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1. Introduction

This letter is a written version of a talk given by the first author at the Euro-
conference 2000 Moshé Flato at Dijon. The first part is devoted to the problem
of generalization of the notions of a differential form and a polyvector field for
an arbitrary noncommutative algebra. It is well known that the noncommutative
analogue of differential forms is the Hochschild chain complex, and the analogue
of the polyvector fields is the Hochschild cochain complex. The question is how
to define the standard differential geometric operations on forms and polyvector
fields in terms of Hochschild (co)chains. This topic originates from [1, 7, 13]
and is called the noncommutative differential calculus. Here we give a (hopefully)
ultimate answer to this question. It provides us with a description of a certain
algebraic structure on the Hochschild chains and cochains of an associative algebra.
The proofs will be given in a subsequent paper. The formality of the Lie bracket part
of this structure has been proven in [18].

In the case A = C*°(M), where M is a smooth manifold, this structure is formal in
homological sense (we discuss the meaning of this formality below). For an

*Both authors are partially supported by NSF grants.
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interesting geometric variant of this problem, see [19]. In the second part of the
Letter, we discuss an application of these results to index theory: the algebraic index
theorem [2, 12] is generalized to all deformations of the associative algebra C*°(M),
not necessarily symplectic ones.

2. Noncommutative Differential Calculus
2.1. COMMUTATIVE DIFFERENTIAL CALCULUS
Let M be a C*°-manifold. It possesses the following features:

—  Smooth differential forms Q°*(M). They will be denoted by lower case Greek
letters , 7, ... and their degrees by |w|, |7l ..., respectively.

—  Smooth polyvector fields V*(M) =qer T'(M, A*(TM)). They will be denoted by
capital Roman letters X, Y, ...and their degrees will be denoted by | X], |Y], ...,
respectively.

There are certain operations on these objects, of which the most important for us are:

—  The de Rham differential d: Q*(M) — Q**'(M);

—  The cup (exterior) product of vector fields V(M) @ V(M) — V¥ (M);

—  The Schouten—Nijenhuis bracket {,}: V(M) ® V(M) — VH=(M);

— The contraction of a form ® and a polyvector field X denoted by
ixw € QTXI(A1). Note that in this definition the contraction is zero if |w|<|X].

—  The Lie derivative Lyw = diyw + (—1)‘X‘_1ixda).

These operations satisfy the following properties:

() The graded vector space V*(M) together with the cup product and the
Schouten—Nijenhuis bracket is a Gerstenhaber algebra, meaning that the
cup-product is graded commutative and associative, that the Schouten—Nijenhuis
bracket defines a graded Lie algebra structure on the shifted space V*(M)[1], and
that the following graded Leibniz identity holds:

(X, YAZ}={(X,YIANZ+(-1)Y A {X, Z},
where ¢ = (|X|—1)|Y].

(2) ixiyw = ixayw;

(3) inya) = L{X, Yy + (—l)sl'yLXa), where SZ(IX|—1)| Y|;

@ LyLyw— (=D DDL Lo = Liy yyo;

(5) LXAya) = L)(iyw + (—1)|X|ixLy(u.

A pair of graded vector spaces V, Q with the structure specified above will be called a

T-algebra.

Remark. Certainly there are other natural operations on vector fields and
differential forms, but they are irrelevant for the sequel.
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2.2. NONCOMMUTATIVE DIFFERENTIAL CALCULUS

Let A be an arbitrary associative algebra. It is well known that one can define an
analogue of differential forms and polyvector fields in this situation, the differential
forms being replaced with the Hochschild chain complex Co(A4, A) of 4, and pol-
yvector fields with the Hochschild cochain complex C*(4, 4). If A = C*°(M) and
only support preserving Hochschild cochains are taken, the Hochschild
(co)homology is isomorphic to the space of differential forms (polyvector fields).
This suggests that there may be an analogue of T-algebra structure on Hochschild
(co)chains.

In[13]it was shown that one can introduce the operations implied by the T-algebra
structure on Hochschild (co)chains but the identities of 7-algebra structure are sat-
isfied only up to homotopy. It is natural in such a situation to try to write the
so called ‘higher homotopies’. Let us briefly recall the meaning of this term. The
gist can already be seen from the consideration of the cup product on Hochschild
cochains. The cup product fUg € C" (A, A) of f € C"™(A, A) and g € C"(A4, A)
reads as

(fUgar,...,amn) = D" (ar,...,an)  g@nit, ..., Gyin).

