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1. Introduction

Many standard geometric objects associated to a manifold M can be defined in
terms of the algebra A of functions on M . Such definitions can be often made in a
manner that makes sense for any associative algebra A, commutative or not. The
study and applications of these generalized geometric constructions is the subject
of noncommutative geometry [C], [M].

For example, a vector field on a smooth manifold M can be viewed as a deriva-
tion of the algebra A = C∞(M). If we require such derivations to be local, i.e. to
preserve supports, then the Lie algebra of all such derivations is precisely the Lie
algebra Vect(M) of vector fields. One can say that the noncommutative version of
Vect(M) is Der(A), the Lie algebra of derivations of A. Depending on the nature
of A, one can impose on derivations some conditions like locality, continuity, etc.

Now let us try to define in a similar way the algebra V•(M) of multivector fields
on M . The space of multivector fields has a structure of a Gerstenhaber algebra. In
other words, it is a graded commutative associative algebra, i.e. the multiplication
satisfies

ba = (−1)|a||b|ab;

V•[1] is a graded Lie algebra, i.e.

[b, a] = −(−1)(|a|−1)(|b|−1)[a, b]

and
[a, [b, c]] = [[a, b], c] + (−1)(|a|−1)(|b|−1)[b, [a, c]];

and the two operations satisfy the Leibnitz identity

[a, bc] = [a, b]c+ (−1)(|a|−1)|b|b[a, c]

(cf. [G]).
Throughout the paper, for a complex V• with differential d, V[1]k = Vk+1 is

the complex with the differential −d; the ground ring k will be of characteristic
zero. For any associative algebra A, one can construct a Gerstenhaber algebra [G];
the underlying space of this algebra is the Hochschild cohomology of A. We denote
it by H•(A,A) or simply by H•(A). It was essentially proven in [HKR] that,
when A = C∞(M), this Gerstenhaber algebra becomes V•(M) if one understands
the Hochschild cohomology properly. More precisely, H•(A,A) for A = C∞(M) is
the cohomology of the complex of Hochschild cochains given by multi-differential
expressions.

The problem with the above construction is that the corresponding algebra
shrinks considerably as soon as A becomes noncommutative. Indeed, H0(A,A) is
the center of A, and H1(A,A) = Derout(A). So, for example, H0 = C and H1 = 0
for such an important algebra as A = D(Rn), the ring of differential operators on
Rn. (In fact for this algebra Hi = 0 for all i > 0).

The problem of constructing a noncommutative analog of the algebra of mul-
tivector fields cannot be very easy because the algebra A of “zero-fields” is non-
commutative. Consider, for example, the standard Hochschild cochain complex
C•(A,A) (see §2.3). We denote it also by C•(A). It is well known that C•(A)[1]
carries a bracket (called the Gerstenhaber bracket) which makes it a dg (differential
graded) Lie algebra; C•(A) carries the cup product which makes it a dg associa-
tive algebra; at the level of cohomology these two operations induce the standard
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Gerstenhaber algebra structure on H•(A). At the cochain level, however, the asso-
ciative algebra C•(A) is not commutative (it contains A = C0 as a subalgebra).

A solution to this problem was proposed in [T]. It was shown there that the
Gerstenhaber bracket and the cup product on C•(A) are part of a much richer
algebraic structure, namely that of a G∞ algebra whose underlying L∞ structure is
given by the Gerstenhaber bracket (cf. Theorem 2.1.2 of the present paper). There
are two equivalent ways to say that a complex C• is a G∞ algebra. One can define
a G∞ structure on C• explicitly in terms of some multilinear operations on C•,
subject to some quadratic relations. Or, equivalently, one can say that there is a
differential graded Gerstenhaber algebra V•, quasi-isomorphic to C• as a complex.
Applying this to C•(A), one gets a a dg Gerstenhaber algebra V•(A) together with
a quasi-isomorphism V•(A)[1] → C•(A)[1] of dg Lie algebras. The above quasi-
isomorphism identifies the cohomology of the complex V•(A) with H•(A), and this
identification is a Gerstenhaber algebra isomorphism. If A = C∞(M), then the
dg Gerstenhaber algebra V•(A) is quasi-isomorphic to the dg Gerstenhaber algebra
V•(M), the algebra of multivector fields on M with zero differential. (In particular
one gets a chain of quasi-isomorphisms of dg Lie algebras

C•(A)[1]← V•(A)[1]→ V•(M)[1]

which implies the formality theorem of Kontsevich [K]).
The Gerstenhaber algebra V•(A) is given by a standard tensor construction

independent of anything but the vector space A. The difficult part is to construct
the differential on V•(A). It is given by a universal formula involving the product
on A and some universal coefficients. For these coefficients there seems to be no
canonical choice; one can define them if one chooses a Drinfeld associator [D].

An alternative way to formulate the theorem from [T] is to say that C•(A) is
a G∞ algebra. The notion of a G∞ algebra was introduced in [GJ]. By definition,
a complex C• is a G∞ algebra if it carries multi-linear operations

mk1,...,kn
: (C•)⊗(k1+...+kn) → C•

for every n > 0, k1, . . . , kn > 0; these operations are assumed to satisfy certain
symmetry conditions under permutations and certain quadratic equations (which
amount to the Maurer-Cartan equation in a certain dg Lie algebra).

For the Hochschild complex C•(A), m1 is the differential, m1,1 is the Gersten-
haber bracket, and m2 is the symmetrized cup product. The higher operations are
defined by universal formulas involving the product in A and some coefficients. The
choice of these coefficients depends on a choice of a Drinfeld associator.

One can see from this discussion how difficult, inexplicit, and non-canonical
the construction of the dg Gerstenhaber algebra V•(A) is. In view of applications
to index theory and other topics, it is natural to ask whether this algebra has some
features that are explicit and canonical. For example, as a dg Lie algebra, V•(A)[1]
is quasi-isomorphic to C•(A)[1].

In this paper we propose an answer which has a clear geometric meaning. For
any Gerstenhaber algebra A•, one can define an enveloping algebra Y (A•), which
is a graded associative algebra equipped with a differential d. If A• = V•(M),
the algebra of multivector fields on M , then Y (A•) = D(Ω•(M)), the algebra
of differential operators on differential forms on M . The differential d acts by
commuting an operator with the De Rham differential.
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For a dg Gerstenhaber algebra (A•, δ), Y (A•) inherits a differential which we
still denote by δ. By a dg algebra Y (A•) we always mean (Y (A•), δ) (the differential
d being ignored).

The first new result of this paper is Theorem 2.6.1. We construct an explicit
canonical A∞ algebra whose underlying complex is the Hochschild chain complex
C•(C•(A)) of the dg associative algebra C•(A). (Here, the dg algebra structure
on C•(A) is given by the differential and the cup product). In other words, one
can construct canonically a dg associative algebra D(A), together with a quasi-
isomorphism of complexes D(A) → C•(C•(A)). We show (Theorem 2.7.1) that
there is an A∞ quasi-isomorphism Y (V•(A)) → C•(C•(A)). One can interpret
that as a dg algebra quasi-isomorphism of dg algebras Ỹ → D(A) where Ỹ is a
canonically constructed dg algebra quasi-isomorphic to Y (V•(A)).

The above discussion does not take into account the differential d on Y (V•(A)).
To include d into the picture, note that the A∞ structure on C•(C•(A)) can be
extended to C•(C•(A))[[u]], the negative cyclic complex of the dg algebra C•(A).
We show that there is an A∞ quasi-isomorphism

(Y (V•(A))[[u]], δ + ud)→ C•(C•(A))[[u]]

Here δ is the differential on Y (V•(A)) induced by the differential on V•(A).
In other words one can say that the cyclic differential B on the Hochschild com-

plex extends to an A∞ derivation of C•(C•(A)) (or, if one prefers, to a derivation
of D(A)). This derivation is intertwined with the differential d on Y (V•(A)).

An extensive sketch of the proof of the main theorem 2.7.1 is given in section
3. A complete proof will be given in a more detailed exposition.

Let us give one example of computing the cohomology ring of the algebra
C•(C•(A)) for a noncommutative algebra A. Let M be a symplectic manifold and
A = (C∞(M)[[h]], ∗) its deformation quantization ([BFFLS]). The following is
contained in [NT].

Theorem 1.0.1. If M is simply connected, then the cohomology ring of the
algebra C•(C•(A)) is isomorphic to H•(MS1

)[[h]] where MS1
is the free loop space

of M .

