Categorical Weil Representation & Sign Problem

Shamgar Gurevich

Madison

May 16, 2012

Joint work with:

• Ronny Hadani (Math, Austin)

(0) Motivation - CANONICAL CATEGORY

Theorem (Canonical vector space, G-Hadani '04)

There exists a natural functor

$$\mathcal{H}: egin{aligned} \mathsf{Symp} &
ightarrow egin{aligned} \bigvee_{\mathit{over}} \mathbb{C} \end{aligned}$$

(0) Motivation - CANONICAL CATEGORY

Theorem (Canonical vector space, G-Hadani '04)

There exists a natural functor

$$\mathcal{H}: egin{aligned} \mathsf{Symp} &
ightarrow egin{aligned} \mathsf{Vect} \ \mathsf{over} \ \mathsf{k} = \mathbb{F}_q \end{aligned}
ightarrow egin{aligned} \mathsf{Vect} \ \mathsf{over} \ \mathbb{C} \end{aligned}$$

• For $V \in Symp$ we have

$$\rho_V : Sp(V) \to GL(\mathcal{H}(V))$$
 — Weil representation.

Motivation - CANONICAL CATEGORY

• Want: lax 2-functor

$$\underbrace{\mathsf{Symp}}_{\mathsf{Var} \ \mathsf{over} \ \mathsf{k}} \ni \mathsf{V} \mapsto \mathcal{C}(\mathsf{V}) \ -- \ \mathsf{canonical} \ \mathsf{category} \ \mathsf{of} \ \ell\text{-adic sheaves}.$$

Motivation - CANONICAL CATEGORY

• Want: lax 2-functor

• For $V \in Symp$ get

$$\rho_{\mathbf{V}}: Sp(\mathbf{V}) \to Aut(\mathcal{C}(\mathbf{V}))$$
 — categorical Weil representation.

Heisenberg group

$$H = V \times k$$
, $(v, z) \cdot (v', z') = (v + v', z + z' + \frac{1}{2}\omega(v, v'))$.

Heisenberg group

$$H = V \times k$$
, $(v, z) \cdot (v', z') = (v + v', z + z' + \frac{1}{2}\omega(v, v'))$.

Additive character

$$1 \neq \psi : Z(H) = k \to \mathbb{C}^*.$$

Heisenberg group

$$H = V \times k$$
, $(v, z) \cdot (v', z') = (v + v', z + z' + \frac{1}{2}\omega(v, v'))$.

Additive character

$$1 \neq \psi : Z(H) = k \to \mathbb{C}^*.$$

Oriented Lagrangians

$$OLag = \{L^{\circ} = (L, o_L); L \in Lag(V), o_L \in \bigwedge L - 0\}.$$

Shamgar Gurevich (Madison)

Heisenberg group

$$H = V \times k$$
, $(v, z) \cdot (v', z') = (v + v', z + z' + \frac{1}{2}\omega(v, v'))$.

Additive character

$$1 \neq \psi : Z(H) = k \rightarrow \mathbb{C}^*.$$

Oriented Lagrangians

$$OLag = \{L^{\circ} = (L, o_L); L \in Lag(V), o_L \in \bigwedge L - 0\}.$$

ullet Irreducible rep'n of H with central character ψ

$$\mathcal{H}_{L^{\circ}} = \{ f : H \to \mathbb{C}; f(I \cdot z \cdot h) = \psi(z)f(h) \text{ for } I \in L, z \in Z, h \in H \}.$$

- 4 ロ ト 4 団 ト 4 豆 ト - 豆 - り 9 (で)

Vector bundle

$$Sp \curvearrowright \stackrel{\mathfrak{H}}{\underset{OLag}{\downarrow}}, \ \ \mathfrak{H}_{|L^{\circ}} = \mathcal{H}_{L^{\circ}}.$$

Vector bundle

$$Sp \curvearrowright \stackrel{\mathfrak{H}}{\underset{OL_{ag}}{\downarrow}}$$
 , $\mathfrak{H}_{|L^{\circ}} = \mathcal{H}_{L^{\circ}}$.

Theorem (Strong S-vN, G-Hadani '04)

We have a natural Sp-equivariant trivialization: $\{T_{M^{\circ},L^{\circ}}:\mathcal{H}_{L^{\circ}}\to\mathcal{H}_{M^{\circ}}\}$ with

$$T_{N^{\circ},M^{\circ}} \circ T_{M^{\circ},L^{\circ}} = T_{N^{\circ},L^{\circ}}$$
, for every N° , M° , L° .

