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Topological Invariants of Connections on Symplectic Manifolds

D. E. Tamarkin UDC 514.7

- §1. Introduction

Let M?" be a 2n-dimensional symplectic manifold, let £ — M be a vector bundle whose structure
group is a connected semisimple Lie group G, let VM be a symplectic connection on M, and let VE be
a connection on F. |

This paper is devoted to the problem of finding all closed differential forms on M that can be written in
local Darboux coordinates as polynomials in finite-order derivatives of the coeflicients of the connections
VE and VM on condition that the cohomology class of the manifold M defined by such a form is preserved
under the deformations of the connections. It is required that this differential form could be well defined
on M . This is possible only for the case in which the dependence of this form on the connection coefficients
is preserved under the transformations of Darboux coordinates. These forms are said to be invariant.

A similar problem for Riemannian manifolds was solved by Abramov [1] (also see Gilkey [2]). For a
more detailed statement of this problem and its solution see Atiyah, Bott, and Patody [3].

By analogy with the case of Riemannian manifolds, every invariant form on M is a polynomial in
Pontryagin classes of the manifold M , characteristic classes of the bundle E, and the symplectic form w
(up to the so-called trivial forms whose cohomology classes are always tr1v1al)

The author thanks B. V. Fedosov for the statement of the problem and constant attention and B. L. Fei-
gin for valuable advice.

§2. Statement of the Problem

Let U C R*" be the ball E Tl let w=3Y1 dz' A dz™t* be a symplectic form, let { , ) be
the correspondmg inner product, let (dz?, d:c"‘”) = —1, and let & be the connection on T*U deﬁned by
the conditions ddz* =0,i=1,...,2n (m other words 0 is the ordinary differential).

Every torsion-free connectlon V on T*U preserving the form w (i.e., a symplectic connection) is
determined by a tensor ' € C=°(U, S*T*U) as follows: '

Vnp=0n+(T,n), neC=U,TUV).

Let E = G x U — U be a principal bundle whose structure group is a semisimple Lie group G with
Lie algebra g. Every connection VEZ on G x U is determined by a 1-form § € C=(U,T*U) ® g.

Let V be an open subset of U. Denote by Ay the polynomial algebra in the variables ¥ and I and
their partial derivatives with respect to z with coefficients belonging to C*°(V) (the bar denotes the
closure). Each element ¢ € Ay determines a functional ¢[J,I] € C °°(V) of 9 and T.

Denote by the symbol 0, the space of Ay-valued i-forms Ay ® T(A'T*U). For brevity, we write A

and Q iﬁstea}d of Ay and Q U, respectively.
Let p € Q}, andlet o =3 ¢, dz*. We set

o[9,T] = Zso,,[ﬁ T de*.

We must find conditions under which the form ¢ € Q' does not depend on the choice of Darboux
coordinates and on the trivialization of E.

Let V; and V2 be open in U, let s: V; — V; be a diffeomorphism preserving w, and let h: V3 — G
be an arbitrary smooth mapping. Let us define a morphism of the bundles o: G x Vi — G x V, by the
formula

U(Q»"E):(g'h(:’:)as(x))a geG, zeV. (1)
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For brevity, we write transformations (1) in the form ¢ = (s, h). ,
The connections s*V and 6*V¥ are defined on V; and G x V;, respectlvely, therefore, the coefﬁmentc
s*T and o*V of these connections are also defined. We can construct a mapping o* 9'2 - QY v, as
follows:

(* )9, T] = s*¢[(c™")"d, (7")"T].
Definition 1. A form ¢ € Q' is said to be globally defined if for each morphism (1) we have the relation

0'*(‘,0'V2) = ‘1‘°|V1 .

Denote by D! the space of globally defined i-forms.