Let us say a few words about the A∞ algebras C•(C•(A)) and C•(C•(A))[[u]].
The binary products in these algebras were first introduced in [NT]. They were
applied to index theorems in [BNT] and in [NT1]. In fact their existence and
properties were indications that the Gerstenhaber algebra V•(A) might exist (cf.,
for example, Theorem 4.3 from [NT]). Some work on the higher operations in
C•(C•(A)) was done in [Ma].

In fact one constructs both a G∞ structure on C• and a canonical A∞ structure
on C•(C•)[[u]] where C• is a dg algebra of a special type, namely a brace algebra.
An interpretation of the algebra C•(C•)[[u]] which is more invariant than ours is
given in [Kh]. When C• is commutative, one gets the standard shuffle product
on Hochschild chains, extending to the A∞ product of Getzler-Jones on negative
cyclic chains.

It would be interesting to recover the Gerstenhaber algebra V•(A) from a less
subtle associative algebra Y (V•(A)). Note that Y (V•(A)) has an increasing filtra-
tion Fn, n ≥ 0, such that:

• F0 = V•(A); FmFn ⊂ Fm+n;
• grF Y is graded commutative;
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• dFn ⊂ Fn+1

Given any algebra with such filtration, one can recover the Gerstenhaber al-
gebra structure on F0: the product comes from the one on Y , and the bracket is
the derived bracket [a, db]. It would be interesting to understand how to construct
directly a family of filtrations on the canonical algebra Y , indexed by Drinfeld
associators.

Let us finish by outlining a few possible areas of study in the future.
1. Connes-Moscovici type index theorems. Computations similar to

those in C•(C•(A))[[u]] are used in [CM], [C1]. It would be very interesting to
find a unified framework for both approaches. In particular, the symmetry group
acting on the space of possible choices of V•(A) is the Grothendieck-Teichmuller
group which is closely related to Gal(Q/Q). In [CM] and [C1], the symmetry
with respect to the renormalization group was used. Part of Connes’ program of
noncommutative geometry is to unite the renormalization group and Gal(Q/Q)
(the second author thanks Alain Connes for helpful comments on this subject).

2. Quantum cohomology and the Fukaya category. Starting from a
compact symplectic manifold M , one can construct the quantum cohomology ring
HQ•(M) (cf., for example, [MDS] or [KM]) and the A∞ category F(M) (cf. [F1]).
Conjecturally, the former is the Hochschild cohomology of the latter (cf. [Sei]).

One can generalize the construction of the algebra Y (C•(A)), or in fact the
construction of both sides in Theorem 2.7.1, and replace an algebra A by an A∞
category F . Thus, one gets an associative dg algebra

Y (M) = Y (C•(F(M)))

Its cohomology algebra, possibly noncommutative, we denote by HQ•(M). If the
conjecture from [Sei] is true, then we get a morphism of algebras

HQ•(M)→ HQ•(M)

The right hand side should be closely related to the cohomology of the free loop
space of M , as suggested by Theorem 1.0.1.

3. Topological string theory of Chas-Sullivan. It is strongly believed
that, for an oriented compact manifold X, the chain complex C•(XS1

) is a G∞
algebra, even a BV∞ algebra, cf. [CS]. It would be interesting to study the
enveloping algebra Y (V•(X)) where V•(X) is the standard resolution of C•(XS1

).
Denote its cohomology algebra by H•loop(X). One gets a morphism of algebras

Hn−•(XS1
)→ H•loop(X)

The algebra H•loop(X), possibly noncommutative, should be related to the dou-
ble loop space of X.

A link between points 2 and 3 seems to be indicated in [Sei].
Acknowledgements. Both authors’ work was partially supported by NSF

grants. The authors would like to thank A. Beilinson, P. Bressler, A. Connes,
V. Drinfeld, B. Feigin, K. Fukaya, E. Getzler, M. Khalkhali, R. Nest and A. Voronov
for stimulating discussions. The second author thanks the Dennisfest organizers for
their hospitality and for the wonderful scientific atmosphere.
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2. Statement of the main theorem

2.1. Gerstenhaber algebras. Let k be the ground ring of characteristic zero.
A Gerstenhaber algebra is a graded space V• together with

• A graded commutative associative algebra structure on V•;
• a graded Lie algebra structure on V•+1 such that

[a, bc] = [a, b]c+ (−1)deg(a)deg(b)b[a, c]

Example 2.1.1. Let g be a Lie algebra. Then

C•(g) = ∧•g
is a Gerstenhaber algebra.

The product is the exterior product, and the bracket is the unique bracket
which turns C•(g) into a Gerstenhaber algebra and which is the Lie bracket on
g = ∧1(g).

Example 2.1.2. Let M be a smooth manifold. Then

V•M = ∧•TM
is a sheaf of Gerstenhaber algebras.

The product is the exterior product, and the bracket is the Schouten bracket.
We denote by V•(M) the Gerstenhaber algebra of global sections of this sheaf. The
previous example is the algebra of left-invariant multivector fields on the Lie group
of g.

2.2. Enveloping algebra of a Gerstenhaber algebra. The following con-
struction is motivated by Example 2.1.2. For a Gerstenhaber algebra V•, let Y (V•)
be the associative algebra generated by two sets of generators ia, La, a ∈ V•, both
i and L linear in a,

|ia| = |a|; |La| = |a| − 1
subject to relations

iaib = iab; [La, Lb] = L[a,b];

[La, ib] = i[a,b]; Lab = Laib + (−1)|a|iaLb
The algebra Y (V•) is equipped with the differential d of degree one which is

defined as a derivation sending ia to La and La to zero.
For a smooth manifold M one has a homomorphism

Y (V•(M))→ D(Ω•(M))

The right hand side is the algebra of differential operators on differential forms on
M . It is easy to see that this is in fact an isomorphism.

2.3. The Hochschild cochain complex. Let A be a graded associative alge-
bra with unit 1 over a commutative unital ring k of characteristic zero. A Hochschild
d-cochain is a linear map A⊗d → A. Put, for d ≥ 0,

Cd(A) = Cd(A,A) = Homk(A
⊗d
, A)

where A = A/(k · 1) is the quotient linear k-space. Elements of Cd(A) are called
normalized cochains. We prefer to work with normalized cochains because the
formulas for pairings between chains and cochains are simpler.
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Put
|D| = (degree of the linear map D) + d

Put for cochains D and E from C•(A,A)

(D ^ E)(a1, . . . , ad+e) = (−1)|E|
P

i≤d(|ai|+1)D(a1, . . . , ad)×

×E(ad+1, . . . , ad+e);

(D ◦ E)(a1, . . . , ad+e−1) =
∑
j≥0

(−1)(|E|+1)
Pj

i=1(|ai|+1)

D(a1, . . . , aj , E(aj+1, . . . , aj+e), . . . );

[D, E] = D ◦ E − (−1)(|D|+1)(|E|+1)E ◦D
These operations define the graded associative algebra (C•(A,A) ,^) and the
graded Lie algebra (C•+1(A,A), [ , ]) (cf. [CE]; [G]). Let

m(a1, a2) = (−1)deg a1 a1a2;

this is a 2-cochain of A (not in C2). Put

δD = [m,D];

(δD)(a1, . . . , ad+1) = (−1)|a1||D|+|D|+1×
×a1D(a2, . . . , ad+1)+

+
d∑
j=1

(−1)|D|+1+
Pj

i=1(|ai|+1)D(a1, . . . , ajaj+1, . . . , ad+1)

+(−1)|D|
Pd

i=1(|ai|+1)D(a1, . . . , ad)ad+1

One has

δ2 = 0; δ(D ^ E) = δD ^ E + (−1)|degD|D ^ δE

δ[D,E] = [δD,E] + (−1)|D|+1 [D, δE]
(δ2 = 0 follows from [m,m] = 0).

Thus C•(A,A) becomes a complex; we will denote it also by C•(A). The
cohomology of this complex is H•(A,A) or the Hochschild cohomology.

We denote it also by H•(A). The ^ product induces the Yoneda product on
H•(A,A) = Ext•A⊗A0(A,A). The operation [ , ] is the Gerstenhaber bracket [G].

If (A, ∂) is a differential graded algebra then one can define the differential ∂
acting on C•(A) by:

∂D = [∂,D]

Theorem 2.3.1. [G] The cup product and the Gerstenhaber bracket induce a
Gerstenhaber algebra structure on H•(A).

