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Abstract. This paper deals with an index which is different in general from the topological index
defined by Atiyah and Singer because we loosen the normalization property. The intrinsic relation
of this new index with operations ik -theory is explained. It is also shown that if we change the
normalization axiom, the corresponding index is well-defined and may be expressed in terms of the
topological index.
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1. Introduction

The purpose of this paper is to define an index which is a generalization of the
topological equivariant index introduced by Atiyah and Singer. The new index is
allowed to have a different normalization condition. The main results of the paper
are presented in Theorems 4.2 and 4.3.

It turns out that our modification of the normalization axiom cannot be completely
arbitrary. There are strong relations imposed on the set of parameters involved. In
the third section of the paper we find all those relations. We prove that under those
restrictions the generalized topological index exists and, moreover, it is unique. The
final formula for the new index is written in terms of an operatiorKistheory.

The normalization proposed by Atiyah and Singer is the most natural one for the
index theorem purposes and our results imply the following statements. First, the
normalization axiom for the index is not redundant and it does not follow from the
other axioms. Second, all possible changes of the normalization property do not have
substantially new features because of the close relations to the classical theory which
we exhibit.

The authors want to thank Victor Nistor for the statement of the problem.

2. Equivariant K-Theory and Topological Index

In this section, we shall briefly recall some facts ab&utheory in the case when

a compact Lie grouf; acts on a manifold as well as on complex vector bundles
E over it. This subject was developed in [3] and [5]. We assume that diffeomorphic
actions ofG commute with the projectiom: E— X. If we allow subtraction, the set of
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equivalence classes 6fbundles under the natural equivalence relation generates the
Grothendieck groug ¢ (X). As it was shown in [5], thiK -theory has such features

as Bott periodicity and Thom isomorphism. Unless stated otherwise, we always
considerK -theory with compact support which is formed Bitriples (E, F, o),
where E and F are G-bundles on our manifold and is a G-morphism between
them that is an isomorphism outside a compact set. Also when we are talking about
a G-bundleE over aG-manifold X we always assume that the groGpacts onE

and its action covers the action 6fon X. The expressio-bundledoesnot refer

to a bundle with the structure group.

We denote byR(G) the ring of characters for a compact Lie groGp If our
manifold is just a point O, then one h#&&;(O) = R(G). The groupKg(X) is
canonically ank(G)-module.

For eachG-manifold X, its tangent bundle has the obvioGsaction, and its
complexificationT“X = T X ®g C is also aG-bundle overX.

Now we describe (cf. [1]) several important morphisms in the equivaant
theory. We will consider &-bundleE over X whose structure group & such that
E corresponds to a princip&l with the structure group/. ThusP is acted upon by
G x H and if F is a fiber of E then of courseE = F x gy P. Now we suppose that
the action ofH on F can be extended to be an actionfx H. Then one can form
a multiplication

Ke(TX) ® Kxu(TF) - KG(TE) (2.1)

as follows. Given an elemente Kg« g (T F) we obtain an element*a € Kgx g
(P x TF) (p is a projection on the second factor). This element can be treated
as an element of th&;-group of P x iy T F which is the vertical tangent bundle
corresponding to the bundig over X: E > X. Finally, one takes its cup-product
with an element oK (7*T X) and one ends up with an element K§ ((P x g
TF)®n*TX)~ Kg(TE).

Itis easy to see th& (T X) is a module over the rin§ ¢ (X) in a usual fashion.
This allows us to define a multiplication

Kc(X)® Kg(TX)>Kg(X x TX) ]—*> Kc(TX) (2.2)

as the composition of the cup product with the pullback of the indicative map
JTX - X xTX, j(t) = (;rt, t). In terms of triples [KB] it looks like

(T*E1® E2, 1*F1 ® F2, m%01 ® 02),

where(E1, F1, 01) € Kg(X) and(E2, F», 02) € Kg(T X).
Besides we shall need a map

up.R(G x H) — Kg(X), (2.3)

which is simply the change of fiber in our princip&lbundle P (on whichG acts
as well) by the virtualH-module which represents an elementiRgic x H).
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The index theorem proved by Atiyah and Singer [1] asserts that the analytical and
topological indices coincide a&(G)-module homomorphism&s (T X) — R(G).
Essentially their proof was based on a set of three axioms which uniquely characterize
the topological index. They showed that the analytical index also satisfies those
axioms. We will see how the index changes if we modify one of the axioms. For our
purposes we shall reproduce the definition of an index function:

