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1. Introduction

The goal of these lectures is to review known constructions of quantizations of the varieties
of the form V/Γ. Here V is a vector space (everything is defined over the field C of complex
numbers) equipped with a symplectic form ω, and Γ is a finite subgroup of the symplec-
tic group Sp(V ). We understand a quantization in a very algebraic way. Namely, we can
consider the symmetric algebra SV of V and its subalgebra A := (SV )Γ of all Γ-invariant
elements. The latter can be thought as the algebra of polynomial functions on the quotient
V/Γ. This algebra has a natural grading and a natural Poisson bracket {·, ·}, both are inher-
ited from SV . The grading and the bracket are compatible in the following way: if f, g ∈ A
are homogeneous elements of degrees i, j, respectively, then {f, g} is homogeneous of degree
i+j−2. By a quantization of A we mean a unital associative algebra A equipped with an as-
cending exhaustive algebra filtration 0 = F−1A ⊂ C = F0A ⊂ F1A ⊂ F2A ⊂ . . . ⊂ A such
that [FiA,Fj A] ⊂ Fi+j−2 A and the associated graded algebra grA :=

∑+∞
i=0 Fi A/Fi−1A

is isomorphic to A as a graded Poisson algebra. Recall that the bracket on grA is defined
via {a+ Fi−1 A, b+ Fj−1 A} := [a, b] + Fi+j−3A.

There are several reasons to be interested in quantizations of V/Γ. First, in some special
cases they serve as algebras of observables for some interesting integrable systems (quantum
Calogero-Moser spaces). Second (this is more important for the author), these quantizations
happen to have a very interesting representation theory.

There is a general construction that produces (at least some) quantizations of V/Γ. This
construction was introduced in the full generality by Etingof and Ginzburg in [EG]. The
Etingof-Ginzburg quantizations are obtained from so called Symplectic reflection algebras
(SRA, for short). These are deformations of an “orbifold resolution of singularities” of V/Γ
that is a certain non-commutative algebra (a skew group ring). This construction will be
considered in Section 2.

For some special groups Γ the variety V/Γ as well as its quantizations can be obtained by
an alternative construction. This class of groups is called wreath-products, it is obtained as
follows. Take a finite subgroup Γ1 ⊂ SL2(C). Then the semidirect product Γn := Sn n Γn

1

acts by linear symplectomorphisms on V := C2n. It turns out that V/Γn can be realized
as a Nakajima quiver variety, i.e., a Hamiltonian reduction of the representation space of
an appropriate quiver under an action of a certain reductive group. Quantizations can be
constructed using the procedure called a quantum Hamiltonian reduction. We will explain
how to do this in Section 3.

It turns out that the quantizations produced from the SRA and by quantum Hamiltonian
reduction are the same. This was first proved in [EGGO] and then in [L] by an alternative
method that we are going to explain. An ideological reason for the coincidence is that both
quantizations can be lifted to resolutions of singularities. An SRA quantization has this
property by its construction: it is obtained from a quantization of an orbifold resolution.

1
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A quantization obtained by the quantum Hamiltonian reduction can be lifted to a usual
algebro-geometric resolution of singularities that happens to be a non-affine quiver variety.
The two resolutions can be related via a tilting vector bundle (a weakly Procesi bundle
obtained in [BK]) on the algebro-geometric resolution. Quantizing this bundle, we can prove
that the two constructions of quantizations give the same answer. This will also be explained
in Section 3. Finally, we will explain an application of our construction to producing some
derived equivalences.

2. Symplectic reflection algebras

2.1. A skew-group ring. Recall that V denotes a finite dimensional vector space over C
equipped with a symplectic form ω, and Γ is a finite subgroup of Sp(V ). We want to study
quantizations of the graded Poisson algebra A := (SV )Γ. A somewhat informal reason why
this task is non-trivial is that V/Γ is not smooth. Fortunately, one can replace A with
a closely related algebra that will no longer be commutative but will be smooth (in the
sense that its global dimension is finite). This algebra is obtained by a skew group ring
construction.

Namely, consider a vector space SV ⊗ CΓ, where CΓ is a group algebra of Γ. Equip
this space with a multiplication by setting (f1 ⊗ g1) · (f2 ⊗ g2) = f1g1(f2) ⊗ g1g2, f1, f2 ∈
SV, g1, g2 ∈ Γ, where g1(f2) stands for the image of f2 under the action of g1. Below we will
write SV#Γ for this algebra.

