
if UNA.(K,w) =0, then hom(Zu,Z 4, (k,w)) = 0

So,
fo(w) =ny - g, where n, € Z, (76)

and fo(w) =01 UNA,(K,w) = 0.

Analogously, hom(Zv,Z¢c) = Z - go, sO
f(0) =mno - go. (77)

It also follows that:

Claim 3.13 for every point s € U there are only finitely many w such that f,(w) # 0 and s €
A (K, w).

PRrOOF This follows from consideration of the induced map on stalks at s:

(fa)s : (ZU)S =7 — @ Z = ( @ AZ(K,ZU))S.

wis€A; (K,w) WEW

The image of this map must be contained in the direct sum of only finitely many copies of Z, the
statement now follows. O
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3.16.6 Restriction to a sub-parallelogram V

Let V C U be a parallelogram, V. = AB’C'D’, such that B’ € (AB), D' € (AD) (so that C' € U).

The restriction ;
fov = tolv © Ty = Zu 5 Ze © P Za_(5,)
w

can thus be expressed as

fov = mo-golv + D M- gulv.
weWe

Here g,|v is the following composition:
Juw
ZV — ZU — ZAz(K,w)

and g,, is the same as in .
Let S € W consist of all w such that n,, # 0 and g,|v # 0. We can now rewrite

fov = Z N * Guwlv (78)
weS
Observe that
Julv # 0iff VN AL (K, w) # 0. (79)

Next, there are only finitely many w such that f(w) # 0 and A, (K, w)NV # (. Indeed, A, (K, w)NV #
() implies C" € A,(K,w), and we can set z = C’ in Claim This shows that S is a finite set.

We comment that restricting from U to V was done in order to obtain this finiteness of S.

3.16.7 Proof of a weaker version of the Theorem

We are going to prove the following statement: there exists a small set ' C 'V + K, such that o|vny
extends to V, where V := (V + K)\(I' + K).

Define the extensions Zv i Yvz A, (K,w) as follows:

Guw : Zvik = Lvir)na.(Kw) = LA (Kw)»
where the map c is the restriction onto a closed subset and the second map is induced by the embedding
of an open subset).
Let Go : Z~v 1k — Zc be the map coming from the open embedding of the corresponding sets.

Let

Fy~ = noGo + Z NGy : vk — Ze @ @ ZAZ(K,UJ)?
weS weEW«

where the coefficients n,,, ng are the same as in , . Let Jv : Zv — Zv 1k be the map coming
from the open embedding of the corresponding sets. We have:

fov =FsvJv. (80)
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Let us now find a a subset V C V + K such that Qo F,v|y = 0. This vanishing along with imply
that Fi, v determines an extension of oy onto V.

1) Consider the through map for some w € S:

@wewa ZAZ (ra;w)

fo,
/Bw : ZV _>V ® / 3} ij.AZ(I'_O”w)

@'LUGWO‘ ZAZ(K/LU) @’LUGWO‘ ZAZ (r—a;w)
pw 1s the projection onto a direct summand, and the middle map is Q..
By , Bw = 0; on the other hand, 8, = 1y - hy, where

restr

G
hw : ZV &ZAZ(KM) — ZAz(rfa,w)'
But Ay = 0iff VN A, (r_n;w) = 0. So if ny # 0, then

VNA,(r_q;w) = 0. (81)
Since w € S and because of , we have
VNA(K;w) # 0. (82)
From and it follows that (V + K) N A,(r_o; w) = (). Hence, we have
pwo Qo Fov  Livik) = LA, (r_oqw) =0 (83)

Let us now consider the maps x o Q o Fy; v, where « is the projection onto ®&yZ 4, (r, ) as shown in
the following diagram:

qz
Z(C @wewa ZAz (rasw)

Fo‘,V K
KOQOF[LV : ZV+K — o) / o — @ ZAz(l‘a,w)
wWEW

®wewa Za (K w) ’ ®wewa LA, (r o)
Let My : Z¢c — Z A, (ro;w) be the components of the map qZCM. Let
A={w : FJweS : Nyw #0or My #0}C W,
Here S is as in , Nuyw' = nA-1(w);urs a0d Ny are the same as in Prop. (3.6 (Remark, however,
that the statement of the Prop[3.6]is not used here. )
For each w' € W% let us write
AZ<K, w') = dw’ + K.

Set I' := {d,y : w' € A} C C. As S is finite (see end of section [3.16.6|), for any s € C there are
only finitely many v’ € A : A(K,w') 3 s. Equivalently there are only finitely many w’ such that
dy € s — K so that I' is small .

Let

Tw * @ ZAz(I“a,w’) - Z.Az(ra,w)
w' eEW«
be the projection. It follows that m,kQF,v # 0 only if w € A. Set V := V + K\(I' + K). It
follows that m,xQFy|y = 0, which implies kQF,v|y = 0. Taking into account , we conclude
QF,v|y =0, ie. olyny extends onto V, as we wanted.
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3.16.8 Proof of the theorem for U

Denote by ¢’ the extension of o|yny onto V. Observe that the set YV N U is connected and that
YNV CVNU. Thus, o and ¢’ are two extensions of o|yny onto VN U. By Sec [3.14.1] we have
olyau = d’|ynu. Thus, o extends to V U U which is of the required type. O

4 Orthogonality criterion — a simplified version

The goal of this section is to prove Theorem below. This theorem will only be used in the next
Section [l

4.1 Formulation of the Theorem

Let X be a smooth manifold. We will work on a manifold Y = X x R x R. Let us refer to points of
Y as (z,s1,52) € X x RxR. Let P, P»: Y — X X R be projections

Pi(z,51,52) = (2, 5;).

Let us refer to points of 7Y as (z, s1, 52, w, a1ds1, asdsz), where w € T; X; ardsy € T R; asdsy €
Ty R. Let Qy C T*Y be the closed subset consisting of all points (x,s1, s2,w, aidsy, azdsz) where
ap = 0 or ag = 0 (or both). Let Cy C D(Y) be the full subcategory consisting of all objects

microsupported within Qy. Let ~Cy be the left orthogonal complement to Cy (consisting of all
F € D(Y) such that RHom/(F,G) =0 for all G € D(Y)).

Theorem 4.1 F € 'Cy iff RPyF = RPyF = 0.

Let us start with proving that F' € +Cy implies RPyF = RPyF = 0. Indeed, given any G € D(X xR),
we have

RHom(RP\ F;G) = RHom(F, P|Q).

It is well known that every element (z,si,s2,w,a1ds) + azdss) € S.S.(p!lG) satisfies as = 0, i.e.
P{G € Cy and
RHom(RPyF;G) = RHom(F, PiG) = 0.

As G is arbitrary, we conclude RPj F' = 0. One can prove the equality RPyF = 0 in a similar way.

The rest of this section will be devoted to proving the opposite implication:
Theorem 4.2 Let F € D(Y) satisfy RP)\F = RPyF =0. Let G € Cy. Then RHom(F,G) = 0.

We start with introducing the major tool, namely a version of Fourier-Sato transform.
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4.2 Fourier-Sato Kernel

Let E be the dual real vector space to R? so that we have a pairing <, >: R? x E — R. Let us use
the standard coordinates s, so on R? and 01,09 on E so that

< (81,32), (01,02) >= 8101 + S209.
Let Y5 := X x R? x R2. Define projections 71,75 : Yo — Y
m(x,s,8) = (z,9);

mo(x,s,8") = (1,5,
where s = (s1,52) € R? and s’ = (s, s5) € R2.
Let K C Ys x E be the following closed subset
K ={(y,s,s,0)|(s — s ,a) >0}
Let us also define the projections
pl YaxE — Y23V

o Yax B N vy« B
We then have the following functor: ¥ : D(Y) — D(Y x E):

U(F) := Rpow RHom(Zg; p, F)

which are modified versions of Fourier-Sato transform. Let us establish certain properties of these
functors (similar to those of Fourier-Sato transform).

4.2.1 Properties of the modified Fourier-Sato transform.

Lemma 4.3 Let ng : Y X E —Y be the projection. We then have a natural isomorphism

F — Rrp, V(F)[2).

PROOF Let pg : Yo X E — Y5 be the projection. We then have
Rrp ¥ (F) ~ Rry, RHom(RppZi; R\ F). (84)

(Indeed, one uses p; = 7 o pg, the adjunction formula for pg), and 7 o pg = T o . )

A simple computation shows that we have
RquZK = ZA[—Q].

where A C Y5 is the diagonal, i.e. the set of all points of the form (z, s, s). The statement now follows.
d
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4.2.2 Singular support estimation

Let us define the following set
C:={(o1,02)|c1 =0o0r o9 =0} C E. (85)
Let U := E\C.
Lemma 4.4 Suppose G € Cy. Then we have:
SS.(¥(G)NT* (Y xU) C {(x,s,0,w,0,bdo)} C T*(Y x U),
where (z,5) €E X xR2=Y;0€U; we€ T}X; bdo € T}U.
ProoF. First of all, by [KS|, Prop.5.3.9],

SS.(Zk)={((s,8,0),Md(s —5',0)) : Ms—35,0)=0, A\>0, (s—5,0) >0} (86)

By [KS, proof of Prop.5.4.2], S.S.pllG is contained in the following subset of T*(Y; x E):
(x,s,8,0,w,ads,0-ds',0-do),

where (z, s,w, ads) € Qy.

Let us now check that
S.8.piG N S.S.Zx C {zero section}. (87)

Suppose we have an element 7 in this intersection which does not belong to the zero section. It should
be of the form as in (86]). Since n # 0, A > 0 and (s — s/, 5) = 0. We have

M(s — 8 ,0) = Ns—§,do) + Nds — ds', o).

The ds’ component of 1 is thus —\(ds’, o). In order for n € S.S.ﬂ'!lG, this component must vanish,
which implies ¢ = 0. Analogously, do-component of 7 must vanish as well, i.e. s—s’ = 0. This implies
that n is in the zero section, contradiction. This proves .

It now follows that
S.S.RHom(Zy; pG) C S.S.(p\G) — S.S.(Zk)

(where “ —" means subtraction in each fiber of T*(Y; x E)), [KS| Cor.6.4.5]), i.e.
S.S.RHom(Zg; pyG) C {(z,s,¢,0,w,ads — Ad(s — §',0))} (88)
where
(z,s,w,ads) € Qy (89)

and s, s’, o, A satisfy the same conditions as in .

Now let us estimate

S.S.Rpo. RHom(Zgc; pyG) = S.S.(¥(G)).
By [T08, Lemma 3.3], we have: if (a')%(s’)? # 0 , then

(:vo, (s')o, o, WY, (a’)od(s')o + bodoo) ¢ S.S.Rpg*R’Hom(ZK;p!lG)
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as long as:

there exists € such that R’Hom(ZK;p!lG) is nonsingular at all points (T, S, S, Ox, Wy, axds + alds’ +
bydo), where

|z, — 2% <e, any s, € R? |, — ()0 <e, |on— 00 <&, (90)
lwy — W0 < e, lay| < e, la, — (a0 <&, |by—0°| <e.
Thus, the proof of the lemma [£.4] reduces to the following statement:
Let (2°,(s")?, 0%, Y, (a")0d(s")? + bodo®) € T*(Y x E) satisfy:
a) 0¥ = (09,09) is such that
o) £ 0 and o9 # 0; (91)

b) (a')° #0.
Then for some e > 0 there are no solution (T, Sx, 4, Ox, Wx, ax, @, by) of the inequalities (@) satisfying
the conditions (coming from )

(92)

Ty =T, S, = 8, s =4, or =0,
Wy =W, ay=a—Ao, a, =M\, by=—-\(s—5),

such that condition of and hold.

Eliminating the variables with x and conditions on z,w, b, we must, for fixed 0-variables find £ making
the following list of conditions inconsistent:

1| = (s <e

2. o -0 <e¢

3. la—Xo| <e

4. [Xo— ()’ < e
5. a1 =0o0ray =0
6. A>0

7. Ms—48,0)=0

8. (s—5,0)>0

Indeed, suppose there is a solution to this system of inequalities such that a; = 0. Then by condition
|)\0‘1| < g, ie.

9

Al < 93
N < (93)
By condition
o] < |o°| 4. (94)
Combining condition with and , obtain
e > |(@)° = M| > (@)% = A- (J0% + &) > |(@)°] = —(|o°] + &) (95)

|o1]
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If we choose € > 0 to satisfy (cf. condition a) )

1.
e < 5 min{lo}], |05} (96)
then yields
2e
€> I(a/)ol—m(\ao\ﬂ%) (97)
1

We have assumed a; = 0 above; if we assume ay = 0 (cf. condition , we get an analogous inequality.
Choosing € > 0 to satisfy and to violate both and its analog for as = 0, finishes the proof.

a

4.2.3
Lemma 4.5 Let G € Ob(Cy). Then ¥(G)|yxu = 0.

PROOF Let ¢ : Y x U — X x U be the projection ¢(z,s,o) = (z,0). We have a natural map

viq "R (Y(G)ly xv) = U(G)lyxu

By virtue of lemma and the fact that the fibers of ¢ are diffeomorphic to R?, we see that ¢ is an
isomorphism.

It now remains to show that Rq.(V(G)|yxv) = 0.

LetKU::Kﬁ(YQXU). Let g : YoxU =Y xU,qp:Y XU —=>Y,q3:Y xU — X xU be the
projections
q(z,s,8,0)=(z,8,0);

In this notation,
Rq.(Y(G)|yxv) = Rgs« RHomy xu(RquZi,,; 5 G).

Finally, we observe that Rq1Zkxy = 0 (pointwise computation). O

4.2.4 Representation of GG
Let i¢ : C C E be the closed embedding; here C'is as in . Let Ko := KN (Y2 x C). Let
p{ YoxC oY, By

and y
S YaxC IS Y x C.

Let ¢° : Y x C — Y be the projection. Let G € Cy. It now follows from Lemma that U(G) =
(idy x i¢)«(idy x ic)"'¥(G), which together with Lemma |4.3| yields a natural isomorphism

G = RqC RpS, RHomy, xc(Zk.; (p5)' G)[2].
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So that we have an induced isomorphism
RHom(F,G) = RHom(F; R¢% RpS, RHomy,xc(Zx; (p§)'G))[2.

Let us rewrite the RHS.

First of all, set

8 =q¢%S  YaxC = Y (x,8,5,0)— (x,5).

We then have
RHom/(F; quRp%R"HOTnYQ x0(Zkc; (p?)!G))

= RHom((x) ™ F; Hom(Zxo; (n])'G))
= RHom((7§)'F @ Zg; (p7)'G)).
Next, we factor plc = qcﬂlc, where
S v x 0 TN v x
so that we can continue

RHom((w5)™'F @ Zio; (])'G)) = RHomy xo(R(7E )i((75)) ™' F @ Zi,); (¢9)'G).

Let us show that F := Rr{{((n{)"'F ® Zk,) = 0 under assumtions on F' from Theorem Indeed,
let (a,0) € C, a # 0. Then, for any F' € D(Y), we have
RPYF = Flyy(4,0)-

Similarly,
RP)F = Flyy(0,0)-

Finally,
RPyF = Fly(0,0),

where Py : Y x C' = Y is the projection. Since Py passes through Pj, all the restriction listed vanish
under assumptions from Theorem This concludes the proof.