DEFINITION 2.1. An index function is anR(G)-module homomorphism
indé: Kc(TX) — R(G) functorial with respect t@;-diffeomorphisms ofX and if
¢: G1 — G2 is a group homomorphism, the diagram

*

¢
KG,(TX) —— K¢, (TX)

indg;, l indg;, l
¢*

R(G2) —— R(Gy)
is commutative.
An index function is called simplgn index(denotedjg) if it satisfies the following
two axioms. Ifi: U — X is an openG-embedding, there is the naturally induced
homomorphism oK g-groupsK (T U) L> Kg(TX).
AXIOM A ( Excision axiom Under the above assumptiod§ = JX o ir.
AXIOM B (Multiplicative axion). Fora € Kg(TX) andb € KgxyTF

JE@b) = g&(a - up(TE, b)),

whereu p comes from Equation (2.3), the produdt is taken as in Equation (2.1)
and the structure o€ (T X) as aK g (X)-module is determined by Equation (2.2).

For each closedr-embedding of manifolds. X — Y, the Gysin homomorphism
i:Kg(TX) - Kg(TY) can be naturally defined. It is well-known that for each
G-spaceX there exists &-embedding ofX into an underlying space of some real
G-moduleY. The topological index is now the composite map

tind % (jnloi;: KG(TX) = R(G),

wherej: O — Y is theinclusion of the origin an& ; (T O) is identified withR (G).
It is important to notice that the topological index does not depend on a choice of a
G-moduleY. Finally, the topological index has the following normalization feature:
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AXIOM N. Let the inclusion of the originj: O < R” induce the Gysin homo-
morphismji: R(O(n)) — Ko (TR™). Then in%"(n)(j!(l)) = 1€ R(O(n)).

It was shown by Atiyah and Singer in [1] that an index function satisfying axioms
A, B, and N coincides with the topological index.

3. Modified Normalization

For our index7 we modify the normalization axiom introduced above in the follow-
ing fashion. Suppose that we have a fanfily},,cn, Whereb,, € R(O(n)).

AXIOM N *. With the notation and assumptions in Axidmjg(qn)(j!(l)) =b, €
R(O(n)).

Inthe present section we will determine all possiblgl in accordance to Axioms
A, B, and N

An embedding @) x O(m) — O(n + m) gives us the following consequence
of the multiplicative axiom.

LEMMA 3.1. Seth,, ® by, (x, ¥) =def bn(x)byn, (y), wherex € O(n), y € O(m), and
(x,y) € O(n +m). Thenbn+m|0(n)><0(m) =by, @ by.
Proof. If a; € K¢, (T X;), wherei = 1, 2, then from the multiplicative axiom we
haveJ; g2 (aaz) = T (a1) Jg2 @),
Now take
X1=R", G1=0@1n), X2=R", G=0(@m),
ar = j{" (@) andaz = j{" (1.

Herej™: O < R™ andj™: O < R”" are inclusions of the origins. o

If we consider a simple case of a bundle such that both the base and the fiber are
just a point, then the multiplicative axiom yieltls = 1 orbg = 0. In the latter case,
J = Oidentically. So we only need to investigate the former case.

Let us find all the sets di,, obeying Lemma 3.1.

LEMMA 3.2. There exists a polynomial(x) such that forA € O(n)
b, (A) = detg(A). (3.1)

Furthemore,g(x)q(1/x) € Z[x,1/x] andgq(1), g(—1) € Z and any polynomial
satisfying these conditions gives rig®/ Equation(3.1))to a familyb, € R(O(n))
satisfying Lemma 3.1.

Proof. Every matrixM € O(n) is conjugate to a matrid consisting of several
blocks placed along the main diagonal. Every block is either

__( cosy  siny _
By = <—sim// COSIﬁ) or Cq = (£1).
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DuetoLemma3.1we only needto find a polynomgialich thab,(By,) = detg(By)
and

b1(+1) = g(+1). (3.2)

Note thath; € R(O(2)), henceba(By) = p(€V) + p(e~¥) for some polynomial
p with integer coefficients. It is a fact that there exists a polynogia) such that

p(x) + p(l/x) = q(x)q(1/x). (3.3)
We see thab,(By,) = detg(By ). Now Lemma 3.1 implies that

ba(+(o 2)) =baicer

hencey (1) = +b1(C4+) andg(—1) = +b1(C-). Sinceb1(C4) are integer numbers,
q(x£1) are also integers. Note that the identity (3.3) still holds if we replaeé by
+q(x) or £xq(x). By means of these substitutions we can get rid of the signs and
get Equation (3.2).

