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Abstract. We prove that the chain operad of little disks is formal in characteristic zero, and
discuss briefly the relation with Kontsevich formality in deformation quantization.
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1. Introduction

This Letter is a printed version (with minor changes) of [10]. We prove that the

Q-chain operad of little disks is formal. This means that it is quasi-isomorphic to its

homology operad which is known to be the operad of Gerstenhaber algebras. Maxim

Kontsevich [6] has found a proof of a more general result: chain operad of little

n-dimensional disks is formal for all n as an operad of coalgebras.

The relation of this formality to Kontsevich’s formality theorem is explained in [6].

The key point is that by Deligne’s conjecture ([7, 8]) the chain operad of little disks

acts on the Hochschild cochain complex of any associative algebra. Therefore, we

have a homotopy action of the operad of Gerstenhaber algebras on Hochschild

cochain complex of any associative algebra over a field of characteristic zero.

It is explained in [4–6], and [9] how this action implies Kontsevich’s formality

theorem. To avoid misleading the reader, let us mention that it is only in [6] that the

above mentioned homotopy action of the operad of Gerstenhaber algebras is con-

structed by means of Deligne’s conjecture; the other papers use an approach based

on the Etingof–Kazhdan dequantization theorem. In the original paper of the author

[9], the Etingof–Kazhdan theorem was used in the opposite, i.e. quantization, direc-

tion, which resulted in a more complicated proof. The papers [4, 5] use Etingof–

Kazhdan theory in a more clever way, thus making the argument more simple and

natural.

Being different in establishing the homotopy Gerstenhaber algebra action, the

above-mentioned papers use it in the same way to obtain a proof of Kontevich’s

theorem. Let me briefly outline how it goes. To be specific, consider the case when

our associative algebra A is the algebra of polynomials in n variables (the case
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A ¼ C1ðRn
Þ is fairly similar). Instead of showing that the differential graded Lie

algebra on C �ðA;AÞ, the Hochschild cochains of A, is formal, one proves the formal-

ity of the homotopy Gerstenhaber algebra structure on C �ðA;AÞ, which means that

there exists a quasi-isomorphism between our homotopy Gerstenhaber algebra

structure on C �ðA;AÞ and the induced Gerstenhaber algebra structure on HH �

ðA;AÞ, the Hochschild cohomology of A, the latter being the so-called Nijenjuis–

Schouten algebra of polyvector fields. This formality follows by the standard argu-

ment from the obstruction theory, which implies even a more general result: let V

be a homotopy Gerstenhaber algebra such that the induced Gerstenhaber algebra

structure on the cohomology of V is isomorphic to the Nijenhuis–Schouten algebra,

then this structure on V is formal.

How does this formality imply Kontsevich’s formality? First, whenever we have a

(homotopy) Gerstenhaber algebra structure on a complex V, we also have, as its

part, a differential graded (homotopy) Lie algebra structure on the shifted complex

V½1�. A quasi-isomorphism of homotopy Gerstenhaber algebras induces a quasi-

isomorphism of these underlying homotopy Lie algebras. Thus, the homotopy Lie

algebra structure on C �ðA;AÞ[1] induced by the homotopy Gerstenhaber structure

is quasi-isomorphic to the differential graded Lie algebra structure on

HH�ðA;AÞ[1] determined by the Schouten bracket.

To complete the proof of Kontsevich’s formality theorem, it remains to establish a

quasi-isomorphism of the homotopy Lie algebra structure on C �ðA;AÞ½1� induced by

the homotopy Gerstenhaber structure on C �ðA;AÞ with the Lie structure on

C �ðA;AÞ[1] given by the Gerstenhaber bracket (this was not done in the first version

of [9]; the author thanks Maxim Kontsevich for pointing at this flaw). It turns out

that for each known construction of homotopy Gerstenhaber algebra structure on

C �ðA;AÞ, this quasi-isomorphism can be established more or less straightforwardly.

This concludes the proof.

Let us now come back to the content of this Letter and present the plan of our

proof of formality of the chain operad of little discs.

Step 1. We use a homotopy invariant definition of a little disks operad as in [2].

This definition specifies a class of homotopy equivalent operads in such a way that a

conventional little disks operad is in this class as well as any homotopy equivalent

operad. The definition of this class can therefore be viewed as a criterion for an

operad to be homotopy equivalent to the conventional operad of little disks. This

criterion is called Fiedorowicz’s recognition principle.

Next we pick a representative from the class of little disks operads (which is not

the conventional little disks operad). This representative is obtained as a topological

realization of a certain simplicial operad which in turn is an operad of nerves of a

certain operad of groupoids PaB. The latter operad was defined in [1] where it

was used to define the Grothendieck–Teichmüller group and Drinfeld’s associator.