5 Orthogonality criterion for a generalized strip

5.1 Conventions and notations

Let a € (0,7/2) be an acute angle, same as in Sec

Set e = e f = ¢! 50 that e, f is a basis of C over R and every complex number z can be uniquely
written as z = xe + yf, ,y € R so that we identify

C 5 R? (98)

using the coordinates (z,y).
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Define a generalized strip which is a set of one of the following types:
First type:
S={ze+yf : z>v, yc(A4,B)}CR*=C,

where —oo <y < oo and —o0o < A < B < .

Second type:
S={ze+yf : z<v yc (A4, B} CR*=C,

where —oo <y < oo and —o0o < A < B < .

5.1.1 Convolution
Let M, N be smooth manifolds Define a convolution bi-functor
x 1 D(M x R?) x D(N x R?) - D(M x N x R?)
as follows. Denote
A: MxR*xNxR?—= MxNxR? :  A(m,u,n,v) = (m,n,u+v)
We now define
FxS:=RA(FKS).
5.1.2 The category Cs.
Let s C T*(S x R?) be a closed conic subset consisting of all points
(z1, Y1, T2, Y2, ardz1 + bidyy; agdrs + badys)

where (21,y1) € S and (a1,b1) = £(az, b2) .
In terms of the complex coordinate z = xe + yf and the identification we have:

Qs = {(z,s,adz + bds|z € S, s € C,a = £b}.

Let Cs € D(S x R?) be the full subcategory consisting of all objects microsupported within Qg.

5.1.3 Rays !y and [_

Let
Ly == {(z,0)]z >0} CR*; I_:={(z,0);2 <0} CR?

5.1.4 Projectors P.
Let us define the following projectors Py : S x R? — R2, where

Py(71,91,72,92) = (21 £ 22591 T 42).
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5.2 Formutation of the criterion
QOur criterion is then as follows.

Proposition 5.1 Consider constant sheaves Z;, € D(R?). Let F € D(S x R?) and suppose that one
of the natural maps
Zy, «xF > ZoxF=F (103)

Zi «F —Zox F =F, (104)
s a quasi-isomorphism.

Suppose that both RPy \F =0 and RP_\F = 0. Then F € 'Csg.

The rest of this section is devoted to proving this criterion under the assumption (103]). The case
(104)) is treated in a fairly similar way and is omitted.

5.3 Fourier-Sato decomposition

Denote by E the dual vector space to R?. We have the standard identification £ = R2. Let (,) be
the standard pairing E x R2 = R. Let Z C E x R?; Z = {(¢,u)[{¢,u) > 0}.

As was explained above, we have the convolution
x : D(E xR?*) xD(S xR?) = D(E x S x R?).
For F € D(S x R?) set
F(F):=Zz+ F € D(E x S x R?), (105)

where Zz € D(E x R?) is the constant sheaf on Z. Notice that F(F) is an analog of (but is not
directly equal to) the Fourier-Sato transform of [KS, Ch.3.7].

Lemma 5.2 (Fourier-Sato decomposition of F') Consider the projection q : E x S x R? — S x R,
Then for any F € D(S x R?), we have a natural isomorphism

RqF(F)[2] = F.

PROOF. Let us introduce the following projections (where, e.g., pa4 means the projection onto the
2-nd and the 4-th factor):

E xS x R2 x R?

P123 l \ P24
p23
Pp234
q

E x S x R? S x R2 SxRZxRZL =S xR2

P13

Introduce the following closed subset

7' ={(&zx,y) : &z —1y) >0} CExSxR*xR
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We can now rewrite:
F(F) = Rp1231(Zz ® pyi F),

hence
RqF(F) = Rp131Rpaza(Zy @ pyf F) =

(projection formula [KS|, Prop.2.5.13(ii)] is used)
= Rpig1(RpasaZy @1 'F)

We have a natural isomorphism RposnZy = Zsxa|—2], where A C R? x R? is the diagonal. The
result now follows. O

5.4 Transfer of the conditions RP.,.F =0 to FF

Claim 5.3 Let F € D(S x R?) satisfy RP1 F = 0. We then have R(idg x Py),F(F) = 0.

PROOF. Let us pick a point (1, s9) € E x R? and show that, say, R(idp x Py)[F(F)|x.s) = 0. We
have:
R(idg x PL)F(F)|(.50) = RU(E x S x R (idg x Py) ™' Z, 50) @ F(F))
= RL(E % 8 X R%: Zayxpy)-1(n.50) ® RAI(Zz K F))
[KS, Prop.2.5.13(ii)] _ _
D RT.(E x R? x S x R, Z g1 p=1 (.50) @palz @ psiF), (106)

where:
pr2: ExR?2x S xR? - E x R?

is the projection onto the first two factors;
i 2 2 2
p3a: EXR xS xR*— S xR
is the projection onto the last two factors; and finally,
A: ExR?xSxR? - ExSxR?: (n,s1,25) (1,25 +52)

(as in (101)).

We have:
ANidg x Pr) 7N (n, s0) = {(n, 51,2, 82)|s1 + s2 + 2 = so}-

Note that
ZA=1(dpx Py) = (n,s0) @ piy Lz = Za-1(dpxPy) = (ns0) @ Lyt z = Da=1(id g x Py) =1 (m,50)) 01 2
and put
T := (A7 (idp x Py) " (n,50)) Np1a Z = {(n, 51,2, 82)|s1 + 2 + 52 = 503 (n, 1) > O}
Denote by 4 the restriction of p34 to T

i T—SxR?: T3 (ns1,2 ) (2 8).
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We see that 7 is a closed embedding and that
i(T) = {(z,9)|(n,s0 — s —2) 20} = PL'K, K = {wl|(n,s0 —w) 2 0} CR?,

where Py : S x R? = R? is as in (102)).
We thus can continue our computation from (106]

= RT.(E x R? x 8 x R%; Zy @ p3 F)

(using that p§41F ~ p!34F [—4] since the fibers of p34 are homeomorphic to R* and that Rp34gp§34F ~ F)

= RTc(S x R? (RpsaZr) @ F|—4]) = RT (S x R Zy) ® F[-4]) =
= RT.(S x R%: P{'Zyk @ F[-4]) =

[KS| Prop:.2A5.13(ii)] RFC(RQ; ZK ® RP+IF[_4D =0.

The equality RP_)FF' = 0 can be proven in the same way. O

5.5 Fourier-Sato decomposition for sheaves satisfying ((103))

Define:
I, = {(€.n) € El¢ >0} CE.

Suppose ((103) is the case. Then we have

F(F) S F(Zi, *F) S (Zg *Zy,) * F.

5.5.1 Computing Zz * Z;
Introduce the following subset
Zy = 7ZN (I x R?) cII, x R
Lemma 5.4 We have an isomorphism
Lz Ly, =1ZLg,.

PROOF. The inclusion {0} < [ induces a map

Ligxly, — Lz*Lo="2z.
It suffices to prove the following two statements:
1) Let z € Z; C E x R?. The map

(Zz*Ti ) — (Zz, )z =Z,

induced by (110)), is an isomorphism.
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2) Let z € (E x R2\Zy. Then (Zz * Z;, ), = 0.

In preparation for the proof of 1) and 2), for a point x := ({,v) € E x R?, let us introduce a set
Ky = {(¢ w1, w)|(C,u1) € Zyus € Lijug +ug = v} C E x R? x R?,

so that we have
(Zz*Zp,)s = R°T (K, Zk,). (112)

Let
Lo {(Cur,u)|(Cur) € Zyug = 05up +ug = v} C E x R? x R?
so that
(ZZ * Zo)x = R.FC(L$,ZLI). (113)

We have L, C K, is a closed subset. Under the identifications (112, (113]), the map (111]) corresponds
to the restriction map
R°T (K, Zk,) = R°T.(Ly,Z1,).

Let v = (v1,v2), ¢ = (§,n). We then have

Ky ={((&n), (x1,v2), (x2,0)|{x1 + ny1 > 0522 > 0521 + 22 = v1}.

The subset L, C K, consists of all points with xo = 0.
The set K, is identified with the set

K. = {(x1,y1) € R?*|¢xy +ny1 > 0521 < g}

The set L, gets identified with the subset L! of K/ consisting of all points with z1 = v;.

Let us check 1). Let 7 : R? — R be the projection onto the second coordinate. It suffices to check
that the natural map
RTF!ZK;C — RT(!ZLQD

(induced by the embedding L, C K!) is an isomorphism. We further reduce the statement so that it
reads: the following induced map on stalks at every point y € R is an isomorphism:

(RmZKé)y — (RT['!ZL;)y. (114)
We have
(RmZgy)y = RFC(K;:y;ZK;y)§ (115)
(RmZyy)y = RUc(Lyy; Zry,,);
where
K, ={(z1,y) € R*[¢z1 +ny > 021 < 01} (116)
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L;y = {(z1,y) € R*[éz1 +ny > 0;21 = v1 }.
The map (114)) corresponds to the natural map

RU(K}; Zcy,) — RUe(Ll,: Z1y) (117)

Y Ty
induced by the closed embedding L, C K, .

We have ¢ > 0 (because x € I, x R?), in which case either both L;y and K:’L,y are empty sets, or
K, is a closed segment and L;y is its boundary point, which implies that (117) and hence (114) are

isomorphisms.

Let us now check 2). We have £ < 0. It suffices to check that (RmZg, ),=0 for all y € R. Using (115)),
we can equivalently rewrite this condition as follows:

RI(K},;Zg;,) = 0.

As follows from (116)), the condition £ < 0 implies that Kj, is homeomorphic to a closed ray, which
implies the statement. O.

Combining (108) and (109)), we immediately obtain:
Corollary 5.5 Suppose F' € D(S x R?) satisfies (103)). Then

supp F(F) cII; x S x R2. (118)

Motivated by the corollary set
F/(F) :=F(F)|n, xsxrz € D14 x S x R?),

so that
F'(F) =Lz, * F. (119)

Let my : 111 x S x RZ2 = S x R? be the projection.
Lemma and ((118]) imply the following isomorphism:

F[-2] ~ RrF'(F) = Rn(Zy, + F). (120)

5.5.2 Further reformulation

Let us introduce a map
Q: Iy =R, QE&n) =n/t

Let also
¢:RxSxR* S xR?

be the projection. Finally, let us set

W = {(a, (z,y))|z + ay > 0} C R x R?.
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There is a commutative diagram with a Cartesian square:

Qxidga, gy p2

Zi xSxR? c II; xR? xS x R? RxR2xSxR? > WxSxR? (121)

N D P

Qxidg,,
M, x S x R? s R x S x R?,

S x R2

The map A in this diagram is induced by the addition R? x R? — R2.

Lemma 5.6 i) ‘Zz, * F is constant along fibers of Q x idgyg2" in the sense that
Zz, +F=(Q xidgyp2) " (Zw * F); (122)
it) If F satisfies (103)), then there is a quasi-isomorphism

F = Rgy(Zw = F)[1]. (123)

PROOF From the definition of a constant sheaf as a pull-back of Zy;, we have (Q x idg2) " Zyy xgxr> =
Zyz, wsxwr2; and then, by the base change [KS| (2.5.6)] in the Cartesian square of (121]), we obtain

022
To prove (123)), write
P& ez, « P2 B Re(@ x idsa) @+ ) =
1 _ Al
— Rm1(Q xidg g2) " RA(Zw B F)[2)=Raq R(Q x idg 2 (@ x idg p2) " RA(ZwRF)[2) ¢ =171
= RqR(Q x idgyp2)i(Q % idgyz2) (Zw * F)[1]=Rq\(Zw * F)[1].

5.5.3 Rewriting the map (123

Define a map [ : R x R?2 — R, where R is another copy of R, as follows: l(a,z,y) := x + ay.

Let
L:RxSxR? -5 RxSxR;

be given by L(a, z,u) = (a, z,l(a,u)).
Let W' C R x R? x R be given by

W' ={(a, (z1,31), )|t — = — ay > 0}.
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Let
ps :RxSxR?x R—>RxR?xR;

prxr :RXSxR?x R— S xR%

and
prz :RXxSXR2XxR—-RxSxR

be projections.

We have the following cartesian diagram:

(a7u1az7u2)}%(avz7u27£(av u1 +u2)) (124)

m m

(@,ur,z,us) € RXxRIxSxRE—L “RxSxR2xR 5 (a2 ut)

1 i e |

(a,z,u1 +ug) € R x S x R? RxSxR > (a,z,t)

w w

(a,z,u) ———— > (a, z, l(a,u))

and W x R2 xS =L~H(W’' x S).
By the base change [KS| (2.5.6)] applied to the diagram ([124)), we have for all F satisfying (103)):

Zw * F = L™ Rpga(pp i pF @ pg ' Zw). (125)

Denote
Op = Zy * F := Rppe(pg s pF © pg'Ziwr) € DR x S x R).

5.5.4 Transferring Claim to O
Let P, :R xS x R — R x R be given by

Pl (a,(z,y),t) = (a,z + ay £ t). (126)
Lemma 5.7 If F € D(S x R?) satisfies both and RP. \F =0 then

RP\(®r) = 0. (127)

Analogously, if F' satisfies both (104) and RP_F = 0, then RP’",(®p) = 0.
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PROOF OF LEMMA [5.7| Extend the diagram (124]) as follows:

RxR2xSxR2—L>RxSxR2xR (128)

\LA lPRQ

2 vxid 2Q><idS><IR2 2 L

ExSxR<—I; xSXR° ———R xS xR RxSxR

lidExP+ lidn+xP+ lidePﬂL lp/+

i id ’
xR o, g2 P g ge L R x R

w w

where ¢ : II; — F is the open inclusion.

We have Z; = Z N (v x idg2)IL; and Zz, = (i x idg2) 'Zz. Thus by the base change [KS, (2.5.6)],
Zz, x F € D(II} x S x R?) is quasi-isomorphic to (¢ x idgyp2) "' (Zz * F). Thus,

Rlidn, x Po)(Zz, « F) "5 E5 (s idga) " R(idp x Py)(Zg + F) “*2B3
But on the other hand,
(119) (122) . _ (125)) . _ _
FF) 2 25, 7 B (@ xidge) @i+ F) B (Q xidgpe) L7105

hence
R(idm, x Py)i(Q X idgyg2) ' L™'®p = 0,

or applying the base change [KS, (2.5.6)] to the middle and right bottom squares of (128]), we have
(Q  idga) (L) RPY, () = 0.

Since both maps (Q x idg2) and L' are locally trivial fibrations with a vector space as a fiber, we
conclude that RP} & = 0. O

5.6 Rewriting the condition of orthogonality to C

Let F' satisfy the conditions of Proposition (assuming (103)). Let H € Cg, where Cg is defined in
section Proposition [5.1| now reduces to proving that RHom(F, H) = 0.

