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Abstract. This paper deals with an index which is different in general from the topological index
defined by Atiyah and Singer because we loosen the normalization property. The intrinsic relation
of this new index with operations inK-theory is explained. It is also shown that if we change the
normalization axiom, the corresponding index is well-defined and may be expressed in terms of the
topological index.
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1. Introduction

The purpose of this paper is to define an index which is a generalization of the
topological equivariant index introduced by Atiyah and Singer. The new index is
allowed to have a different normalization condition. The main results of the paper
are presented in Theorems 4.2 and 4.3.

It turns out that our modification of the normalization axiom cannot be completely
arbitrary. There are strong relations imposed on the set of parameters involved. In
the third section of the paper we find all those relations. We prove that under those
restrictions the generalized topological index exists and, moreover, it is unique. The
final formula for the new index is written in terms of an operation inK-theory.

The normalization proposed by Atiyah and Singer is the most natural one for the
index theorem purposes and our results imply the following statements. First, the
normalization axiom for the index is not redundant and it does not follow from the
other axioms. Second, all possible changes of the normalization property do not have
substantially new features because of the close relations to the classical theory which
we exhibit.

The authors want to thank Victor Nistor for the statement of the problem.

2. Equivariant K-Theory and Topological Index

In this section, we shall briefly recall some facts aboutK-theory in the case when
a compact Lie groupG acts on a manifold as well as on complex vector bundles
E over it. This subject was developed in [3] and [5]. We assume that diffeomorphic
actions ofG commute with the projectionπ :E→X. If we allow subtraction, the set of
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equivalence classes ofG-bundles under the natural equivalence relation generates the
Grothendieck groupKG(X). As it was shown in [5], thisK-theory has such features
as Bott periodicity and Thom isomorphism. Unless stated otherwise, we always
considerK-theory with compact support which is formed byG-triples (E, F, σ ),
whereE andF areG-bundles on our manifold andσ is aG-morphism between
them that is an isomorphism outside a compact set. Also when we are talking about
aG-bundleE over aG-manifoldX we always assume that the groupG acts onE
and its action covers the action ofG onX. The expressionG-bundledoesnot refer
to a bundle with the structure groupG.

We denote byR(G) the ring of characters for a compact Lie groupG. If our
manifold is just a point O, then one hasKG(O) = R(G). The groupKG(X) is
canonically anR(G)-module.

For eachG-manifoldX, its tangent bundle has the obviousG-action, and its
complexificationT cX = TX ⊗R C is also aG-bundle overX.

Now we describe (cf. [1]) several important morphisms in the equivariantK-
theory. We will consider aG-bundleE overX whose structure group isH such that
E corresponds to a principalP with the structure groupH . ThusP is acted upon by
G×H and ifF is a fiber ofE then of courseE = F ×H P . Now we suppose that
the action ofH onF can be extended to be an action ofG×H . Then one can form
a multiplication

KG(TX)⊗KG×H (T F) → KG(T E) (2.1)

as follows. Given an elementa ∈ KG×H (T F) we obtain an elementp∗a ∈ KG×H
(P × T F) (p is a projection on the second factor). This element can be treated
as an element of theKG-group ofP ×H T F which is the vertical tangent bundle
corresponding to the bundleE overX: E

π→ X. Finally, one takes its cup-product
with an element ofKG(π∗TX) and one ends up with an element ofKG((P ×H

T F)⊕ π∗TX) ' KG(T E).
It is easy to see thatKG(TX) is a module over the ringKG(X) in a usual fashion.

This allows us to define a multiplication

KG(X)⊗KG(TX)→KG(X × TX)
j∗
→ KG(TX) (2.2)

as the composition of the cup product with the pullback of the indicative map
j : TX → X × TX, j (t) = (πt, t). In terms of triples [KB] it looks like

(π∗E1 ⊗ E2, π
∗F1 ⊗ F2, π

∗σ1 ⊗ σ2),

where(E1, F1, σ1) ∈ KG(X) and(E2, F2, σ2) ∈ KG(TX).
Besides we shall need a map

µP :R(G×H) → KG(X), (2.3)

which is simply the change of fiber in our principalH -bundleP (on whichG acts
as well) by the virtualH -module which represents an element ofR(G×H).
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The index theorem proved by Atiyah and Singer [1] asserts that the analytical and
topological indices coincide asR(G)-module homomorphismsKG(TX) → R(G).