The algebra SV#Γ has finite global dimension because the category of finitely generated
SV#Γ-modules is the same as the category of Γ-equivariant coherent sheaves (and so the
category of SV#Γ-modules is what we expect from the category of coherent sheaves of the
quotient by a free action). The algebra SV#Γ is still graded (with CΓ being the component
of degree 0) but is no longer commutative.

In the next subsection we will classify graded deformations of SV#Γ and then, in Sub-
section 2.4, relate them to quantizations of A.

2.2. Symplectic reflection algebras. Let p be a finite dimensional vector space, a “space
of parameters”. We are going to study graded algebras H over Sp such that p has degree
2, H is a free graded module over Sp, and H/(p) = SV#Γ (the choice of degree has to do
with the degree of the Poisson bracket on A). It turns out that there is a universal such
deformation, Hun over S(pun) that can be given by explicit generators and relations. When
we say “universal” we mean that for any other H over Sp there is a unique linear map
pun → p such that H = Sp⊗S(pun) Hun. The algebra Hun will be called the universal SRA.

Let us first describe the space pun. We say that an element s ∈ Γ is a symplectic reflection
if rk(s− id) = 2. We remark that the restriction of ω to Vs := im(s− id) is non-degenerate
for any s ∈ H and so 2 is the minimal possible positive dimension of Vs. Let S1, . . . , Sr be
all classes of symplectic reflections in H. Then let pun be an r+1-dimensional vector space.

To write the relations in (our candidate for) Hun we need some more notation. Namely,
let us notice that V = Vs ⊕ V s, where V s is the fixed point subspace of s. For s ∈ Γ let ωs

be the skew-symmetric form equal to the sum of ω|Vs and the zero form on V s.

Theorem 2.1. Suppose that the group Γ is symplectically irreducible, i.e., there is no Γ-
stable proper symplectic subspace in V . Consider the algebra Hun defined as the quotient of
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S(pun)⊗ TV#Γ by the relations

(1) [u, v] = hω(u, v) +
r∑

i=1

ci
∑
s∈Si

ωs(u, v)s, u, v ∈ V,

where h, c1, . . . , cr is a basis in pun. Then Hun is a free graded S(pun)-module and satisfies
the universality condition above.

For dimV = 2 (where every nontrivial element of Γ is a symplectic reflection) the construc-
tion of Hun (together with the proof of the freeness) appeared in [CBH]. The construction
in the general case is due to Etingof and Ginzburg, [EG]. Their proof that the algebra given
by relations (1) is flat over S(pun) was based on the so called Koszul deformation principle.
Strangely, it seems that the universality property was not emphasized in the literature before
[L] although it was definitely known to the experts.

Proof. An important ingredient in the proof of the theorem (and actually the first step in
studying deformations of an associative algebra) is the computation of the Hochschild coho-
mology. Recall that deformations of an arbitrary associative algebra B are parameterized by
the second cohomology HH2(B) (of the B-bimodule B) with obstructions lying in HH3(B).
Our algebra B is graded and we are only interested in graded deformations, where the pa-
rameter space has degree 2. Such deformations are parameterized by HH2

−2(B) and the
obstructions lie in HH3

i (B) for i 6 −4. Here the subscript indicates the degree (recall, that
the Hochschild cohomolgy of a graded algebra is naturally graded). The following lemma
implies that all graded deformations of SV#H are unobstructed implying the existence of
a universal deformation Hun over the parameter space pun.

Lemma 2.2. Under the assumptions of Theorem 2.1, we have HH2
−2(SV#Γ) ∼= pun and

HH3
i (SV#Γ) = 0 for i 6 −4.

Proof. Using the definition of HH(B) as Ext(B,B) in the category of B-bimodules, we easily
see that

(2) HH(SV#Γ) =

(⊕
g∈Γ

HH(SV, SV · g)

)Γ

,

where SV · g stands for the SV bimodule, where the B-action on the left is as on SV , while
the action on the right is twisted by g. The group HH(SV, SV ·g) can be computed as follows.
The element g is diagonalizable in some basis x1, . . . , xn of V , say g = diag(g1, . . . , gn). Then
we have the following isomorphism that respects both the cohomological grading and that
induced by the grading on SV :

