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Topological Invariants of Connections on Symplectic Manifolds 

D. E. Tamarkin UDC 514.7 

§ 1 .  Introduction 

Let M 2n be a 2n-dimensional symplectic manifold, let E --~ M be a vector bundle whose structure 
group is a connected semisimple Lie group G, let V M be a symplectic connection on M ,  and let V E be 
a connectipn on E .  ~ 

This paper  is devoted to the problem of finding all closed differential forms on M that  can be written in 
local .Darboux coordinates as polynomials in finite-order derivatives of the coefficients of the connections 
~7E and V M on condition that  the cohomology class of the manifold M defined by such a form is preserved 
under the deformations of the connections. It is required that  this differential form could be well defined 
on M .  This is possible only for the case in which the dependence of this form on the connection coefficients 
is preserved under  the transformations of Darboux coordinates. These forms are said to be invariant. 

A similar problem for Riemannian manifolds was solved by Abramov [1] (also see Gilkey [2]). For a 
more detailed statement of this problem and its solution see Atiyah, Bott, and Patody [3]. 

By analogy with the case of Riemannian manifolds, every invariant form on M is a polynomial in 
Pontryagin classes of the manifold M ,  characteristic classes of the bundle E ,  and the sympleetic form w 
(up to the so-called trivial forrXs whose eohomology classes are always trivial).  

The author  thanks B. V. Fedosov for the statement of the problem and constant at tention and B. L. Fei- 
gin for valuable advice. 

§2. Statement  of the Problem 
2n 2 Let U C N 2'~. be the ball ~ i=1 xi < 1, let co = ~i~=~ dx i h dx "+i be a symplectic form, let ( , ) be 

the corresponding inner product,  let (dx i, dx n+i) = - 1 ,  and let 0 be the connection on T*U defined by 
the conditions 0dx  i = 0, i = 1 , . . . ,  2n (in other words; 0 is the ordinary differential)• 

Every torsion-free connection V on' T*U preserving the form co (i.e., a symplectic connection) is 
determined by a t ensor  F • C ~ ( U ,  SaT*U) as follows: 

= 07 + <r, • c (u, T'U). 
Let E = G x U -~ U be a principal bundle whose structure group is a semisimple Lie group G with 

Lie algebra 9. Every connection 'V E on G x U is determined by a 1-form 0 • C ~ ( U ,  T 'U)  ®9.  
Let V be an open subset of U. Denote by J ty  the polynomial algebra in the variables ~ and P and 

- -  

their partial derivatives with respect to x with coefficients belonging to C ~ ( V )  (the bar denotes the 
- -  

closure). Each element ~ • ¢ [ y  determines a functional c2[~ , F] • C ~ ( V )  of ~ and F. 
Denote by the symbol f ~  the space of Ay-valued /-forms A v  ® F(AiT*U). For brevity, we write A 

and f~i instead of A u  and ~/b, respectively. 
Let ~ • f/~/ and let ~? = ~-~ ~ ,  dx ~ . We set 

r ]  = 
# 

We must  find conditions under which the form ~ • f~i does not depend on the choice of Darboux 
coordinates and on the trivialization of E .  

Let V1 and V2 be open in U, let s: V1 --* V2 be a diffeomorphism preserving w, and let h: V1 --~ G 
be an arbitrary smooth mapping. Let us define a morphism of the bundles a:  G x V~ -~ G x V~ by the 
formula 

iT(g, X) = (g" h(x), 8(x)), g • G, x • Yl .  (1) 
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For brevity, we write t ransformations (1) in the form ~r = (s, h). 
The connections s*V and a*V E are defined on VI and G x V~, respectively; therefore, the coefficients 

s*F and a*t~ of these connections are also defined. We can construct  a mapping ~r*: f~i f~i V~ "-~ v~ as 
follows: 

r ]  = 

D e f i n i t i o n  1. A form p ~ ft i is said to be  globally defined if for each morphism (!)  we have the relation 

= 

Denote by D i the space of globally defined /-forms. 
Let H be the Hamil tonian function with supp H C U,  let XH be the corresponding Hamiltonian 

vector field, and let a : U -~ ~ be  an arbi t rary  smooth  mapping. Let pl : G × U --~ U and P2 : G × U ~ G 
be the projections onto the factors. We define a vector field X~, H on G x V by the formulas 

p l . [ ( g , x ) e G x u Z a , H  ---- X H i x ,  p2.](g,x)Xa,H = L g . ~ ( x ) ,  

where L a is the left shift on G. 
The fields X~,H form a Lie algebr~ [ with the commuta tor  

[ X ~ , g ~  , Xa2,H=] = X[at ,a=l~+<da,,dga>-(d~=,dg~),(dnt ,dga> . 