This defines an associative but non-commutative product and one can prove that
there is no ‘natural’ formula for an associative and commutative product which
is homotopy equivalent to this one. The good news is that the commutator
[f.el=fUg— (—1)Vlelg U f is homotopy equivalent to zero. This means that there
exists a map y: C*(4, 4) ® C*(4, A) — C*(4, A) of degree —1 such that

[f.&l= (/.2 + @, g) + =Dy f, ag),

d being the differential on the Hochschild cochains. It follows that the symmetrized
product aob = (aUb+ (—1)"bUa)/2 is commutative and

ao(boc)y—(aob)oc
= oms(a, b, ¢) + m3(da, b, ¢)+
+ (=D)"“ms(a, db, ¢) + (=) Plms(a, b, dc).

In other words o is associative up to the homotopy m;. Now we can consider the
expression
:u4(a7 ba Ca d)
=aoms(b,c,d) — (=D msaob, ¢, d) + (=) \ms(a, boc, d)— (1)
— (=)l s (a, b, ¢ o d) 4+ (= 1)/ (0, b, ¢) o d.
It turns out that the differential of y, is equal to 0, therefore it is natural to require

that u, is homotopy equivalent to 0 by means of a homotopy 4. Then we can take
some other combinations of o, m3; and my differential of which is 0, and to require
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that these combinations be homotopy equivalent to 0, etc. To perform this procedure
we need to know all such combinations, which is a nontrivial problem.

The most convenient way to express this informal definition rigorously is to use
operads.

2.3. BRIEF REMINDER ON OPERADS

The detailed exposition of the theory of operads can be found in a variety of sources,
e.g.[4, 5, 17]. We will recall the definition of the operad in the example of T-algebras.
A T-structure on a pair of graded vector spaces V, Q is defined as a collection of one
unary (the de Rham differential Q — Q) and many binary operations some of which
are maps V' ® V— V, and the others are maps V' ® Q— Q. Taking all possible
combinations of these operations we obtain graded vector spaces 7(n) describing
all possible operations

yen .y )

which are compositions of operations involved in the definition of T-structure, and
T(n,1) describing the operations

V0 - Q. 3)

Two such operations are equivalent if they are equal by virtue of the identities
involved in the definition of the T-structure. The symmetric group S, acts naturally
in the spaces 7T(n), T(n,1) by permutations of the arguments of the same type.
We have natural composition maps

0;: T(n) ® T(m) — T(n+ m — 1) such that

oi( fr@)ar, ..., pgm—1) =fla1, ..., ai—1,8(a, . .., Qign=1)s - - - Amgn—1);
ol : T(m,1)® T(n) > T(n+m — 1, 1) such that
ol f, 9@, . animt1,0) =flar, ..., ai 1,8 ..., din 1), ..; )

and o : T(n,1) ® T(m, 1) = T(n+ m, 1) such that

(S0 ar, .-y g ®) = f(@1, - .., an, &(any1, - - - ; O)).

These compositions satisfy obvious ‘associativity’ laws and are compatible with the
action of the symmetric groups.

A partial colored operad 7 (PCO) is by definition an arbitrary collection of objects
T (n) 7 (n, 1) endowed with and S,-action for each n =0, 1, together with the com-
position laws o subject to the associativity laws and compatible with the action
of the symmetric groups. The word partial means that we allow the argument w
to enter only once and all our operations are as in (2), (3). I (n),  (n,1) may
be graded vector spaces, complexes, and, more generally objects of any fixed sym-
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metric monoidal category. It is clear that the collection 7(n), T(n,1) forms an operad
denoted by T. The definition of a morphism between two PCQO’s is straightforward.

Given two complexes V, Q, denote Fyo(n) = Hom(V®", V) and Fyo(n, 1) =
Hom(V®" ® Q, Q), where Hom refers to the internal hom. The collection Fy g forms
a PCO with the obvious composition maps and S,-action. We can define a
 -structure on the pair ¥, Q as a morphism of PCO J — Fy o. In this case we also
say that the pair V, Q is a 7 -algebra.

The notion of PCO is a modification of the one of usual operad, in particular, the
objects 7 (n) of a PCO 7 form a usual operad.