Essentially their proof was based on a set of three axioms which uniquely characterize
the topological index. They showed that the analytical index also satisfies those
axioms. We will see how the index changes if we modify one of the axioms. For our
purposes we shall reproduce the definition of an index function:

DEFINITION 2.1. An index function is anR(G)-module homomorphism
indXG: KG(TX) → R(G) functorial with respect toG-diffeomorphisms ofX and if
φ:G1 → G2 is a group homomorphism, the diagram

KG2(T X)
φ∗

−−−→ KG1(T X)

indXG2

||↓ indXG1

||↓

R(G2)
φ∗

−−−→ R(G1)

is commutative.

An index function is called simplyan index(denotedJXG ) if it satisfies the following
two axioms. Ifi:U ↪→ X is an openG-embedding, there is the naturally induced

homomorphism ofKG-groupsKG(T U)
i!−−→ KG(TX).

AXIOM A ( Excision axiom). Under the above assumptionsJ UG = JXG ◦ i! .
AXIOM B ( Multiplicative axiom). Fora ∈ KG(TX) andb ∈ KG×HT F

J EG (ab) = JXG (a · µP (J FG×H (b))),

whereµP comes from Equation (2.3), the productab is taken as in Equation (2.1)
and the structure ofKG(TX) as aKG(X)-module is determined by Equation (2.2).

For each closedG-embedding of manifoldsi:X ↪→ Y , the Gysin homomorphism
i! :KG(TX) → KG(T Y ) can be naturally defined. It is well-known that for each
G-spaceX there exists aG-embedding ofX into an underlying space of some real
G-moduleY . The topological index is now the composite map

t-ind def= (j!)
−1 ◦ i! : KG(TX) → R(G),

wherej : O → Y is the inclusion of the origin andKG(TO) is identified withR(G).
It is important to notice that the topological index does not depend on a choice of a
G-moduleY . Finally, the topological index has the following normalization feature:
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AXIOM N. Let the inclusion of the originj : O ↪→ Rn induce the Gysin homo-
morphismj! :R(O(n)) → KO(n)(T Rn). Then indR

n

O(n)(j!(1)) = 1 ∈ R(O(n)).
It was shown by Atiyah and Singer in [1] that an index function satisfying axioms

A, B, and N coincides with the topological index.

3. Modified Normalization

For our indexJ we modify the normalization axiom introduced above in the follow-
ing fashion. Suppose that we have a family{bn}n∈N, wherebn ∈ R(O(n)).

AXIOM N ∗. With the notation and assumptions in AxiomN J Rn
O(n)(j!(1)) = bn ∈

R(O(n)).
In the present section we will determine all possible{bn} in accordance to Axioms

A, B, and N∗.
An embedding O(n)× O(m) ↪→ O(n+m) gives us the following consequence

of the multiplicative axiom.

LEMMA 3.1. Setbn⊗ bm(x, y) =def bn(x)bm(y), wherex ∈ O(n), y ∈ O(m), and
(x, y) ∈ O(n+m). Thenbn+m|O(n)×O(m) = bn ⊗ bm.

Proof. If ai ∈ KGi (T Xi), wherei = 1, 2, then from the multiplicative axiom we

haveJX1×X2
G1×G2

(a1a2) = JX1
G1
(a1)JX2

G2
(a2).

Now take

X1 = Rn, G1 = O(n), X2 = Rm, G2 = O(m),

a1 = j
(m)
! (1) anda2 = j

(n)
! (1).

Herej (m): O ↪→ Rm andj (n): O ↪→ Rn are inclusions of the origins. 2

If we consider a simple case of a bundle such that both the base and the fiber are
just a point, then the multiplicative axiom yieldsb0 = 1 orb0 = 0. In the latter case,
J = 0 identically. So we only need to investigate the former case.