The transformations at = exp( tX~,u)  are of the form (1). Let us define a representat ion ~ of the Lie 
algebra [ on ~i  as follows: 

~ 6 ~ i@ [*, ax= ,~?  = d(a;~)/dtlt=o. 

P r o p o s i t i o n  1. A form ~ is globally defined if and only if ~ = O. 

P r o o f .  The necessity is clear, Let us prove the sufficiency. 
First of all, we note that  if at = exp(tX~,H),  then d a ~ / d t  = a ~ a x ~ , , ~  = 0 and hence a~?  = 0. 
Let 6W = 0 and let a = (s, h) be defined by (1). The transformation a is factorized as ~ product  

of two transformations:  a = a ~ o ~ ,  where al = (I, h(s -~(x))) and ~ = (s, 1G). Since the set U is 
contractible, for some smooth function a: V ~ g we have h(s-~(x)) = expa(x) and ~I = exp(Xa,0). 

Thus, ~*~ = ~*~= ~*~. Since the operation g* is 1oca1, it suffices to prove that for each x0 ~ V~ there 

exists a small ball B = B(~0, ¢): ~(xi - zoi) ~ = ~ for which ~*(~[s(B)) = ~[B. 

Without loss of generality, we can assume that B, s(B) C U. Let B0 be a closed ball that contains 
- -  

B and s(B).  The t r ~ s f o r m a t i o n  ~ on U can be  factorized as a product  ~ = (~2, 0)o ( s l ,  0), where 
(s2,0)  = e x p X o , g  and the function H is such that H = ~ a i x i  + ~ i , j a i j x~x l  for x ~ Bo and 

the constants a~,ai  i are chosen to sa t i s~  s~(xo) = s~(xo) and Js~(xo) = Js~(x~), where J is the 
Jacobi  matr ix of a differentiable mapping.  This choice is possible because J~(Xo)  is a symptectic matrix 
and, hence, it is representable in the form exp(wi*a~j),  where a,j is a symmetr ic  matrix.  We obtain 

* , (xo )  = ~0,  J*~(~o)  = ~ ,  ~ , d  ~*~  = ( 1 , , ~ ) * ~ .  
Le~ pi = x i and qi = x~+i, ~ = 1, . . . ,  n.  The transformation si can be defined in a sufficiently small 

ball B by means of the generating function S: 

where  s 1 (p, q) -- (>, 3) a n d  

> = o s ( p ,  q = OS(p, 

i i 

Choose a ball /} such that  the family of functions 

s = t + - t)s 

i 

for 0<t<l 

( , )  

259 



defines a family of transformations st: ~ --~ U by formula ( , ) .  We can suppose that  st(~) C U. 
Let H t be a family of Hamiltonian functions satisfying the relation 

XH,(Z) = ds'(x)/dt, x e s ' (~) .  

This family exists because st(/~) is a contractible set. 
We have 

d(s ~ O)*~/dt s**8 , = X o , ~  ~ = O .  

Thus, ~;~  = (~0 ,0 )*~  = (~1 ,0 )*~  = ~ ~ desired. 
We set 

d , - - ~ t  ~ ~X~ ~F = - - s t F  ~X~ ~0 = d ~. 
' di  ~=o' ' dt  t=o ' 

where st = exp( tXH . Then 

6x~,.F = Lx~F - 03H, (2) 

where 03H = OOdH 6 C~(U,  S3T*U); moreove r ,  

~x~,.o = ~ x . o  - d ~  - [0,  ~ ] ,  (3) 

d ~] t=0' ( 6 x ~ , .  ~ ) [0 ,  r] = z x . ~ [ ~ ,  r] - ~ ~[0 + t~x~,.o, r + t~x~,. (~) 

where LxnP is ghe Lie derivative of the tensor on T*U. 

Let us pass directly ~o ~he s~atemen~ of the problem. 