2.4. T.-STRUCTURE

The meaning of the procedure of adding higher homotopies is that we want to replace
the operad T of graded vector spaces with an operad of complexes T,,. Since we want
all the relations to be satisfied only up to a homotopy, we require that T, be free. The
condition that all higher homotopies must be added expresses itself as follows: there
exists a map of PCO p: T, — T (graded spaces are viewed as complexes with
differential), such that the corresponding maps 7T, (n) — T(n); Tu(n,1) —
T(n,1) are quasi-isomorphisms of complexes, in other words, p is a quasi-
isomorphism of operads. Recall that a map of complexes is called a quasi-
isomorphism if it induces an isomorphism of their cohomology.

An operad T, with such properties is known to exist and for the sequel we fix one
of them.*

2.5. A MODIFICATION

We will use a slightly more general definition than the one stated in the previous
section.

DEFINITION 2.1. We say that a pair (V,Q) has a structure of T-algebra up to higher
homotopies (or simply that (V,Q) is a homotopy T-algebra) if both a chain of
quasi-isomorphisms of operads

pT T\ «<~Th—>Ts...> T 4

and an action of T" on (V,Q) are specified.

Remark. Any two objects (such as operads, algebras, etc.) are called quasi-
isomorphic if there exists a chain of quasi-isomorphisms connecting them.

The general homotopy theory ([4, 8]) implies that for any PCO T, as above there
exists a collection of maps f: T, — 1" and f;: Too — T; such that these maps with
the map p: Toc — T added to them commute with all the maps from (4) and are

*For the results in the following section to be true one has to require that 7T, be cofibrant [8].
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quasi-isomorphic. For any other such a collection f”,f/, there exists a quasi-

isomorphism ¢: Ty, — T such that /7 =f"ogq.

2.6. HOMOTOPY EQUIVALENT HOMOTOPY T:ALGEBRAS

A morphism of two homotopy T-algebras 4 and B such that A4 is a 7’-algebra and B
is a T"-algebra, T', T” being quasi-isomorphic with 7, is a collection of a
quasi-isomorphism 7’'—7"” and a map j: 4— B compatible with the actions of
T', T”. If j is a quasi-isomorphism, the corresponding map of algebras is called
quasi-isomorphic. Two homotopy T-algebras are called quasi-isomorphic if they
are connected by a chain of quasi-isomorphisms.

2.7. THE MAIN PROBLEM OF NONCOMMUTATIVE DIFFERENTIAL CALCULUS

The problem is, for any associative algebra A, to define a 7-structure up to higher
homotopies on the pair (C*(4, A), Co(A, A)). The existence of such a structure
was conjectured in [14].

3. Idea of the Proof

For simplicity, consider first Hochschild cochains only and try to understand what is
the richest possible algebraic structure on them. It is easier to explain the idea if we
replace the associative algebra 4 with a topological unital monoid X. Define
CK(X, X)= C(X*, X), the space of all continuous maps topologized by the
open-compact topology. The collection C®(X, X) has a natural structure of a
co-simplicial set.

For each ki, ..., k,, [ we are going to define the set of all ‘natural’ operations

Ch(X,X)x - x C"(X, X) > C'(X, X).

Any such operation is by definition a composition of elementary operations, which
are

e The insertion

0;: CH(X, X) x CR(X, X) » Chrhk—l(x X) (5)
such that
Oi(fv g)(X1, ERR) xk1+k2—1) Zf(xl yoees Xiels g(X[, ceey xi+k2—l)’ ) xkl-‘rkz—l);

o Let m e C*(X, X) be the associative product and 1 € C°(X) be the unit. Then
the other elementary operations are o;(m, f), o;( f, m), 0;( f, 1) for all ’s for
which the insertions are defined.

Any two compositions of elementary operations are called equivalent if they pro-
duce the same map (5). The set of all such equivalence classes is denoted by
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[ .
Fe k- We have composition maps

[ k) [
Feon, X F, = Fi oy

my...nm, okt

(6)

The collection of sets F'is simplicial with respect to all lower indices and co-simplicial
with respect to the upper indices. In other words, F has a structure of functor from
(A°P)" x A — Sets, where an object of A is a set [n]={0, 1, ..., n} and a morphism
is a nondecreasing map between these sets. For a; € Mor(A°?); b€ Mor(A),
hie CF(X,X); g e C'(X, X), f € F|_, , we have

(@i ...an, b)Y, ... hy) =bP[f(@hi, ..., aPhy)],

where b°P € Mor(A°?) and a; € Mor(A) are the corresponding morphisms and we
assume that all the compositions are defined.