Let us investigate RHom(F, H) using the representation (123 of F. We have:

RHom(F, H) RHom(Rq(Zw = F), H)[—1] RHom(RgL Y (®r); H)[-1]

= RHomgysxp(®r; RL.q'H)[—1]. (129)

Singular support estimate shows that
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Proposition 5.8 We have:
S.S.-RL.¢'H C Qu,

where
Q= | {l@z,0,t,R(d(x1 + ayr) £ dt) + R.da)} (130)

14+” and “”

and where a € R, (z1,y1) €S, t € R.

PROOF Because ¢ is a projection on a direct factor, by [KS|, Prop.3.3.2(ii)] we have S.5.¢'H = S.S.q"'H

which in turn can be, using [KS, Prop.5.4.13], estimated by (in the notation of that proposition)
'q'(q; " (S.S.(H))); thus |
S.S.¢H C {a,z,u,ada+vdu : (= tv}.

By [KS, Prop.5.4.4],

S.S.RL.q¢'H C L.('"L' "{a, z,u,ada + Cdz + vdu : ¢ = +v}).

We have
T*(Ro x 82 x RZ_, ) 2 Ry xS:xRZ_, X (r,x8.xzy) T"(Ra X S: x Ry)
(a, z,u, ada + (dz + Edx + ndy) (a, z,u,ada + Cdz + Tdt)
v=(&n) t=/{(a,u)
dxr 4+ ady + yda < dt.
Thus

S.S.RL.¢H C L.({a,z,u,ada+ (dz+7dt : (=+7(1,a)}) =
= {a,z,t,ada+ (dz+7dt : ( =+7(1,a)}
which is equivalent to . O
Thus, Proposition follows from the following one:

Claim 5.9 Let ®p, H € D(RX S x R) satisfy: RP},®r =0 (where P are as in (126)) ); S.S.H C Qy,
where Qyy is as in (130). Then we have:

RHom(®p;H) = 0.

5.7 Subdivision into 3 cases

We are going to subdivide the space R x S x R with coordinates (a, z,u) into 3 parts according to the
sign of a.
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5.7.1 Subdivision of R x S x R
Uy == (0,00) x SXRCRXxS xR
U_ :=(-00,0) x Sx RCR xS x R;
Uy=0xSxRCRxSxR.

Denote
ji:Ui%RXSXR

the corresponding open embeddings and by
10:Up >R XS XR

the corresponding closed embedding.

5.7.2 Subdivision of ¢

Set
(ONERES j:El(I)F S D(Ui);

Dy =iy dr € D(Up).
We have a distinguished triangle

Dy @B — D — gDy (131)

Let
P = Pljy; P i=PLjs PY = Pli

be the restrictions of P from (126]) onto U,,U_, and Uy. Base change theorem implies that

U
P/ @, =0;
U_
Pro_=0;
PYrd, = 0.
5.7.3 Subdivision of H
Let Hy € D(Uy);
Hy = j:El/H
Let Ho € D(Up);
Ho = iy H.

Let us estimate the microsupports of these objects. Let
Quy = QN TUy C T"Uy,

where we assume the embeddings T*Uy C T*(R x S x R) induced by ji.
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It is immediate that S.S.(H4) C Qu,.

Let
Qp = U {(z1,y1,t,R.(dzy £dt)} € T*(S x R),
“4” and “”

where, same as in (130]), (x1,y1) are coordinates on S, and ¢ on R.

Corollary [KS] 6.4.4(ii) implies that
S.8.(Ho) C Qo.

5.7.4 Subdivision of Claim ({5.9)

By virtue of the distinguished triangle in (131)), Claim (5.9) gets split into showing the following

vanishings:

RHomgxsxr(j+1®4;H) = RHomy, (®4;Hy
RHomesxR(j_[(I)_; H) = RHOIHU_ (@_; H_
RHOTnRxsxR(iO(I)+;H) = ]%HOIHU0 ((I)();Ho) =0.

) =0;

) =0;

Our task now reduces to showing the following 3 statements:

Claim 5.10 Let &, H, € D(Uy). Suppose RPY @, =0 and S.S.(Hy) C Qu, . Then
RHom(®4,H4) =0.

Claim 5.11 Let ®_,H_ € D(U_). Suppose RPY, ®, =0 and S.S.(H_) C Qu_. Then
RHom(®_,H_) =0.

Claim 5.12 Let &, Ho € D(Up). Suppose RPL)®o = 0 and S.S.(Ho) C Q.. Then

RHom(®g, Ho) = 0.

5.7.5 Furhter reduction
Let { be one of the symbols: +,—, or 0. Let I := (0,00); I_ := (—00,0); Ip := {0}. Let
Qs Uy xSxR—IyxRxR

be given by
Q%u(a, (z,y),t) = (a,z + ay,t)

(in the case ¢ = 0 we assume a = 0). Denote by Vi, C R x R x R the image of Q’<>. Depending on
S, V¢ can be of one of the following types:

1) For some linear function f¢ : I, — R,
Vo ={(a,v,t)|a € Io;v > f(a); }.
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In this case, set Uy, := I, x (0,00) X R; set
Q1:Uy — Uy,
Q1(a, (z,9),t) := (a,x + ay — f(a),1).
2) For some linear function fo : I, = R,
Vo = {(a.v,0)la € I < f(a)}.
In this case, set Uy := I X (—00,0) X R; set
Q1: Uy — Uy
Qi(a, (z,y),t) := (a,x + ay — f(a),1).

3)
VQ:IQXRXR.

In this case, set Uy, 1= I x (—00,00) X R; set Q1 : Uy, — Uy,
Ql(a7 (l’,y),t) = (a,:r + ay7t)'

It is easy to see that in each of the cases the map ()1 is surjective; furthermore it is a smooth fibration
with its typical fiber diffeomorphic to R. We also see that the 1-forms from y, vanish on fibers of
(1, which implies that the natural map

He — QL RQuH,

is an isomorphism.

Set
Ly = RQuHe € D(Uy).

Define conic closed subsets Q. C T*Ux as follows:

Qu, = U {(a,v,t,R.(dv £ dt) + R.da},
“+” and “-”

where (a,v,t) € Ux C I+ X R x R. Define a conic closed subset Qy, C T*Ujy:

Qu. = |J  {0,v,t,R(dv+adt)}.
“+” and “-”

It is easy to see that
SS(,CQ) C QUO'
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5.7.6

We have
RHom(®e; He) = RHom(®e; Qi L) = RHomuy,, (RQuPy; Lo).

Set G := RQ1 Py . Let P}EJ<> : Uy — RxR be the restrictions of the following maps RxRx R — RxR:
(a,v,t) — (a,v £1t). (132)

It now follows that
RPLC Gy = 0.

So, we can rewrite Claims [5.105.12] as follows.
Claim 5.13 Let G, Lo € D(Uy) satisfy:
Uos —0-
RP."G¢ = 0; (133)

S.S.(Ley) € Qu,. Then RHom(Gg; L) = 0.

5.8 The case Uy = Iy X (—00,00) X R

This case follows from Theorem below. Below, we are going to consider the case U¢ = I X
(0,00) x R. The case Uy, = Iy X (—00,0) x R is fairly similar.

5.9 Proof of Claim for Uy = I, x (0,00) x R

As above, our major tool is development of a certain representation of G.

5.9.1 Representation of G

Let V1 C Iy, x R x (0,00) x R be given by
Vi = {(a,u,v,t)| t| <v}. (134)

Let V := I, x R x (0,00) x (0,00). We have an identification J : V' — V1,

L S T8 & -8

J(a,u,&1,&) = (a,u, 5 g ) (135)
Let I; : Vi — I x (0,00) x R be given by
Li(a,u,v,t) = (a,v,u+t). (136)

Let I=1,J:

&1+ & +§1—§2)7

I(aaua§17£2) = (a7 9 U 9
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so that & =v+1t; & =0 —t.
Let g1,q2 : V — Iy, x Ry X Ry,

Qi(a7u7§17§2) - (aﬂuagi)v 1= 1)2 (137)

Let us summarize our notation in the following diagram (a wavy line indicates that a sheaf is defined
over the given space):

(a,u,v,t)t (a,v,u+1t)
m m
X xR x (Rso x R) ) Vi ={(a,u,v,t) : |t| < v} b Io xRyo xR G
H~—~~V =15 xR xRyp xR5p - Iy x R x Ryy.
W w
(a,u,&1,82) (a,u,&)
Claim 5.14 Suppose that an object G € D(I x (0,00) x R) satisfies both with the sign “+”
and with the sign “-”. There exists an object H € D(V') such that
1) both RquH ~ 0 and RgaH ~ 0;
(2)RLH ~ G.
Remark. Observe that 1' reads as follows: RPLG = 0, where
Pl:Iyx(0,00) xR>RxR : Pl(a,v,t) = (a,v+t), (138)
same as in (132)).
Proof of this Claim will occupy the next subsection
5.10 Proof of Claim [5.14]
5.10.1 Functors r; and r, and their properties
For F € D(Iy x R x (0,00) % (0,00)) we have natural maps (coming from the adjunction)
F — ¢\RquF; F — ¢ RgaF. (139)

Let r1(F'),r2(F) be the cones of these maps so that we have natural maps (in the conventions of [KS|
Ch.1.4))

ri(F) — F[1] (140)

ro(F) — F[1]. (141)
We therefore have a composition map

7"17“2F — F[Q] (142)

62



Lemma 5.15 We have Rqyirire = Rqarire = 0.

PRrROOF First of all we observe that
Rqur1 ~0, Rgorg ~ 0. (143)

Indeed, the question boils down to showing that Rgqy applied to (139)) yields a quasi-isomorphism
RquF = Rgugi Rqn F.

There is a natural transformation of endofunctors on D (I, x R x (0,00)): € : Rquq} — Id (since Rqy
is left adjoint to ¢}). Since ¢; is a projection along (0, 00), it is well known that ¢ is an isomorphism
of functors. By [MacLanel, Ch.IV.1, Th.1(ii)], there is a diagram

RquF — Rquq} RqnF

o

Rqn F

in which the vertical arrow is induced by e, which implies that the vertical arrow is an isomorphism,
hence, so is the horizontal arrow. This finishes proof of ((143)).

Secondly, we have a natural quasi-isomorphism
T1Tr9 ~ ToT1. (144)

Indeed, let us represent g1, g2 as convolution with kernels. Let A, B, C' be smooth manifolds. We have
the convolution bifunctor o : D(A x B) x D(B x C') = D(A x C) defined by

FoG= R7TA01(7T£43F®7T530G). (145)

Let A=R, By = By = (0,00), C = pt so that F is asheafon Ax By X Bs, q1 : AixB1xBy — Ax By xC
is the projection along Bs.

We have Rq /' = F o Zp,xc.
Set VG = ¢71G1] = G o Zox s, [1].

Let us construct an isomorphism (natural in F' and G)

RHom(RquF;G) = RHom(F; q?G).

Fix one of the two maps I : A\Zp, — Zp,x B, [1] such that the induced map RPA\Zp, — RPZp,xB,[1]
is an isomorphism, where P : By X By — Bsy is the projection along the second factor. We have an
induced map

a:F 35 FoAZp, 5 Folp,ysl] > ¢ RanF

It follows that this map induces an isomorphism

RquF — Rqug® RquF. (146)

The induced map

RHom(RquF;G) — RHom(q?qugF; q?G) —3 RHom/(F}; q?G) (147)
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is an isomorphism for all F,G. Indeed, the right arrow is an isomorphism because of (146|). The
left arrow is an isomorphism because we have an isomorphism of functors q? G = GXZ[1] and the
statement now follows from the Kuenneth formula.

Thus we have constructed an adjunction between the functors q? and Rgqy in the sense of [MacLane,

Ch.IV.1]. In case G = RquF, the map sends idgg, r to qll(idqu!F) o a = «, therefore « is
the universal arrow associated to the adjunction in the sense of [MacLane, Ch.IV.1, p.81]; by
the uniqueness of an adjoint functor, see [MacLane, Cor.1, Ch.IV.1, p.85] and its proof, this means
that « coincides with the “standard” adjunction map (coming from [KS| Ch.3.1]) up to some natural
autoequivalence of the functor qlquu. This means that we have a canonical isomorphism of functors

q? = q!1 so that we won’t make difference between q? and q!l We have
¢\ RquF = F o (Zp,xc © Zoxp,)[1] = F 0 Zpyxp,[1]. (148)
The above consideration shows that mF = Conea ~ F o Ly, where £; := Cone(I : A\Zp, —

ZBQXB2[1])‘
Analogously, roF' ~ F o L9, where Lo := Cone(I : A\Zp, — Zp,xB,[1])-

Therefore,
T17’2F ~ Fo [£1 X ﬁg} ~ TQTlF,

as we wanted.

We now have: Rqqirir2 = 0 because of ((143]) and
RQQ!’I“l’I"Q RQQ!’I“Q’I"l 0. (149)
This accomplishes proof of Lemma. O

5.10.2 Construction of the object H and proof of the Claim 1)

We set ® = I'G and H := ryro(®). Lemma says that RgH ~ 0 and RgoH ~ 0, which proves
part 1) of the Claim

5.10.3 Reduction of part 2) of the Claim

Let us deduce part 2) of the Claim from the following statement.

We have a map
v H=r1re® — 9[2],

where the right arrow is defined in (142)). Let us apply the functor RIj to ¢ so as to get a map

RI,H — RI,;®[2] (150)
Claim 5.16 The map @ 18 an isomorhpism.
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This Claim implies part 2) of the Claim Indeed, we can rewrite ([150]) as follows.
RLH — RI,®[2] = RLI'G]2] = G[2],

where the rightmost arrow is an isomorphism because I is a smooth fibration with fibers diffeomorphic
to RL.

We now pass to proving Claim [5.16

5.10.4 Subdivision into 3 cases

The map (150)) factors as

RErira(®) 2 REro(@)1] &2 BRI, 0[2).

AsT'G = @ and by [KS, Prop.1.4.4.(TR3)], the cone of the right arrow is isomorphic to RI gy RgaT'G[2].
Analogously, the cone of the left arrow is RI!q!quurg(I)[l] which, by definition of r9, is the cone of the
natural arrow

RI;qlquuI!G — Rng!quuRqéRqQ;I!G.
Thus, isomorphicity of is implied by the following three vanishing statements:
1) RLigbRgaI'G ~ 0
2)RLyi¢i RqyI'G ~ 0;
3)RL ¢} Rquigy RgaI'G ~ 0.

5.10.5 Proof of the 1-st and the 2-nd vanishing
Let Vo := I, xR x (0,00)*. Let 71, mo : Va be given by
Wl(a,v,£1,€2,£i7£é) = (avv’fla€2)

and

77-2(&77-}751’527537&&) = (CL)U?giagé)

Let Lo, C V5 be a closed subset of the form:

Ly := {(aavaé-l?g?agivfé”éé = gé}?
Lemma 5.17 For any F € D(V) we have

¢ Rga F = Rro\(Z1, @ o' F).

PROOF Similar to proof of (148]). O

Let X := I x ((0,00) x R) x ((0,00) x R). Let 7%, w5 : Xo — I, x (0,00) x R be the projections
along the 3rd and the 2nd factors respectively. Define closed subsets L1 C Xo:

L. = {(a, (Sl,tl),(SQ,tQ)) S IQ X ((0,00) X R) X ((0,00) X R) 51 £t =82 :|:t2}
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Lemma 5.18 For any F € D(I+ x (0,00) x R),

(PY"'RPLF = R (2 @ nf 'F),

where the map P' was defined in (138)).