(3) HH(SV, SV · g) =
n⊗

i=1

HH(C[xi],C[xi] · gi),

where we view gi as an element of a cyclic group acting on C. Take the Koszul resolution
of the C[xi]-bimodule C[xi]: C[xi]⊗C[xi] → C[xi]⊗C[xi], where the map given by a⊗ b →
ax⊗b−a⊗xb. So HH(C[xi],C[xi] ·gi) is the cohomology of the complex C[xi] ·gi → C[xi] ·gi,
where the map is a left C[xi]-module homomorphism given by 1 ·g 7→ (x−g(x)) ·g. So when
g = 1, then HH(C[xi],C[xi]) is naturally identified with the algebra of polyvector fields on
C[xi]. For g ̸= 1, the complex HH(C[xi],C[xi]) is concentrated in cohomolgical degree 1 and
in the usual degree −1. This computation together with (2),(3) easily imply the required
result. �
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It remains to check that the deformation Hun is given by (1). This is done in several steps.
Step 1. Let π denote the natural projection Hun � SV#Γ. Clearly, π identifies the degree

0 component of Hun with CΓ and the degree 1 component with V ⊗CΓ. In particular, there
is a natural inclusion of V into Hun. For u, v ∈ V ⊂ Hun, the element [u, v] has degree
2 and lies in kerπ. But the degree 2 component of kerπ is p ⊗ CΓ. So there is a map
κ :
∧2 V → p ⊗ CΓ such that [u, v] = κ(u, v). We remark that κ is Γ-equivariant. This is

because of the inclusion Γ ⊂ Hun.
Step 2. Let I denote the ideal in S(pun)⊗ TV#Γ generated by the elements u⊗ v − v ⊗

u−κ(u, v) and H̃un := S(pun)⊗TV#H/I. Then, thanks to step 1, we have an epimorphism
H̃un → Hun. We claim that this is an isomorphism. Indeed, the natural grading on TV
induces a filtration on H̃un (with p in degree 0). The algebra gr H̃un is bigraded and we have
epimorphisms S(pun) ⊗ SV#Γ � gr H̃un � grHun. But the Poincare series of S(pun) ⊗
SV#H and Hun with respect to the initial grading coincide. Hence gr H̃un = grHun and
therefore H̃un = Hun.

Step 3. We claim that there are h, c1, . . . , cr ∈ pun such that κ(u, v) coincides with the
right hand side of (1). We will use an original argument from [EG] for this. Namely, for
every u, v, w ∈ V we have the Jacobi identity

(4) [[u, v], w] + [[v, w], u] + [[w, u], v] = 0

in Hun. Let κ =
∑

g∈Γ κgg with κg(u, v) ∈
∧2 V ∗⊗p. Then [[u, v], w] =

∑
g∈Γ κg(u, v)[g, w] =∑

g∈Γ κg(u, v)(g(w) − w)g. Since Hun is free over S(pun), we see that κg(u, v)(g(w) − w) +

κg(v, w)(g(u) − u) + κg(w, u)(g(w) − w) = 0. From here it is easy to deduce that κg = 0
when rk(g − id) > 4. Our claim easily follows from the Γ-equivariance of κ.

Step 4. The elements h, c1, . . . , cr from Step 3 form a basis in pun becauseHun is a universal
deformation. �

For p ∈ p∗un let Hp denote the specialization of Hun at p, i.e., the quotient of Hun by the
maximal ideal of p in S(pun). This is a filtered algebra whose associated graded is SV#H.

Let us finish the subsection by explaining the name “symplectic reflection algebra”. Let
Γ0 denote the subgroup of Γ generated by the symplectic reflections and let H0

un be the
corresponding SRA. Then clearly Hun = H0

un#Γ0Γ, where as a vector space the right hand
side is H0

un ⊗CΓ0 CΓ and the product is introduced by analogy with SV#Γ. So, basically,
only a symplectic reflection group (=a group generated by symplectic reflections) matters.

2.3. A class of symplectic reflection groups. We are going to introduce a certain class
of symplectic reflection groups (usually called wreath-products) that will be used in the
sequel. Namely, we take a finite subgroup Γ1 ⊂ SL2(C) and consider the semidirect product
Γn := SniΓn. This semidirect product acts naturally on V := (C2)⊕n: an element γi in the
ith copy of Γ1 ⊂ Γn

1 ⊂ Γn corresponding to γ acts as γ on the ith summand C2 and trivially
on the other summands, while Sn ⊂ Γn permutes the summands C2.