Let H be the Hamiltonian function with suppH C U, let Xy be the corresponding Hamiltonian
vector field, and let a: U — g be an arbitrary smooth mapping. Let p;: GXU — U and p: GXU = G
be the projections onto the factors. We define a vector field X, g on G x U by the formulas

pisl(g, reoxvXa,r = Xle,  Paslg, 09X, = Lyxa(z),

where Lg is the left shift on G.
The fields X, g form a Lie algebra [ with the commutator

[Xal,Hl. * XQQ,H2] = X{al ,02]B+(d01,de)*(dC!g,dHl),(dH1 ,dH-g) M

The transformations oy = exp(tXq, 1) are of the form (1). Let us define a representation ¢ of the Lie
algebra [ on Q' as follows:

§eVRr,  dx,up=d(07¢)/dt|=o.
Proposition 1. A form ¢ is globally defined if and only if do = 0.

Proof. The necessity is clear. Let us prove the sufficiency.

First of all, we note that if 6; = exp(tXa,n), then doj/dt = 0}éx, ,» =0 and hence ofp = 0.

Let 8¢ = 0 and let o = (s, h) be defined by (1). The transformation o is factorized as a product
of two transformations: ¢ = o0y 03, where oy = (I, h(s7!(z))) and 3 = (s, 1g). Since the set U is
contractible, for some smooth function a: U — g we have h(s7!(z)) = expa(z) and o1 = exp(Xq,0)-
Thus, 0*¢ = §*oTp= §*p. Since the operation §* is local, it suffices to prove that for each zg € V; there
exists a small ball B = B(zo,¢): Y (x; — z0:)? = €* for which §*(¢|y5)) = ¢lB.

Without loss of generality, we can assume that B,s(B) C U. Let By be a closed ball that contains
B and s(B). The transformation 3 on U can be factorized as a product § = (s3,0)¢(s;,0), where
(s2,0) = expXo, g and the function H is such that H = ) .a;z; + 2 ; QijTiTj for z € By and
the constants a;,a;; are chosen to satisfy sy(zo) = s1(zo) and Jsy(zg) = Jsi(zo), where J is the
Jacobi matrix of a differentiable mapping. This choice is possible because Js;(zo) is a symplectic matrix
and, hence, it is representable in the form exp(w®a,;), where as; is a symmetric matrix. We obtain
sl(aco) = 9, J33(:v0) =1, and §*¢ = (1, s1)%p.

Let p* =z and ¢’ = :1:"+’, ¢t =1,...,n. The transformation s; can be defined in a sufficiently small
ball B by means of the generating functlon S:
p=05(p,9)/84,  q=05(p,q)/0p, (%)

where s1(p, ¢) = (P, §) and
zp ¢+ 0(2 ()’ + (cf)"’)-
Choose a ball B such that the family of functions

S'=t> p@+(1-1)§ for 0<t<1
)



defines a family of transformations s': B — U by formula (*). We can suppose that s‘(§ ycu.
Let H' be a family of Hamiltonian functions satisfying the relation

Xpe(z) = ds'(z)/dt, =z € s'(B).

This family exists because st(g ) is a contractible set.
We have

d(s',0)*¢/dt = st*JXO’H,cp =0.
Thus, sfe = (s°,0)*¢ = (s1,0)*¢ = ¢ as desired.

We set ‘
d ' d
) = — sF = —ogF
Xa.HF dt StF t=0’ (SXa,H’ﬂ dt 0':7.9 t=07 )
where s; = exp(tXg). Then
6x, sI'=Lx, T - 8°H, (2)
where 8*H = 88dH € C=(U, S3T*U); moreover,
0xq gV = Lxy? —da—[9,a], (3)
d
(5Xa,H99)[19v I‘] = LXH¢[197 F] - %pr +t5Xa,H19’ r +t5Xa,HF] y (4)

t=0

where Lx,TI' is the Lie derivative of the tensor on T*U .
Let us pass directly to the statement of the problem.
Definition 2. A form ¢ € DF is said to be trivial if ¢ = dn and n € D¥1.

Definition 3. A form ¢ € D is said to be invariant if
1) dp =0, ' '
2) for k=2n, I' =Ty, and 9 = J|sy we have [, ¢[d,T] = [, ¢[d,T].