Now let us prove the inverse statement. First, we shall show that the correspond-
ing b, determined by, (A) = detg(A) for A € O(n) are inR(O(n)). Recall that
on a maximal torus aly € R(O(n)) look as follows:

(1) Forn = 2k, one has

By, 0 - 0
0 B 0
f T
0 0 - By

:P(eiwl_i_e—iwl’eiWZ_‘_e—iWZ,“.’eilp'k_‘_e—ilpk),

whereP is a symmetric polynomial with integer coefficients; and i§ the identity
of O(n) then

-1 0 0
| % Y =xwmoda.
o 0 .-.- 1
(2) Forn = 2k + 1 one has
1 0 --- 0
y 0 By, -~ O
0 0 --- By,

= P@EV e V1 gV2 pgiV2 | @Vk 4 g7V
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-1 0 0
0 1 ..-0
o DT T [= ainmoda,

Now it is easy to check that(A) = detg(A) satisfies the conditions of the lemma.
For example, if» = 2k + 1 we have

1 0 - 0
S . 0 By, - O
ba(Y) = q() [[a(€¥)qe V), wherey = |7 Pyt " °
=1
J 0 0 PN B,‘//k

It is a fact that for each polynomigl(x) such thaig (x)q(1/x) € Z[x, 1/x] there
exists another polynomial(x) € Z[x] such thatg(x)g(1/x) = a(x + 1/x). So
we getb,(Y) = ¢(1) ]'[f:la(eiWi + e~¥i), which is a symmetric polynomial in
&Vi + e~V with integer coefficients. Finally,

-1 0 --- 0
0O 1 --- 0
o 0 .-.- 1

= q(-Dg* D = ¢*(=Dg™ (D) = ¢°(Dg™ (D = q(I)(mod 2.
Here we used the fact that singéx)q(1/x) € Z[x, 1/x], one has

¢%(=1) = q(=1)q(1/ — 1) = q(Dq(1/1)(mod 2.

The case: = 2k can be treated similarly and the conditions of Lemma 3.1 can be
checked directly. O

4. Operation and Index

Our next goal is to define an operationAiitheory [4] which is determined by the
set{b,} and to prove the existence and uniqueness of the new index. First, for a
spaceX and a real vector bundIg over it coming from a principal bundl@ we

can construct an element of compl&xtheory by changing a fiber tB,,, wheren

is the dimension o¥. Then this operation may be extended to the wholgroup

of X. That is how we get the operationK*(X) — K (X). This operation can be
constructed in equivariant case too when a gréugcts onV = P xg(,) C" and

the action ofG onC" is trivial.

LEMMA 4.1. If a, b € K&(X), thenv(a + b) = v(a)v(b).
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Proof. The fact that for vector bundles ovéf the equalityv(V & W) =
v(V)v(W) holds is a straightforward consequence of Lemma 3.1. Therefore it is
true for the whole group ¢ (X). O

Let us suppose that our spa&eis G-equivariantly embedded in @-module
R¥:i: X < RK in such a way that the groug may be viewed as a subgroup of
O(k). If the dimension ofX is m, putn = k — m for the dimension of the normal
bundle N X to X which is isomorphic to a tubular neighbourhoodXfin R*. If
k : NX — R is the corresponding embedding of this tubular neighbourhood, then
one has fot € Kg(TX):

TYX (2by) = T X (i12) = TE (ki) = belgt-ind® (kirz) = by |ot-indX (2),

by excision axiom and definition of topological index which respects Gysin homo-
morphism. The multiplicative axiom thus produces the following equality:

TEYX (2by) = TE (2V(NX)) = br|gtindX (2).

Now putav(T X) instead ofz and notice that (T X)v(NX) = b, because
TX & NX = X x R with the component-wis&-action. So we arrive to the fact
that fora € Kg(T X)

brlc IE (@) = br|gt-indE (av(T X)). (4.1)

THEOREM 4.2.The index7 defined b)ﬂg(a) = t—indg(av(TX)) satisfies axioms
A, Band N.