The symplectic reflections in Γn are as follows. First, each γi with γ ̸= 1 is a symplectic
reflection. Also each transposition sij ∈ Sn ⊂ Γn is a symplectic reflection as well. These
elements generate Γn hence Γn is a symplectic reflection group.

The conjugacy classes of symplectic reflections are as follows. First, for n > 1, there is a
single class, say S1, containing sij, it consists of the elements of the form sijγiγ

−1
j . Second, let

Γ1 \ {1} =
⊔r

i=2 S
0
i be the decomposition into conjugacy classes. Then {γj|j = 1, . . . , n, γ ∈

S0
i } form a conjugacy class, say Si.
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Let us finish this subsection by recalling a classification of the finite subgroups of SL2(C).
These subgroups are in one-to-one correspondence with affine Dynkin quivers (McKay cor-
respondence). Namely, let N1, . . . , Nr be the irreducible Γ1-modules, where N1 is the trivial
module. The vertices in our quiver are 1, . . . , r and the number of arrows between i and j
(regardless the orientation) is dimHom(C2⊗Ni, Nj), where C2 is the tautological Γ1-module
coming from the inclusion Γ1 ⊂ SL2(C). Then it is known that this quiver is an affine Dynkin
quiver, and 1 is the extending vertex. Moreover, the vector (dimNi)

r
i=1 is the minimal imag-

inary root δ. The type Ãr quiver corresponds to the cyclic group of order r + 1, while the
type D̃r, r > 4, quiver represents the dihedral group of order 4(r − 2).

We remark that the universal parameter space pun in this case has the dimension one
bigger than the number of vertices of Q.

2.4. Spherical subalgebras. Now let us return to our original problem: to construct quan-
tizations of A = (SV )Γ. First of all, let us recover A from SV#Γ. Consider the trivial
idempotent e := 1

|Γ|
∑

g∈Γ g. We can view e as an element of SV#Γ. The map a 7→ ea

defines an embedding of A into SV#Γ. Its image is identified with the spherical subalgebra
e(SV#Γ)e that is an associative subalgebra of SV#Γ with unit e. Now, we can take the
spherical subalgebras eHune ⊂ Hun and eHpe ⊂ Hp for p ∈ p∗un. Then eHpe is a filtered
algebra with gr eHpe = e grHpe = (SV )Γ. It was shown by Etingof and Ginzburg, the end
of Section 2 in [EG], that the induced Poisson bracket on (SV )Γ is p(x){·, ·} for some x ∈ p
proportional to h. In fact, x = h. Indeed, if we choose p with p(h) = 1, p(ci) = 0, then
Hp = A#Γ, where A is the Weyl algebra of V . Then eHpe = AΓ is a quantization of (SV )Γ

in the sense explained above.

3. Quantum Hamiltonian reduction

In this section we are going to relate certain quotient singularities to Nakajima quiver
varieties.

In Subsection 3.1 we are going to explain how to relate V/Γn to a quiver variety starting
with some special cases. Then in Subsection 3.2 we will explain how to use this relationship
to produce quantizations of V/Γn using quantum Hamiltonian reduction.

3.1. Quotient singularities vs quivers. First, we will explain a general construction and
then try to motivate it by examples. Take the group Γ = Γn(= Sn i Γn

1 ) as in Subsection
2.3. Let Q denote the quiver corresponding to Γ with some orientation and δ = (δ1, . . . , δr)
be the indecomposable imaginary root.

Let us recall a general definition of a Nakajima quiver variety. Take a quiver Q with set
of vertices Q0 and set of arrows Q1. For an arrow a ∈ Q1 let t(a), h(a) ∈ Q0 denote its tail
and its head. Fix two vectors u = (ui)i∈Q0 , w = (wi)i∈Q0 .

We consider the double quiver DQ obtained from Q by adding an opposite arrow for
any arrow in Q. Pick vector spaces Ui,Wi of dimensions ui, wi, i ∈ Q0. Consider the space
R := R(DQ,nδ, ϵ1) of representations of DQ with dimension vector u and framing w. By
definition, this space equals⊕

a∈Q1

(
Hom(Ut(a), Uh(a))⊕ Hom(Uh(a), Ut(a))

)
⊕
⊕
i∈Q0

(Hom(Wi, Ui)⊕ Hom(Ui,Wi)) .