D e f i n i t i o n  2. A form ~ ~ D ~ is said ~o be trivial if ~ = d~ and ~ ~ D ~-a . 

D e f i n i t i o n  3. A form ~ ~ D ~ is said to be invarian~ if 
~) d ~ = 0 ,  

~) f o ~  = 2~, r = r lov,  and ~ =  ~10~ w~ h ~  iv  ~[0, r ]  = f~ ~[0, r ] .  

Condition 2 is equivalen~ go the fact ~hat ~he Euler variational derivative of ~ with respect ~o 0 and ~ 
vanishes. This means [5, p. 434] ~ha~ ~ = d~,  where ~ ~ ~2~-a.  

Our objective is ~o find all invariant forms up to trivial ones; in other words, we have ~o find the 
cohomology of ~he complex 

b ' :  0 ~ ~ 0  ~ D'  ~ ~ . . .  ~ D ~"-~ < D ~" a a ( a  ~"-~) ~ 0 .  (~) 

Now we can s~a~e ~he resulg. Let 

R ~ sp(2n) @ C~(U, A2T*U), F ~ g @ C~(U, A2T*U) 

be the curvatures of the connections V and V z , respectively. 

T h e o r e m .  The cohomoloyy classes of the complez ~ are uniquely representable by the forms 

~ ( n  * ~ *~ ) ,  (~) 

where P is an arbitrary invariant polynomial on the Lie alyebra zp(2n) ~ ~ ~ N. 

The main tool used in ~he proof of this theorem is a bicomplex tha~ is constructed in the next section. 

~3 .  C o n s t r u c t i n g  a B i e o m p l e x  

Consider an A-module  V that  consists, by definition, of the expressions 

O [ H , ~ ] =  ~ auO~H + ~ bu~Ou~', 
lul~g IM~N;~ 
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where a = • a'~e "r for some fixed basis (61, e2 , . . .  ) in 9, and, as usual, for ~ = ( ~ , . . . ,  #~) we set 
0 , = 0  m . ' ' 0 s ,  and a ~ , b , ~ A .  

We write A v'q = A~V@A ~q.  Every element ~ ~ A ~'q determines a multilinear skew-symmetric 

functional of (~1, H~), . . . ,  (a v, gv):  

~[(a~, H 1 ) , . . . ,  ( a , ,  Hv)] e fl q. 

Let X~,H~ ~ [- We introduce the expression 

p [ X ~  , g ~ , . . . ,  X~,H~]  = ~[(a~, Hi) ,  . . . ,  ( a~ ,g~) ] .  

Define an operator ~: A ~'q ~ A ~+~'q by the formula 

~ ( X l ,  . . . ,  x ,+~)= ~ ( - ~ / + ' ~ , ~ ( X l , . . . ,  2 , , . . . ,  z,+~) 
i 

- ~(-~/+~+'~([z,,z~],x~,...,2,,... ,2~,...,x,+~), (~) 
i,j 

where Xi  ~ [. 
Formula (7) coincides with that for the differential in the complex of cochains of the Lie algebra [ with 

coefficients in ~he representation determined by 8. 
Introduce an operator d: A ~'q ~ A p'q+~ ~ follows: 

(d~)(X~ , . . .  , X~) = (-~)~ d(~(Z~ , . . . , X~)) ,  

where d on the r i g h t - h ~ d  side is the ordinary exterior differential of a q-form. 
We have a naturally defined exterior product A: A ~'q N A ~'~ ~ A ~+~'q+~ . If a ~ A p'q and b ~ A r,s, 

then a h b = (-1)(~+q)(~+~)b A a. 

P r o p o s i t i o n  2. Let a ~ A ~'q and b ~ A ~,~ . Then the following assertions hold. 

(1) d ( a A b ) = d a A b ~ ( - 1 ) P + q a A d b ;  

(2) ~ ( a A b ) = ~ a A b + ( - 1 ) P + q a h S b ;  

(3) (~ + ~)~ = 0. 
This means that ( A ' " ,  d, ~) is a multiplicative bicomplex. 

Proof .  Assertions (1) and (2) directly follow from the definitions: By (1) and (2), it suffices to verify (3) 
only for A ~ ,0 and A °,l . This proves the proposition. 