Step 2. We take a k-linear span of PaB and complete it with respect to the

augmentation ideal. Drinfeld’s associator induces a morphism from this operad to a

much simpler one (as in (9)). This induces a quasi-isomorphism of the corresponding
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operads of simplicial chains. We then explicitly establish the formality of this new

operad, which completes the proof. This is done in Section 4 but in a reversed order: we

start with the definition of the new operad (which is the target for the map determined

by the Drinfeld associator); then we show that the operad of chains of this operad is

formal; and finally we construct a map described in the beginning of the paragraph.

2. Little Disks Operad ðAfter½2�Þ

We reproduce the construction of the little disks operad from [2]. First, the sym-

metric groups in the definition of operad are replaced with the braid groups and

we obtain the notion of braided operad. A topological B1-operad X is defined as a

braided operad such that all its spaces XðnÞ are contractible and the braid group

Bn acts freely on XðnÞ. If X and Y are topological B1-operads, then so is X � Y

and we have homotopy equivalences

p1: X � Y ! X; p2: X � Y ! Y; ð1Þ

where p1; p2 are the projections.

Let PBn be the group of pure braids with n strands. Given a topological B1-operad

X, the corresponding operad of little disks is a symmetric operad X0 such that X0ðnÞ ¼

XðnÞ=PBn with the induced structure maps. The maps (1) guarantee that any two

operads of little disks are connected by a chain of homotopy equivalences. It is proved

in [2] that the classical operad of May (whose nth space is the configuration space of n

disjoint numbered disks inside the unit disk) is an operad of little disks in our sense.

The functor of singular chains C sing
� : Top ! Complexes has a natural tensor

structure given by the Eilenberg–Zilber map EZ: C sing
� ðX Þ � C sing

� ðYÞ ! C sing
�

ðX � Y Þ. Therefore, for a topological operad O, the collection C sing
� ðOð�ÞÞ has a

structure of a dg-operad. The structure map of the ith insertion is

C sing
� ðOðnÞÞ � C sing

� ðOðmÞÞ �!
EZ

C sing
� ðOðnÞ � OðmÞÞ �!

oO
i�

C sing
� ðOðn þ m � 1ÞÞ;

where oO
i is the structure map of the ith insertion in O.

For a small square operad X consider the operad E2ðX Þ ¼ C sing
� ðX Þ. Any two such

operads are quasi-isomorphic, where quasi-isomorphic means connected by a chain

of quasi-isomorphisms. In particular, the homology operad of any of E2ðX Þ is the

operad e2 controlling Gerstenhaber algebras (see Section 4 for the definition of

e2). Our goal is to show that.

THEOREM 2.1. Any operad E2ðX Þ is quasi-isomorphic to its homology operad e2.

It suffices to prove this theorem only for one operad X of little disks.

3. Realization of E2

3.1. OPERAD OF CATEGORIES PaBn (AFTER [1])

First, let us reproduce from [1] the definition of the category PaBn. Let Bn ðPBnÞ be
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the group of braids (pure braids) with n strands, let Sn be the symmetric group. Let

p: Bn ! Sn be the canonical projection with the kernel PBn. We assume that the

strands of any braid are numbered in the order determined by their origins.

The objects of the category PBn are parenthesized permutations of elements

1; 2; . . . ; n (that is pairs ðs; pÞ, where s 2 Sn and p is a parenthesizing of the non-

associative product of n elements). The morphisms between ðs1; p1Þ and ðs2; p2Þ are

such braids from Bn that any strand joins an element of s1 with the same element of s2,

in other words, Morððs1; p1Þ; ðs2; p2ÞÞ ¼ p�1ðs�1
2 s1Þ. The composition law is induced

from the one on Bn. The symmetric group Sn acts on PaBn via renumbering the

objects Tsðs1; p1Þ ¼ ðss1; p1Þ and it acts identically on morphisms.

The collection of categories PaBn form an operad. Indeed, the collection ObPaB�

forms a free operad in the category of sets generated by one binary noncommutative

operation. Let us describe the structure map ok of the insertion into the kth position

on the level of morphisms. Suppose we insert y: ðs1; p1Þ ! ðs2; p2Þ into x: ðs3; p3Þ !

ðs4; p4Þ. We replace the strand number s�1
3 ðkÞ of the braid x by the braid y made

very narrow.

3.2. OPERAD OF CLASSIFYING SPACES

We have the functor of taking the nerve N: Cat ! DoSets and the functor of

topological realization j j: DoSets ! Cellular spaces. These functors behave well

with respect to the symmetric monoidal structures, therefore the collection of

cellular complexes Xn ¼ jNPaBnj forms a cellular operad. One checks that this

operad is a little disks operad. Indeed, let PaB0
n be the category whose objects

are pairs ðx; yÞ, where x belongs to the braid group Bn and y is a parenthesizing

of the non-associative product of n elements, and there is a unique morphism

between any two objects. We have a free left action of Bn on PaB0
n: ðx; yÞ !