PROOF. The proof is analogous to the proof of lemma [5.17, O

We now have

RLgyRgoI'G[—2] ~ RIigy ' Rgoa 171G
~ Rr'y(Zr, @ (m5) 7' G), (151)
where 7} = Im; : Vo — I, x (0,00) x R, as easily follows from Lemma [5.17]
Let us define the following map
J2 : Iy x R x ((0,00) X R) x ((0,00) x R) = I, x ((0,00) x R) x ((0,00) x R) = X»
as follows:
JQ(a7 v, (317 t1)7 (327 tQ)) = (a'7 51,V +t1, 82, v + t2)

Let us also define a map (which is a closed embedding)
Ky : Vo — Iy x Rx ((0,00) x R) x ((0,00) x R)

as follows:

§1+& L—& §+& § -6

K 1,80 = .
2(0’7’07&1762751)52) (a7/U7 2 ’ 2 I 2 I 9 )
It follows that 7] = 7 JoKa; 7h = 7 Jo K2
We can now rewrite (151)) as follows:
RLgyRgaI'G[—2] ~ RIigy ' Rgo 171G
~ Ry (RInRKaZr,) ® (15°)'G), (152)

Let
Ly C Iy x R x ((0,00) x R) x ((0,00) x R)

be a closed subset consisting of all points (a,v, s1,t1, s2,t2) with s; —t] = s9 — to.

It is easy to see that Ky(L2) C L, is an open embedding. Indeed, Ks(Lg) consists of all points
(a,U,Sl,tl,SQ,tg) with s1 — 1 = s9 — t9 , 81 > |t1|, So > |t2‘.

Therefore, we have a map RKaZy, — Z L, which induces a map
R\ (RJnRKyZ1,) ® (15) 7' G) = Rriy (RJaZyy) @ (75) ' G). (153)

The cone of this arrow equals
Ry (M@" (m3')7'G),
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where

M ~ RJyZy,

and N = L)\K(L2). Let us now show by a pointwise computation that M ~ 0. Indeed, let a :=
(a,01,71,09,72) € Xa) be a point. Let us consider H*(M,) = H2(J, ‘s 7).

If 01 — 11 # 09 — 72, then J2_1a =0. If o1 — 7 =09 — T = h, then J{la gets identified with the set
of all v € R satisfying: either o1 < |13 — v| or 0o < |19 — v|. Let us denote this set by Y, C R. It
follows that Y, consists of all points v satisfying: h +v < 0 or h 4+ v > 20, where ¢ is the maximum
of o1 and o9. In other words, Y, is a disjoint union of two closed rays so that H?(Y,,Z) = 0. This
shows that M ~ 0.

The map (153)) is therefore a quasiisomorphism. In view of (151)), the first vanishing will be shown
once we prove that
R (RJnZyy) ® (w3 )—1G) ~ 0. (154)

But RJxZp, = Zy: [-1], and hence the Lh.s. equals (PL)~1RP!,G[-1] which is zero by (133).
The second vanishing is shown analogously.

Proof of the third vanishing Define the following subset
L C Iy xRx((0,00) xR) x ((0,00) x R)) :
L ={(a,v,s1,t1,s2,t2)|(a,v,s1,t1), (a,v, s2,t2) € V'};
Similar to the proof of the 1-st vanishing, one shows that
RLigi Rqngy RanT' G[=3] ~ Rrfl (RJxZr) ® (73) ' G),

where
Ja : Iy x R x ((0,00) x R) x ((0,00) x R)) = X»

and
T,y s Iy X R x ((0,00) x R) x ((0,00) x R)) — Iy x (0,00) x R

are the same as in the proof of the 1-st vanishing.

Observe that
Jo(L) = {(a, (s1,t1), (52,t2))| [t1 — t2| < 51+ s2}.

the projecion L — J5(L) is a smooth fibration whose fibers are diffeomorphic to R'; we now see that

RJInZj, ~ ZJQ(L)[—l] € D(XQ)

We therefore need to show that
Ry (Z gy 1) @ (73 )T'G) ~ 0

The complement to J2(L) in X2 consists of two components
Xo\Ja(L) = My UM,

where
M+ = {{(.’L’, (Sl’tl)’ (527t2))| 1 —ta > 81+ 52}
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and
M_ = {{(a;, (Sl,tl), (SQ,tQ))’ tl — tQ S —S1 — 82}

We thus have a distinguished triangle
— Rm\(Z gy 1y @ 75 ' F) = Ry (Zx, @ 3 'G) = Rry(Zyg, @ w5y ' G) & Ray(Zoy. @ w3y ' G) —
which comes from a short exact sequence

0—>ZJ2(L) — Lxy, — Ly, © Ly — 0.

The second term of this triangle is quasi-isomorphic to
7 'RmG,

where 7 : Iy X (0,00) X R — I is the projection. It follows that RmG ~ 0 because 7 passes through
Pl (as well as P?) from (133).
We thus need to show that Rm:\ (Zp, ® (755)71G) ~ 0.

Introduce the following subsets N1 C I x ((0,00) x R) x R:

Ny =A{(a,(s1,t1),y)| t1 > s1 +y}

and
N_ = {(aa (Slutl)uy)| tl < —S81 — y}

Let g1 : I x ((0,00) x R) x R — (0,00) x R and g2 : I, x ((0,00) x R) x R — R be projections. We
then have
Rty (Zar, ® (m3) 7' G) ~ Rqu(Zn, @ g5 ' RPLG) ~ 0

because RP},G = 0 by ([133).
This completes the proof of the 3rd vanishing as well as the proof of Claim [5.14]
5.11 Finishing proof of Claim [5.13]

Let I, x Rso x R, the target of the map I; from (136]), have coordinates (a,v,n).
Let G, H,I be as in Claim and let H' be a sheaf on I, x Rsg X R microsupported on the set

U (a,v,m,R.d(v£n)+R.da). (155)
(‘+77 and “_77

We then have
RHom(G, H') ~ RHom(RLH, H') ~ RHom(H,T'H').

By [KS| Prop.5.4.5(i)], it follows from (155]) that

S.S.I'H') c {(a,u,&, &, bda+ wdu + 1dEy + modéy = 71 =0 or 75 = 0}. (156)
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Set A'=H, B =TH'.

Let also q1,q2 : I, x R x (0,00) x (0,00) = I, x R x (0, 00) be projections as in (137): gi(a,u,&1,&2) =
(a;u, &)

We then have Rgy A’ =0, i = 1,2, by Claim 1), and we have the estimate (156]) for B’.

Let us identify diffeomorphically R — (0, 00). Under this identification, we have two sheaves A, B on
Y xR x R, where Y = I, x R, such that

1) RpnA = Rpy A ~ 0, where p1,p2: Y X R x R — R are projections;

2) B is microsupported on the set of points (y, u1, us,w + viduy + vodus), where w € 1Y up,ug € Ry
vy =0 or v2 = 0 (or both).

By Theorem RHom(A, B) = 0, which finishes the proof of Claim as well as Proposition

6 Proof of Theorem (3.5

In section we have constructed objects @&, @re dT-a as well as maps igx : Zyoxi[—2] —
O igra : Dxgur,[—2] — ®F, and igra : Zxoxr_,|—2] — ®'-<. In order to finish the proof of
Theorem it now remains to prove:

1) Each of the objects ¥, ®*« T belongs to C, to be done in Sec
2) Cones of the maps igx,igra,igr—a are in ~C, to be done in Sec

We only consider the case of ®% (and the map igx ), because the arguments for the remaning cases
are very similar.

Proof of 2) is based on the orthogonality criterion of the previous section (Proposition |5.1)).

6.1 Proof of X € C.

Consider open subsets Xy C X, where Y, is the union of two neighboring open strips Int P, Int P, and
their common boundary ray £. It is clear that ¥, form an open covering of X.

Let us consider the restriction estimate ®X |z, xc. It suffices to show that
S.S.(@Klzgxc) C Qx ﬂT*(Eg X C)

for each element Y, of the open covering. Let us fix the notation: let ¥, = IntP; U IntP, LI ¢; let
P/ :=IntP; U/, i = 1,2, be the closure of P; in ;. Set for brevity

F =08y, c.
Finally, we introduce the following sheaf on ¥, x C:

K+ .
AE[ = Z{zeEg : stzeK}-

Let us now suppose for definiteness that ¢ goes to the left. As follows from the construction of ®¥ in

Sec 3.8.5, we have identifications (i = 1,2):

Flpixe = (A5 # Sy @ A % S-)|prcc
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Figure 6: A regular sequence — Notation [6.1

as well as a gluing map (44)):

FglKPQ : (AggJr xSy @ Ag; * S_)|exc — (Agj xSy @D Ag; * S_)|exc

When restricted onto Agj %S¢ |gxc, this map becomes the identity. This readily implies that we have

an embedding
Agj_ * S+ — F)

whose restriction onto each P/ is just the identical embedding onto the direct summand. We can

construct a surjection F' — Age_ * S_ in a similar way. All together, we get a short exact sequence
0 AL *S, - F— AL «S_ —0,

The marginal terms of this sequence do clearly have their singular support inside Qx N7T*(2; x C),
cf., hence so does the middle term F. This finishes the proof.

6.2 Proof of orthogonality

In this subsection, we prove that the cone of the map igx is in *C. We will exhibit an increasing
exhaustive filtration F' of ®¥ such that the map ig factors through FO®X. Our statement then
reduces to showing that Cone(Fy — FO®K), as well as all successive quotients of F'H1®K /Fipk,
i > 0, belong to *C.

6.2.1 Regular sequences

Notation 6.1 Let A,A,_1--- A1 be a nonempty sequence of bounday a-rays.

Call this sequence regular if for each k£ > 1 the rays A; and A\;x41 are different and belong to the closure
of a (unique) a-strip Py, ﬁg@ We also assume that Py is the initial strip (i.e. x¢ € Fp.

Note that, in general, a ray can occur in a regular sequence several times.

6.2.2 Admissible rays

We will freely use the notation from Sec. such as £%, W, AK*,

Let w € W¢ be of the form ¢,,,0,,,—1 - - - {1{L or R} and let £ € L be a boundary a-ray. We call £ \, w-
admissible, if there exists a k such that ¢ = A\ and and ¢,,£,,_1 - - - £1 is a subsequence of AgAp_1--- A1
(i.e. there is an increasing sequence k1 < ... < Ky, such that €1 = A\, ..., by = A, )-
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Remark 6.2 Let w = l,,ly—1 -+ (L or R). If £,, = ¢, then this condition is equivalent to £, €y, —1 - - - {1
being a subsequence of \; it £,,, # ¢, then the condition is equivalent to ££,,f,,_1 - --£1 being a subse-
quence of A.

6.2.3 Subset P, 4

Let P be an a-strip. We define an open subset P, ,, C P as follows.
1) if every boundary ray of P is not A, w-admissible, then we set Py ,, := 0.

2) otherwise (there are A\, w-admissible boundary rays of P) we define Py ,, as the union of IntP with
all A, w-admissible boundary rays of P.

6.2.4 Subsheaves Agfw

Let j := jf’w : Py X C — P x C be the open embedding.
As in Sec let Agi = ZL{(z,5): 2€P, st2€K}-

Accordingly, we can define subsheaves

AfN =0 AT CAFT e D(P x Q).

Observe that Afg f » = 0if P has no A\, w-admissible boundary rays.

6.2.5 Subsheaves <I>§’>‘ C <I>§

We have an identification

Xp= P SuxAf o @ SurAET.
weEWS, weEW
For each regular sequence A (where A stands for Ay A,—1 ... A1), let us construct a sub-sheaf LA C K
as follows. Set
o= P SurAli.® P SwrARL, (157)

[ [
wEWright weWR,.,

We have an obvious embedding
R 5 o,

6.2.6 Sheaves q)g’)‘ match on the intersections

Let P and P’ be two intersecting a-strips; let £ = PN P’. We then have two sub-sheaves of ®X,

KA\

namely ®5"|yxc and @5,’)‘| ¢xC- Let us check that these two subsheaves do in fact coincide:

Claim 6.3
KA\ K\
Q5" exe = P exc
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PROOF Let w € W¢. Consider the following sheaf: Alijjw = Ag f\tw| ¢xc- By definition, Alijjw = 0 unless
f is A\, w-admissible, in which case A?S,w = ABE|,.

Let W({,\) C W be the subset consisting of all w, where ¢ is \, w-admissible. Let W (¢, \) =
W (L, Niest L S(£, Mright, where W (€, Aiere = W (€, ) N Wi s WL A)sighe = W(L,A) NWE .

It now follows that @g’)‘vxc, as a subsheaf of ®%|,c = @weWﬁeft Sw * AfJ“ @ @wewgght Sy * Af_a

coincides with the following its direct summand:

O Newc =N = P SurAfTe P SwrAl
weW(£7>‘)16ft wew(&)\)right

Analogously, we have an equality
O e = DL, N)

of subsheaves of

P SurrdtTe P SurAfT =

(e «
weEWT, weWright

It now suffices to check that the sub-sheaf ®(¢, \) is preserved by the gluing map Fg}?/ from Sec m

By definition of Fg}?l, it suffices to check: let w € W (£, \) and suppose tw € W (meaning that the
leftmost ray of the word w goes in the opposite direction to £); then fw € W (£, \). Indeed, w € W (£, \),
fw € W is equivalent to fw being a sub-sequence of A, which is the same as fw € W (¢, \). O

This Claim implies that there is a unique sub-sheaf KA « O such that @g’A = (I’K’/\’PX(C for all
a-strips P.

6.2.7 Definition of a filtration on ®¥

Notation 6.4 Choose and fix an infinite regular sequence
c A A1 .. Ao (158)

such that
—every ray occurs in this sequence infinitely many times;
—the ray A1 is adjacent to the a-strip Py containing xg.

Denote by A the subsequence A, 1 ... A2\,

Set FndK = KA Let us check

Claim 6.5 We have F"®K c Frtlapk,

PrOOF. It suffices to check that F"®X|p,c C F"t1®K|p, ¢ for every strip P (as sub-sheaves of
®K). Tt suffices to check that P(A(™, w) ¢ P(AM™+Y) w) for all w, which follows from: if a ray ¢ is

A w-admissible, then £ is A" w-admissible. This follows from the definition of A, w-admissibility.
Od
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Claim 6.6 Subsheaves F"®X form an exhaustive filtration of ®¥.

PROOF. It suffices to check that |J F"®¥ |pyc = @g . This is implied by: for every w € W and every
boundary ray ¢ of P, there exists an n > 0 such that ¢ € Py ,,, equivalently: £ is A w-admissible.
Let us prove this statement. By the construction of A, every finite sequence of rays, is a subsequence
of A" for n large enough (because every ray occurs in the sequence {\;}9°; infinitely many times).
Let w = £y, - - - £1(L or R), then the sequence €4, - - - {1 (if £ # €y,) or £y, - - - £1 is a subsequence of \(™)
for some n, meaning that £ is A, w-admisssible. O

6.2.8 Computing F1dK

In this subsection, P, denotes the strip adjacent to A; and different from Py. We assume that \; goes
to the right and that Py is above P, (all other cases are treated in a similar way).