In what follows we need the cohomology of the complex associated with ~he bicomplex A"" We 
calculate it by means of the spectral sequence of this bicomplex associated with the filtration F~A "," = 
~ m k p  Am" (the differentiM d in this spectral sequence maps upwards, and g maps to the right). 

P r o p o s i t i o n  3. In the above spectral sequence we have E] 'p = Hq(A  p,', d) = 0 for p # 0 and q # 2n; 
E] '° = 0 for q # 0 ,2n ;  and, finally, ~° ' °  = R .  Hence, H ° ( A ' " , d  + g) = ~ and H i ( A ' " , d  + g) = O, 
0 < i < 2 n .  

Proof i  We need the lemma below. 
- -  

Denote by A(p) the space of functionals of p functions u l , . . . ,  up E C°°(U) of the form 

~9[~t l , . . .  , t/p] = (I)(x, ~ti, O#U i ([~1 < N)) .  

We have the exterior differential d: A(p) ® AkR 2'~ --+ A(p) ® Ak+ll~ ~n , 

(d~)[u~, . . . ,  Up] = d ( ~ [ u , , . . . ,  ~p]). 

L e m m a  1. The complex (A(p) ® A'R 2'~, d) is exact in all terms except for the zeroth and 2nth. 
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P r o o f .  See [5, p. 434]• 

Let us find the cohomology of the complex (A ~," , d) that  is equal to E ;  '~ by definition~ Let ¢ ~ A p,q 
and de  = 0, q ~ 0, 2n.  By Lemma 1, we have ¢ = dx,  where X is a smooth function of the variables 

0~,0, 0~,F, cO, Hi, and ~#o~ i . (S) 

Suppose that  the degree of the polynomial ¢ in variables (8) is equal to n.  Replace the function X by 
its Taylor expansion in variables (8) up to the terms of order n inclusive; denote this expansion by X ~ . 
Clearly, d X' = ¢ (this follows from the fact that  d maps every homogeneous polynomial in variables (8) 
to a homogeneous polynomial of the same degree). 

Selecting the terms in X' that  are multilinear with respect to (at, Hi) (i.e., the terms of the form 

I I  o . 7: I I  . , 
s t 

where i~ and j t  range over p pairwise distinct positive integers from 1 to p and ¢ ~ Aq-IR 2'~) and 
alternating with respect to (hi,  Hi),  we obtain ~ ~ A p,q-1 and d~" = ¢ .  Thus, E~ '~ = 0 for q > 0. 

If q = 0, then we see that  the relation de  = 0 implies ¢ = const 6 A °,°.  Thus, E~ '° = .0 ,  p ~ 0, and 
E0,0 = IR. This completes the proof of the proposition. 

We now restate the condition of the problem in terms of the constructed bicomplex. Consider the 
complex (D',  d) (the inclusion dD i C D i+~ is readily verified)• We have a natural  embedding i : D" ~ 
A °," = gt" that  defines a morphism of the complex D" into the complex (A', ' ,  d + (i) associated with the 
bicomplex A'"  Denote this morphism by the same symbol i. 

P r o p o s i t i o n  4. The cohomology o.f the complex ~)" (complex (5)) coincides with the kernel of the 
induced cohomoIogy mapping 

i . :  g ' ( D ' ) ~  g ' ( A ' " , d + 5 ) .  

P r o o f .  For dimensions less than 2n this follows from Proposition 3 and relation H~(~; )  = H~(D ") 
for p < 2n. 

Now let p = 2n and let r/ ~ D 2" be a representative of an element r) ~ H2"(D ' ) .  If i .~ = 0, then 

rl = dx and X ~ d ° ' : " - ~  ; hence, ( / ~ / ~  and ~ ~ g~'~(/~). Conversely, if r /~ D ~" ~ d~ ~'~-~ = 5 ~'~ , then 
i(rl) = d X and X ~ A°'2"-1 This means that  the image of r/ in ~2~,0 is zero. By Proposit ion 3, we have • ~ 1  

E~ q'p = 0 for q + p = 2n and q ~ 2n; therefore, the cohomology class i(r]) alSo vanishes. 
This completes the proof of the proposition. 