We will write an element of this space as (Aa, Ba, Ci, Di)a∈Q1,i∈Q0 , whereAa ∈ Hom(Ut(a), Uh(a)), Ba ∈
Hom(Uh(a), Ut(a)), Ci ∈ Hom(Wi, Ui), Di ∈ Hom(Ui,Wi).
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The vector space R is identified with T ∗R(Q, u, w) = R(Q, u, w) ⊕ R(Q, u, w)∗, where
R(Q, u, w) =

⊕
a∈Q1

Hom(Ut(a), Uh(a)) ⊕
⊕

i∈Q0
Hom(Ui,Wi) and hence carries a natural

symplectic form. Explicitly (we will not need this formula in the sequel), we set

Ω((A′
a, B

′
a, C

′
i, D

′
i), (A

′′
a, B

′′
a , C

′′
i , D

′′
i )) =

∑
a∈Q1

tr(A′
aB

′′
a − A′′

aB
′
a) +

∑
i∈Q0

(C ′
iD

′′
i − C ′′

i D
′
i).

Here we identify Hom(Uh(a), Ut(a)) with Hom(Ut(a), Uh(a))
∗ and Hom(Ui,Wi) with Hom(Wi, Ui)

∗

by means of the trace pairing.
Also the group G :=

∏
i∈Q0

GL(ui) acts naturally on R: for g = (gi) ∈ G we have

g.(Aa, Ba, Ci, Di) = (gh(a)Aag
−1
t(a), gt(a)Bag

−1
h(a), gCi, Dig

−1). This action preserves the form Ω

and therefore admits a moment map, a G-equivariant morphism R → g∗ with the following
property: {µ∗(ξ), f} = ξ∗f for all ξ ∈ g, f ∈ C[R]. Here µ∗ : g → C[R] is the dual
map and ξ∗ in the right hand side stands for the operator produced by the representation
of g in C[R] coming from the G-action. There are several choices of a moment map but
we need a homogeneous one obtained as follows. Recall that one can realize the algebra
sp(R) as the space C[R]2 of homogeneous quadratic elements in C[R]. The Lie bracket on
sp(R) corresponds to the Poisson bracket on C[R]2. So for µ∗ we take the composition

g → sp(R)
∼−→ C[R]2. Again, one can write an explicit formula:

(5) µ(Aa, Ba, Ci, Di) = (
∑

a,t(a)=i

BaAa −
∑

a,h(a)=i

AaBa + CiDi)i∈Q0 ,

where we again identify g∗ with g by means of the trace pairing.
By definition, the affine Nakajima quiver variety M0(DQ, v, w) is the Hamiltonian reduc-

tion µ−1(0)//G := Spec(C[µ−1(0)]G). Here we view µ−1(0) as a possibly non-reduced scheme
with ideal generated by {µ∗(ξ), ξ ∈ g}. It is not difficult to see that the algebra C[µ−1(0)]G

has a natural grading and also a natural Poisson bracket of degree −2.
We have the following theorem relating quotient singularities to special Nakajima quiver

varieities.

Theorem 3.1. Let Q be the McKay quiver, v = nδ, w = (1, 0, . . . , 0). Then every irreducible
component of µ−1(0) contains a free G-orbit and therefore µ−1(0) is a reducible complete
intersection. Further, there is an isomorphism C[µ−1(0)]G ∼= (SV )Γn of graded Poisson
algebras.

In the remainder of this subsection we will try to persuade the reader that this statement
is natural by explaining two special cases.

The first case is n = 1. Both varieties V/Γ1 and µ−1(0)//G appear when we try to
parameterize certain semisimple representations of S(V )#Γ1. The representations we need
are those that are isomorphic to CΓ1 over Γ1 ⊂ S(V )#Γ1.

First of all, let us describe the irreducible S(V )#Γ1-modules. The subalgebra S(V )Γ1 ⊂
S(V )#Γ1 embedded via S(V )Γ1 ↪→ S(V ) ↪→ S(V )#Γ1 is central and so acts by a scalar
on every finite dimensional irreducible S(V )#Γ1-module. So to any finite dimensional ir-
reducible S(V )#Γ1-module (=Γ1-equivariant coherent sheaf with finite support on V ) M
we assign a point in V/Γ1, say x. As an S(V )-module, M is supported on π−1(x), where
π denotes the quotient morphism V → V/Γ1. But the action of Γ1 on V/{0} is free, so
π−1(x) consists of |Γ1| points and C[π−1(x)] is already an irreducible S(V )#Γ1-module. Our
analysis implies that this is the only irreducible module with central character x.
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Now suppose that x = 0. This means that V acts by nilpotent endomorphisms on M .
Since M is irreducible, V must act by 0. It follows that M is irreducible already as a
Γ1-module.