Let us find all the sets ofbn obeying Lemma 3.1.

LEMMA 3.2. There exists a polynomialq(x) such that forA ∈ O(n)

bn(A) = detq(A). (3.1)

Furthemore,q(x)q(1/x) ∈ Z[x, 1/x] and q(1), q(−1) ∈ Z and any polynomial
satisfying these conditions gives rise(by Equation(3.1)) to a familybn ∈ R(O(n))
satisfying Lemma 3.1.

Proof. Every matrixM ∈ O(n) is conjugate to a matrixA consisting of several
blocks placed along the main diagonal. Every block is either

Bψ =
(

cosψ sinψ
− sinψ cosψ

)
or C± = (±1).
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Due to Lemma 3.1 we only need to find a polynomialq such thatb2(Bψ) = detq(Bψ)
and

b1(±1) = q(±1). (3.2)

Note thatb2 ∈ R(O(2)), henceb2(Bψ) = p(eiψ ) + p(e−iψ ) for some polynomial
p with integer coefficients. It is a fact that there exists a polynomialq(x) such that

p(x)+ p(1/x) = q(x)q(1/x). (3.3)

We see thatb2(Bψ) = detq(Bψ). Now Lemma 3.1 implies that

b2

(
±

(
1 0
0 1

))
= b1(C±)2,

henceq(1) = ±b1(C+) andq(−1) = ±b1(C−). Sinceb1(C±) are integer numbers,
q(±1) are also integers. Note that the identity (3.3) still holds if we replaceq(x) by
±q(x) or ±xq(x). By means of these substitutions we can get rid of the signs and
get Equation (3.2).

Now let us prove the inverse statement. First, we shall show that the correspond-
ing bn determined bybn(A) = detq(A) for A ∈ O(n) are inR(O(n)). Recall that
on a maximal torus allχ ∈ R(O(n)) look as follows:

(1) Forn = 2k, one has

χ


Bψ1 0 · · · 0

0 Bψ2 · · · 0
· · · · · ·
0 0 · · · Bψk


= P(eiψ1 + e−iψ1, eiψ2 + e−iψ2, ...,eiψk + e−iψk ),

whereP is a symmetric polynomial with integer coefficients; and ifI is the identity
of O(n) then

χ


−1 0 · · · 0
0 1 · · · 0
· · · · · ·
0 0 · · · 1

 ≡ χ(I)(mod 2).

(2) Forn = 2k + 1 one has

χ


1 0 · · · 0
0 Bψ1 · · · 0
· · · · · ·
0 0 · · · Bψk


= P(eiψ1 + e−iψ1, eiψ2 + e−iψ2, ...,eiψk + e−iψk ),
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χ


−1 0 · · · 0
0 1 · · · 0
· · · · · ·
0 0 · · · 1

 ≡ χ(I)(mod 2).

Now it is easy to check thatχ(A) = detq(A) satisfies the conditions of the lemma.
For example, ifn = 2k + 1 we have

bn(Y ) = q(1)
k∏

j=1

q(eiψj )q(e−iψj ), where Y =


1 0 · · · 0
0 Bψ1 · · · 0
· · · · · ·
0 0 · · · Bψk

 .
It is a fact that for each polynomialq(x) such thatq(x)q(1/x) ∈ Z[x, 1/x] there
exists another polynomiala(x) ∈ Z[x] such thatq(x)q(1/x) = a(x + 1/x). So
we getbn(Y ) = q(1)

∏k
j=1 a(e

iψj + e−iψj ), which is a symmetric polynomial in

eiψj + e−iψj with integer coefficients. Finally,

χ


−1 0 · · · 0
0 1 · · · 0
· · · · · ·
0 0 · · · 1


= q(−1)q2k(1) ≡ q2(−1)q2k(1) ≡ q2(1)q2k(1) ≡ q(I )(mod 2).

Here we used the fact that sinceq(x)q(1/x) ∈ Z[x, 1/x], one has

q2(−1) = q(−1)q(1/− 1) ≡ q(1)q(1/1)(mod 2).