For cochainsD andDi define a new Hochschild cochain by the following formula
of Gerstenhaber ([G]) and Getzler ([G1]):

D0{D1, . . . , Dm}(a1, . . . , an) =

=
∑

(−1)
P

k≤ip
(|ak|+1)(|Dp|+1)

D0(a1, . . . , ai1 , D1(ai1+1, . . .), . . . ,

Dm(aim+1, . . .), . . .)
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Proposition 2.3.2. One has

(D{E1, . . . , Ek}){F1, . . . , Fl} =
∑

(−1)
P

q≤ip
(|Ep|+1)(|Fq|+1)×

×D{F1, . . . , E1{Fi1+1, . . . , }, . . . , Ek{Fik+1, . . . , }, . . . , }

The above proposition can be restated as follows. For a cochain D let D(k) be
the following k-cochain of C•(A):

D(k)(D1, . . . , Dk) = D{D1, . . . , Dk}

Proposition 2.3.3. The map

D 7→
∑
k≥0

D(k)

is a morphism of differential graded algebras

C•(A)→ C•(C•(A))

2.4. The Gerstenhaber algebra V•(A). Below is the theorem from [T]. We
sketch its proof in 3.1.

Theorem 2.4.1. For every associative algebra A there exists a dg Gerstenhaber
algebra V•(A) such that:

• There is a quasi-isomorphism of dg Lie algebras

V•(A)[1]→ C•(A)[1]

• The above quasi-isomorphism induces an isomorphism of Gerstenhaber
algebras

H•(V•(A))→ H•(A)

where the Gerstenhaber structure on the right hand side is the standard
one from 2.3.
• For A = C∞(M) there is a quasi-isomorphism of dg Gerstenhaber algebras

V•(A)→ V•(M)

2.5. Hochschild chains. Let A be an associative dg algebra with unit 1 over
a ground ring k. The differential on A is denoted by δ. Recall that by definition

A = A/(k · 1)

Set
Cp(A,A) = Cp(A) = A⊗A⊗p

Define the differentials δ : C•(A) → C•(A), b : C•(A) → C•−1(A), B : C•(A) →
C•+1(A) as follows.

δ(a0 ⊗ · · · ⊗ ap) =
p∑
i=1

(−1)
P

k<i (|ak|+1)+1(a0 ⊗ · · · ⊗ δai ⊗ · · · ⊗ ap)

(2.1) b(a0 ⊗ . . .⊗ ap) =
p−1∑
k=0

(−1)
Pk

i=0 (|ai|+1)+1a0 . . .⊗ akak+1 ⊗ . . . ap

+(−1)|ap|+(|ap|+1)
Pp−1

i=0 (|ai|+1)apa0 ⊗ . . .⊗ ap−1
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(2.2) B(a0 ⊗ . . .⊗ ap) =
p∑
k=0

(−1)
P

i≤k(|ai|+1)
P

i≥k(|ai|+1)1⊗ ak+1 ⊗ . . . ap⊗

⊗a0 ⊗ . . .⊗ ak
The complex C•(A) is the total complex of the double complex with the differential
b+ δ.

Let u be a formal variable of degree −2. The complex (C•(A)[[u]], b+ δ + uB)
is called the negative cyclic complex of A.

One can define a product

(2.3) sh : C•(A)⊗ C•(A)→ C•(A)

and its extension

(2.4) sh+u sh′ : C•(A)[[u]]⊗ C•(A)[[u]]→ C•(A)[[u]]

[L] by the following explicit formulas:

(2.5) (a0 ⊗ . . .⊗ ap)⊗ (c0 ⊗ . . .⊗ cq)
sh7→ a0c0 ⊗ shpq(a1, . . . , ap, c1, . . . , cq)

where

(2.6) shpq(x1, . . . , xp+q) =
∑

σ∈Sh(p,q)

sgn(σ)xσ−11 ⊗ . . .⊗ xσ−1(p+q)

and
Sh(p, q) = {σ ∈ Σp+q |σ1 < . . . < σp; σ(p+ 1) < . . . < σ(p+ q)}

In the graded case, sgn(σ) gets replaced by the sign computed by the following
rule: in all transpositions, the parity of ai is equal to |ai| + 1 if i 6= 0 and |a0| if
i = 0, and similarly for ci. A transposition contributes a product of parities.

(2.7) (a0 ⊗ . . .⊗ ap)⊗ (c0 ⊗ . . .⊗ cq)
sh′7→ 1⊗ sh′p+1, q+1(a0, . . . , ap, c0, . . . , cq)

where

(2.8) sh′p+1,q+1(x0, . . . , xp+q+1) =
∑

σ∈Sh′(p+1,q+1)

sgn(σ)xσ−10 ⊗ . . .⊗ xσ−1(p+q+1)

and Sh′(p+1, q+1) is the set of all permutations σ ∈ Σp+q+2 such that σ0 < . . . <
σp, σ(p+ 1) < . . . < σ(p+ q + 1), and σ0 < σ(p+ 1)

2.6. The A∞ algebra C•(C•(A)). Recall [LS], [St1] that an A∞ algebra is
a graded vector space C together with a Hochschild cochain m of total degree 1,

m =
∞∑
n=1

mn

where mn ∈ Cn(C) and
[m,m] = 0

Consider the Hochschild cochain complex of a graded algebra A as a differential
graded associative algebra (C•(A), ^, δ). Consider the Hochschild chain complex
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of this differential graded algebra. The total differential in this complex is b + δ;
the degree of a chain is given by

|D0 ⊗ . . .⊗Dn| = |D0|+
n∑
i=1

(|Di|+ 1)

where Di are Hochschild cochains.
The complex C•(C•(A)) contains the Hochschild cochain complex C•(A) as

a subcomplex (of zero-chains) and has the Hochschild chain complex C•(A) as a
quotient complex:

C•(A) i−→ C•(C•(A)) π−→ C•(A)
(this sequence is not by any means exact). The projection on the right splits if A is
commutative. If not, C•(A) is naturally a graded subspace but not a subcomplex.

Theorem 2.6.1. There is an A∞ structure on C•(C•(A))[[u]] such that:
• All mn are k[[u]]-linear, (u)-adically continuous
• m1 = b+ δ + uB

For x, y ∈ C•(A):
• (−1)|x|m2(x, y) = (sh +u sh′)(x, y)

For D, E ∈ C•(A):
• (−1)|D|m2(D,E) = D ^ E
• m2(1⊗D, 1⊗ E) + (−1)|D||E|m2(1⊗ E, 1⊗D) = (−1)|D|1⊗ [D, E]
• m2(D, 1⊗ E) + (−1)(|D|+1)|E|m2(1⊗ E, D) = (−1)|D|+1[D, E]

Here is an explicit description of the above A∞ structure. We define for n ≥ 2

mn = m(1)
n +m(2)

n + um(3)
n

where, for
a(k) = D

(k)
0 ⊗ . . .⊗D(k)

Nk
,

m(1)
n = 0

for n ≥ 3;

m
(1)
2 (a(1), a(2)) = (−1)|a

(1)|
∑
±D(1)

0 ^ D
(2)
0 { } ⊗ . . .⊗

⊗D(2)
1 { } ⊗ . . . . . .⊗D

(2)
N2
{ } ⊗ . . .

The space designated by is filled with D(1)
1 , . . . , D

(1)
N1

whose order is preserved.

The sign rule is as follows: the parity of D(i)
j is |D(i)

j | for j = 0 and |D(i)
j | + 1

otherwise.

m(2)
n (a(1), . . . , a(n)) =

= (−1)
Pn−1

i=1 |a1|+n
∑
±D(n)

Nn
{. . . , D(1)

0 , . . . , D
(n−1)
0 { }, . . .}^

^ D
(n)
0 { } ⊗ . . .⊗D

(n)
1 { } ⊗ . . . . . .⊗D

(n)
Nn−1{ } ⊗ . . .

The space designated by is filled with D(j)
i for j < n in such a way that:

• the cyclic order of each group D(k)
0 , . . . , D

(k)
Nk

is preserved

• D(1)
0 , . . . , D

(n−1)
0 are all inside the braces in D(n)

Nn
{ }

• D(i)
0 is to the left of D(j)

0 for i < j
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• any cochain D
(i)
j may contain some of its neighbors on the right inside

the braces, provided that all of these neighbors are of the form D
(p)
q with

p < i

The parity of D(i)
j is |D(i)

j | if i = n and j = 0; it is |D(i)
j |+ 1 otherwise. Note that

the formula for m(2)
n gives the Hochschild chain differential b for n = 1.