Condition 2 is equivalent to the fact that the Euler variational derivative of ¢ with respect to J and T’
vanishes. This means [5, p. 434] that ¢ = di, where o € Q?"~1.

Our objective is to find all invariant forms up to trivial ones; in other words, we have to find the
cohomology of the complex

D:o-D° L ptS . 4 pt d pinp ity S0, (5)
Now we can state the result. Let | |
R € sp(2n) ® C=(U, A*T*U), Feg®C=U,A*T*U)
be the curvatures of the connections V and V¥, respectively.
| Theorem. The cohomology classes of the complez D are uniquely representable by the forms
P(Re Fow), (6)
where P is an arbitrary invariant polynomial on the Lie algebra sp(2n) @ g ® R.

The main tool used in the proof of this theorem is a bicomplex that is constructed in the next section.

§3. Constructing a Bicomplex

Consider an A-module V that consists, by definition, of the expressions

YlH,al= Y adH+ Y budua’,

[ul<N |u]<N ;v
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where o = Y aYe” for some fixed basis (e1,ez,...) in g, and, as usual, for p = (p1,..., pin) We set
Oy =0, -+ 0Oy, and a,,byy € A. :

We write AP = APV ® 4 Q7. Every element ¢ € AP'? determines a multilinear skew-symmetric
functional of (a1, H1), ..., (ap, Hyp):

99[(01, Hy), ..., (apa Hp)] € Q.
Let X4, 1, € l. We introduce the expression

‘P[Xal,Hu ’Xappr] = 90[(013H1)’ teey (aP"HP)] .

Define an operator §: AP'? — APT1.9 by the formula

Sp(X1y.nn, Xpp1) = Z( 1)t 8x.0(X1, ..oy Xiyeoy Xpt1)

—Z D) (X, X1 Xy ooy Xiv oo Xy oy Xpt),s (7)

where X; € [.

Formula (7) coincides with that for the differential in the complex of cochains of the Lie algebra [ with
coefficients in the representation determined by §. '

Introduce an operator d: AP'? — AP:9%11 a5 follows:

(de)( X1, ..., Xp) = (-1)Pd(e(X1, ..., Xp)),

where d on the right-hand side is the ordinary exterior differential of a g-form.
We have a naturally defined exterior product A: AP1® A™°® — APTT9%s If g € AP? and b€ A",
then a Ab = (=1)P+Dr+9)p A q.

Proposition 2. Let a € AP and b € A"°. Then the following assertions hold.
(1) d(aAb)=da Ab+ (—1)PTa A db;

(2) §(a Ab) =8aAb+ (—1)PT9a A 6b;

(3) (d+48)* =0.

This means that (A", d, é) is a multiplicative bicomplez.

Proof. Assertions (1) and (2) directly follow from the definitions. By (1) and (2), it suffices to verify (3)
only for A and A°!. This proves the proposition.

In what follows we need the cohomology of the complex associated with the bicomplex A»'. We
calculate it by means of the spectral sequence of this bicomplex associated with the filtration FPA"" =
45 mop AT (the differential d in this spectral sequence maps upwards, and ¢ maps to the right).

Proposﬂ:lon 3. In the above spectral sequence we have EJ'? = HI(AP',d) =0 for p# 0 and q # 2n;
E?° =0 for ¢ #0,2n; and, finally, EY° = R. Hence, HO(A ,d+8) =R and H}(A",d+6) =0,
0<1<2n.

Proof. We need the lemma below.
Denote by A(p) the space of functionals of p functions uy, ..., u, € C®°(U) of the form

99[“17 R uP] = @(:L', Ui, aﬂui (IUI < N)) .
We have the exterior differential d: A(p) ® A¥R?*" — A(p) @ AF+HIR?",

(do)ur, ..., up] = d(pur, ..., up)).

Lemma 1. The complez (A(p) ® A'R?™, d) is ezact in all terms except for the zeroth and 2nth.
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Proof. See [5, p. 434].