The casen = 2k can be treated similarly and the conditions of Lemma 3.1 can be
checked directly. 2

4. Operation and Index

Our next goal is to define an operation inK-theory [4] which is determined by the
set {bn} and to prove the existence and uniqueness of the new index. First, for a
spaceX and a real vector bundleV over it coming from a principal bundleP we
can construct an element of complexK-theory by changing a fiber toBn, wheren
is the dimension ofV . Then this operation may be extended to the wholeK-group
of X. That is how we get the operationν:KR(X) → K(X). This operation can be
constructed in equivariant case too when a groupG acts onV = P ×O(n) Cn and
the action ofG on Cn is trivial.

LEMMA 4.1. If a, b ∈ KR
G(X), thenν(a + b) = ν(a)ν(b).
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Proof. The fact that for vector bundles overX the equalityν(V ⊕ W) =
ν(V )ν(W) holds is a straightforward consequence of Lemma 3.1. Therefore it is
true for the whole groupKR

G(X). 2

Let us suppose that our spaceX is G-equivariantly embedded in aG-module
Rk: i:X ↪→ Rk in such a way that the groupG may be viewed as a subgroup of
O(k). If the dimension ofX is m, putn = k − m for the dimension of the normal
bundleNX to X which is isomorphic to a tubular neighbourhood ofX in Rk. If
k : NX ↪→ Rk is the corresponding embedding of this tubular neighbourhood, then
one has forz ∈ KG(TX):

JNXG (zb̃n) = JNXG (i!z) = J Rk
G (k!i!z) = bk|Gt-indRk

G (k!i!z) = bk|Gt-indXG(z),

by excision axiom and definition of topological index which respects Gysin homo-
morphism. The multiplicative axiom thus produces the following equality:

JNXG (zb̃n) = JXG (zν(NX)) = bk|Gt-indXG(z).

Now put aν(T X) instead ofz and notice thatν(T X)ν(NX) = bk, because
TX ⊕ NX = X × Rk with the component-wiseG-action. So we arrive to the fact
that fora ∈ KG(TX)

bk|GJXG (a) = bk|Gt-indXG(aν(T X)). (4.1)

THEOREM 4.2.The indexJ defined byJXG (a) = t-indXG(aν(T X)) satisfies axioms
A, B and N∗.

Proof. The modified normalization axiom obviously holds forJ . The excision
axiom is a consequence of the observation that for an open embeddingU ↪→ Y the
tangent bundle ofU is the restriction of the tangent bundle ofY . Let us check the
multiplicative axiom. IfE is a fiber bundle overX with a fiberF :F ↪→ E

π→ X,
then the tangent spaceT E as a bundle overE allows theG-equivariant split-
ting: T E = π∗TX ⊕ V , whereV is the corresponding vertical bundle. Moreover,
ν(T E) = ν(π∗(T X))ν(V ). From the definition of the multiplication (2.1) we get
for a ∈ KG(TX) andb ∈ KG×H (T F) thatabν(T E) = (aν(T X))(bν(T F )). 2

Now the question is whether we can always omitbk|G in the both sides of the
equality (4.1), i.e. to prove the uniqueness of the index.

THEOREM 4.3.An index which satisfies axioms A, B and N∗ is unique.
Proof. First, consider the case whenb1(1) 6= 0 which in accordance to Lemma

3.1 implies thatbn(1) 6= 0. Note that from Equation (4.1) it immediately follows that
our indexJ is uniquely defined at the identity of the group. Forg ∈ G, letXg be a
fixed point set andMg be the localization of anR(G)-moduleM with respect to an
ideal generated by all characters vanishing at the conjugacy class ofg. Proposition
2.8 from [2] says that

i! :KG(TX
g)g → KG(TX)g, (4.2)
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is an isomorphism, wherei:Xg → X is the inclusion. Letj :NXg → X be an open
embedding of a tubular neighbourhood andk:Xg → NXg be the embedding onto
zero section. Excision axiom and isomorphism (4.2) yield that to defineJ on X at
the class ofg, it suffices to do it for elementsk!a, a ∈ KG(TX

g)g. Multiplicative
axiom reduces that definition just to the computation of the index onKG(TX

g)g ∼=
K(TXg)⊗R(G)g. To do it let us notice thatJ is anR(G)-module homomorphism
and thatJ is uniquely defined at the identity ofG.