Finally, define

m(3)
n (a(1), . . . , a(n)) = (−1)n+1

∑
±1⊗ . . .⊗D(0)

0 ⊗ . . .⊗D(n)
0 {} ⊗ . . .

The underlined space is filled with D(j)
i in such a way that:

• the cyclic order of each group D(k)
0 , . . . , D

(k)
Nk

is preserved

• D(i)
0 is to the left of D(j)

0 for i < j

• any cochain D
(i)
j may contain some of its neighbors on the right inside

the braces, provided that all of these neighbors are of the form D
(p)
q with

p < i. The parity of D(i)
j is always |D(i)

j |+ 1.
One checks by a direct computation that the above formulas provide an A∞

structure on C•(C•(A))[[u]].

Remark 2.6.2. Let A be a commutative algebra. Then C•(A)[[u]] is not only
a subcomplex but an A∞ subalgebra of C•(C•(A))[[u]]. This A∞ structure on
C•(A)[[u]] was introduced in [GJ1].

2.7. Statement of the main theorem.

Theorem 2.7.1. There is a A∞ quasi-isomorphism

Y (V•(A))→ C•(C•(A))

which extends to a k[[u]]-linear, (u)-adically continuous A∞ quasi-isomorphism

(Y (V•(A))[[u]], δ + ud)→ C•(C•(A))[[u]]

3. Sketch of the proof of the main theorem

We will start by introducing several operads used in the proof of Theorem 2.1.2.
We will then extend the notion of a Gerstenhaber algebra to that of a calculus (3.2).
Next we will introduce some basic pairings between Hochschild chains and cochains,
extending the definitions from 2.5. Then we will state Theorem 3.4.1 which asserts
that the Gerstenhaber algebra V•(A) can be extended to a calculus Calc(A).

Next, we will introduce a notion of a two-colored operad which is suitable for
working with objects like calculi (3.5). After that we extend the contents of 3.1 by
introducing corresponding two-colored operads and stating relations among them
(3.6).

Next, we define a notion of the enveloping algebra of an algebra A• over an
operad O, provided that O is part of a two-colored operad P. This is an associa-
tive dg algebra which we denote by YP(A•). Because of Theorem 3.4.1, one has
morphisms of dg algebras

(3.1) YCalc0alg
(V•(A))

φ← YCalc0∞
(C•(A)) τ← YCalc0∞

(V•(A))
ψ→ YCalc0(V•(A))

where two-colored operads Calc0
alg, Calc0

∞, Calc0 are defined in 3.6.
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Next, we note that C•(A) is an A∞ module over the A∞ algebra C•(C•(A))[[u]].
We interpret this result as the existence of an A∞ morphism

C•(C•(A))→ YCalc0alg
(V•(A))

Then we observe that this is a quasi-isomorphism. The maps ψ and τ in (3.1)
are also quasi-isomorphisms; therefore we get an A∞ morphism from Y (V•(A)) to
C•(C•(A)). To prove that this is a quasi-isomorphism, we are reduced to proving
that φ is a quasi-isomorphism.

To that end, we study in some more detail the homology of the algebra YCalc0∞
(A•)

for any Gerstenhaber algebra A• (Appendix). We show that this is a twisted ver-
sion of the Hochschild homology, i.e. there is a spectral sequence starting with the
latter and converging to the former. We observe that the map φ is filtered with
respect to some filtration, and the fact that it is a quasi-isomorphism follows from
considering the corresponding spectral sequence.

In the last subsection before Appendix, we modify the above arguments to
prove the cyclic case of the main theorem.

3.1. Operads G, G∞, Galg, Ggeom. Here we recall the scheme of the proof
of Theorem 2.4.1 which was used in [T], [T1].

Gerstenhaber algebras are algebras over an operad which we will denote by
G.. In other words, G(n) is the graded k-module of all n-ary operations composed
of the product and the bracket in a Gerstenhaber algebra, subject to all relations
following from Gerstenhaber algebra axioms. The operad G is often denoted also
by e2.

By G∞ we denote the standard free resolution of G. This is an operad in
the category of complexes. One description of it is as follows. Consider a graded
space A•. Let us pretend for a moment that A• is finite-dimensional. Consider
the free graded Lie algebra Lie(A•[1]∗) generated by the dual space to A•[1]. Then
the space F•(A•) = ∧• Lie(A•[1]∗) carries the structure of a Gerstenhaber algebra
(Example 2.1.1). In fact F•(A•) is the free Gerstenhaber algebra generated by
A•[1]∗. A G∞ structure on A• is by definition a derivation δ of the Gerstenhaber
algebra F•(A•) such that |δ| = 1 and δ2 = 0.

Remark 3.1.1. As stated, this definition has a problem if A• is infinite-
dimensional: it involves various linear maps from A•[1]∗ to tensor powers of A•[1]∗,
satisfying certain relations. What we actually mean are dual maps from tensor pow-
ers of A•[1] to A•[1], satisfying dual relations. A rigorous definition can be given
in the dual language of coalgebras. The same remark applies to the definitions and
constructions of 3.6, 3.10, 4 below.

Another, equivalent way of defining the operad G∞ is to put

G∞ = Cobar(Gdual)

where Gdual is the Koszul dual operad as in [GK]. Note that the operad G is
Koszul [GJ].

The operad Ggeom is the little discs operad [May]. To pass from it to an operad
in the category of complexes, one defines the operad C•(Ggeom). It is known that
the homology operad H•(Ggeom) is isomorphic to G, see [A], [Co], [GJ].

The operad in the category of complexes Galg is the operad of all universal
operations on the Hochschild cochain complex of an associative algebra. It has
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various versions each of which suits our purposes ([KS], [MS], [T1]). Let us start
with the version from [MS]. Consider all multi-linear operations on Hochschild
cochains which are linear combinations of iterated compositions of the following
elementary operations:

op(D)(a1, . . . , ad) = a1D(a2, . . . , ad)

op(D)(a1, . . . , ad) = D(a1, . . . , aiai+1, . . . , ad)

op(D)(a1, . . . , ad) = D(a1, . . . , ad−1)ad

op(D,E)(a1, . . . , ad+e−1) = D(a1, . . . , ai, E(ai+1, . . . , ai+e), . . .)

op(D,E)(a1, . . . , ad+e) = D(a1, . . . , ad)E(ad+1, . . . , ad+e)

(a minor technical point: this construction makes sense if one works with non-
normalized Hochschild cochains C•(A) = Hom(A⊗n, A)). One can arrange these
operations into an operad in the category of complexes, cf. [MS]. In [KS], a differ-
ent version of this operad is proposed, namely the minimal operad M. It consists
of all universal operations on Hochschild cochains which are linear combinations of
compositions of the brace operations from 2.5, the cup product, and the higher cup
products which are defined if A is an A∞ algebra. Such n-ary operations are nat-
urally indexed by rooted trees whose vertices are labeled by symbols 1, . . . , n,mi,
i ≥ 2, in such a way that each label from 1 to n enters exactly once, and mi may
only label vertices with i outgoing edges. Finally, by Galg we denote the standard
free resolution of Galg, the operad Bar Cobar(Galg). For any operad O in the cat-
egory of complexes, the operad Bar Cobar(O) admits an explicit description as in
[KS] (cf. also 3.6).

The relation between the above operads is as follows.

(3.2) G∞
f1→ Galg

g1← Galg
g2→ C•(Ggeom) F→ G

The quasi-isomorphism g2 can be deduced from [KS], from [MS], or [T1]; g1 is
the standard quasi-isomorphism between a resolution of an operad and the operad
itself. F is the formality quasi-isomorphism from [K1], [T1]; it depends on a choice
of a Drinfeld associator. The existence of f1 follow from the fact that , thanks to
the existence of F , G∞ and Galg are two free resolutions of G.

Therefore, since Galg acts on C•(A), we see that C•(A) is a G∞ algebra. This
summarizes one of the versions of the proof of Theorem 2.4.1.

3.2. Calculi.

Definition 3.2.1. A precalculus is a pair of a Gerstenhaber algebra V• and a
graded space Ω• together with

• a structure of a graded module over the graded commutative algebra V• on
Ω−• (corresponding action is denoted by ia, a ∈ V•);
• a structure of a graded module over the graded Lie algebra V•+1 on Ω−•

(corresponding action is denoted by La, a ∈ V•) such that

[La, ib] = i[a,b]

and
Lab = Laib + (−1)|a|iaLb
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Definition 3.2.2. A calculus is a precalculus together with an operator d of
degree 1 on Ω• such that d2 = 0 and

[d, ia] = La.