The topological realizations E, = Tot(F; ,) form a topological operad, the com-
position maps are defined by the composition maps (6). The operad E acts on
the realization Z(X) = Tot(C*(X, X)).

For a functor F: A x (A°?)"— Sets, Tot(F) means by definition the following. F
determines in the obvious way a functor F' from A to the category nS of functors
from (A°P)" to the category of sets (nS is also called the category of n-simplicial
sets). We have the functor of the topological realization R: nS —Top: the compo-
sition F"=Ro F’ is a cosimplicial topological space. Tot(F) is by definition the
realization of F”.

3.1. DESCRIPTION OF E

The analysis of the above construction gives the following description of E. Let
U(n) = C({,I"). U is naturally a usual operad. E can be realized as a sub-operad
of U, such that

E(n)={¢:1 = I"; ¢ = (¢1, sy ..., D)} (N
and

(1) ¢,0)=0; ¢;(1) =1 for all i;
(2) for each pair of indices p, ¢ there exist numbers 0 <b < ¢ <1 such that

either: ¢, nondecreases and ¢, is constant on [0, b]U[c, 1]; ¢, is constant and ¢,
nondecreases on [b, c]

or: the same thing with p and ¢ interchanged.

Let S! be a unit circle |z] = 1,z € C, e: I — S' be the map e(x) = ™. Then any
map ¢ : I — I" satisfying (1) determines by means of e the corresponding map
¢s: S' — (SY)". This way we can realize E as a suboperad of another full operad
V such that V(n) = C(S', (SH)").

Note that if y € E(n) C V(n) and

‘//(Z) = (wl(z)v RN} l//n(z))a
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then for any a with absolute value 1,

V(2) = (W1 (a2)/Yi(@), . .. ., (az) /(@) ()

remains in E(n).

Remark. There is a sub-operad of this operad each space of which is home-
omorphic to a finitely-dimensional piecewise-linear space: take only piecewise-linear
maps ¢ that are linear on the intervals onto which 7 is cut by all points b, ¢ for all p, ¢
(see property 2).

3.2. RECOGNITION OF E

First of all we check that there is a homotopy equivalence E(k) = K(PB(n),1), where
PB(n) is the pure braid group in n strands. Then using the recognition technique
by Fiedorewicz [6], we prove that as an operad FE is homotopy equivalent to the
little disks operad E,. Thus, we prove the following topological version of the
Deligne conjecture: An operad homotopy equivalent to E, acts on Z(X).

For other proofs of this (or a similar) result, see [10, 11, 16].

3.3. ADDING C,(X, X)

Similarly, let us define C,(X, X) = X"*+!. Itis a simplicial topological space. The face
maps are

do(X0,s - -5 Xn) = (X0X1, X2, e+ o3 Xn)s v v o s du(X0, + - oy Xn) = (X X0 - -+ > Xn—1)-

The degeneracies are the insertions of 1. Let O(X) =Tot(Co(X, X)).
The above results generalize straightforwardly onto this case, and we obtain a
PCO G on the pair Z(X), O(X).

3.4. DESCRIPTION OF G

The PCO G can be realized as a suboperad of the following full PCO W. Set
W(n) = C(S', (SY"); W(n,1)=C(S",(S")" x S') with the natural composition
operations. Set G(n) = E(n) C V(n) = W(n) (see Section 3.1); set G(n, 1) C
W (n, 1) to consist of all maps 6 such that:

e IxIl---x1x(S")cImb;
e for any point x € S!, the map 0, (see (7)) is in E(n+ 1) C W(n, 1).

Note that it suffices to check the second condition just for one point x, the validity
of this condition for all the other x’s will then follow.
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3.5. HOMOTOPY EQUIVALENT DESCRIPTION

We know that the operad E is homotopy equivalent to the operad of little disks E,.
We will extend this equivalence to F. We will define a PCO F’ which is homotopy
equivalent to F. F'(n) = Ey(n); F'(n,1) is the configuration space of all cylinders
(=surfaces in R? x R! of the form S! x [a, b] with their base being a unit circle)
with n non-intersecting circles on the lateral surface, (we use the natural flat metric
on it) and with 2 marked points b, ¢, b on the bottom base, ¢ on the top base.
Two such configurations are equivalent if one can obtain one of them from the other
by a parallel shift or rotation.