§4. P r o o f  o f  t h e  T h e o r e m  

In this section our main tool is the multiplicative spectral sequence of the bicomplex A"" associated 
with the filtration ' 

F q A ' " = ( ~ A  "'r (9) 
r~_q 

(thus, the differential ~ maps upwards, and d maps to the right). 
Let us restate the problem in terms of this spectral sequence. To this end, note that  D i ~.0,i For ---- ~ 1  " 

the cohomology of the complex D" we have Hi(D ") ~.0,1 This follows from the well-known formulas 
E• 'q = HP(A ",q, 6).and E~ 'q = H q ( E f " ,  d,), where d. is the induced mapping. Therefore, the kernel of 

~-~0 , i  ~'~,0 , i  the mapping i.  in Proposition 4 is equal to that  of the mapping ~2 ~ - -~  • 
~.0,i the subspaces that  are killed in the screening In other words, our objective is to find, in the terms ~2 , 

and prove that  each element of this subspace can be represented in E°o 'i = ~i by a unique element of the 
form (6) and each element of the form (6) represents an element of the indicated subspace. 

Let us begin with calculating the term E~'q. We denote by m the Lie algebra g ~ ~p(2n) ~ R. 

P r o p o s i t i o n  5. (1) z f  'q = HP(A',q, ~) ~ H°(A' ,q)® gp(ra) .  
(2) There is an isomorphism of algebras E~'" ~- E~" ® H'(m) .  
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P r o o f i  Let F = ['ijk dx i ® d xj ® dx k and 0 = Ois dx i ® e a , where e c~ is a fixed basis in 1~. Let 

Rijkt  : OPjkl/OX i -  OPikl/OX j + WPq(PipkPjql - -FjpkFiql) ,  

F ~ e "  = OO~/Oz ~ - OO~/O~ + [o~oj]~, 

be the curvatures  of the connections V and V E . 
In t roduce  the  variables (here and below I = ( i l , . . . ,  iN)) 

R i j k l ; I  = VQ . . .  V i N R i j k l ,  

where Vi~ is the covariant derivative of a tensor on T* ~ U,  
~ ~ 

Fii~ ; ~e ~ = Vi ,  . . .  V i~  Fij~e ~, 

where for a ~ T* e U and b ~ 9 we have ~ i ( a  ~ b) = Via  ~ b + a ~ [Oi, b] + a ~ (Ob/Ox~), and 

(or,. 0r,.  
, ~ ; ~ = O ~  k ~  ~ / '  f~;~=O~ k ~  ~ / '  

7~ = O(i~i~._~...i4Fi, i~i~), N ~ 3, Oz~ = O(i~i~_~...i=Oi~)~, N ~ 1, 

where the  parentheses  symbolize symmetr iza t ion.  
For brevity, we denote by  e the algebra C ~ ( U ) .  
In t roduce  the linear spans 

A n  ~ 

Bn = 

Cn = 

e < o ~ r ~ , ,  o ~ =  (IZl = ,~)>, 

e < _ ~ ; ±  ; F~~,; ~, (1II -- ,~ - 1)>, 

e<G~ (IZl = ~  + 3), Oj~ (IJl  = ~ + 1)>, 

e < v i j m ; ~ ; f i ~ ; i  (1II = n -  1)>. 

We set X n = N O k = o X k  for X = A, B ,  C , / ~  and denote  X = U X n .  
Clearly, we have A = @ [A] (as usual,  by the symbol  ~[X] we denote  the space of polynomials  on X 

with coefficients belonging to ~). 
Let us prove tha t  the variables generat ing A can be replaced by the variables generat ing B and C.  

Indeed, An = / ~ n  ® Cn. Since t ~ i j k l ; i - - r i j k l ; i  ~ e[A n-l] and F i j a ; l - f i j a ; I  ~ e[A "-1] for [I] = n - 1 ,  
w e  h a v e  

~ [ A n ] = ¢ [ A  '~-1 ®/~n®C,~]  e [ A n - 1 ] ® e [ ~ . ] ® e [ c n ]  
n 

= e [A ~-1] ® e [B . ]  ® e [C . ]  H e[Bk] ® e[Ck] = e [ B  n] ® e I C " ] ;  
k=0 

thus,  A = e[A] = e[B] ® e[C] as required. 
Denote  by H "  the linear span A(OuH , 0.~.~ ([#[ <_ N) ) ,  where c~ = ~.re ~. 
It can readily be shown tha t  the expressions 
~FI = - O I H  + ~ ,  [I[ >_ 3, ~ G H brl-1 , 
~0I;7 = - O I ~ 7 + c 2 ,  [I[ >_ 1, ~ Hit[-1, 
~X i : odijOjH , 