Let us find the cohomology of the complex (A?'", d) that is equal to E,’? by definition. Let 3 € AP
and dyp =0, ¢ # 0,2n. By Lemma 1, we have 3 = dx, where yx is a smooth function of the variables

3,9, 8,T, 8,H;, and 8,0 . | (8)

Suppose that the degree of the polynomial # in variables (8) is equal to n. Replace the function x by
its Taylor expansion in variables (8) up to the terms of order n inclusive; denote this expansion by x'.
Clearly, dx' = ¢ (this follows from the fact that d maps every homogeneous polynomial in variables (8)
to a homogeneous polynomial of the same degree).

Selecting the terms in X' that are multilinear with respect to (a;, H;) (i.e., the terms of the form

H 8,,” a“’-’ H au“ H; -,

where i, and j; range over p pairwise distinct positive integers from 1 to p and ¢ € A?7'R?") and
alternating with respect to (a;, H;), we obtain ¥ € AP'?"! and dY =1 . Thus, E{’? =0 for ¢ > 0.

If ¢ =0, then we see that the relation di =0 implies ¢ = const € A%°. Thus, Ep " =0, p#0,and
EO 0= =R. This completes the proof of the proposition.

We now restate the condition of the problem in terms of the constructed bicomplex. Consider the
complex (D-,d) (the inclusion dD* C D**! is readily verified). We have a natural embedding i: D" —
A% = that defines a morphism of the complex D" into the complex (A", d + §) associated with the
bicomplex A"". Denote this morphism by the same symbol i. .

Proposition 4. The cohomology of the complex 5 (complez (5)) coincides with the kernel of the
induced cohomology mapping '

i H'(D') — H' (A, d+6).

Proof. For dimensions less than 2n this follows from Proposition 3 and relation H? (15) = H?(D")
for p < 2n.

Now let p = 2n and let n € D?*" be a representative of an element 7 € H?™*(D"). If 4,5 = 0, then
n=dy and y € A%?""1; hence, 7} € D and 7€ Hzn(D) Conversely, if n € D*" NdQ2"~1'= D™ then
i(n) = dx and x € A%2"~!. This means that the image of 7 in E2 is zero. By Proposition 3, we have
El'? =0 for ¢+ p = 2n and g # 2n; therefore, the cohomology class i(n) also vanishes.

This completes the proof of the proposition.

84. Proof of the Theorem

In this section our main tool is the multiplicative spectral sequence of the b1c0mplex A" associated
with the filtration

Fia"=ar (9)
r2q
(thus, the differential § maps upwards, and d maps to the right). ‘
Let us restate the problem in terms of this spectral sequence. To this end, note that D* = Ef". For

the cohomology of the complex D* we have H'(D") = EO ‘. This follows from the well-known formulas
EP? = HP(A9,6) and ES'? = HI(EY", d,), where d, is the 1nduced mapping. Therefore, the kernel of

the mapping i, in Proposition 4 is equal to that of the mappmg E — E%t.
In other words, our objective is to find, in the terms E '* | the subspaces that are killed in the screening

and prove that each element of this subspace can be represented in _Eg " = ' by a unique element of the
form (6) and each element of the form (6) represents an element of the indicated subspace.
Let us begin with calculating the term E?'?. We denote by m the Lie algebra g @ sp(2n) & R.

Proposition 5. (1) EP'? = HP(A1,8) = H°(A9) ® HP(m).
(2) There is an isomorphism of algebras Ey" = E}”" ® H'(m).
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Proof. Let I' =T drt @ dzd @ dz* and 9 = 9, da* @ e®, where € is a fixed basis in g. Let
Rijkl = ankz/axi - 8Fik1/a.’l:j -+ w”q(I‘,-ka]-ql — I‘jka‘iql),
Fiiaea = 6191/6mi - 819i/6xj + [19,'19]‘]8,

be the curvatures of the connections V and VE.
Introduce the variables (here and below I = (i1,...,in))