Let us give an explicit description of F1®X . First of all, a ray ¢ is A1), w-admissible iff £ = \; and w
is one of the following L, R, A1 L. Therefore, P\u),, # () iff: P contains A, that is P = Py or P = P,
and w is one of L, R, A L. In each of this cases Pyu),, = IntP U A;.

Thus, F1®¥ is supported on ¥ := IntPy N A1 NIntP,. Let P} = IntPyU \;; P! = IntP, U \;. We have
F'®%|pric = As ® B
F'o%|pr.c = Ao @ By,
where A, = Sg * AIIS,[; Ag = Sg * Agé_; B, =5 % Agj @ S\, L * Ag{; By =5, % Agj @ S, L * Agé_
The gluing map Fg‘;{P* maps Ag|x, xc into Ay|x, xc and By|x, xc into Bi|x, xc, therefore, the sheaves

A, and Aj get glued into a sheaf A on X, and B, and By into a sheaf B so that F'&K = A® B. One
also sees that A = Sp * Agf. Let j : IntPy — X be the open embedding.

6.2.9 The map iy factorizes through F'®X

Keeping the assumptions of the previous subsection, let us now construct the factorization of the map
iw : Lxgxk|—2] — ®X through F'®X. The cases when \; goes to the left of P, is above P, are treated
in a similar way.

Let j : IntPy x C — X x C be the open embedding. By definition, iy factors as
Loy i [=2] = j1(SL* Afifp © Srx Alyp ) — @5, (159)
where the first arrow is induced by the following maps in D(IntPy x C):

. _ K+ |
b Doxox i [=2] = Df(z,s)|zemmtPy s zexot K} = SL ¥ Mg 5

. _ K—
LR ZXQXK[_2] - Z{(z,s)|z€IntP0,s—z€—x0+K} = Sp * AIntPO’

which are induced by the closed codimension 2 embeddings of the corresponding sets.
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The right arrow in (159) factors through F'®¥ as follows. Let as decompose j = jijo, where jg :
IntPy x C - ¥ xCand j; : ¥ x C —- X x C are the open embeddings. We have natural maps
ia:Jjo(SL *A{fjpg) — A;ip: jo(Sr *Aﬁt}o — B. Whence a map

ia®ip: jo(SL* My, @ Sp* Afyp) = A® B =F'&"|g,c.

The right arrow in (159) is then obtained by applying ji1 to i4 @ ip. For future references, let us
consider Cone(Zy,x i [—2] — F1®X), which is supported on ¥ x C. We now see that

Cone(Zyyx x[—2] — F®%)|syuc
is isomorphic to the Cone of the following composition map in D(X x C):
Zxox i [=2] = Jor(SL * A{l’(l:_PO © SR * AIIE;PO) — A® B, (160)

where the right arrow is i4 @ ip, and the left arrow is induced by ¢, ® tg.

6.2.10 Computing successive quotients of the filtration

Let us compute the quotients G* := F"®K /F"=1®K 5 > 2. Our computation will result in decom-
positions (163]), (164)
For that purpose, we choose an « strip P and compute the restriction G := F"@K/F”_I@K]p.

Set
P(n,fw) = PAn,w\PAn—lﬂu Cc P.

P(n,w) is a locally closed subset of P so that we can define the following sheaves on P x C:

K+
AP(N,w) = Z{(Z,S)|Z€P(Tl,w);8:tz€K}~

We have an identification

n K K-
gP = @ Suw * AP(—:z,w) D @ Suw * AP(n,w)'

« «
weWT weWright

Let us now describe the sets P(n,w). Below, for a w € W, we set trim(w) to be the word w with its
rigthmost letter (L or R) removed.

Step 1 Consider all the situations when IntP C P(n,w)

This occurs iff IntP is part of Py 4, but not Pym-1),,. This is equivalent to the following:
Condition I: n is the minimal number satisfying:

(1) Ay is a boundary ray of P;

(2) trim(w) is a subsequence of A\(™).

Let us reformulate these conditions. Introduce the following notation. For a word w set M (w) to be
the minimal number such that trim(w) is a subsequence of A\(M () For a word w, w # {R},{L}, we
also write w = [w’, where [ is the leftmost ray of w.

Let us split our consideration into two cases:
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A) I = )\, (meaning that trim(w) is non-empty);

B)trim(w) is empty or I # Ay,

Case A). The combination Condition I4+Case A) is equivalent to the following combination:
A) (ie. I = \y,), and

Al) M(w) =n, and

A2) \, is a boundary ray of P.

It follows that given a boundary ray r of P different from A, such an r is not X' w-admissible: the
admissibility would mean that the word rw is a subsequence of A\(™ (see remark ); since 1 # Ap,
rw is also a subsequence of A=Y which implies M (w) < n, contradiction.

Thus, in this case we have P(n,w) = IntP U A,
Case B)

Let us give an equivalent reformulation of the combination.

Lemma 6.7 Condition I and case B). It is equivalent to the following combination:
B) and

B1) A\, is a boundary strip of P, and

B2) M (A\w) =n, and

B3) If trim(w) is non-empty, then | is not a boundary ray of P, and, finally,

B4) M (rw) > n for any boundary ray r of P.

PROOF. Let us first derive B1)-B4) from Condition I and B):
B1) is just the condition (1);

B2): (2) and B) imply M (A\w) < n. If M(A,w) < n, then n is not the minimal number satisfying
(1) and (2);

Violation of B3) implies that n — 1 satisfies (1) and (2) — contradiction.
Violaton of B4) implies that M (rw) < n; since the number M (rw) satisfies (1) and (2), we have a
contradiction.

Let us now derive Condition I from B) and B1)-B4).

B1,B2 imply that n satisfies (1) and (2). Suppose n is not minimal, i.e there exists p < n such that
Ap is a boundary ray of P and M (w) < p. B3 implies that ), is different from the leftmost ray of w.
Therefore, M (A,w) < p, which is prohibited by B4. O

Let us now introduce a one more condition Bb5.

Let P,_1 be (a unique) a-strip which is adjacent to both A, and A,_1. Let P, be the other a-strip
adjacent to A,.

The condition B5 is as follows:
B5)P = P..
Let us prove that
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Lemma 6.8 Combination Condition I+ B is equivalent to the combination B, B2, B5.

PROOF. Let us first prove that B,B1-B4 imply B5. Since A, is a boundary ray of P, the only
alternative to B5 is P = P,_1. Then \,_; is a boundary ray of P and M (\,—jw) < n — 1 which
contradicts to B4.

Let us prove that B, B2, B5 imply B1, B3, B4.
B1: By B5 P, = P, and )\, is a boundary ray of P;

B3,B4: B2 implies that for all p € [M(w);n — 1], A\, # A,. This implies that P, is not adjacent to
any of A, with p € [M(w);n — 1] Indeed, suppose P, is adjacent to such a A,. Consider the graph I'
whose vertices are strips and and whose edges are rays. We have two non-intersecting paths between
P,_1 and P,: one of them is \,, we also have a path between P, 1 and P, in the connected graph
composed of the edges \,—1 A2, -, \p, which contradicts to I' being a tree.

The just proven statement implies B3 and
B4’) M (rw) > n for every boundary ray of P = P, which differs from A",
Finally, B2) and B4’) imply B4), which finishes the proof. O

Finally, we conclude from B4’, that in the situation Condition 1+B we have:

P(n,w) = IntP U \,.

Step 2 Let us now examine the case (call it case C) when P(n,w) is a non-empty union of boundary
rays of P. Since Py(n-1),, C P\m),, this is equivalent to Py-1) , being a proper (in particular,
non-empty) subset of Py 4 As follows from definitions, this is equivalent to:

1’) there is a A=) admissible ray of P;
ii’) There exists a boundary ray r of P such that r is A w-admissible, but not A»~1) w-admissible.
By Remark the condition ") is equivalent to:

i”) there exists a boundary ray r of P such that either r is the leftmost ray of w and M(w) <n — 1,
or r is not the leftmost ray of w and M (rw) <n — 1.

In any case, i’) implies that M (w) <n — 1.

Also by Remark the condition ii’) is equivalent to the following one

ii”) There exists a boundary ray r of P such that either

a) r is not the leftmost ray of w and M (rw) = n;

or

b) r is the leftmost ray of w and M(w) = n.

The case b) contradicts to i’), which implies M (w) < n — 1.

The condition a) implies 7 = \,, and hence ), is one and the only ray in Py -

We thus can reformulate:
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The case C occurs iff
i’) holds and
ii-a) A\, is a boundary ray of P;
ii-B) A\, is not the leftmost ray of w;
ii-y) M(Aw) = n.
In the case C we have P(n,w) = \".
From ii-y we conclude that
Ap # A forall p e [M(w);n —1]. (161)

The condition i’ is equivalent to

dp € [M(w),n—1] : X, is adjacent to <. (162)

Let us show that P = P,,_1:

Indeed, by ii-a, the only alternative is P = P,. In this case, analogously to the proof of B5=B4, the
property (161]) implies that P is not adjacent to any of A\, with p € [M(w); n—1], and that contradicts
(1162]).

Thus, we have the following condition which is equivalent to i’ and ii’ (the proof of the converse is
trivial):

Cl) P = P,_1; Ay is not the leftmost ray of w and M (A, w) = n.
In this case P(n,w) = A,.

Let us summarize our findings. Introduce the following notation. Let W, . be the set of all words
w in Wi, such that the leftmost ray of w is not A, and M(A,w) = n. Let W7 ..\ be the similar
thing.

We then have the following three cases when the set P(n,w) is non-empty:

— Conditions A, A1, A2 is satisfied. Equivalently, the following conditions are the case:
al) P=P,_j or P=P,;

a2) w = A\yu, where u € Wt 1 An € Lyignt, and u € W2 ight if A\, € Liesi-

In this situation P(n,w) = IntP U A,,.

— B,B2,B5 are satisfied. Equivalently: P = P, ; w € W7 if Ay € Lyjgne, and w € W2 right if
An € Liegr- Then P(n,w) = Int Py U \,,.
— C1 is satisfied. Equivalently:

bl) P = Pnfl;
b2) w € Wz,left if A\, € Lyignt, and w € Wf{,right if Ay, € Liett-

In this situation, we have P(n,w) = \,.
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6.2.11 Description of G,

In particular, we see that the sheaf G,, = F npk /F n-1pK g supported on the union Int P, _1NA,NInt P.
Let P, :=IntP, U \,. We will now describe the restriction of G,, onto P..

Suppose that A\, € Lier;. We then have

— K- K+ K+
Golpxe = D Sux Al @SyuwxAfHe @ SwrAR
WEWD ioht wEWD |
«
For w € Wn,righw we denote
P! K- K
Bw* =Sy * AP,ﬁ 53] S)\nw * Ap;r;
«
for w € Wn,left’ we set
Pl . _ K+
A= Sy * AP; )
so that we can rewrite
P, P!
G= D Bre D Ar
wew%,right wewg,left

In the case A, € Lyight, change all signs

Gn

wWEW

(07
where for w € anleft, we denote

Bl = Sy x AT @ Sy

for w € W¢ we set

n,right’

and all orientations: we have

p Bre f A

wWEW

n,left n,right

K—,
*AP; ;

/ p—
Als = S, % AR

(2) Let P!_ be the union of the interior of P,_; and \,,.

We then have in the case A\, € Lieft:

gn‘P,g_lx(C =
(e}
where for w € V\/'n,right we set
BP'rlLfl .
w :

o
for w € Wn,left we set

P Bt P Al

o e
wewn,right wewn,lcfﬁ

= Sy * Af\i_ D Sx,w * All,f/+ ;

—1

Py K+
A= Sy x AT
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If A, € Lyignt, then one has to change all the directions and all the signs:

P, _ P
Gulpp xc= D BSe D A

wEW

«
n,left weW

n,right
(63
where for w € anleft we set

PT/L— K K—
B, ' = Sw*A/\n+@S,\nw*AP/ K
"

o
for w € Wn’right we set

P/
Ay =Sy # AL
Analyzing the gluing maps, we see that

’ P’
Al nxc = A" axe

as sub-sheaves of G|, xc and similarly for B,,. Therefore, we have well defined sub-sheaves A,,, By,

of G,: Ay is defined by the conditions:

P,
Aw|P§><<C - Aw*a

P,
n—
Aw’PT’%lx(C = A",

and similarly for B,,.

Let us stress that By|mtp, ,ur,umtp, 1S not isomorphic to the direct sum of Sy, * A

K_
and Sy, * AIntPn,luAnUIntP*

We have in the case A\, € Liesi:

Gn = @ B, ® @ Auw;

«@ «@
wewn,right wewn,left

if A, € Liefy, then we have:

Go= P Bu® P Au

wWEW wWEW

n,left n,right

6.2.12 Reduction of the orthogonality property

K+
Int Py, _1 UM, UInt Py

(163)

(164)

As was explained in Sec the map map igr factors as Zy,—x, sery[—2] — F1oK 5 oK,

It therefore suffices to prove that A,,, By, belong to LC% where ¥ = IntP,_; U\, UInt P, and that and
Cone(Z{;—x,,ser}[—2] — F1oK) ¢ L¢X. As was explained in Sec the sheaf F1®X is supported

on ¥/ :=IntPyN A1 N [ P, so that it suffices to show that
Cone(Zi,—xy scrcy[—2] = F'®%)|syxc €

We do it in the rest of the section.
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Thisray 7
is not
a part of

Figure 7

6.2.13 Conventions

Suppose that the ray A, is directed to the right so that A, = ¢(\,) + Rsg.€*Y; the case of the opposite
direction is similar.

Assume the situation is as on figure |Z|7 namely, we assume that P,,_1 is above A, and P, is below A,,.
The argument for the opposite situation is similar.

Define ‘ ‘
={c(\p) +ze"“+ye ¥ € ¥ : z,y € Rand z > 0};
{

é\p) +ze“ +ye @ €% : z,y € Rand 2 < 0}.

6.2.14 Orthogonality of A,

Because of the assumptions above, we have w € W?ight and
K—
Ay =Sy x A ja

where
K— _
APL _Z{(z,s):zepﬁ;s—zEK}-
We have a short exact sequence:

0= S % Afirp = Aw = Su % AJ p — 0, (165)

K+ . _ ., K+
where Ap;™ 1= Z(, ;) 2ev;s+2c k) and similarly for Ava*"

(Note that in the case A, € Lo we need to consider a sequence analogous to (165]) with A%~ instead
of AK+)

The problem is thus reduced to proving that

Sw* Afnp, SwxAfop € TC* (166)
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Now let us use the following consideration: if j : U x C — ¥ x C is an open inclusion and if F € +CY,

then jiF € +C* bacause RHom(5j1F;G) = RHom(F;G|yxc). In application to the situation at hand,
this allows us to reduce (166]) to proving

Sw * Ayl € FCY (167)

and
Sy * Ay |p, € HCP (168)

which we are going to do using Proposition [5.1

PROOF OF ([167)). Denote F := Sw* Mg prlu. We have F' = Zg, where S = {(z,s) : z € UNP.,s—z¢€
¢(w) + K}.