ðgx; yÞÞ and a braided operad structure on PaB0
� (the structure maps are defined

similarly to PaBn). One checks that the corresponding operad of classifying spaces

is a topological B1-operad and that the corresponding little disks operad is

isomorphic to X�.

Consider the corresponding chain operad. Let C�ðNPaBnÞ be the chain complex

over Q of NPaBn as a simplicial set. The collection C�ðNPaBnÞ forms a dg-operad

(via the Eilenberg–Zilber map). Since C�ðNPaBnÞ is just a bar complex of the

category PaBn, this operad will be denoted by C�ðPaB�Þ. We have a canonical

quasi-isomorphism of operads C�ðPaB�Þ ! C sing
� jNPaB�j. Therefore, it suffices to

construct a quasi-isomorphism of C�ðPaB�Þ and e2.

4. Operad of Algebras Apb
n and Construction of Quasi-isomorphism

By definition [3], Apb
n is the algebra over Q of power series in the noncommutative

variables

tij; 14 i; j4 n; i 6¼ j; tij ¼ tji ð2Þ
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with relations

½tij þ tik; tjk� ¼ 0: ð3Þ

Let In be the double-sided ideal generated by all tij. We have a canonical projection

w: Apb
n ! Apb

n =In ffi Q: ð4Þ

The symmetric group Sn acts naturally on Apb
n so that Tstij ¼ tsðiÞsðjÞ. The collection

Apb
n forms an operad in the category of algebras in a well-known way. The map of the

insertion into the ith position oi: Apb
n � Apb

m ! A
pb
nþm�1 looks as follows.

Let

fðkÞ ¼
k; k4 i;
k þ m � 1; k > i:

�

Then

oiðtpq � 1Þ ¼
tfðpÞfðqÞ; p; q 6¼ i;Piþm�1

r¼i trfðqÞ; p ¼ i;

�

oið1 � tpqÞ ¼ tiþp�1;iþq�1:

Any algebra with unit over Q gives rise to a Q-additive category CA with one

object. Denote by QCat the category of small Q-additive categories, and by

QCat0 ¼ QCat=CQ the over-category of QCat over CQ. Its objects are the elements

of MorQCatðx;CQÞ, where x 2 QCat. A morphism between f and c, where

f: x ! CQ; c: y ! CQ, is a morphism s: x ! y in QCat such that sc ¼ f. This

category has a clear symmetric monoidal structure. We have the functor of nerve

NQ: QCat0 ! DoVect, which is the straight analogue of the nerve of an arbitrary

category, and the functor C�: D
oVect ! Complexes. Both of these functors have

tensor structure (on the latter functor it is defined via the Eilenberg–Zilber map),

therefore we have a through functor QCat0 ! Complexes and the induced functor

QCat0-Operads ! dg-Operads;

which will be denoted by CQ
� .

The map (4) produces a morphism w�: C
A

pb
n
! CQ and defines an object

OAðnÞ 2 QCat0. The operad structure on Apb
n defines an operad structure on the

collection OAðnÞ. The complex CQ
� ðOAðnÞÞ looks as follows: CQ

n ðOAðkÞÞ ffi A
pb�n
k ;

da1 � � � � � an ¼ wða1Þa2 � � � � � an � a1a2 � � � � � an þ � � �

þ ð�1Þn�1a1 � � � � � an�1wðanÞ:

This is the bar complex for TorApb
n ðApb

n=In;A
pb
n=InÞ.

Let e2 be the operad of graded vector spaces governing the Gerstenhaber algebras.

It is generated by two binary operations: the commutative associative multiplication

of degree zero, which is denoted by �, and the commutative bracket of degree �1

denoted by f; g.
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These operations satisfy the Leibniz identity

fab; cg ¼ afb; cg þ ð�1Þbðcþ1Þ
fa; cgb

and the Jacoby identity

ð�1Þjajfa; fb; cgg þ ð�1Þjajjbjþjbj
fb; fa; cgg þ ð�1Þjajjcjþjbjjcjþjcj

fc; fa; bgg ¼ 0:

We have a morphism of operads

k: e2 ! CQ
� ðOAÞ; ð5Þ

which is defined on e2ð2Þ as follows:

kð�Þ ¼ 1 2 CQ
0 ðOAÞ; kðf; gÞ ¼ t12 2 CQ

1 ðOAÞ:

Direct check shows that this map respects the relations in e2.

PROPOSITION 4.1. The map k is a quasi-isomorphism of operads.