Rijri;1 = Vi, ... Vig Riju,
where V;, is the covariant derivative of a tensor on T*® U,
Fija,1¢* = Vi -+ Viy Fijae®,
where for a € T*® U and b € g we have V;(a ®b) = V,a®b+a® [9;,b] + a ® (0b/8z*), and

Iljki Olin Nje 0OVia
”"“”:a’( 5e  Boi ) f"j";’:af(a;i ‘Ex‘.ﬂ‘>’

VI = Olininor.isligiziy), N 23, Ure = Oinin_y..izViye>s N 21,

where the parentheses symbolize symmetrization.
For brevity, we denote by € the algebra C*°(U).
Introduce the linear spans

01Tk, Ordia (JI| = n)),
Rijits 15 Fijas 1 ([ = n 1)),
v (] =n+3),95a (7| =n+1)),
rijkt; 15 fijoy 1 (I| = n —1)).
We set X" = @szoXk for X = A, B,C, B and denote X = Uxr.
Clearly, we have A = C[A] (as usual, by the symbol €[X] we denote the space of polynomials on X
with coefficients belonging to C).
Let us prove that the variables generating A can be replaced by the variables generating B and C.
Indeed, A, = B, ® C,,. Since Rijei; 1 —rijri;1 € C[A™ Y] and Fija;1 — fija;1 € C[A" ] for [I|=n~1,

we have

oy}

3

f
O o e 0

@AM =C[A™ '@ B, @ C,] = C[A" ] ® €[Ba] ® C[C4)

= e[A" '] ® €[B.]® C[Cy] = [] €IB:] ® €[CH] = C[B"] @ €[C™];
k=0

thus, A = C[A] = €[B] ® C[C] as required.

Denote by H™ the linear span A(G,H, O,y (|| < N)), where a = a €.

It can readily be shown that the expressions

T =—01H +¢, |I| 23, p € HII-1,

67‘91;7 = —61017-{-99, 21, p€ H%I‘-.lv

Szt = wijajH,

OpeH ,

H - (Q,dH), where Q is a 1-form such that d? = w,

o
consgitute a basis in V. ’

Let We = R{6v7, 8014, 02") and Wp = R(9pH, H — (2, dH), a.).

Note that R/ = Rijk1,1 and Flt = Fija; 1 are tensors; in other words, we have 3*(R|I|[I‘]) = RI[s*T]
and o*(FU1[9]) = FI[g*9], where o is defined by (1). Hence, ’

8Rijk;1,0Fija;1 € R[B]® Wp.
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Direct calculations show that
édz' = w0, Hdz? e R*"@Wp,  &(H - (Q,dH))=0. (10)
For every £ € sp(2n)* and n € g* we have
§¢(0°H) = —¢([0°H1, 0% Ha)),  dn(a) = ~n([an, az)). (11)
Now we see that
Kg = (C[C1®A'We,8), Kp=(R[B]®AR*"Q@AWg,§)

are complexes, and we have (A™?,4) = (K ® K, 4).

The complex K¢ is nothing other than the de Rham complex, and its cohomology is trivial except for
H°(Kc) =R.

To calculate the cohomology of the complex Kp we define an isomorphism h: m* — Wg C [* by the
formula

h(EDn®¢) = E(0°H) +n(a) + C((H — (2, dH)). (12)
We can readily verify (see (10) and (11)) that the mapping

h
§: R[B]® ATR*™ - R[B] ® ATR>* @ m*, where m* & W,

defines a representation of the Lie algebra m on R[B]® AYR?", and K} is the cochain complex of this
representation. Since the differential § is trivial on R C m and sp(2n) @ g is a semisimple Lie algebra,
we have

H*(Kp)= H°(Kg)® H*(m). (13)
To prove assertion (1) it remains to note that H°(Kg) = H°(A%") = E)".

he

To prove assertion (2) we note that H*(m) & H*(A"Wp, ) and isomorphism (13) can be written in

the form ' v

E;" 2 E)" @ H'(Wp), | (14)
where Wy C E(')’O, H(Wg) C E;°, and isomorphism (14) is generated by the multiplication in the
algebra E;'". This completes the proof of the proposition.