Example 3.2.3. For any manifold one defines a calculus Calc(M) with V•
being the algebra of multivector fields, Ω• the space of differential forms, and d the
De Rham differential.

Example 3.2.4. For any associative algebra A one defines a calculus Calc0(A)
by putting V• = H•(A,A) and Ω• = H•(A,A). The five operations from Definition
3.2.2 are the cup product, the Gerstenhaber bracket, the pairings iD and LD, and
the differential B, as in 3.3 below.

A differential graded (dg) calculus is a calculus with extra differentials δ of
degree 1 on V• and b of degree −1 on Ω• which are derivations with respect to all
the structures.

3.3. Pairings between chains and cochains. For a graded algebra A, for
D ∈ Cd(A,A), define

(3.3) iD(a0 ⊗ . . .⊗ an) = (−1)|D|
P

i≤d(|ai|+1)a0D(a1, . . . , ad)⊗ ad+1 ⊗ . . .⊗ an

Proposition 3.3.1.
[b, iD] = iδD

iDiE = (−1)|D||E|iE^D

Now, put

(3.4) LD(a0 ⊗ . . .⊗ an) =
n−d∑
k=1

εka0 ⊗ . . .⊗D(ak+1, . . . , ak+d)⊗ . . .⊗ an+

n∑
k=n+1−d

ηkD(ak+1, . . . , an, a0, . . .)⊗ . . .⊗ ak

(The second sum in the above formula is taken over all cyclic permutations
such that a0 is inside D). The signs are given by

εk = (|D|+ 1)
k∑
i=0

(|ai|+ 1)

and
ηk = |D|+ 1 +

∑
i≤k

(|ai|+ 1)
∑
i≥k

(|ai|+ 1)

Proposition 3.3.2.
[LD, LE ] = L[D,E]

[b, LD] + LδD = 0

[LD, B] = 0
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Now let us extend the above operations to the cyclic complex. Define

(3.5) SD(a0 ⊗ . . .⊗ an) =
∑

j≥0; k≥j+d

εjk1⊗ ak+1 ⊗ . . . a0 ⊗ . . .⊗

⊗D(aj+1, . . . , aj+d)⊗ . . .⊗ ak
(The sum is taken over all cyclic permutations for which a0 appears to the left of
D). The signs are as follows:

εjk = |D|(|a0|+
n∑
i=1

(|ai|+ 1)) + (|D|+ 1)
k∑
j+1

(|ai|+ 1) +
∑
i≤k

(|ai|+ 1)
∑
i≥k

(|ai|+ 1)

As we will see later, all the above operations are partial cases of a unified
algebraic structure for chains and cochains, cf. 3.8; the sign rule for this unified
construction was explained in 2.6.

Proposition 3.3.3. ([R])

[b+ uB, iD + uSD]− iδD − uSδD = LD

Proposition 3.3.4. ([DGT]) There exists a linear transformation T (D,E) of
the Hochschild chain complex, bilinear in D, E ∈ C•(A,A), such that

[b+ uB, T (D,E)]− T (δD,E)− (−1)|D|T (D, δE) =

= [LD, iE + uSE ]− (−1)|D|+1(i[D,E] + uS[D,E])

3.4. The calculus Calc(A).

Theorem 3.4.1. [TT] For any associative algebra A one can define a dg cal-
culus Calc(A) such that:

1). As dg Lie algebras, V•+1(A) is quasi-isomorphic to the Hochschild cochain
complex C•+1(A). As dg modules over the dg Lie algebra V•+1(A), Ω•(A)[[u]] with
the differential δ+uB is quasi-isomorphic to the negative cyclic complex C•(A)[[u]]
with the differential b+ uB.

2). If A = C∞(M) then there is a quasi-isomorphism of calculi

Calc(A)→ Calc(M)

3). For any A, the calculus H•(Calc(A)) is isomorphic to the calculus Calc0(A)
from Example 3.2.4.

3.5. Two-colored operads. The notion of a two-colored operad formalizes
the situation when one has an algebra A over an operad O, an object B, and a set
M(n) of operations A⊗n ⊗ B → B. The union of M(n) is supposed to be closed
under some natural operations.

More precisely, a two-colored operad (O,M) consists of an operad O and a
collection of objectsM(n), n ≥ 0, together with an action of the symmetric group
Sn onM(n) for all n, and with the operations

(3.6) M(k)⊗O(n1)⊗ . . .⊗O(nk)→M(n1 + . . .+ nk)

(3.7) M(k)⊗M(l)→M(k + l)

subject to natural conditions of associativity and symmetry with respect to permu-
tations.
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An algebra over a two-colored operad (O,M) is a pair of objects (A,B) such
that A is an O-algebra, together with operations

(3.8) M(n)⊗A⊗n ⊗B → B

subject to natural relations.
One can easily adapt the basic notions of the theory of operads to this context.

For example, the free two-colored operad generated by a collection of k[Sn]-modules
Q(n), R(n) is the pair (O, M) where O is the free operad generated by {Q(n)}
andM(n) is described as follows. Consider all rooted trees with a chosen path p0

from the root to an external vertex v0. Let the external vertices other than v0 be
numbered by 1, . . . , n. We will call such objects two-colored trees. For such a tree,
put

M(T ) =
⊗

internal vertices v

M(v),

where
M(v) = Q(#(edges outgoing from v))

if v is not on p0;

M(v) = R(#(edges outgoing from v))

if v is on p0. M(n) is the direct sum ofM(T ) over all isomorphism classes of such
trees.

If (O,M) is a two-colored dg operad, then the cofree two-colored cooperad
cogenerated by (O,M) acquires a differential. This differential is the sum of the
one induced from (O,M) and the new one, which sends an element of the direct
summand corresponding to a (two-colored) tree T to the sum of elements in direct
summands corresponding to trees T ′ obtained from T by contracting an internal
edge. These elements are obtained from the original element by applying an appro-
priate composition in the operad (O,M). Thus one gets a two-colored cooperad in
the category of complexes Cobar(O,M).

Dually, if (O,M) is a two-colored dg cooperad, one constructs a two-colored dg
operad Bar(O,M). Its underlying space is a direct sum over (two-colored) trees,
and the new component of the differential consists of inserting an internal edge in
all possible positions, combined with an appropriate cooperadic cocomposition.

Composing these two constructions, one produces for a dg two-colored operad
(O,M) a new dg two-colored operad BarCobar(O,M). This is the standard free
resolution of (O,M), which means that it is free as an operad in the category of
graded vector spaces and that there is a canonical quasi-isomorphism of operads

Bar Cobar(O,M)→ (O,M).

Explicitly (compare [KS]), this resolution is the direct sum of components num-
bered by (two-colored) trees whose edges are labeled by one of the two labels, finite
or infinite. All external edges are infinite. The terms in the new differential are
of two types: a) contracting a finite edge, combined with an operadic composition;
b) making a finite edge infinite.

One can also define, following [GK], a Koszul dual cooperad of a two-colored
operad, and extend the notion of a Koszul operad into the two-colored setting.
For a Koszul two-colored operad (O,M), the dg operad Bar((O,M)dual) is a free
resolution of (O,M).
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3.6. Two-colored operads Calc, Calc∞, Calcgeom, Calcalg. In this section
we will extend the method that was outlined in 3.1. This will enable us to prove
both Theorem 3.4.1, 1)-3), and Theorem 2.7.1. To prove statement 4) of Theorem
3.4.1, some additional work is needed; we will give a proof in a subsequent paper.

By Calc, resp. Calc0, we denote the two-colored operad in the category of
graded spaces such that algebras over them are calculi (resp. precalculi). In other
words, O = G and M(n) consists of all n-ary operations composed of ia, La, and
d (resp. ia and La).

By Calc∞ we denote the standard resolution of Calc. One can write it as

Calc∞ = BarCalcdual

Similarly,

Calc0
∞ = BarCalc0dual

(one can show that Calc and Calc0 are Koszul).
Alternatively, one can give the following explicit definition.
A Calc∞ algebra is a pair of graded vector spaces (A•,B•) where A• is a G∞

algebra, together with the following extra data. As in 3.1, let us pretend that A•,B•
are finite-dimensional (cf. Remark 3.1.1). Recall from 3.1 that one can define the dg
Gerstenhaber algebra F•(A•). Let Ω−•A•,B• be the free graded Y (F•(A•))-module
generated by (B−•[1])∗. In other words, let (F•(A•),Ω•A•,B•) be the free precalculus
generated by (A−•[1])∗ and (B−•[1])∗.