The conclusion is that each S(V )#Γ1-module, semisimple and isomorphic to CΓ1 as a
Γ1-module, has a central character, a point in V/Γ1, and that a central character determines
the module uniquely up to an isomorphism. So, at least set theoretically, the moduli space
for the modules under consideration is V/Γ1.

On the other hand, to define an action of S(V )#Γ1 on CΓ1 we just need to specify the
action of V = C2 and make sure the actions of the two basis elements commute. The action
is given by a Γ1-equivariant map C2 ⊗ CΓ1 → CΓ1 or, since, CΓ1 =

⊕r
i=1Cδi ⊗ Ni, by an

element
⊕

i,j Hom(Cδi ,Cδj)nij , whereNij = dimHom(C2⊗Ni, Nj). So HomΓ1(C2⊗CΓ1,CΓ1)
is basically the space R considered above but with the modification that we take w = 0
instead w = ϵ1.

The commutativity condition just says that the moment map is 0. So the representations
of S(V )#Γ1 are in one-to-one correspondence with points of µ−1(0). But different points
can correspond to isomorphic representations. It is easy to see that two points of µ−1(0)
correspond to isomorphic representations if they lie in the same G-orbit (the group G just
acts by changing bases in the spaces Cδi). Furthermore, one can show that a representation
is semisimple if and only if its G-orbit is closed. Furthermore, the quotient morphism
µ−1(0) → µ−1(0)//G has a general property that every fiber contains a single closed orbit.
So the variety µ−1(0)//G also parameterizes semisimple representations of S(V )#Γ1 in CΓ1.

Now let us consider the opposite case: Γ1 = {1}. In this case Γn = Sn acts on V =
Cn ⊕ Cn diagonally. An easy special case of the Chevalley restriction theorem says that,
for g = gln, C[g]G is isomorphic to C[Cn]Sn , the isomorphism is provided by the restriction
to the subalgebra h of diagonal matrices. This theorem has a double analog. Namely,
consider the subscheme C of g ⊕ g given by {(X, Y )|[X, Y ] = 0}. It is a well-known open
problem on whether C is reduced, in any case, let Cred denote the corresponding reduced
scheme. It is not difficult to show that the restriction to h2 gives rise to the isomorphism
C[Cred]

G ∼= C[C2n]Sn . In fact, as was proved by Etingof and Ginzburg in [EG], the algebra
C[C]G has no nilpotents and so C[C]G ∼= C[C2n]Sn .

So we more or less see an isomorphism of the theorem in the two special cases. However,
we have not used any framing. It turns out that the framing does not change the reduction
µ−1(0)//G but insures good properties of the moment map: that µ−1(0) is a reduced complete
intersection. This is true even without framing (modulo a minor modification) for n = 1 but
is false for Γ1 = {1}: the dimension of C is n2 + n instead of n2.

3.2. Quantum Hamiltonian reduction and an isomorphism theorem. We can con-
struct a graded deformation of C[µ−1(0)]G using the quantum Hamiltonian reduction. Namely,
consider the homogeneous Weyl algebra Ah(R) := T (R)[h]/(r1 ⊗ r2 − r2 ⊗ r1 − hΩ(r1, r2)).
This is a graded algebra (with h being of degree 2) acted on by G. The G-action admits a a
quantum comomoment map Φ. Namely, we can naturally embed sp(R) into Ah(R)2 so that
Ah(R)2 = sp(R) ⊕ Ch. This is a Sp(R)-equivariant embedding of Lie algebras, where the
bracket on Ah(R)2 is given by [a, b] = 1

h
(ab − ba). Then for Φ we take the composition of

g → sp(R) and this embedding. This is a G-equivariant linear map satisfying [Φ(ξ), f ] = hξf
for any ξ ∈ g, f ∈ Ah(R).



8 IVAN LOSEV

Consider the space D := (Ah(R)/Ah(R)Φ([g, g]))G. This space has a natural algebra
structure induced from Ah(R). Moreover, Φ induces a linear map g/[g, g] → D with central
image (of degree 2). So D is a graded algebra over S(p′), where p′ := g/[g, g]⊕ Ch.