Proof. The modified normalization axiom obviously holds {@r The excision
axiom is a consequence of the observation that for an open embdddingY the
tangent bundle ot/ is the restriction of the tangent bundle ©f Let us check the
multiplicative axiom. IfE is a fiber bundle oveKX with a fiberF: F <— E X X,
then the tangent spacBE as a bundle ovelE allows the G-equivariant split-
ting: TE = n*TX & V, whereV is the corresponding vertical bundle. Moreover,
VW(TE) = v(z*(TX))v(V). From the definition of the multiplication (2.1) we get
fora € Kg(TX) andb € Kgx gy (T F) thatabv(TE) = (av(TX))(bv(TF)). O

Now the question is whether we can always omhji; in the both sides of the
equality (4.1), i.e. to prove the uniqueness of the index.

THEOREM 4.3.An index which satisfies axioms A, B andislunique.

Proof. First, consider the case whén(1) ## 0 which in accordance to Lemma
3.1limpliesthab, (1) # 0. Note that from Equation (4.1) itimmediately follows that
our indexJ is uniquely defined at the identity of the group. feoe G, let X8 be a
fixed point set and/, be the localization of aR (G)-moduleM with respect to an
ideal generated by all characters vanishing at the conjugacy clas$obposition
2.8 from [2] says that

inKg(TX®)y - KGg(TX)g, (4.2)
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is an isomorphism, whetie X8 — X is the inclusion. Lefj: NX8 — X be an open
embedding of a tubular neighbourhood dn&$ — N X8 be the embedding onto
zero section. Excision axiom and isomorphism (4.2) yield that to defiloa X at
the class ofg, it suffices to do it for elementsa, a € Kg(T X¢),. Multiplicative
axiom reduces that definition just to the computation of the indeK (7' X8), =
K(TX8)® R(G),. Todo it let us notice thaf is anR(G)-module homomorphism
and that7 is uniquely defined at the identity @f.

To treat the casé1(1) = 0 we need some preparation first. In this case the
polynomialg (x) from Lemma 3.1 is such that(1) = 0, hencey(x) = (x — Dr(x),
andr(x)r(1/x) € Z[x,1/x]. Thus, according to Lemma 3.2, the formula in (3.3)
where g is substituted by defines a set of @)-modulesC, and an operation
w: K*(X) — K(X) similarly to the operatiom: for a bundleE = P xo,) V over
X wesetu(E) =P X0On) Cp.

LEMMA 4.4. Letg € G andg # e, the identity element. Then

JE @)y = TE (Fap(NXE))l,,

whereN X8 is the normal bundle for the embedding(é — X.
Proof. Proposition 2.8 from [2] says that the isomorphism in (4.2) looks like

a
S(-DIA(NXE)E
Moreover, from the multiplicative axiom it follows that

J& k) = TF* v(N X))
foranyb € Kg(T X8). Therefore,

hi* a, aecKg(TX).

a

X Xk
jG' (Cl) - jG (l!l Z(—l)lAl(NXg)R

g

= J&a* VINX9)|g = T&" (*ap(NX9)lg. O

a
Y(=DIAY(NXS)C
Let us pass to the proof of the theorem. The proof for the bagh # 0 implies
that to prove the uniqueness of the index it suffices to do it only for the nonequivariant
index. Thus now, in the cadg (1) = 0, we are done if we prove thgtX = 0. To
show this vanishing, consider the product
Xx---xX
D
p
for some prime numbep. The cyclic grougpZ, acts on this product by cyclic per-
mutations. Obviously for any € Z,,, g # e,
(X x---xX)§=A,
————
p
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where A is the diagonal. Let: € K (T X). Consider theZ,-equivariant element
ax---xaeK({TX x---x X))and compute its index by Lemma 4.4. One has

T K@ x - x a)lg = T ERINA)) g,

wheret = a x- - - xa|r A With the obvious action df,,. Hence, we have the character
defined on the whole group:

X =J57 " ax - x a) = T (Eu(NA)) € R(Zp)

and x (g) vanishes for allg # e. It is well-known that in this case divides

x (e). Let us computeq (e). Note thaté as a nonequivariant bundle is isomorphic
toa? € K(TX)andK (T X) is a nilpotent ring. Hence, vanishes fop big enough.
The multiplicative axiom yields7***X(a x --- x a) = (7X(a))?. Thus, forp
big enough we haveg (e) = (jeX(a))P = 0(mod p) which is only possible when
JX(a) = 0, whence the vanishing of the nonequivariant index follows. O

Remark The proof of the Theorem 4.3 implies that in nonequivariant situation
J = 0 is provided byb1(1) = 0. On the account of uniqueness it follows that
t-ind¥ (av(T X)) = 0, though it is just due to ah(T X)) = 0.
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