A Calc0
∞ algebra structure on (A•,B•) is a linear operator d on Ω•A•,B• of

square zero and degree one, such that (Ω−•A•,B• , d) is a dg module over the dg
algebra (Y (F•(A•)), δ).

Let u be a formal parameter of degree two. A Calc∞ algebra structure on
(A•,B•) is a k[[u]]-linear, (u)-adically continuous operator d on Ω•A•,B• [[u]] of square
zero and degree one, such that (Ω−•A•,B• [[u]], d) is a dg module over the dg algebra
(Y (F•(A•))[[u]], δ + ud).

We define Calc0
geom = (O,M) where O is the little discs operad and M is the

configuration space, up to dilations, of cylinders [0, r]× S1 with n disjoint discs in
the interior. The operations of type (3.6) consist of inserting little discs into the
discs on the cylinder. The operations of type (3.7) consist of putting one cylinder
on top of the other.

As for Calcgeom, O is the little discs operad andM is the configuration space,
up to dilations and horizontal rotations, of cylinders [0, r]×S1 with a marked point
on each component of the boundary and with n disjoint discs in the interior. The
operations of type (3.6) consist of inserting little discs into the discs on the cylinder.
The operations of type (3.7) consist of aligning marked points and then putting one
cylinder on top of the other.

Now let us indicate how one defines Calc0
alg and Calcalg. For them, O = Galg.

To describeM, consider all universal operations C•(A)⊗n⊗C•(A)→ C•(A) which
are linear combinations of iterated compositions of the operations from Galg with
the following elementary operations:

a0 ⊗ . . .⊗ ap 7→ 1⊗ a0 ⊗ . . .⊗ ap

a0 ⊗ . . .⊗ ap 7→ ap ⊗ a0 ⊗ . . .⊗ ap−1

a0 ⊗ . . .⊗ ap 7→ a0a1 ⊗ a2 ⊗ . . .⊗ ap
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(D, a0 ⊗ . . .⊗ ap) 7→ a0 ⊗D(a1, . . . , ad)⊗ ad+1 ⊗ . . .⊗ ap
(As in 3.1, to make it correct, one has to work with non-normalized chains and
cochains).

For the two-colored operad Calc0
alg, theM part consists only of the operations

for which the term containing a0 remains on the position number zero.
For example, the operation

(D1, D2, D3, a0 ⊗ . . .⊗ a7) 7→ D1(a7, a0)D3(a1, D2(a2, a3))a4 ⊗ a5a6

is inM for both Calcalg and Calc0
alg; the operation

(D1, D2, a0 ⊗ . . .⊗ a5) 7→ a1a2 ⊗ a3 ⊗D2(a4, D1(a5), a0))

is in M for Calcalg but not for Calc0
alg (the term containing a0 is on the position

number two); the operation

(D1, D2, D3, a0 ⊗ . . .⊗ a5) 7→ D1(a5a0)a1 ⊗ a2D3(a4, D2(a3))

is not inM for either (because the cyclic order of ai ’s is broken).
As in 3.1, a minimal version in the manner of [KS] can be defined (and is

necessary for the current version of the proof of the main theorem). We will discuss
it in full in a more detailed exposition.

Finally, put
Calg = BarCobar(Calcalg)

Adapting the arguments from [MS], [T1] or from [KS] to our purposes, one
proves that the following chain of quasi-isomorphisms extends that of 3.1:

(3.9) Calc∞
f1→ Calcalg

g1← Calg
g2→ C•(Calcgeom) F→ Calc

and similarly for Calc0. As a corollary, one gets Theorem 3.4.1.

3.7. Enveloping algebra of an algebra over a two-colored operad. Let
P = (O,M) be a two-colored dg operad. For an O-algebra A• put

YP(A•) = ⊕n>0A•⊗n ⊗k[Sn]M(n)/ ∼
where the equivalence relation ∼ is generated by the following:

for a1, . . . , an ∈ A•, m ∈M(k), o ∈ O(l), k + l − 1 = n, and for all i

(a1 ⊗ . . .⊗ an)⊗ (o ◦i m) ∼ (a1 ⊗ . . .⊗ ai−1 ⊗ o(ai, . . . , ai+l−1)⊗ . . .⊗ an)⊗m
taken with the appropriate sign, where ◦i : O(l) ⊗ M(k) → M(n) is the ith
elementary composition.

The operations M(k) ⊗M(l) → M(k + l) turn YP(A•) into an associative
algebra.

Example 3.7.1. . Let P = (As,M) be the two-colored operad algebras over
which are pairs (A,B), where A is an associative algebra and B is a left A-module
(resp. a right module, resp. a bimodule). Then YP(A) = A (resp. Aop, resp.
A⊗Aop).

Example 3.7.2. . Let P = (Lie,M) be the two-colored operad algebras over
which are pairs (g, B) where g is a Lie algebra and B is a g-module. Then YP(g) =
U(g).

Example 3.7.3. Let P = Calc0. Then, for a Gerstenhaber algebraA•, YP(A•) =
Y (A•).



DIFFERENTIAL OPERATORS IN NONCOMMUTATIVE CALCULUS 123

Example 3.7.4. Let P = Calc. Denote by a a one-dimensional Abelian graded
Lie algebra concentrated in degree one. This algebra acts on Y (A•) by derivations,
the generator acting by d. One can form a cross product U(a) n Y (A•). For a
Gerstenhaber algebra A•,

YP(A•) ' U(a) n Y (A•).

3.8. The A∞ module structure on Hochschild chains. Recall the defi-
nition of A∞ modules over A∞ algebras. First, note that for a graded space M,
the Gerstenhaber bracket [ , ] can be extended to the space

Hom(C⊗•, C)⊕Hom(M⊗C⊗•,M)

For a graded k-module M, a structure of an A∞ module over an A∞ algebra
C onM is a cochain

µ =
∞∑
n=1

µn

µn ∈ Hom(M⊗C⊗n−1
,M)

such that
[m+ µ,m+ µ] = 0

Theorem 3.8.1. On C•(A)[[u]], there exists a structure of an A∞ module over
the A∞ algebra C•(C•(A))[[u]] such that:

• All µn are k[[u]]-linear, (u)-adically continuous
• µ1 = b+ uB on C•(A)[[u]]

For a ∈ C•(A)[[u]]:
• µ2(a,D) = (−1)|a||D|+|a|(iD + uSD)a
• µ2(a, 1⊗D) = (−1)|a||D|LDa

For a, x ∈ C•(A)[[u]]:

(−1)|a|µ2(a, x) = (sh +u sh′)(a, x)

To obtain formulas for the structure of an A∞ module from Theorem 3.8.1, one
has to assume that, in the formulas for the A∞ structure from Theorem 2.6.1, all
D

(1)
j are elements of A; then one has to replace braces { } by the usual parentheses

( ) symbolizing evaluation of a multi-linear map at elements of A.

3.9. The algebra YCalc0alg
(C•(A)) and the Hochschild complex. Note

that the construction from 3.8 can be interpreted as existence of an A∞ morphism

(3.10) C•(C•(A))→ YCalc0alg
(C•(A))

From (3.9) one gets an algebra homomorphism

(3.11) YCalc0∞
(C•(A))→ YCalc0alg

(C•(A))

It is easy to show that both maps

(3.12) YCalc0∞
(C•(A))← YCalc0∞

(V•(A))→ YCalc0(V•(A))

are quasi-isomorphisms. To prove the first part of Theorem 2.7.1, it remains to
show that (3.11) and (3.10) are quasi-isomorphisms under our assumptions.
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3.10. The algebra YCalc0∞
(C•(A)) and the Hochschild complex. To show

that (3.11) is a quasi-isomorphism, we introduce the following filtrations: on C•(C•(A)),
let

(3.13) filtn = C≤n(C•(A)) = C•(A)⊗ C•(A)
⊗≤n

On YCalc0alg
(C•(A)) and YCalc0∞

(C•(A)), let

(3.14) filtn =
∑
m≤n

Q(m)⊗k[Sm] C
•(A)⊗m/ ∼

It is easy to see that (3.10) preserves the filtration and therefore induces an isomor-
phism of associated graded quotients. The morphism (3.11) preserves the filtration
by definition. At the level of associated graded quotients, (3.11) induces a morphism
of complexes

(3.15) YCalc0∞
(H•(A))→ C•(H•(A))

where, in the left hand side, H•(A) is the Hochschild cohomology, viewed as a
Gerstenhaber algebra on which all the operations are zero. The fact that (3.15) is
an isomorphism follows from Proposition 4.2.4 in the Appendix.