OpqH, 
H - (f~, dH) ,  where f~ is a 1-form such tha t  df~ = w, 
o~ 3, 

cons t i tu te  a basis in V. 
Let W c  = ~.(~"[I, (~OIe~, (~xi) and WB = N(OmH,  H - (f~, dH) ,  o~.~). 
Note tha t  R]II = Rijkt; z and F ]~[ = Fij~ ;I are tensors; in other  words, we have s*(RIII[F]) = R[II[s*F] 

and o'*(F[II[t~]) = FIIt[~*O], where ~r is defined by (1). Hence, 

(~Rijk ; I ,  •Fija ; I E ~ [B] ® W B  . 
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Direct calculations show that 

$dx ~ = wJ~Oj~Hdx ~' ~ ~ "  ® WB, 

For every ~ ~ ~p(2n)* and r/~ g* we have 

~(0  2H) = -(([O ~gl, 0 2H2]), 

Now we see that 

$( H - (CI, dH) ) = O . 

= 

K~ = (e[C] ® A'Wc,  5), K b  = (RIB] ® AqR ~" ® A'WB, 5) 

(10) 

(ii) 

are complexes, and we have (~' ,q,  5) = (K 6 ® K'~, 5). 
The complex K c  is nothing other than the de Rham complex, and its cohomology is trivial except for 

H°(Kc)  = ~ .  
To calculate the cohomology of the.complex KB we define an isomorphism h : m* ~ W~ C [* by the 

formula 

h(~ ~ ~ ~ () = ~(O~ H) + ~(a) + ( (H - (~, dg)  ) . (12) 

We can readily verify (see (10) and (11)) tha~ the mapping 

h 
~ : R [ B ] ~ A a R  2 n ~ R [ B ] ~ A q R  2 n ~ m * ,  where m* ~ W c ,  

defines ~ representation of the Lie Mgebra m on R [B] ~ AqR ~n , and K~ is the cochain complex of this 
representation. Since the differential $ is triviM on R C m ~ d  ~p(2n) ~ 9 is ~ semisimple Lie Mgebra, 
we have 

H*(KB) ~ g ° ( K ~ )  ~ g*(m) .  (13) 

To prove assertion (1) it remains to note that H°(gB)  = g ° ( A  °'') = E~". 
~."  

To prove assertion (2) we note that g*(m)  ~ H*(A'W~,  ~) and isomorphism (13) can be written in 
the form 

, . 

E~' ~ E~" ~ H'(W~),  (14) 

where W~ C E~ '° , H ' (W~)  C .E~ '° , and isomorphism (14) is generated by the m~tiplicat ion in the 
Mgebra E~". This completes the proof of the proposition. 

Taking into account the assertions of Propositions 2 and 3, we can indicate the ~Mogy  between our 
spectrM sequence and the spectrM sequence of a universM bundle. To clarify this anMogy~ we consider the 
standard MgebrMc model of the spectrM sequence of a universal bundle, namely, the spectrM sequence of 
the Weil algebra, and define a morphism of the Well algebra into A ' " .  

RecM1 that by the Well algebra associated with the Lie Mgebra m we mean a graduated ~tidifferentiM 
algebra W = Sin* ~ Am*, where m* is the duM vector space of m and the gradation is given by the 
formul~ W ~ = ~2m+k=~ Smm* ~ Akin*" The differentiM dw takes the following values on.the generators 
of the algebra W that have the form 1 ~ r and r @ 1 with w ~ m*: 

dw(1 ~ r )  = ~ 1 + 1 ~ D w ,  

where D~ ~ A~m * and D r ( X ,  Y)  = -w([X,  Y]) for X ,  Y e m, and 

d w ( ~ @ l )  eS~m*@A~m *, d w ( r @ l ) ( Z , Y ) = ~ ( [ X , Y ] ) .  