The insertions of the type F’'(n)x F'(m)— F'(n+m—1) are performed in the same
way as in E,. The insertions F’(n,1)xF’(m) are just insertions of a compressed
big disc from F’(m) = E,(m) into the corresponding ‘little’ disk on the lateral surface
of an element from F'(n,1). Finally, the insertions F'(n,1)x F'(m,1)— F'(n+m,1) look
like putting the first cylinder under the second one, rotation of the second cylinder
so that the marked point on the bottom of the second cylinder coincide with the
marked point on the top of the first one, and gluing the two cylinders into one.

M. Kontsevich has informed us that he had independently found the same descrip-
tion.

3.6. BACK TO HOCHSCHILD (CO)CHAINS OF AN ALGEBRA

A certain technique allows us to convert this topological result into an algebraic one.
Namely, one can prove that the PCO C,(F) of the singular chains of F acts
homotopically on the pair (C*(4, 4); Co(A4, A)).

3/]. FORMALITY OF C,(F)

Using the same technique as in [15], one proves that the PCO C,(F) is formal, i.e. is
quasi-isomorphic to the operad He(F). The latter PCO can be easily identified with
T. This determines a canonical up to a homotopy T..-structure on (C®(A4, A);
Co(A4, A)).

4. Formality of the7..-Structure on (C*(A4, A); C(A, A)), A = C*(M)

Using the Gel’fand-Fuks technique we can show that our homotopy T-algebra
structure is homotopy equivalent to the corresponding structure on the cohomology
that is to the natural T-algebra structure on the pair (V*(M), Q*(M)).

4.1. CYCLIC HOMOLOGY

It is well known that on the Hochschild complex C4(A4, 4) with the differential » of
degree +1 (we assume that C;(4, A) sits in degree —i), there is the Reinhart
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differential B of degree —1 anti-commuting with 5. In other words, Co(A4, A) is a
differential graded module over the skew-commutative algebra k[B]=k ® kB.

This structure allows us to define all kinds of cyclic homology. For example, the
usual cyclic homology HC,(A, A) is isomorphic to the homology of
(k ®,f[3] Co(A4, A)), where k is the trivial k[B]-module. The Bott periodicity map
S:HCy(A, A) - HCy_3(A, A) is induced by the generator s of the one dimensional
space Hz(RHomk[B](k, k)). This generator determines a canonical morphisms
S’: K[-2]—K in the derived category.

The periodic cyclic homology HCEP(A4, A) is defined as the homology of the
derived projective limit of the sequence

K<k

To compute the limit one can take a complex K and a morphism S: K — K which
represent K and S and to form a bicomplex

0 — []Ki(~2n] = [] k{211 — 0,
where

wag, ay, ..., ay,...)=(ap— S’(al), ap — S(az), ey — S’(a,H_l) ce)

Note that we can take K = H Co(A, A) with zero differential and S=s.

We have the T-algebra (C*®(A4, A), (Ce(A, A)). Our task is to define the cyclic
homology completely in terms of this 7 -structure. Let D = 7(0,1). The composition
law makes it an associative algebra, C4(4, A) being a module over it. Since T, is
quasi-isomorphic with 7, D is quasi-isomorphic with 7(0,1) = k[B]. It follows that
there exists a D-module L quasi-isomorphic with the pair: k[B] and the module
k over it. Define CCo(Co(A, A)) = L ®5 Co(A4, A). One checks that this complex
is canonically quasi-isomorphic to CC,(4, 4). Similarly, we have the elements
s € RPHomp(L, L) = R*Homyp|(k, k), which allows us to define HCP*"(Cy(4, A)).
This homology is canonically isomorphic to HCP®"(4, A).