3.11. Another proof of quasi-isomorphicity of the map (3.11). We are
going to prove a slightly more general statement.

Proposition 3.11.1. Let U be an arbitrary Galg-algebra. Then the map
YCalc0∞

(U)→ YCalc0alg
(U) constructed in the same way as the map (3.11) is a quasi-

isomorphism.

This proof is based on two facts. The first one is that the map of colored operads
f1 from (3.9) is a quasi-isomorphism. The second fact says that M0

alg is free over
Galg. This means that one can choose Sn-equivariant subspaces E(n) ⊂ M0

alg(n)
(for any n) in such a way that for all N the insertion map⊕
n,M1+M2+···+Mn=N

M0
alg(n)⊗SnGalg(M1)⊗· · ·⊗Galg(Mn)⊗SM1×···×SMn

k[SN ]→M0
alg(N)

is an isomorphism. This fact follows from the explicit construction of Calcalg.
Having these two facts, we prove the Proposition as follows. First, let us trans-

late the definition of a universal enveloping algebra into the language of PROPs.
Let (O,M) be a two-colored operad and U be an O-algebra. Let PO be the PROP
generated by O. Then the structure maps

O(n1)⊗ · · · ⊗ O(nm)⊗M(m)→M(n1 + · · ·+ nm)

endow M with a structure of a functor M ′ : P op
O → Complexes, where for [n] ∈

ObPO, M ′([n]) = M(n). Further on, we will denote M ′ by M . Put FU ([n]) = U⊗n.
Then, since U is a PO-algebra, FU is a functor PO → Complexes.

We see that
YO,M (U) ∼= FU ⊗PO M,

where on the right hand side we use the MacLane tensor product.
We have a quasi-isomorpism f1 : Calc0

∞ → Calc0
alg. It produces a symmetric

monoidal functor F : PG∞ → PGalg which induces a quasi-isomorphism on the
spaces of homomorphisms; also, f1 gives rise to a natural transformation G : M0

∞ →
M0

alg ◦ F which is a quasi-isomorphism.
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Let us come back to our Galg-algebra U . Let U ′ be U considered as a G∞-
algebra, where the corresponding structure is induced by f1. We have:

(3.16) FU ′ ∼= FU ◦ F.
In this light, the map YCalc0∞

(U ′) → YCalc0alg
(U), which coincides with the map

(3.11), is described as the composition:

(3.17) M0
∞ ⊗PG∞

FU ′ →M0
alg ◦ F ⊗PG∞

FU ◦ F →M0
alg ⊗PGalg

FU ,

where the first map is induced by G and (3.16).
We need to show that this composition produces a quasi-isomorphism. To this

end, we introduce a functor F! from the category of functors PG∞ → Complexes to
the category of functors PGalg → Complexes. Denote h[m]([n]) = homPGalg

([n], [m]).
Each h[m] is a functor P op

Galg
→ Complexes. For a functor N : PG∞ → Complexes

set F!N([m]) := N ⊗PG∞
h[m]. We have canonical isomorphisms

homPGalg
(F!N,M) ∼= homPG∞

(N,M ◦ F )

for any M : PGalg → Complexes; and

F!M ⊗PGalg
L ∼= M ⊗PG∞

(L ◦ F ).

In particular, the map G induces a map G′ : F!M
0
∞ → M0

alg. Since F is a quasi-
isomorphism and M0

∞ is semi-free and has a set of generators centered in non-
positive degrees, it follows that G′ is a quasi-isomorphism. One sees that the map
in (3.17) can be rewritten as the following composition:

M0
∞ ⊗PG∞

FU ′ ∼= M0
∞ ⊗PG∞

FU ◦ F ∼= F!M
0
∞ ⊗PGalg

FU →M0
alg ⊗PGalg

FU .

where the second map is induced by G′. Since G′ is a quasi-isomorphism and
M0

alg is semi-free and has a set of generators centered in non-positive degrees,the
second map is a quasi-isomorphism, therefore, the whole composition is a quasi-
isomorphism.

3.12. (3.10) is a quasi-isomorphism. Again, we we will replace C•(A,A)
with an arbitrary Galg-algebra U . U has an associative cup-product, and we can
form the Hochschild chain complex C•(U) with respect to this product. The map
(3.10) is then generalized to a map φ := φU : C•(U) → YCalc0(U), and we need
to show that this map is a quasi-isomorphism. We are going to make a couple of
reductions. Firstly, we can use the filtration as in (3.13) by the number of tensor
factors of U . Then it suffices to check that φ induces a quasi-isomorphism of the
associated graded spaces. This implies that it suffices to consider the case in which
all operations on U vanish. To prove this statement we need one more reduction.
Note that any commutative algebra B can be considered as a Galg-algebra in which
the cup product is commutative and all braces vanish. Denote thus obtained Galg-
algebra by B′. We have U = B′, where B has zero product. We now want to
reduce this case to the case in which U = (SV )′, where SV is a free commutative
algebra. To this end we notice that for B having zero product, there exists a semi-
free resolution p : SW → B having the property that SW can be endowed with an
increasing exhausting filtration F such that the associated graded algebra GrSW
is free. Since the functors C• and YCalc0 preserve quasi-isomorphisms, it suffices
to show that φSW is a quasi-isomorphism; using the filtration induced by F , we
reduce the statement to quasi-isomorphicity of φGrSW , where GrSW is free.
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Thus, from now on we set U = (SV )′. In this case we have the Kostant-
Hochschild-Rosenberg quasi-isomorphism ω : SV ⊗ S(V [1]) → C•(SV ). Compute
the composition ωφ : SV ⊗S(V [1])→ YCalc0(SV ). To this end, we are going to use
the elements i, L ∈ M0

alg(1) defined in (3.2.1). Then it is easy to check that ωφ is
homotopy equivalent to the map ψ, which on an element u⊗ (a1 ∧ · · · ∧ an), where
u ∈ SV and ai ∈ V , takes the value

iuAlt(Lai1
Lai2

...Lain
),

where Alt means alternation.
Let us now use the quasi-isomorphisms f1 : Calc0

∞ → Calc0
alg from (3.10) and

f : YCalc0∞
(SV )→ YCalc0alg

(SV ) as in (3.11). Let I ′ ∈M0
∞(1), L′ ∈M0

∞(1) be such
that f1(I ′) (resp. f1(L′)) is homologous in M0

alg(1) to i (resp. L).
Define a map χ : SV ⊗ S(V [1])→ YCalc0∞

(SV ) by setting

χ(u⊗ (a1 ∧ · · · an)) = I ′uAlt(L′ai1
L′ai2

...L′ain
).

We see that ψ is homotopy equivalent to fχ. Hence, our task is to show that χ is
a quasi-isomorphism. To this end we will use the natural map r : YCalc0∞

(SV ) →
YCalc0(SV ) induced by the map of calculi Calc0

∞ → Calc0. It is easy to see that
this map is a quasi-isomorphism and that rχ is an isomorphism, therefore χ is a
quasi-isomorphism, hence the statement.

3.13. The algebra YCalc∞(C•(A)) and the cyclic complex. To adapt the
above arguments to the cyclic case, notice first that one can interpret the cyclic
part of Theorem 2.6.1 as follows: there is an L∞ action of the graded Lie algebra
a (cf. 3.7.4) on the A∞ algebra C•(C•(A)), and one can form a corresponding
A∞ algebra cross product U(a) n C•(C•(A)). One of the ways to explain this is
the following. The A∞ algebra C•(C•(A)) is quasi-isomorphic to a dg associative
algebra R; the free dg Lie algebra resolution L of a acts on R by derivations; form a
cross product U(L)nR. As a complex, it is quasi-isomorphic to U(a)⊗C•(C•(A));
from this, one can recover the A∞ structure on the latter. For example, the binary
product of the generator of a with an element c ∈ C•(C•(A)) is Bc where B is the
cyclic differential.