Taking into account the assertions of Propositions 2 and 3, we can indicate the analogy between our
spectral sequence and the spectral sequence of a universal bundle. To clarify this analogy, we consider the
standard algebraic model of the spectral sequence of a universal bundle, namely, the spectral sequence of
the Weil algebra, and define a morphism of the Weil algebra into A™".

Recall that by the Weil algebra associated with the Lie algebra m we mean a graduated antidifferential
algebra W = Sm* @ Am*, where m* is the dual vector space of m and the gradation is given by the

formula W' = Do k=i S™m* @ AFm*. The differential dy takes the following values on-the generators
of the algebra W that have the form 1® 7 and 7 ® 1 with = € m*:

dw(l®@n)=7r®1+1® D,
where Dr € A?m* and Dn(X,Y) = —n([X,Y]) for X,Y € m, and
dw(r®1) € S'm*@A'm*, dw(r®1)(X,Y)=n=(X,Y]).
The filtration on W has the form
FPW= P S"m*@A*m". (15)

2m2>p; k
The spectral sequence of the algebra W associated with this filtration is similar to the spectral sequence
of a universal bundle. For more details concerning the Weil algebras and their spectral sequences see [4].
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In our case we have m = sp(2n) dg@dR. To define a morphism from W into A"’ we introduce
the variables Ty = ||TyijlIi%=; € sp(2n), T = T dz* , where the elements of the Lie algebra sp(2n)
are represented by symmetric 2n x 2n matrices and the commutator is given by the formula [a, b);; =
wP¥(aipbjq + ajpbig). Moreover, we assume that

Diq dr'e® = 9;dz’ =9 € g T*U,

where (el,€e?,...) is a basis in g, and that
ar; or;
1] - “leklllk =1 61’1 az_, + [Fh T; ]sp(Zn)a
09; 09,
Fij = Fz’jaea = Ozt axJ ["92,7-9 ]

are the curvatures of the connections V and VE. We set
R=1Rijdz' Ad2?, F =1F;dz’Ada’.
The desired morphism f: W — A" is defined on the generators of W as follows:

fA®(Ean®() =E60@°H+T) +nla+9)+ ((H-(Q,dH) + Q) € A% g A",
fli¢@en®)@1) =£(R) +n(F) + ((w) € A%?,

where £ € sp(2n)*, neg*, (€R, £dnd( e m*, 9°H = ||0,;H|| € 5p(2n), and Q is a 1-form such
that d) = w.

Note that A = @ AP'? is a filtered differential algebra with filtration (9), gradation A™ = @
and antidifferential d 4 §.

(16)

Py
p+q=rA ’

Proposition 6. The morphism f is a morphism of filtered graded antidifferential algebras.

Proof. It suffices to verify that the filtration, gradation, and antidifferential are preserved for the
generators of W. We can readily verify that the filtration and gradation are preserved. It remains to
verify the relation fdw = (d+ é) f for the generators of the algebra W .

We will prove only the relation (d+44) f(1 ® £) = f(dw1 ® £) because in the other cases the calculations
are similar.

By formulas (2)-(4), we have

dé(O%H + 1) = —£(03H) + £(dT; /027 dz? A dzt
= —£(0%H) + &(Rji — [Ty, T4)) dz? A dz'/2
= ¢(~0°H + R—[T,T/2),

SE(0H)(Xay,ty s Xag, Hs) = Lxy, €07 Hy) — Lx,, £(02Hy) — £(0%(0H, , OH,))

= —£([82Hy, 0® Halsp(zn)),

(DY Xa,1) = Lx g &(T') ~ €(8x, 4 T)
= Lx,&(T) — &(Lx,T) + £(0°H)
=¢{(—[0*H,T)+ 0%H),

(d+6)f(1®E) = (d+8)EB%H +T)
=¢(R - [T,T)/2— [0%H, T} - [0%H,, 0% Ha)),
fldwl®8) = f(E®1+1@ DE). :

Let D¢ = Ek ag AN by, ar, by € sp(2n)*.
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It fo_llqws that
Fldwl®&) =E(R) + Y flax) A f(br)
k

= €(R) + Y ax(07H +T) Abe(9H +T)
k

= &(R) — &([0%Hy, 0 Ha)) ~ £(10° H, T)) — £(IT, T1/2)
= (d+8)f(1®¢).