The quotient D /(p′) is naturally identified with C[µ−1(0)]G. The fact that µ−1(0) is a
complete intersection implies that D is flat (=free) over S(p′). For p ∈ p′∗ we can define a
specialization Dp. This is a filtered algebra whose associated graded is C[µ−1(0)]G and it is
a quantization precisely when p(h) = 1.

So we again get a graded deformation of A := (SV )Γn . In fact, this deformation is the
same as eHune. More precisely, the following holds.

Theorem 3.2. There is an isomorphism pun
∼−→ p′ such that D = S(p′) ⊗S(pun) eHune (an

isomorphism of graded algebras).

One can explicitly write an isomorphism pun
∼−→ p′ (that happens to be determined uniquely

up to a certain finite group action) but this is somewhat technical so we are not going to do
this here.

We are going to sketch a proof below, for the details the reader is referred to [L]. It involves
basically two ideas. First, as we have already seen in the case of SRA, it is beneficial to
work with a resolution rather than with the original singular variety. For our choice of Γ, the
variety µ−1(0)//G admits a usual algebro-geometric resolution, say X, that is again produced
by Nakajima’s quiver variety construction. This resolution is symplectic so it makes sense
to speak about its quantization. One can produce a quantization via a suitable version of
quantum Hamiltonian reduction.

So we have quantizations (or, more precisely, deformations) of two resolutions: an orbifold
resolution S(V )#Γn and the algebro-geometric resolution X. A problem is to relate the two.
There is a classical recipe how to approach this problem that is used, for example, to establish
McKay correspondence as an equivalence of derived categories. Namely, one needs a tilting
(=without higher self-extensions) bundle P on X with End(P) = S(V )#Γ. The existence
of such a bundle was proved by Bezrukavnikov and Kaledin. Being tilting, the bundle is
deformable and this together with a universality property of the SRA, basically, leads to the
coincidence of quantizations.

3.3. Algebro-geometric resolutions and their quantizations. Let us explain how to
construct X and also its (commutative and non-commutative) deformations.

We first need to fix a stability condition. This should be a “general enough” character, say
θ, of G. For example, one can take θ(g1, . . . , gr) =

∏r
i=1 det(gi), this is a stability condition

used in Nakajima’s papers. Then one can define the subset Rss ⊂ R of semi-stable points.
In our example, this is going to be the set of all (Aa, Ba, Ci, Di) satisfying the following
condition: there is no nonzero collection U ′

i ⊂ Ui such that this collection is stable under all
Aa, Ba and is annihilated by the Di’s. Now the condition that θ is generic means that the
action of G on Rss is free (this is not difficult to check directly in our example). There are
conditions on the ui’s and vi’s that guarantee that Rss is non-empty, they are satisfied for
our choice of parameters. So the quotient X := (µ−1(0)∩Rss)/G is smooth and symplectic.
Also we have a natural morphism π : X → µ−1(0)//G. A general GIT (Geometric Invariant
Theory) result implies that this morphism is projective. So we do get a symplectic resolution
of singularities. We remark that there is an action of the one-dimensional torus C× on X
(coming from the dilations on R). The action contracts X to π−1(0) (where 0 means the
image of 0 ∈ R in µ−1(0)//G).
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Now let us explain how to construct deformations of X using Hamiltonian reduction.
Again, consider the homogenized Weyl algebra Ah(R) but then complete with respect to
the powers of h. We get an algebra over C[[h]] and it can be localized to a sheaf on R.
In particular, we can restrict this sheaf to Rss, the resulting sheaf is denoted by Ah(R)|Rss .
Then we can form a reduction

D := (Ah(R)|Rss/Ah(R)|RssΦ([g, g]))G .

What we get is a sheaf over X̃ := µ−1((g/[g, g])∗)/G that is a deformation of X. It is
not difficult to see that, due to the freeness of the action, D(Ah(R), G) is a flat formal
deformation (and, in fact, a quantization) of the structure sheaf OX̃ .

Now let us compare the local reduction D and the global one, D. We can take the global
sections, Γ(X̃,D) and this is an algebra over C[[h]], complete with respect to the h-adic
filtration. But it is still acted by C× and we can take all elements that are C×-finite,
meaning, lying in a finite dimensional C×-submodule. The subalgebra Γ(X̃,D)C×−fin of
C×-finite elements can be shown to coincide with D.