Next, U = {é(\n) + 2 +ye ¥z > 0;y € I}, where [ is a generalized open interval containing 0, so
that U is a generalized strip and we can apply Proposition [5.1

We have U N P = {é(\n) + 2 + ye ™|z > 0;y > 0;y € I}.

Let us now check that F' satisfies all the assumptions of Prop. which will show that F € +CY.

Namely, we need to show: a) the map Z,, * F — Loy * F' = F, induced by the embedding 0 € r,, is
an isomorphism,

b) RP F = 0;

c) RP_,F =0.

Proof of a) is easy: the word w contains at least one letter, hence S, is a convolution of > 1 sheaves of
the type Z{scatky, @ € C. But the map 3 : Zy, * Z{scat i} = Zy * Liseat K}, induced by the inclusion
0 € r,, is an isomorphism.

Proof of b) It suffices to check that (RP11F); = 0 for every point t € C. We have (R*PpF); =
Hg(P;ltﬂS; Z). Denote W, := P;ltﬂS. The space W; consists of all points (z, s), where z € UNPJ;
s+z € K; s—z =1t Since s = z +t, we can exclude s: the space W; gets identified with a
closed subset W/ C U consisting of all points z € U N P/ such that 2z + ¢ € é(w) + K. Let us write
e(w) —t —2e(M\,) = 2(z0e™ + yoe ™). We then see that W/ consists of all points é(\,,) + 2™ + ye ™%,
where z > O0;y > 0;y € I;x > xo;y > yo. It is now easy to see that for all xg,yg, we have
H:(W,Z) = 0.

Proof of ¢) Similar to above, we need to show that H?(Vi;Z) = 0, where V; = P='t 0 S, for all
teC. Ift ¢ é(w)+ K, Vi, = 0. Otherwise, V; gets identified with U N P, i.e. the set of all points
(z,y) :x > 0;y > 0;y € I. The statement now follows.

PrOOF OF (168). Set Gy := Sy * Ay, p. We have
VNP, ={e(\n) + 2™ +ye o <05y € Iy >0}

In particular, V N P, C IntP,. Similar to above, it suffices to show that G := Gi|mp, xc € CImt P
Since Int P, is a generalized strip, we can apply Proposition Let us check the assumptions of this
Proposition.

We have G = Zp, where T' C IntP, x C consists of all points (z, s), where z = Z)\n) + zel® 4 ye~ie;
r<0y<0;yel;s—zecé(w)+ K.
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Figure 8: Proof of (167]), part b).

a) We see that the natural map Z,, * G — Zy * G = G is clearly an isomorphism.

b)RP4G|; = 0 for all t. This is equivalent to H?(W/,Z) = 0, where W/ = P_'tNT. Similar to above,
the set W/ gets identified with the set of all (z,y), where 2 < 0;y < 0; y € I; x > x0;y > yo for some
numbers xg, 9o, the statement follows.

¢) We need to chech that H*(V/,Z) = 0, where V;/ = P"'tNT. We see that V/ = () for all t ¢ é(w)+ K.
Otherwise, V/ gets identified with 7.

6.2.15 Orthogonality of B,

Let U,V be the same subsets of X as above. We see that ¥\U =V = V; U V;, where V; C IntP;,
Vo C IntPp—1.

For any locally closed subset C' C ¥ we set Bo := By ® Zoxe, € D(X x Cs). We then have a
distinguished triangle
By, @ By, — By — By 53 .

Similarly to section it suffices to prove that

By, == Byluxc € ~CY; (169)
1 ~Int Py
Bvlljg*x(c e—C , (170)
1L pIntP,_1
BV2‘}gn,1><(C S C 5 (171)

It is clear that U, Vi,and V5 are generalized strips so that we can apply Prop. [5.1

Proof of Let P; := U N P,_1; Py := U N P, so that P;,Py C U are closed subsets and
PiNnPy =M\,
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As above, we have ‘ '
U ={e(\p) +ze" +ye "z > 0;y € I},

where I C R is a generalized open interval containing 0. The subset P is given by y > 0, and Ps by
y <0.

We have identifications
By = By|p,xc = Suw* AY T @ Sy * AR

By := B§]|p2><(c = Sy * Agj D S)\nw * Ag;
Whence induced identifications

Bi|auxc = Suw * AL T @ Sy % AL (172)

Bo|a,xC = Suw * AL T @ Sy % AL (173)

The gluing map
Bi|x,xc = Bz|x, xc

n,1P*

is induced by FgK and equals

I'=1d+n € End(Sy * AL T @ Sy, * AL ),
where the only non-zero component of n is
NSy x AR = Sy xSy, x AL T = S WAL T

is defined by means of the map yﬁ from .

Let i : P — U, kK = 1,2 and ig : A\, — U be closed embeddings. Denote by ¢; : inB1 —
i01(Sw * Afn T @ Sy, w0 * Aﬁ(n ~) the natural isomorphism coming from the identification . Similarly,
we have a map ¢y : 19181 — ig1(Sw *Af\ijr @ S, w *Af\i_), coming from . We can rewrite the above
consideration in terms of the following short exact sequence of sheaves of abelian groups

0— ij — i11B1 @ i91 By — ig1(Sy * Af\i‘*‘ @ Sx,w * Aﬁ(n_) — 0. (174)

Where the left arrow is induced by the direct sum of the obvious restriction maps and the right arrow
is —I't1 @ 19. Let us denote the components of this map

—Id iy Sy x AX T = igrSu * AL T
—v 1 i01Sy * Af\{j — 101\, w * Ai{n*;
—r1 i S, w * Agl_ — 101\, w * Afn_;
ot o) Sy * Agj — io1Sw * Aﬁ(j;
Ty lotS\,w * Ag; — 101\, w * Af\(n_.

Consider the complex B” composed of the 2 last terms of the sequence ([174)), which is quasi-isomorphic
to By;. This complex has a filtration by the following subcomplexes:
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F'B" is as follows:
i01Sw * AL T i Sy,w x AL T = 0;

F2B" is as follows:

i01Sw ¥ AR T ®int Sy # AR = 01 (Sw ¥ AT ® Sy *x AL ) =0

We finally set F3B"” = B”. The associated graded quotients are as follows: F2/F! equals Conerj [—1],

. . .. . K+
which is quasi-isomorphic to Sy, * Ap'p, -

F3/F? equals
iuS)mw * Agl_ D iQ!S)\nw * Ag;
We will need a one more exact sequence. We have subsheaves (direct summands)

S/\nw*A[g; C By, S)\nw*Ag; C Bs.

Since the map I' induces identity on S}, *Afn ~, the two subsheaves glue into a subsheaf Sy ,, *A{J( T C
By;. Tt is clear that we have a short exact sequence:

0= Sx,w* A~ = By — inSu # AR — 0. (175)

Let us now check the conditions of Prop The isomorphicity of the map Z,, * B;, — By, can be
checked directly.

Let us now show that RP B}, = 0. Because of the exact sequence (175)), it suffices to prove that
RP.\Sy, * Ag T =0and RP. S, * A{J( ~ = 0. This can be checked pointwise in a way similar to the
previous subsection.

Let us now check that RP_Bj, = 0. It suffices to show that RP_,, when applied to all associated
graded quotients of the filtration F' on B”, produces zero. The latter can be done pointwise in a way
similar to the previous sections.

Proof of (170)), (171]) is very similar to the previous subsection.

6.2.16 Orthogonality of Cone(Z,—x, scx[—2] — F1oK)

The aim of this subsection is to prove that

Cone(Z,—x, scic[-2] — F'®%) e Lc*' (176)

We will freely use the notation and the results from Sec As was mentioned above,
Cone(Z,=xyserx[—2] — F'®K) is supported on ¥ x C, where ¥ = IntPy U A\; U IntP,. The re-
striction Cone(Z,—x, sei[—2] — F1®)|sxc is isomorphic to the Cone of the composition arrow in
(160J). Denote the cone of the left arrow in by I'1 and the cone of the right arrow by A. Observe
that T'y = joI', where I' = Cone(itp, @ tg); I' € D(IntPy x C). The problem now reduces to showing
that T' € +C™ and A € +C*>.

Denote Ay, := Cokeriy; B := Cokerig. Observe that Ay, is of the form A,, with w = L, and Bp is of
the form B, with w = R, where A,,, B, are as defined in Sec[6.2.11] It is also clear that A = Aj & Bp.
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P s
mma:

Figure 9: Proof of (176]), Step b-i)

As follows from the previous two subsections, Ay, Bg € -C*, hence, same is true for A. Let us now

show that I € +Cntlb,
By Propl5.1] it suffices to check statements a),b),c) below:

a7) I % Z{sceiors,y — I’ is an isomorphism: it suffices to check that a similar map applied to each of
Zxoxi[—2], SL * AIIES_PU’ and Sg * A{it_ p, 1s an isomorphism, which is straightforward.
bl RP ' =0. It is enough to check RP1Gr, =0, k = 1,2, where

G1 = g * Algo - Z{(Z,s):zelgo75—ze_x0+K}’

Gy = Cone(Zy,xx|—2] — S * AT and where
Po

SL * At =7 o .
Po {(z,s):2€ Po, s+z€xo+K}

b-i) RP;1G; = 0. Indeed, by the base change, let us pass to the fiber of Py over ¢t € C and calculate

RY'(Zw,) where Wi = {(z,5) € C: z € Igo, s—z € —xo9+ K z+ s = t}. Eliminating s makes

Wy={z€C:z¢€ f’o, z € H% — K}. For different values of ¢ this set is sketched on fig. |§|
Thus, W is either empty or homeomorphic to a closed half-plane, so the result follows.

b-ii) RP1G2 = 0. Indeed, by the base change, let us pass to the fiber of P, over t € C and calculate
RUc(Zwy)[—2] = RUc(Zw,), where W3 = {(2,5) €C: 2 =x0,s € K z+s=1t}, Wo = {(2,5) € C:

o

z € Py, s+ 2 €x9+ K z+ s =t}. Eliminating s makes

ift—XoeK: WQI:{XO} WQZ{ZGC:Z’EEO}
otherwise: Wy =10 Wy =10

and the map RI'¢(Zyy)[—2] — RTc(Zw,) is the obvious quasi-isomorphism.
c) RP_I' = 0. This can be shown similarly to RP,I" = 0.
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7 Identification of ®¥ and ¥¥

We are going to construct an identification as in . Namely, we will construct a map
Iyg : UK — oK
such that
i = lyoiy, (177)
where ig : .7-"({( — ®K is the map and iy : ]-'OK — UK is the map .

The goal of this section is to give an explicit desciption of Iye. This can be done as follows. Let P
be a closed a-strip. Let II be a closed (—a)-strip such that P NII # (). We then have identifications

top|mnpyxc : AT * Sy & A7 % S_|mnpyxc = (2% |pxc)lmnp)xe = X mnp)xc

vontlmnpyxe t AT * S1 @ AT % S_|mapyxe = (Y xe) mnpyxe = U5 |mnp)xc

meaning that the restriction Iye|inp)xc can be rendered as an automorphism Jp of
AT S, @ AR« S_|mnp)xc in the abelian category of sheaves on (Il N P) x C, so that we have:

Iva|mnpyxc = torlmnp)xcJnptgnlmnp)xc- (178)

We are now motivated for the next subsection.

7.1 Endomorphisms of A®" xS, & A% % S_| prmyxc

We will do the study in a slightly more general context. Let Y be a locally closed connected subset of
C. For a c € C, set
AF ={(z,s)[strxcc+K}CY xC.

Let W+ be sets; set W := WTUW™. Let ¢y : W — C be a function. Let w € W,. Set A, := Aj(w).

For w € W_ we set Ay, := Ag(w). Define the following sheaves on Y x C:

Sw = @ ZAw'

weW

Let ¢; : Wy — C; W; = W;r Uw., i = 1,2; cw, : W; — C; and let us study a group
HomyX(c(Swl;Swz).
We have

Homy xc(Swy; Sw,) — H Homy xc(Za,, ; Sws) (179)
w1 Wy

w

Let us focus on Homy xc(Za,,; Sw,). We have an embedding Sw, — []
an embedding

wyeWs, LA, Which induces

L: HOme(C(ZAw1§SW2) — Home(C(ZAwl§ H ZAwQ)
w2 €W3
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= H Homy wc(Za,,; Za,,)- (180)
wa€Wo

Let us now compute
HomeC(ZAw1 ; ZAw2 )= HO(Aw2 s Aws \Aw, )-

We have a homeomorphism A,,, = Y x K so that A, is connected and H"(A.,; Ay, \ Ay, ) is zero unless
Ay, \ Ay, is empty, in which case it equals Z. In other words, we have an isomorphism €y, : Z —
Homyxc(Za,,;ZA,,) if Aw, C Aw,; otherwise, Homy xc(Za,, ; Za,,) = 0. Set ew w, = Ewyw, (1)
Every element
Ve H Homyxc(Za,,; ZA,,)
waEWo

5 Vwywe Cwiws s
w2

where the sum is taken over all wy such that A,, C Ay, and vy, are arbitrary integers.

can be uniquely written as

Claim 7.1 The element v lies in the image of iff for every compact subset L C Ay, :

there are only finitely many wa such that vy, =0 and Ay, N L # 0. (181)

PROOF We will use the following notation. For every w € Wp or w € Wy, let us denote by 1,, €
I'(Y x C;Z,,,) the canonical section, such that for every y € Y x C, the stalk (1), generates the
group (Za,,)y, which is equal to Z if y € A,, and to zero otherwise.

We have
v(Lu) = > Nupwluy €TV xC; [] Za,,)

wo EWo wo EWo

Let us now suppose that v lies in the image of (180). This implies that the restriction v(1y,)|r €

I'(L; @ Za,,) Since L is compact, we have an isomorphism
wa €W

P 1(L;Za,,) »T(L; P Za,,)

woEWo wo€Wo

Given a section o € I'(L; @ Za,,), denote by oy, € I'(L;Z4,,) the corresponding component of
w2 W3
o. We have: o, = 0 for almost all wy € Wa. We have v(1y, )wy, = Mwyw, 1w, |L- The element on the

RHS does not vanish iff 14,,, # 0 and L N Ay, # 0, which implies the statement.

Conversely, let us assume that for any L there only are finitely many we € Wy such that ng,., # 0
and L N Ay, # 0. It suffices to show that

v(lw,) €T xC; @ Za,,) CTY xC; [ Za,,)
w2 EWo w2 €EWo

Let us choose an open covering of Y x C by precompact sets U, (i.e. the closure L, of each U, in

Y x C must be compact). It suffices to show that v(14,) € T'(Us; @ Za,,) for each U,. Then
w2 EW3
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it suffices to show that v(1y,) € I'(Le; @ Za,,). In fact, v(1y,) € T'(Le; [[ Za,,), where W,
w2EW> wo €W,
consists of all wg satisfying ny,w, # 0, Aw, N Ly # 0, which is finite, whence the statement. 0.

As follows from the proof of the Claim, v belongs to the image of (180]) iff the condition (181)) is
satisfied for a family of compact sets L, whose interiors cover X x C.