This completes the proof of the proposition.
Let (€2'9,d,) be the spectral sequence of the filtered graded algebra W. Then the above proposition

makes it possible to construct a morphism of multiplicative spectral sequences f,: €2 — E?>? by means
of which we reveal the structure of the terms E2*9.

Proposition 7. (1) The graded algebras Ey° and H'(m) are isomorphic, and we have Ey° = £.(8,9).

(2) EP? = EP° @ EJ'?, where the isomorphism is generated by the multiplication of factors on the
right-hand side.

Proof. We first calculate f.(&} ’0). Note that f, induces an isomorphism of the complexes (86’0, dwo)
and (W, d). Indeed, &0 = 1@ A’m* C W/F'W and f*leg"’ = APh|prm+ mod F!(A""), where h is
isomorphism (12). Hence, fi is a bijective mapping of the groups 8'1’0 = H'(€9,dy) into the groups
H' (W, 8) € Ey°. Tt follows from Proposition 5 that

EPY = B} ® £ (E0°).
Since d1W|g§n0 = 0, we have

dily, gr0) =0. (17)

Hence, f.(€2'°) are not killed and f,(£2"°) C E5°. Because €} 0 — €29 for the corresponding images
regarded as subspaces of E2® we have f.(€0°°) = f.(€5°°).

By (17), we obtain

' : 0, 0

\ E}'=Ey* ® fu(€57).
Since Eo'° = R, we have ED = £.(82°) and EP'? = EJ'* ® EP'°. This completes the proof of the
proposition.

Now we can establish a closer analogy between the spectral sequences of the Weil algebra and of the
bicomplex A™".

Proposition 8. The mapping fi: E7 — EP1, r > 2, is an isomorphism for p+ g < 2n and a
monomorphism for p+q=2n.

Proof. We apply the following standard lemma proved using dimensional considerations.

Lemma 2. Let (E,’f’q, d,) be a multiplicative spectral sequence such that
(w) B3 = B0 B3,
(b) the algebra ,
E;’OzA[cii'l(izl,Z,...; k=1,...,n)) (18)

is anticommutative and free and dim cii“l =2 —1;
(c) BP9 =0 for 0<p+q<2n and E° =R.
Then o . o
(1) for i <n we have drcﬁi"l =0, r <2, and dgic?’_l = Egi n Eg;i’l;
(2) let c?i be a preimage of 6_',‘;" in E’g‘%; then the natural mapping

~

F: Al (i <n,j <ni)]@R[eF(E <nyj Sni)] = By,

266



where dimcj- =1, 18 an i1somorphism in all dimensions less than 2n and a monomorphism in the

dimension 2n;
(3) B = ES*/ImF.

For n = oo this lemma is known as the Zeeman theorem [6, p. 431].

Note that the sequence (E?'¢, d,) satisfies conditions (a) (Proposition 7), (b) (since Ej*° = f,(&3°) =
H*(m), where H*(m) is an algebra of the form (18)), and (¢) (Proposition 3). The sequence EP:¢
also satisfies these conditions. Because f| g° is an isomorphism and f. dw, = d.f., it follows from
Lemma 2(2) that fi|gr.« is an isomorphism for p+ ¢ < 2n and a monomorphism for p+ ¢ = 2n.

The proposition is proved.

We can now find the kernel of the mapping EJ"" — E9".

Corollary 1. Ker(Eg’i — E%1) = f*(ag’i)-

Proof. For : < 2n the assertion is a direct consequence of Proposition 8; for 7 = 2n one has to apply
Lemma 2(3).

To prove the theorem, it now suffices to note that 82" is the space of invariant polynomials on m and
that the mapping f. just gives representation (6).
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