To treat the caseb1(1) = 0 we need some preparation first. In this case the
polynomialq(x) from Lemma 3.1 is such thatq(1) = 0, henceq(x) = (x− 1)r(x),
andr(x)r(1/x) ∈ Z[x, 1/x]. Thus, according to Lemma 3.2, the formula in (3.3)
whereq is substituted byr defines a set of O(n)-modulesCn and an operation
µ:KR(X) → K(X) similarly to the operationν: for a bundleE = P ×O(n) V over
X we setµ(E) = P ×O(n) Cn.

LEMMA 4.4. Letg ∈ G andg 6= e, the identity element. Then

JXG (a)|g = JXgG (i∗aµ(NXg))|g,
whereNXg is the normal bundle for the embeddingi:Xg → X.

Proof. Proposition 2.8 from [2] says that the isomorphism in (4.2) looks like

i!i
∗ a∑

(−1)i3i(NXg)C
= a, a ∈ KG(TX).

Moreover, from the multiplicative axiom it follows that

JXG (i!b) = JXgG (bν(NXg))

for anyb ∈ KG(TXg). Therefore,

JXG (a) = JXG (i!i∗
a∑

(−1)i3i(NXg)R
)|g

= JXG (i∗
a∑

(−1)i3i(NXg)C
ν(NXg))|g = JXgG (i∗aµ(NXg))|g. 2

Let us pass to the proof of the theorem. The proof for the caseb1(1) 6= 0 implies
that to prove the uniqueness of the index it suffices to do it only for the nonequivariant
index. Thus now, in the caseb1(1) = 0, we are done if we prove thatJXe ≡ 0. To
show this vanishing, consider the product

X × · · · ×X︸ ︷︷ ︸
p

for some prime numberp. The cyclic groupZp acts on this product by cyclic per-
mutations. Obviously for anyg ∈ Zp, g 6= e,

(X × · · · ×X︸ ︷︷ ︸
p

)g = 1,
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where1 is the diagonal. Leta ∈ K(TX). Consider theZp-equivariant element
a × · · · × a ∈ K(T (X × · · · ×X)) and compute its index by Lemma 4.4. One has

JX×···×X
Zp (a × · · · × a)|g = J1Zp(ξµ(N1))|g,

whereξ = a×· · ·×a|T1 with the obvious action ofZp. Hence, we have the character
defined on the whole group:

χ = JX×···×X
Zp (a × · · · × a)− J1Zp(ξµ(N1)) ∈ R(Zp)

and χ(g) vanishes for allg 6= e. It is well-known that in this casep divides
χ(e). Let us computeχ(e). Note thatξ as a nonequivariant bundle is isomorphic
to ap ∈ K(TX) andK(TX) is a nilpotent ring. Hence,ξ vanishes forp big enough.
The multiplicative axiom yieldsJX×···×X

e (a × · · · × a) = (JXe (a))p. Thus, forp
big enough we haveχ(e) = (JXe (a))p ≡ 0(modp) which is only possible when
JXe (a) = 0, whence the vanishing of the nonequivariant index follows. 2

Remark. The proof of the Theorem 4.3 implies that in nonequivariant situation
J ≡ 0 is provided byb1(1) = 0. On the account of uniqueness it follows that
t-indX(aν(T X)) ≡ 0, though it is just due to ch(ν(T X)) = 0.

References

1. Atiyah, M. and Singer, I.: The index of elliptic operators: I,Ann. of Math.87 (1968), 484–530.
2. Atiyah, M. and Segal, G.: The index of elliptic operators: II,Ann. of Math.87 (1968), 531–545.
3. Atiyah, M.:K-Theory, Benjamin, New York, 1967.
4. Karoubi, M.:K-Theory: An Introduction,Springer-Verlag, Berlin, 1978.
5. Segal, G.: EquivariantK-theory,Publ. Math Inst. Hautes Etudes Sci. Paris34 (1968), 129–151.