Proposition 7.2 Elements from Homxxc(Swy; Sw,) are in 1-to-1 correspondence with the sums

E Ny we Cwrwa s

w1 EW1, w2 €Wa,Awy CAw,

satisfying:

there exists a family of compact subsets L, C X x C such that the sets IntL, cover X x C, and: given
awy € Wq and any L, there are only finitely many we € Wy such that Ny, # 0 and Ly N Ay, # 0.

7.1.1 Filtration on Homy xc(Swy; Sw,)

Let e € K. Let T, : Y x C — Y x C be the shift (z,s) — (x,s+¢). We have T.(A.) C A, for every
¢ € K, whence an induced map
Te & ZAC — TE!ZAC = ZTs(Ac)‘

These maps give rise to a map

Te : SW1 — Tg!SWl.
It is easy to see that T.1Sw, = SW{’ where W| = Wj and Cy; = cw, + ¢, so that Proposition
applies to T¢1.Sw, .

We say that f € FEHomxxc(Sw,;Sw,) if f factors as f = gr. for some g : ToSw, — Sw,. Using
Proposition [7.2] one can check that such a g is unique, if exists.

We write f = f/ mod F*© if f — f' € FEHom(Sw,, Sw,)-
We also write f = f/if f = f/ mod F* for some ¢ € IntK.

Let us prove that the filtration F' is complete in the following sense. Let f, € Hom(Sw,;Sw,) be a
sequence of homomorphisms. Let us call f, a Cauchy sequence if:

Ve € K N(e) :Vn,m > N(¢) : fn = fmn mod F*.
We say that f,, converges to f if
Ve e K AN(e):Vn> N(e): f = f, mod F°.
Claim 7.3 FEvery Cauchy sequence f, converges to a unique limit f.
PROOF. Let us first construct f. Decompose f, = Zwl,mew(fn)wmzewlwz- Let y € X x C and
let n,m > N(¢g). Since f, — fm passes through 7., we deduce that (fn)w,ws — (fm)wws 7 0 only if

Ay, C T;Ay,. For every wy, ws there exists €y,4, such that this condition is violated, meaning that
for n,m > N(ewyws)s (fr)wiws = (fmn)wiws =t fuwyws-
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The data fy,w, define a homomorphism f by virtue of Proposition If f' is another limit, it follows
that f — f' = F* for all € which implies fu,w, = fiy,w, for all wi,we, that is f = f'. O

In particular, let v € End(Ayw), v = Id + n and assume that for some k > 0, n* € F° for some
e € IntK ,then 7 is invertible, and we can set y~! = I'd — n +n? — n3 + ... (the sequence of partial
sums of this series is Cauchy).

We conclude with several Lemmas for the future use.

7.1.2 Lemma on composition

As above, let P be an a-strip and let II be a —a-strip. Let Y = II N P and supose Y is a bounded
subset of C, so that the closure of Y is a parallelogram; let us denote its vertices ABC D so that AC is
one of the two diagonals and AC € K. Tt then follows that the closure of PNII equals A+ KNC — K.
Denote ¢ := AC.

Lemma 7.4 Let W, = W, =0. And let f : Sw, — Sw, and g : Sw, — Sw,. Then gf =0 mod F*
and fg =0 mod F%.
PROOF.

Let fw1w2 ew1w27 g’LUZ?.Ul €w2w1 be Components Of f? g

Let us consider the compositions fu,; wy€w;ws Guw Ewluwr In order for this composition to be non-zero,
there should be
A, C Ay, C Awé.

Or, for every z € PN1II and s € C we should have the following implications:
s—zecy,(w)+K=s+z€cy,(w)+K=s—2¢€cp,(w)) + K.
Set ¢ := 8 — 2z — Cy,. The first implication then reads as:
e K =c¢+2z+cw,(w2) — ey, (wy) € K

or, equivalently, 24 + cyw, (w2) — cw, (w1) € K. Similarly, the second implication can be rewritten as
—2C + cw, (w1) — ew, (wh) € K. Adding the two conditions yields —2¢ + cywy, (w2) — e, (wh) € K;
cw, — cw,(wy) € 2¢ + K. This implies that

fw1w26w1w29w’2w16w’2w1 : ZAw/2 - ZAw2

passes through 1o, : Z4 , — 15474 ,, which implies the statement for fg. Proof for ¢ f is similar. O.
w2 w2

Let us keep the assumption W; = Wf , Wo = W, and consider now the case when X =IIN P is not
bounded. Then at least one of the following is true:

i) there is no A € C such that X C A + K;
ii) there is no C' € C such that X ¢ C — K.
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Lemma 7.5 Let us keep the same notation as in the previous Lemma. In the case i) we have
Hom(Sw,; Sw,) = 0. In the case ii) we have Hom(Sw,; Sw,) = 0.

PROOF. In Case i), given w; € Wp and wy € W, it is impossible that A,,, C Ay, , And similarly for
the Case ii). O

7.1.3 Lemma on extension

We keep the same assumptions on Wy, W, namely,

Wy =W, Wa =Wy,

Let Y be a locally closed non-empty connected subset of C. Let Y + K (resp. Y — K) be the
arithmetic sum (resp. difference) of Y and K. Let Yi, Y_ be connected locally closed subsets
satisfying Y CY, CY+K; Y CY_ CY — K. Let Z be an arbitrary connected locally closed subset
C containing Y.

Lemma 7.6 1) The restriction maps
Homy, (SW1+; SW;) — Homy(SWf;SW;);

Homyf(SW{; W1+) — Homy(SWE; SW1+)
are isomorphisms;
2) the restriction maps
HomZ(SW;r;SW;) — Homy(SWIJr;SW;);
HomZ(SW{; SW;) — Homy(SW;;SWf)

are isomorphisms.

PRrOOF. 1) Follows from Proposition the inclusion A,, C Ay,, w; € W; occurs on Y, x C iff it
occurs on Y x C, and similar for the inclusion A,, C A, on Y_ x C.

2) Follows from Proposition in a similar way.
Od

7.1.4 Decomposition Lemma

Let now Y := £ := ¢+ (0,00).€! be a ray which goes to the right. Let a € C. We have natural maps
AT Z A Z A A, L A Z AL coming from the inclusions of the corresponding sets.
Lemma 7.7 Let f: ZA;r — Sw,, g ZA; — Sw, be a map of sheaves. Then f and g can be uniquely
factored as f = f'A\}; 9g=4g'\,.

PROOF. Let w € Wh. A simple analysis shows that Al C A, is equivalent to A7, ,, D Ay.
Proposition |[7.2| now implies the factorization of f. The factorization of g can be proven similarly. O
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Figure 10

7.2 Restriction X[y

As above, let II be a closed (—a)-strip.

The goal of this subsection is to construct an isomorphism

o (ABT S, @ AR~ % S ) |nxe = % |nxc. (182)

Denote by
¢+ AR % Si ke = % |nxc

the components.

7.2.1 Notation

Let us number all a-strips that intersect II as Py, Ps, ..., P, (there are only finitely many such stripes,
Sec [2.3.2) as shown on the picture so that we number the strips from the left to the right. The
strips P, and P, are necessarily half planes.
7.2.2 Prescription of ¢ﬁ](nmp1)x(c
We have an identification

" |nnp, = (" |p)| < = (AT % Sy @ AR % S0)|mnp,xc-
This identification gives rise to a map (embedding onto a direct summand):

ART %S = 5| npy e

We assign gbﬂ\(nmpl)x(c to be this map.

Remark. In the section we will inductively extend this definition to the whole II x C. Construc-
tion of ¢ will be performed in section An attempt to construct ¢p; starting from a prescribed
map on (IIN P;) x C fails.
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7.2.3 Extension of qﬁ"n' to IIxC

For a subset A C C,set A:= (IINA) xCCII xC.

Let us define QSJHF by constructing maps
. K K
],j: A +*S+’&—><I> ‘&,
which agree on the intersections:

j]j+1‘Pkak+1 = jl—g"_‘PknPk+1‘ (183>

We have identifications
Lk ZAK+*S+@AK_*S_’&—>(‘I’K‘pkx(c)’i:(bl{‘i (184)

coming from the gluing construction of ® .

We have
Py Py i1
Lk|PkﬁPk+1 = lk+1 PyNPryq o F(I)K )

PPt - .
where Iy ™' is as in |j

We can now prescribe j,j in the following form: j,j =0 z,j where
i AR« Stlp, — (AB* %S, @ AK— « S)|p.-
The agreement conditions ((183)) now read as:

Py Py .
Fkk+1+

iz-i-l‘PkﬂPkH =lgx (3% |PkﬂPk+1- (185)

The assignment from the previous subsection means that zf is the identity embedding onto the direct

summand. Let us construct the remaining maps i inductively. Suppose 7; has been already defined.

According to Claim 1} the map Fg’}fk“iﬂ PP, extends uniquely to Pyy; by Claim [7.6

this is where the choice of + sign is crucial). We assign i;, , to be this map. It is clear that thus
k+1

defined map le , satisfies 1’ so that the maps j,jﬂ give rise to a well defined map gbﬁ, as we wanted.

. AK+

Let us denote by 4, *S¢|p, — A« Sy | pr it ™ ABT xSy p, — A7 xS_|p,; the components

of the map z;:

7.2.4 Estimate

For k = 2,...,n—1, denote by e the diagonal vector of the parallellogram P, NII such that e, € IntK
(there is a unique such a diagonal vector). Let ey € Int K be a vector such that e € erp + K for all k.

The following Claim can be now proved by a direct computation.
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Claim 7.8 1) i;+ =1 mod F! forallk=1,...,n.
2) Let Rir C {1,2,...,n—1} consist of all k s.th. PN Pyy1 goes to the right. We then have a transform

PpPyi1 | K+ K—
P+_ A *S+|PkﬁPk+1 — A *S_’pkmpk+1,

where Fik_Pk“ is the corresponding component of Fg’}fk“., which extends uniquely to Ppy1 U ... U Py,.
F_Iik_Pk“ is the same as NJX, where £ = P, N Pyy1 from
We then have: oop

im=- ) TYT mod FeI (186)

K eRm; k'<k

7.2.5 Construction of ¢

The map ¢r; is constructed in a fairly similar way (the major difference is that we need to start the
construction from P, and then continue to the left until we reach P;.

Similar to above, we define ¢; in terms of the restrictions to Pj:
Orlp = w0y,
where ¢ is the same as above, see (184]), and
i o AT *S_|p, — ARt %S @ AR *S_|p,-
We have the following analogue of Claim

Claim 7.9 Let ey € Int K be as in Claim . We have 1) i, =1 mod FT for all k =1,...,n.
2) Let L1 C {1,2,...,n — 1} consist of all k s.th. P, N Py_1 goes to the left. We then have transform

Py_1P, _
FJ; % AK * S,|Pkmpk71 — AK+ * S+’Pkmpk71
which extends uniquely to P,_1 U ...U P;. We then have:

. Py 1Py
it D L5~ mod FoU.
kK eLlm; k'>k

7.2.6 The map ¢r1 is an isomorphism

Now that we have constructed the maps ¢r|p, from ([182), let us prove that they are isomorphisms.

We can write
(ﬁn‘&:LkOink, (187)

where iy1p, is an endomorpism of AKX+ xS, @ AK~%S_|p, whose components Zfi have been constructed
above. We will abbreviate ifjp, = ¢;. The problem reduces to showing invertibility of 7.
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branch cut

Figure 11

Let us use the matrix notation

it i AT % S,

i = € End D

+ U K—

iy iy, AR =% S_ r,
We have e -

( L ) = < Lo ) : (188)

iy iy, iy, 1

as follows from Claims [7.8 and [7.0l
Lemma [7.4] implies that

0 irt\°_ [t 0 )
-0 - 0 i Toit ) T
i++ Z'*Jr
It now follows that X := < i’i_ Z,’i_ ) is invertible (Sec|7.1.1)).
k k

We can multiply (188)) by X! so as to get:
i X1 =1d,

which implies that i, X ~! and, thereby, i, is invertible. Furthermore, we get:
1 =it
1
i = < - 1’“ > (189)

7.3 The maps ¢, ¢, for a pair neighboring strips II; and I,

Consider now the neighboring strips II; and IIs and let ¢ = ITy N1l,. Let us find the relation between
<I>1ji|g and ‘I>1j512|g. Suppose £ goes to the right, fig.
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We have a canonical isomorphism
Hiym, ¢ (@l xc)le = (@myxc)le-
Using the isomorphisms ¢r,, ¢11, as in , we get an isomorphism
A1, = ¢y, lexc © Hiym, © o1, |exc -

AT %S, @ AR xS |pue = ABT xS, @ AR~ % S_|yc. (190)
Let Py, Py, ..., P, be all a-strips which intersect ¢, fig[TT] We then have commutative diagrams

Amy,

AK'*‘*SJFEBAK_*S,‘mPk AK+>|<S+EBAK_*S,ump]c

AEF % S, @ AR« S—‘mPk

which implies that
= . -1 .
Am,l;mp, = (tmplinp,)” " © i, P, lenp, -

These formulas determine AH1H2' Let us compute:

i, Py, © AT lenp, = i1, P 0P,

J Y s - 1 anh
( o Hipk >OAH1H2‘£0P]€ = ( oy HiPk > .

P, i, By
Formula ([188) yields
. -1 S
< +1 ZH2Pk > = ( i _ZHQPk > '
lHQPk 1 _ZHQPk 1
Therefore,
i 1 —ig) IR
AH1H2 ‘fﬂPk = - 15 Py X o Iy Py =
', P, 1 inp, 1

(191)

_ 1 i, p, ~ UI,p,
— \ it — it 1
111 Py, 112 Py,

T S —t ot —
because i,p, © ', p, =0 and i, p, © ', p, =0 by Lemma (7.4

Let us, cf. fig[I1] number all the a-strips that meet II; or Ils:

IN Py

11 II 11 .
pl pl L PN PP, .., Py
1 1+
I1o 115 I1o
Pl Pl P2 PP, Py

Let us also set PlrIl = Plr12 := P;. Lemma yields,

/ /

o, I
= PPy _ P Pnt.
‘M, p, = E I E [omprtme s

<k m<0
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/

/
11 11
- PP, P2pP. 2
ZH1Pk:_E e — E [em Sma
1<k m<0

where only those terms are included into the sums, for which the intersection ray of the corresponding
a-strips goes to the right. Hence,

/ !/
11 11 11 11
- — o . — — P.2p2 L polptl 1
i p, ~ P, = g r+m “m+ g rm fmtr,
m<0 m<0

Let £ := II; N1l be of the form {&(¢) + re=* r > 0}.
It now follows that -
e 4 o P, 1p
ZHIPk - ZHQPk ’ZOPIC = _F+— . (192)

Thus:
- 1 *
AH1H2|€QPI€ = _FPS—IlPl 1 .

This means that the same is true for A, |s.

Let us write AH1H2 in the matrix form.

i+ i—+ K+ K+

AH1H2 AH1H2 A * S+ A * S_|_
z‘i]‘[ln2 = : @ — (&3]

At A=~ A= % S A= % S

AH1H2 AH1H2 £ L

Lemma implies that Aﬁjnz = 0. Indeed, the corresponding map is defined on an unbounded set
IT; N1Iy; since the intersection ray goes to the right, we are under the conditions of the case i) of that
Lemma.