By Example 3.7.4,

YCalc(V•(A)) ' U(a) n Y (V•(A))

One extends (3.10) to a quasi-isomorphism

(3.18) U(a) n C•(C•(A))→ YCalcalg(C
•(A))

One can also construct an A∞ quasi-isomorphism

U(a) n YCalc0alg
(C•(A))→ YCalcalg(C

•(A))

Both maps

(3.19) YCalc∞(C•(A))← YCalc∞(V•(A))→ YCalc(V•(A))

are quasi-isomorphisms. Thus, we have an A∞ quasi-isomorphism from U(a) n
Y (V•(A)) to U(a) n C•(C•(A)). From this it is easy to deduce the statement of
Theorem 2.7.1 regarding the cyclic complexes.
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4. Appendix. Hochschild-Gerstenhaber homology

4.1. Introductory remarks. Let A• be a Gerstenhaber algebra (or, more
generally, a G∞ algebra). In this section we will construct HG•(A•), a new ho-
mology functor of A•. It is defined by means of an explicit complex and is a limit
of a spectral sequence whose E1 term is the Hochschild homology of the graded
associative algebra A•. This spectral sequence degenerates at E1 in important par-
tial cases. The homology HG•(A•) is an associative algebra. When the spectral
sequence does degenerate, one can view the associative algebra HG•(A•) as a de-
formation of the graded commutative algebra H•(A•) with the shuffle product sh,
cf. (2.3).

One can extend the definition of HG• and define the negative cyclic Gersten-
haber homology HGC−• (A•). It relates to HG• exactly as the Hochschild homology
to the negative cyclic homology.

4.2. Hochschild-Gerstenhaber homology vs Hochschild homology. To
define HG•(A•), recall the two-colored operad Calc0 and its canonical free resolu-
tion Calc0

∞ from 3.6.

Definition 4.2.1. For a G∞ algebra A•, let HG•(A•) be the homology of the
complex YCalc0∞

(A•).

Let us start by realizing YCalc0∞
(A•) as an explicit complex. Recall from 3.1 that

a G∞ algebra structure onA• determines a derivation δ of the Gerstenhaber algebra
F•(A•) = ∧• Lie(A•[1]∗). (Here and in all the computations below, as usual,
one has to understand the duals properly; cf. Remark 3.1.1). For an associative
augmented dg algebra Y , we denote by Bar(Y ) its standard bar (bi)complex which
computes Ext•(k, k).

Proposition 4.2.2. There is a natural isomorphism of complexes

YCalc0∞
(A•)→ Bar(Y (∧• Lie(A•[1]∗)))

This can be seen directly from the definitions. The right hand side in (4.2.2)
stands for the enveloping algebra of the dg Gerstenhaber algebra. It is an associative
dg algebra, with the differential induced by δ.

In what follows, A∞ is a Gerstenhaber algebra.

Theorem 4.2.3. There is a natural spectral sequence converging to HG•(A•)
for which

E1 = E2 = H•(A•),
the Hochschild homology of the graded algebra A∞.

An important partial case is the following:

Proposition 4.2.4. Let A∞ is a Gerstenhaber algebra on which both operations
are zero. Then

HG•(A•)
∼→ H•(A•) = C•(A•)

Proof of Theorem 4.2.2. Introduce a filtration on the standard complex
YCalc0∞

(A•): note that Y (∧• Lie(A•[1]∗)) is graded by the number of generators ia
occurring in a monomial, and let Fn consist of all those cochains that annihilate all
elements of degree greater than n.
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Proposition 4.2.5. The spectral sequence associated to the filtration F has the
properties as in Theorem 4.2.3.

Denote
L(A•) = Lie(A•[1]∗)

To prove the above Proposition, let us start by reinterpreting Y (∧•L(A•)).
Let ε be a formal parameter of degree −1 and square zero. Consider the dg Lie

algebra L(A•)[ε]. The universal enveloping algebra U(L(A•)[ε]) admits a derivation
which is characterized by the following. On U(L(A•)ε) = ∧•(L(A•)), this is just
the derivation δ determined by the G∞ structure; and it is the only such derivation
which commutes with the derivation induced by ∂

∂ε . Thus, U(L(A•)[ε]) becomes a
dg associative algebra.

Lemma 4.2.6. There is a natural isomorphism of dg algebras

Y (∧•(L(A•)))→ U(L(A•)[ε])

The proof is straightforward.
Now we have an identification

YCalc0∞
(A•) ' Bar(U(L(A•)[ε]))

Under this identification, the filtration F becomes as follows. Note that U(L(A•)[ε])
is graded by the number of factors ε in a monomial, and Fn consists of cochains
annihilating all elements of degree greater than n.

In the situation of Proposition 4.2.4, the differential on U(L(A•)[ε]) is zero. So,
to finish the proof of Proposition 4.2.5, and therefore of Theorem 2.7.1, on can go
directly to Lemma 4.2.10.

Note that the graded Lie algebra L(A•) possesses a Lie algebra derivation
determined by the commutative product on A• (or, in the general G∞ case, from
the C∞ structure on A•). Thus L(A•), as well as L(A•)[ε], becomes a dg Lie
algebra. One sees easily that the following is true.

Lemma 4.2.7. The first term of the spectral sequence associated to the filtration
F is equal to H•(L(A•)[ε]), the cohomology of the differential graded Lie algebra
with trivial coefficients.

Lemma 4.2.8. In the above spectral sequence E2 = E1.

To prove this, we need some notation. Let g be a dg Lie algebra. By PBW,
there is an ad(g)- invariant isomorphism U(g) → S(g). For any i, let U>i(g) be
the pre-image of S>i(g) under this isomorphism. In particular, U>1(g) is a ad(g)-
complement of g in the augmentation ideal.

The differential on g induces a differential on U(g). Denote this differential by
δ. Let δ1 be another derivation of degree one of U(g). Assume that, for any X ∈ g,

(4.1) δX − δ1X ∈ U>1(g)

Since the cohomology H•(g) is computed by the bar complex Bar(U(g)), the new
differential δ1 acts on H•(g).

Lemma 4.2.9. Under the assumption (4.1), the action of δ1 on H•(g) is trivial.

Proof. Recall how the isomorphism between H•(g) and the cohomology of the
bar complex is constructed. One has two standard resolutions of the trivial U(g)-
module k: The bar resolution Barn = U(g) ⊗ U(g)

⊗n
and the Koszul resolution
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Kn = U(g)⊗∧n(g). One has the standard embedding of complexes i : K• → Bar•
defined by

f ⊗ (x1 ∧ . . . ∧ xn) 7→ f ⊗Alt(x1 ⊗ . . .⊗ xn)
for f ∈ U(g) and xi ∈ g. By the standard techniques of homological algebra, one
can split this embedding and construct a projection j : Bar• → K•, so that ji = 1
and ij is homotopic to the identity as a morphism of complexes of U(g)-modules.
It is not difficult to see that one can pick j that annihilates modulo U>0(g) ·K• all
elements f ⊗Alt(x1⊗ . . .⊗ xn) where f ∈ U(g), x1 ∈ U>1(g), and xi ∈ g for i > 1.
But the differential induced by δ1 sends the image of i precisely to such elements.
This shows that δ1 acts by zero on the cohomology of the complex HomU(g)(Bar•, k)
which computes H•(g).

It remains to show that

Lemma 4.2.10. For a unital Gerstenhaber algebra A•

H•(L(A•)[ε]) ' H•(A•)

Proof. First, C•(L(A•)[ε]) is isomorphic to C•(L(A•), S•(L(A•))∗), the stan-
dard cochain complex with coefficients in S•(L(A•))∗. Since L(A•) is free as a
graded Lie algebra, the embedding into
C•(L(A•), S•(L(A•))∗) of the subcomplex

(4.2) Co → Ker(C1 → C2)

is a quasi-isomorphism where

Ci = Hom(∧i(L(A•)), S•(L(A•))∗)
Finally, the complex (4.2) can be written explicitly: let, as before, C•(A•) be the
usual Hochschild complex, and let C ′•(A•) be the same complex equipped with the
bar differential b′, cf. [L]. Then one can identify C0 with C ′•(A•), Ker(C1 → C2)
with C•(A•), and the differential between the two with the map 1− t from [L]. The
identification is done as follows:

S(L(A•)) PBW−→ U(L(A•)) ' T (A•[1]∗);

therefore
C0 ' T (A•[1]) = C ′•(A•)

and
Ker(C1 → C2) ' A•[1]⊗ T (A•[1]) ' C•(A•)[1]

Since A• is unital, C ′•(A•) is contractible, and the theorem is proven.
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