3.4. Weakly Procesi bundles. By a weakly Procesi bundle onX we mean a C×-equivariant
vector bundle P with the following two properties:

(P1) EndOX
(P ,P) is isomorphic to S(V )#Γn as a C[X] = S(V )Γn-module. The latter

equality holds because X → V/Γn is a resolution of singularities.
(P2) Exti(P,P) = 0 for i > 0.

Thanks to (P1), each fiber of P carries a Γn-action and becomes a regular Γn-module with
respect to this action. The last claim is easy to check for a general fiber, for an arbitrary
one it is obtained by continuity. Because of this, the invariant subsheaf PΓn is a line bundle.
We can twist P with a line bundle so that PΓn = OX .

The construction of a bundle P satisfying (P1),(P2) is easy for n = 1. Namely, consider
a G-equivariant bundle Ui on R that is trivial as a vector bundle and with each fiber equal
to Ui as a G-module. We can restrict the bundle to µ−1(0) ∩ Rss and then push it to the
quotient, we get a bundle (with a natural C×-equivariant structure) to be denoted by Ni.
We then can take P :=

⊕r
i=1 N

dimNi
i . This bundle satisfies (P1) and (P2), this was checked

in [KV].
The general case is much more involved. We still can define some tautological bundle on

X, but it will have a wrong rank: n|Γ1| instead of n!|Γ1|. In the (somewhat degenerate) case
when Γ1 = {1}, the variety X is the Hilbert scheme Hilb2(Cn) of pairs of points on Cn, and
there is a Procesi bundle on X constructed by Haiman, [H] (an alternative construction was
recently given by Ginzburg, [Gi]). This bundle is very complicated but is also very important,
it is one of the main ingredients of Haiman’s proof of the n!-conjecture of Macdonald. In
general, it is only known that a weakly Procesi bundle exists, [BK]1.

3.5. The proof of the isomorphism theorem. Now we are ready to sketch the proof
of Theorem 3.2. The property (P2) implies that that there is a unique (automatically,
locally free) C×-equivariant right D-module P̃h that is flat over S(p′) and deforms P, i.e.,
P̃h/(p

′) = P . In more detail, it is known that a projective right module over an algebra
uniquely deforms to a right module over any formal deformation and that the deformed
module is automatically projective. So we can deform P locally. But the higher Ext vanishing

1There is a conjecture by Haiman, saying that there is a unique Procesi bundle on X that satisfies an
additional condition: Γn−1-invariants in P is the tautological bundle of rank n|Γ1|.
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ensures that the local deformations agree on intersections. Finally, the presence of the C×-
action allows us to consider non-formal deformations as well. The group algebra CΓn still
acts on P̃h and the bundle of invariants eP̃h is identified with D thanks to (P0) and the
uniqueness of the deformation.

We remark that higher Ext’s of P̃h vanish, while the endomorphisms is a deformation of
End(P) = S(V )#Γn. Let H

′ denote the subalgebra of all C×-finite elements in EndDopp(P̃h).
This is now a graded algebra over S(p′), it is flat, and H ′/(p′) = S(V )#Γn. The universality
property for the Cherednik algebra ensures that there is a linear map pun → p′ such that
H ′ = S(p′)⊗S(pun) Hun.

Now let us recover D from H ′. The bundle P splits into the direct sum P = eP⊕(1−e)P.
The analogous decomposition for Ph follows. Therefore D = eEndDopp(P̃h)e. It follows that
eH ′e = Γ(X̃,D) = D. So we get D = S(p′)⊗S(pun) eHune. To prove that the map pun → p′

is an isomorphism and to describe it explicitly requires more work.

3.6. Application: derived equivalence. The original motivation of Bezrukavnikov and
Kaledin to introduce a weakly Procesi bundle was to produce a derived equivalence between
Coh(X) and S(V )#Γn-mod. An equivalence is provided by the functor RHom(P , •). This

equivalence can be deformed to a derived equivalence between D-modC×
and Hun-modC×

,
see [GL] for details. Here the superscript C× indicates that we work with modules that are
equivariant with respect to the C×-actions introduced above (the action on Hun just comes
from the grading). The deformed equivalence is given by RHom(P̃h, •). This equivalences
can be used to prove derived equivalences between the categories of modules over Hp and
Hp′ when the difference between p and p′ is integral. In the case when there are Morita
equivalences between eHpe and Hp, and between Hp′ and eHp′e, this result becomes a special
case of a more general result by McGerty and Nevins, [MN].
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