Let us summarize our findings.

Claim 7.10 Let I1{,Ils be neighboring strips and £ = II1 N Ils goes to the right. Assume that 111 is
above Ily. Then

1) the map
AT % S AE* xS,
AH1H2 . b — D
A= % S A= % S
4 l

s of the form
_ A++ 0

~ ~ ~ 11y
2) Aﬂi}b =1Id; Agq, = 1d ; AE:HZ = 7F1_30+ Pl; where Py is the leftmost a-strip that meets both

II; and Il and POHl 1s the rightmost a-strip that meets 111 but not Ils.
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Similar result holds true in the case when the intersection ray II; N IIs goes to the left (proof is
omitted).

Claim 7.11 Let 111,115 be neighboring strips and £ = 11y N 1ly goes to the left. Assume that 11y is
below Ily. Then

1) the map

AI(Jr * S+ AI{Jr * S+

1211‘[11‘[2 : S — &
A= % S A= % S_
¢ ¢
s of the form
i+ i+
AH1H2 = AH1H2 41}1—1—[2 )
0 Anm,

At =14 A= =1d: A=+ = _ph P
2) My = Id; I, — &% Ly — & —+

and Il and POHl 18 the leftmost a-strip that meets 117 but not Ils.

where Py is the rightmost a-strip that meets both 111

7.3.1 Identifications

Let £ =111 NIy, £ € L7,

In the notation of section [3.10.2, we can identify Sy = Sa-1(0); Buw : Sy > SA-1(w) for every w € W.
For a word w = £y, --- 1L or w = £y, --- {1 R, set |w| :=n (we set |L| = |R| = 0).

Let Cw = (—1)|w|Bw : gw — SA—l(w)'

Let us define identifications .
Bi, Ci : S:t — S:t (193)

where
Bi|§w :Bw; Ci|§w :Cw.

We can conclude from 2)s of Claims that

fi]‘[ll‘[2 = C_ng}(HZC, (194)

where Fg}(HQ is as in 1'

7.4 The isomorphism Igg : U5 — &K

Using the above developed results, we will construct a map Iye : W% — ®& which satisfies (177)
(recall that such a map is unique). Equivalently, for each (—a«)-strip II, let us specify maps

Iyon : ¥ ke = ®F|nxc
which agree on itersections: if IT; N1Is = £ # (), then we should have:

Tyo 1, |exc = Toe 11, |exc- (195)
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Let us now reformulate condition (177]).
Let Py be an «a strip and ITy be a —a-strip such that xo € Py NIy (these strips are unique).

Denote .7-"({{ = Lixyx K s cf..

Let
0 . K K
i Fo = 7| (mpnpg)xCi

0 . K K
iyt Fo = U (mmpnpg) xC

be the restrictions of ig,iy. Since .7-"[{( is supported on (ITgNPg) x C, the condition (177) is equivalent
to:

Tya|(ynpo) < iy = i- (196)

We have identifications
i AET & Sy @ A~ & S—|H><(C — \I/K’HX(C

o AET « S o AET « S |iee — 8 |nxce.

Here i1y is defined similarly to (184]) but for Sy, UK and (—a)-strips instead of Sy, ®¥ and a-strips;
and ¢ is as in (182]).

One can now equivalently look for Iye 11 in the form:
Iyon = ¢nUniy' (197)

where 3 )
U AR T« Sy @ AR~ %S |ee = AKT S @ AR % S |nec

is to be calculated.

Since II satisfies both i) and ii) in Lemma we have
Homnx(c(AKi xS AKT 5’;) =0.

Thus, we must have:

Un(ABEE % 81) c AR x5, (198)
Using (190) and , we rewrite the gluing condition (195]) as follows:
Ut lexce = AU, lexclyz - (199)

Let us now rewrite the condition ((196)) (from now on all our maps are restricted onto (IIo N Py) x C,
unless otherwise specified). Let

v FE 5 AR S @ AR« SR

be the map given by the left arrow in . Let vt FI — AK* % Sy v FE — AK= % S be the
components of v.

We have the following obvious embeddings:

IL:AK"'*SL—)AK“L*SJFEBAK_*S,; IR:AK_*SR%AK+*S+€BAK_*S,;
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I AEY S, 5 ABT S @ AR« S, Tp: AR «Sp > AET S, @A« S_.
The formula ((187)) can now be rewritten as

dTIy = LPyITT Py -

We, therefore, can split
’L% =1p, (IL D IR)I/ = gbnoiﬁtpo (IL ) IR)I/. (200)

Next, we have . .
Z%, = ZHO(IL D IR)V.

Combining (197) and (200]), we have
Tyo 11,1y = (ﬁﬁ})UHo(jL @ Ig)v;
so that the condition ((196) is equivalent to the condition
Unt, (I, ® Ip)v = iﬁiPO(IL @® Ig)v asmaps Fo — AT xS, @ AK" %S | «c - (201)

Denote
i, (I ® Ir)v =: Io.
Let us make this condition (201)) more specific.

Lemma 7.12 Let J : F& — (AK* xS, @ AK~ % S_)[2] be an arbitrary map in D((Ilp N Py) x C).
There exist unique maps
T AET w5, - AET xS,

T AT xS o> AKT xS
such that
J=(T T v

PRrOOF We have identifications:
B RHom(C(ZK;i;ol(AKJr « S, oA xS )5S
5 RHome(Zics s, (AT % Sp @ AR~ % S0)[2]) 5 RHom(FL (AR x 54 @ AR~ % S0)[2)),
where iy, : C — (Il N Fy) x C is the inclusion s — (xp, s). Consider two more identification
at © RHom(ART«Sp; ARt xS, ) 5 RHom(isg) ANt xS i IART «S,) = RHom(Zc; i, AR %5, );

o~ : RHom(AEK=%Sp; AK=xSR) 5 RHom(i;OIAK_*SL;Z'_OIAK_*S_) = RHom(ZK;i_OlAK_*S_);

X X

and let « = at @ a~. Then we have a chain of identifications
RHom(ART 5 Sp; AR +.5,) @ RHom(AK™ + Sp; AN~ % .5)
% RHomC(ZK;i;Ol(AK+ %Sy @A % S))

B RHom(FE; (AK+ 5 S, @ AK— % 5_)[2)).

99



Let
v : RHom(ARt«Sp; AR T+ S, )@ RHom(AR ™% Sp; AR~ %S_) — RHom(FL; AR T xS, @ AR~ %S5_)[2])
be given by the pre-composition with v. One can check that v = a so that v is an isomorphism.

The statement now follows. O.

Let IF denote the maps obtained from I, by means of lemma Observe that the maps I3
uniquely extend from (IIy N Py) x C onto ITy x C. Denote the resulting extensions by the symbol
I+ AR+« St rlmexc — AT S, @ AR« S_|myxc-

Rewrite the condition in the form:
Un, (I, @ Ip)v = (I§ @ I )v.
It now follows that the condition (and thus also (177])) will be satisfied iff
Uty [arctes, =175 Untlar—us, =17 (202)

Indeed, the implicaton (202) = (201)) is obvious, and (201)) = (202]) follows from ({198)).

7.4.1 Estimate
Let us prove the following estimates:

Claim 7.13
I"=1;,; I =Ig (203)

Let us bring the current notation into correspondence with that in Lemmas [T.8][7.9] Set II := ITj. Let
us denote all the a-strips intersecting II by Py, P, ..., P, in the order from the left to the right, in
the same way as in Lemmas Suppose that Pyg = P} so that if,p, = i; in the notation of
Lemmas

Let us now write iﬁﬁpo = i,;l = Id + ag, where ag is an endomorhipsm of AKT §+ B A~ % S_. Let
a:=ao(I; ® Ir)v. Our statement now reads as at = 0; a~ = 0.

According to ([189)), we have
N
"=\ =i o0

a=—(if I @i, ). (204)

so that

Let us now examine the map izfl Lv. We have

o K K— _
i I AT S lmnpexe = AN xS mrpoxe = D Zaw)

a
wewright

where, as in (87), (8), A(K,w) := {(z,s)[s — z € K + é(w)} C (Ily N Py) x C.
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As above, let W}, C W, consists of all w such that A(K,w) C A(K, L), where

AK, L) ={(z,9)|s+2z—x%x¢p € K} C (IIpNPy) x C.

Let Ey : Zk,1) = ZA(K,w) be the corresponding map of sheaves. We then have

iTTIp= Y B,

!
wEWright

where for each (z,s) € A(K, L) there are only finitely many w such that n,, # 0 and (z, s) € A(K,w).

Let A be a unique vertex of the parallelogram ITy N Py such that ITo " Py € A+ K. The condition
A(K,w) C A(K,L) is then equivalent to 24 — x¢ + é(w) € K, or é(w) + x9 = —2(A — x¢) + ey
where ¢, € K. Observe that xg — A € IntK because xg € IntIIy N Py. It now follows that for each

w e W&ghta the map E,vT : Fy — Z p(kw) factors as

[ 2 F,
Fo = A7 % Sp =LAk, R) = L{(z,5)|s—=4x0+2AA-x0)eK} — L{(z,5)|s—2+x0+2(A—x0)—ewe K} = LAKw)»

where all the arrows except the leftmost one are induced by the closed embeddings of the corresponding
closed sets. It is easy to check that the sum > n, F, gives rise to a well-defined map

J 2 Ly (z,5)|s— 2t x0+2(A—x0)eK} — @ A(K,w)

o
wewright

Let § := 2(A — x¢). We have bZ{(Z7S)|Siz+x0+2(AixO)€K = T§*ZA(K,R)' Let 75 : ZA(K,R) — T5*Z.A(K,R)
be the map induced by the closed embedding of the corresponding closed sets. We then have a
factorization

Z'$7ILI/ = Jrsv,

which implies that (i} ~Irv)*™ = Jrs = 0. Similarly, one can check that (i; *Izgr)~ = 0, which, by
virtue of (204)), that a=0. O

7.5 Inductive construction of the maps Uy.

We will now construct the maps Uy satisfying (199)) and (202]). Taking into account (198)), it is possible

to construct Urr in terms of its components

UY AR %S, — AT xS, for all w € W, 5

U AE= %S, - A% S_ forallwe W;ight.

7.5.1 Rewriting the gluing condition

Let us rewrite the conditions ((199)).

Case 1: £ goes to the left and w € Wi, (set & = + on both sides of (205])) or £ goes to the right and

we Wi (set £ = — on both sides of (205))) Let us rewrite (199):

Ut lexc = Amm, U, lexc : AE % Syle = ARE % Sq e (205)
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Every map as on the RHS extends uniquely to IIy (Lemma

so that we can equivalently rewrite
Uf:lu2 = (Fg}(HQ Uﬁﬂl‘e)exta (206)

where ext means the extension onto II5.

Case 2:

¢ goes to the left and w € Wi, (set & = —) or £ goes to the right and w € Wi (set & = +):
(207)

Ul lexe = Dk 2 (U, lexc ® 9, ) URY [exe NE°),
where N’ : A, * Sy — AZ‘ x Spy 18 as in |D

Recall that flﬁfm = 0 by Claims so that we can rewrite the RHS as (using notation from
Sec|3.8.5)

AE+ AL A 0

So that we have (by separating + and — components):

U, lexe = AU, loxc (208)
A, Ut lexe + Al 0T, T UL [exe NE) = 0. (209)
As above, (208) can be equivalently rewritten in the same way as (206]).
Let us rewrite (209): ) .
Ufelexe N = —9(Ta, Th) ARy A% U oxc

Given a map K : AR* xS, |, — AKF % S|, one can uniquely factor it as
K = K'NY,
where K’ : AKF % Sy, |0 — AKT % S+|y (Sec which extends uniquely to a map
K. : AEF & Shw|m, — ABF « S,
by Lemma [7.6] In view of this remark, we finally write

Uty = (=M, L) ARy AREL UML) (210)

Let us summarize. Gluing conditions (199)) can be equivalently formulated as follows:

For every pair of neighboring strips 11y, I1s, £ = IT; NIIz, we have (206]). In the case (207]) we also have
@10).

Condition (206 implies that
Uﬁuz‘gE Uf—[ul|g. (211)
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7.5.2 Constructing Uf

Let us proceed by the induction in the length of w. In the case II = Ilp and w = L or w = R, Ufj is
determined by (202]).

Given an arbitrary strip 11, there is a unique sequence
Iy, Iy, ..., 11, =11 (212)
where all II; are different and IT; N 11,11 # (0 (because the graph formed by the strips is a tree).

Formulas (206)) (applied for all pairs I1;, 11, ;1) determine Ul% , Uﬂ% for all II.

Suppose that Ujj for all words w of length < N. Let w = ¢w’ be a word of length N 4 1 (so that the

length of w' is N). Let ¢ = II; N Tl. The formulas (210) determine Uy . Given an arbitrary strip IT
we can join it with II; by a path and define Ujf using (206)) in the same way as above.

7.5.3 Estimate

We are going to prove the following estimate. Let IT be a strip. Consider a map C = C, U C_, cf.

(1193). We will prove

Claim 7.14
Uy = CI,, = (-1)"I1,.

PRrROOF. Let us use induction in |w|. If w = L or w = R and II is arbitrary, the estimate follows
from (211)). Suppose that the estimate is the case for all w with |w| < N. Let now |w'| = N + 1 and
w' =lw, lw| = N. Let £ =T1I; N 1,.

Combining and the inductive assumption, we have:

CTUUfY = (91, 1) C Ay Ay, Clule)  (=0(IL2, I0)C ™ Ay, CL e )

Claims _ B
wims LTI (~0(11a. 11)C A CL L) t(_ﬁ(n%ﬂl)c_l ALl

ex ext

ext

(194

(_19(1_[27 Hl)fﬁIHQ ’Z)ext
= (N(}U)‘ext — Iﬁwa
and (211)) allows us to extend this equality to other strips. O

7.5.4 Proof of Proposition (3.6))

Let us first find an expression for the maps Jijp as in (178). We have

Iyonilnnpxe = ¢énlunpxcUnlnnpxciy mnpxc = top|nnpxcinpUn|nnpxcigylinpxc.  (213)

Comparison with (178)) yields:
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Jnp = tnpUn|onp.

We then have (for every w € W¢)

Jnply, = inp]w(—1)|w|,
by Claim
Let us write

tnply : ZA(K,w) — @ ZA(K,w’)
w' eEW«
as

inply = Z mgileww’a
w' eW’
where the sum is taken over all w' such that A(K,w") C A(K,w) and eww : Za(kw)y — ZA(Kw) 18
induced by this embedding. We are to show that m!I”, = 0 implies that A(K,w) # A(K,w'). Assume,
on the contrary that A(K,w) = A(K,w') for w,w’ € We. Since PNII # {), this is only possible when
w,w' € Wi, or w,w’ € Wity Suppose w,w’ € WJ Lemmathen implies that either w’ = w,

right-
or é(w') — é(w) € IntK, i.e. w # w', as we wanted. The case w, w” € W, is treated in the same way

by means of Lemma [7.9] O
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