The filtration on W has the form 

F ' W  = Smrn * ® Akin *. (15) 
2m_>p ; k 

The spectral sequence of the algebra W associated with this filtration is similar to the spectral sequence 
of a universal bundle. For more details concerning the Well algebras and their spectral sequences see [4]. 
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In our case we have m = ~p(2n) ® 9 ® JR. To define a morph i sm from W into A"" we introduce 
2~ ~p(2n),  F Fk dx k where the elements of the  Lie algebra ~p(2n) the variables F~ = [IFkij[li,j=l e = , 

are represented by symmetr ic  2n × 2n matr ices  and  the c o m m u t a t o r  is given by the formula  [a, b]ij = 
w P q ( a i p b j q  -q- a j p b i q ) .  Moreover, we assume tha t  

Oi..dx% '~ = O i d x  i = v q ~ ~ ® T 'U ,  

where (e I , e 2, . . .  ) is a basis in O, and tha t  

R 12" 0F~ 0F~ 
Rij = ijkl ,k,l=l -- OX i OZ~ + [Fi, Fj]~p(2n), 

Fit = Fijae a OOj OOi - Oz i Oz~ +[0~'0~]~  

are the curvatures  of the connections V and V E . We set 

1 i R = ~-R  dx i A dx j F = ~Fijdx A dx j 2 ~J ' " 

The  desired morph i sm f :  W -~ A'," is defined on the  generators of W as follows: 

f (1  ® (~ @ r] • ~)) = ~(O2H + F) + ~(~ + ~) + ~(H - ($2, dg)  + $2) ~ A ° ' l  ® A ~'°, 

f ( ( (  ® ~ ® 4) ® 1) = ~(R) + ~(F)  + ~(w) ~ A °'2, 
(~) 

where ~ E sp(2n)*,  r] ~ 9*, ( ~ R ,  ~ ®~ ® ( ~ m*,  O:H = ]IOijH[[ ~ sp(2n) ,  and  ~ is a 1-form such 
tha t  dgt = w. 

Note tha t  A = (~ A ~'~ is a filtered differential algebra with filtration (9), gradat ion  A r = (~p+q=r A~'~, 
and antidifferential  d + 5. 

P r o p o s i t i o n  6. The morphism f is a morphism of filtered graded antidifferential algebras. 

P r o o f ,  It suffices to verify tha t  the filtration, gradat ion,  and antidifferential are preserved for the 
generators of W .  We can readily verify tha t  the  fi l tration and gradat ion are preserved. It remains to 
verify the  relat ion f d w  = (d + ~) f for the generators  of the algebra W.  

We will prove only the relation ( d + 5 ) f ( 1  ® ~) = f (dw1  ® ~) because in the other  cases the  calculations 
are similar. 

By formulas (2)-(4), we have 

d~(O2H + F) = -~(03H)  + ~(OFi/Ox j) dx j h dx i 

= -~(O3H) + ~(Rji- [r~, r,]) dzJ A dx72 
= ~ ( - 0  a g + R - IF, r ] / 2 ) ,  

5~(02 H)(X~l ,H1, X~,H2) = nx ,~  ~(o~ g2) - Lx,:~(O2H1) - ~(O2 (OH~, OHm)) 

= - ~ ( [ a  2 H i ,  02H2]~(2 . ) ) ,  

5~( r ) (x . ,~ )  = n x . ~ ( r )  - ~(bxo, . r )  

= n x . ~ ( r )  - ~(Lx,. r)  + ~ ( o ~ g )  

= ~( - [o~g ,  F] + O~H), 

(d + 5) / (1  ® ~) = (d + 5)~(02H + F) 

= ~(R - IF, 1']/2 - [02 H ,  F] - [0 ~H, ,  02 g2]) ,  

~ ( d ~  ® ~) = ~(~ ® ~ + ~ ® D~). 

Let D~ = ~-~k ak A bk, ak,bk E ~p(2n)*. 
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It follows that 

Y ( d w l  ®~) = ~(n) + E f (ak ) A f(bk) 
k 

= ~(R) + E a k ( O 2 H  + F) A bk(O2H + F) 
k 

= ( (n )  - (([O 2H,, 0 2 g21) - (([a ~ H, F]) - ~([F, F]/2) 

= ( d +  $) / (1@¢).  

This completes the proof of the proposition. 