The quasi-isomorphism between the T.-algebra (C*(4, 4), Co(A, A)) and the
T-algebra (V*(M),Q*(M)) induces a quasi-isomorphism between CC,(Co(A4, A))
and (k ®,€[ B Q°*(M)), where B acts on Q°(M) as the de Rham differential. Therefore,
we have an induced map on the cohomology. Denote this identification by v.
The cohomology of the first complex is canonically identified with the cyclic hom-
ology HC,(A), the cohomology of the second term is identified with

H; = @0 H' (M) @ Q(M)/dQ™ (M),

Similarly, the formality induces an identification vo*': HC' (4) = HP*"(M), where
H (M) = @ Hpg (M),
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Compare this with the well-known Kostant-Hochschild—R osenberg identification
(cf. [1]) pu: HCo(A) — H,o and pP®": HCY'(A, A) — HY"(M). It turns out that for any
x € HC,(A) we have

THEOREM 4.1.
v(x) = p(x)AM); ®)
VP (x) = PeT(x)A(M), 9

where A(M) is the A-class.

4.2. HOCHSCHILD, CYCLIC AND PERIODIC HOMOLOGY WITH COMPACT SUPPORT

All the results above remain true if we replace Hochschild cochains with Hochschild
cochains with compact support, cyclic homology with cyclic homology with compact
support, and periodic cyclic homology with periodic cyclic homology with compact
support.

4.3. CYCLIC COHOMOLOGY

Consider a dual version of Hochschild chains. For a smooth variety M, let 4 be the
algebra of smooth functions. Let C}(M) C Hom(A4®', Q'°P(M)) be the subspace
of support-preserving morphisms. Let C; (M) C Ci(M) be the subset of elements
with compact support. We have a map

k: Cl(M) ® C;. (4, 4) > R,

k(€7a0®"'®a}1)=/ aoe(a]aa2v"'aan)'
M

We can define the differential b: C}(M) — CZJH(M) such that
k(bx, y) + (=1)Mk(x, by) = 0,

it is uniquely determined by this condition.

5. Applications to Index Theory
5.1. ALGEBRAIC STRUCTURE ON THE PAIR C*(4, 4), C3(M)

For a PCO X define the PCO X’ with X'(n) =X(n); X'(n,1)=X(n,1), the insertion
operations are the same as in X except the following ones. For ue X'(n,1),
veX'(m,1), uoy v=voyu.

By the duality, the T-structure on C*(4, A), C, (A, A) defines a canonical

T _-structure on C*(A, A), C5(M). We can also prove that this structure is formal.

o]



96 DMITRY TAMARKIN AND BORIS TSYGAN

5.2. DEFORMED ALGEBRA

A part of the formality of the Ti.-algebra C*(4, 4), C, (A4, A) is the formality of
C*(A4, A) as a Lie algebra. We can use this formality, following Kontsevich [9],
to construct the deformation star-product » on A[[/]] corresponding to any Poisson
bi-vector field © € AV2(M)[[]]. The resulting associative algebra will be denoted
by A.. Let m, € hC*(A4, A)[[h]] be the corresponding Maurer—Cartan element:
axb=ab+ my(a,b).

5.3. TRACES ON 4,

One sees that by its duality with C, (4, 4), the C?(M) is a module over the Lie
algebra C*(4, A). Consider the complex C$(4,) = (CH(M)[h~", h]], b+ L,,,). One
sees that the zeroth cohomology of this complex is equal to the space of such formal
top forms w on M that [,,(f g — g »f)w = 0 whenever f or g has compact support.
The formality of the 77, -algebra (C*(4, A), C5(M)) implies that the cohomology of
C5(A4y) is isomorphic to the cohomology of the complex Q*(M)[h~ !, h]], Ly). The
latter cohomology is isomorphic to the space of all top forms w € QP[A~!, A]]
on M such that L, = 0. Denote by Tr,, the trace corresponding to w. By definition,
any such a trace produces a linear functional on HHy(A4, A) also denoted by Tr,,.

5.4. ALGEBRAIC INDEX THEOREM

Now we have all the necessary ingredients to formulate an algebraic index theorem in
the spirit of the index theory from [2, 3, 12]. We have the following diagram of maps

Hcger over R(An) —  HCy(4y) T—r;) R[h—l, h

CCl(4)

Hyg (M)
The composition of the vertical arrows is called the Chern character map and is
denoted by ch. Denote the composition of the horizontal maps by /. The map
chis an isomorphism. Therefore 7 can be expressed in terms of ch, such an expression

is called the algebraic index theorem. The formality theorems stated above imply the
following algebraic index theorem:

I(D) = fM ch(D)(e" w) A(M).

Note that the condition L,w = 0 implies that e is a closed form.
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