Proof. Let gn be the graded Lie algebra generated by the elements (2) and

relations (3), and the grading is defined by setting jtijj ¼ 1. Then the universal

enveloping algebra Ugn is a graded associative algebra, and Apb
n is the completion of

Ugn with respect to the grading. The algebras Ug� form an operad with the same

structure maps as in Apb
� . The inclusion

Ugn ! Apb
n ð6Þ

is a morphism of operads. We have a canonical projection w: Ugn ! Q, therefore the

collection CUg� forms an operad in QCat0 and we have a dg-operad CQ
� CUg� which

will be denoted by CQ
� Ug�. The injection (6) induces a morphism of operads

i�: CQ
� ðUg�Þ ! CQ

� ðOAÞ: ð7Þ

It is clear that TorApb
n

� ðApb
n =In;A

pb
n =InÞ is the same as the completion of

H�ðgnÞ ffi TorUgn
� ðQ;QÞ ffi H�ðC

Q
� ðUgnÞÞ

with respect to the grading induced from gn.

Let us study H�ðgnÞ. We have a natural injection gn�1 ! gn. One sees that the Lie

sub-algebra �n � gn generated by tnk, k ¼ 1; . . . ; n � 1 is free and is an ideal in gn.

Also, we have gn ¼ �n � gn�1 in the category of vector spaces. The Serre–Hochschild

spectral sequence E2
�;� ¼ H�ðgn�1;H��nÞ ) H�ðgnÞ collapses at E 2 and shows that

H�ðgnÞ ffi H�ðgn�1Þ �

�Mn�1

k¼1

H�ðgn�1Þ

�
½�1�; ð8Þ

where the first summand is the image of H�ðgn�1Þ under the injection gn�1 ! gn.

This implies by induction that the homology of gn is finite-dimensional, therefore

the map (7) is a quasi-isomorphism (because the homology of the right-hand side

is the completion of the homology of the left-hand side).

We are now going to make the isomorphism (8) more specific. First, note that g2 is

one-dimensional, therefore H0ðg2Þ ¼ Q; H1ðg2Þ ¼ Q½�1�; Hiðg2Þ ¼ 0 for i > 1. The
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operadic maps of insertion into the kth position ok: Ugn�1 � Ug2 ! Ugn, where

k ¼ 1; 2; . . . ; n � 1 induce maps o�k : H�ðgn�1Þ �H�ðg2Þ ! H�ðgnÞ, and the ðk þ 1Þ-th

summand in (8) is equal to o�kðH�ðgn�1Þ � H1ðg2ÞÞ. The induction argument

shows that

(1) The homology operad n 7!H�ðgnÞ ffi H�ðC
Q
� ðUgnÞÞ is generated by H�ðg2Þ,

therefore the homology operad of CQ
� ðOAðnÞÞ is generated by the homology of

CQ
� ðOAð2ÞÞ.

(2) The total dimension of H�ðgnÞ and of the homology of CQ
� ðOAðnÞÞ is n!.

The first statement implies that the map (5) is surjective on the homology level, and

the second statement means that the map (5) is bijective since dim e2ðnÞ ¼ n!.

Let QðPaBnÞ be the Q-additive category generated by PaBn. We have a map

QðPaBnÞ ! CQ sending all morphisms from PaBn to Id. Thus, QðPaBnÞ 2 QCat0.

The operadic structure on PaB� induces the one on QPaB�.

Any associator F 2 A
pb
3 over Q produces a map of operads

f: QðPaB�Þ ! OAð�Þ: ð9Þ

Indeed, define f on Ob PaBn by sending any object to the only object of OAðnÞ.

There are only two objects in PaB2, let us denote them x1x2 and x2x1. The mor-

phisms between these two objects correspond to the non-pure braids. Let x 2 B2

be the generator. We define fðxÞ ¼ et12=2. Take the two objects ðx1x2Þx3 and

x1ðx2x3Þ of PaB3 corresponding to the identical permutation e 2 S3, and the mor-

phism i between them, corresponding to the identical braid eb 2 B3. Define fðiÞ ¼ F.

Since the operad PaB� is generated by x and i, these conditions define f uniquely.

The definition of the associator is equivalent to the fact that f is well-defined. This

construction is very similar to the one from [1].

The map f produces a map of operads CQ
� PaB� ffi CQ

� ðQðPaB�ÞÞ ! C�ðOAÞ. It is

well known that the homology operad of C�PaB� is e2. It is easy to check that f is a

quasi-isomorphism for � ¼ 2 and hence it is a quasi-isomorphism of operads (since

e2 is generated by e2ð2Þ). By Proposition 4.1, k is a quasi-isomorphism. Thus, the

chain operad C�PaB� is quasi-isomorphic to e2. &
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