Let (E~,q, dr) be the spectral sequence of the filtered graded algebra W .  Then the above proposition 
makes it possible to construct a morphism.of multiplicative spectrM sequences f .  : E~'q ~ E~'q by m e ~ s  
of which we reveal the structure of the terms E~ 'q . 

Propo~i t lo~  V. (~) Th~ ~ d ~ d  ~ E~ '° ~ d  H ' ( ~ )  ~ i~o~o~phi~, ~ d  ~ h~,~ E~ '° = ¢ . (6 ' ° ) .  
~ ~o,~ where the isomorphism is generated by the multiplication o[ factors on the (~) E;,~ = ~ , o  ~ , 

right-hand side. 

Proof .  We first calculate f .  ( ~ ' ° ) .  Note that f .  induces ~n isomorphism of the complexes (~,0, dwo) 

C W/F W f.le ,o h 
isomorphism (12). Hence, f ,  is a bijective m~pping of the groups E~,0 = H.(~.,0, d0) in to  the groups 
H ' ( W ~ ,  5) ~ E~ '° . It follows from Proposition 5 that 

Ef'  = 

Since d~wla~,o = O, we have 

dlly.(~7,o ) = 0. 

Hence, f .(a~ '°) axe not killed and f.(E~,o) C E~ '°. Because a~ '° = a~ '° 
regarded as subspaces of E~ ''° we have f.(a~ '°) = f . (a~ '°) .  

By (17), we obtMn 

E~ 'q = E~ 'q ~ f . (a~ ' ° ) .  

= f.(E~,0) and E;'q = E ~ ' q ~ E ;  '°. Since ~,0,0 = ~ we have E2 ~'° 
~ 2  ' 

proposition. 

(17) 

, for the corresponding images 

This completes the proof of the 

Now we can establish a closer analogy between the spectral sequences of the Weil algebra and of the 
bicomplex A '" .  

P ropos i t i on  8. The mapping f .  : ~ ' q  --~ E~'q, r >_ 2, is an isomorphism for p + q < 2n and a 
monomorphism for p + q = 2n.  

Proof .  We apply the following standard lemma proved using dimensional considerations. 

L e m m a  2. Let (E~ ,q, dr) be a multiplicative spectral sequence such that 
(a) = ® ; 

(b) the algebra 

~,~,o = A[c2ki-l(i = 1 ,2 , . . .  ; k = 1 , . . . ,  ni)] (18) 

is anticommutative and free and " 2i-1 dim c k = 2i - 1; 

(c) ~ ; q  = 0 for 0 < p +  q < 2n and fi,°o~° = R .  
Then 

(1) for i < n we have " 2i-1 ~2i in ; _ a r C j  0 r < 2i, and " 21-1 ~.o,2i = , a 2 i c  j = c j  ~ 2 i - 1  

-2i in ~,0,2i 2i be a preimage of cj ~2 ; then the natural mapping (2) let c.i 
~ : ~  

F:  A[c~i- '(i  <_n, j  <_ni)]®R[c~i(i <_n, j  _~ ni)]---~ E 2 , 
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where dim c} = i,  is an isomorphism in all dimensions less than 2n and a monomorph i sm in the 
d imension 2n ; 

(3) ~°o;2n = ~ ' ~ ° / I m  F .  

For n = ec this lemma is known as the Zeeman theorem [6, p. 431]: 

i Note that the sequence (E~ 'a , dr) satisfies conditions a) (Proposition 7), (b) (since ~2~*'° =~ f*(~2*'°) =~ 
H*(m), where H*(m) is an algebra of the form (18)), and (c) (Proposition 3). The sequence £~r 'q 
also satisfies these conditions. Because fl~;.o is aa isomorphism and f .  dwr  = dr f . ,  it follows from 
Lemma 2(2) that f ,  lE~.q is an isomorphism for p + q < 2n and a monomorphism for p + q = 2n. 

The proposition is proved. 
~Ve can now find the kernel of the mapping E~ °'" --~ E ~ ' .  

Coro l la ry  1. Ker(E~'i --~ E°og i) = f.(g°2'i ) . 

Proof .  For i < 2n the assertion is a direct consequence of Proposition 8; for i --- 2n one has to apply 
Lemma 2(3). 

To prove the theorem, it now suffices to note that £~" is the space of invariant polynomials on m and 
that the mapping f .  just gives representation (6). 
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