Vector bundle

$$Sp \curvearrowright \stackrel{\mathfrak{H}}{\underset{OLag}{\downarrow}}$$
, $\mathfrak{H}_{|L^{\circ}} = \mathcal{H}_{L^{\circ}}.$

Theorem (Strong S-vN, G-Hadani '04)

We have a natural Sp-equivariant trivialization: $\{T_{M^{\circ},L^{\circ}}:\mathcal{H}_{L^{\circ}}\to\mathcal{H}_{M^{\circ}}\}$ with

$$T_{N^{\circ},M^{\circ}} \circ T_{M^{\circ},L^{\circ}} = T_{N^{\circ},L^{\circ}}$$
, for every N° , M° , L° .

Canonical vector space

$$\mathcal{H}(V) = \{ \ (\mathit{f}_{L^{\circ}} \in \mathcal{H}_{L^{\circ}}, \ L^{\circ} \in \mathit{OLag}) \ \mathsf{with} \ T_{M^{\circ},L^{\circ}}(\mathit{f}_{L^{\circ}}) = \mathit{f}_{M^{\circ}} \ \}.$$

< ロ > < 回 > < 巨 > < 巨 > 、 巨 ・ りへで .

Canonical Vector Space - KERNELS

Kernels

$$\left\{
\begin{array}{c}
\mathbb{C}(M\backslash H/L,\psi)\widetilde{\to} Hom_{H}(\mathcal{H}_{L^{\circ}},\mathcal{H}_{M^{\circ}}), \\
K_{M^{\circ},L^{\circ}} \longmapsto T_{M^{\circ},L^{\circ}}.
\end{array}\right.$$

Canonical Vector Space - KERNELS

Kernels

$$\left\{ \begin{array}{c} \mathbb{C}(M\backslash H/L,\psi)\widetilde{\rightarrow} Hom_{H}(\mathcal{H}_{L^{\circ}},\mathcal{H}_{M^{\circ}}), \\ K_{M^{\circ},L^{\circ}}\longmapsto \mathcal{T}_{M^{\circ},L^{\circ}}. \end{array} \right.$$

Function of kernels

$$\begin{cases}
K \in \mathbb{C}(OLag^2 \times H), \\
K * K = K.
\end{cases}$$

Canonical Vector Space - KERNELS

Kernels

$$\left\{ \begin{array}{c} \mathbb{C}(M\backslash H/L,\psi)\widetilde{\rightarrow} Hom_{H}(\mathcal{H}_{L^{\circ}},\mathcal{H}_{M^{\circ}}), \\ K_{M^{\circ},L^{\circ}}\longmapsto \mathcal{T}_{M^{\circ},L^{\circ}}. \end{array} \right.$$

Function of kernels

$$\begin{cases}
K \in \mathbb{C}(OLag^2 \times H), \\
K * K = K.
\end{cases}$$

Canonical vector space

$$\mathcal{H}(V) = \{ f \in \mathbb{C}(OLag \times H) \text{ with } K * f = f \}.$$

(II) Geometric Kernels - DEFINITION

Theorem (Geometrization, G-Hadani '06))

There exists a geometrically irreducible, perverse, ℓ -adic Weil sheaf on $\mathsf{OLag}^2 \times \mathsf{H}$ with

- **1** Convolution. Canonical isomorphism $\theta: \mathcal{K} * \mathcal{K} \widetilde{\rightarrow} \mathcal{K}$.
- **2** Function. We have $f^{\mathcal{K}}_{\text{sheaf-to-function}} = K$.

Geometric Kernels - SIGN PROBLEM

ullet Consider the commutative diagram with scalar morphism ${\it C} = c \cdot {\it Id}$

$$(\mathcal{K} * \mathcal{K}) * \mathcal{K} \xrightarrow{\alpha} \mathcal{K} * (\mathcal{K} * \mathcal{K})$$

$$\downarrow^{\theta * id} \qquad \downarrow^{id * \theta}$$

$$\mathcal{K} * \mathcal{K} \qquad \mathcal{K} * \mathcal{K}$$

$$\downarrow^{\theta} \qquad \downarrow^{\theta}$$

$$\mathcal{K} \xrightarrow{C} \mathcal{K}$$

Geometric Kernels - SIGN PROBLEM

ullet Consider the commutative diagram with scalar morphism ${\cal C}=c\cdot {\it Id}$

$$(\mathcal{K} * \mathcal{K}) * \mathcal{K} \xrightarrow{\alpha} \mathcal{K} * (\mathcal{K} * \mathcal{K})$$

$$\downarrow^{\theta * id} \qquad \downarrow^{id * \theta}$$

$$\mathcal{K} * \mathcal{K} \qquad \mathcal{K} * \mathcal{K}$$

$$\downarrow^{\theta} \qquad \downarrow^{\theta}$$

$$\mathcal{K} \qquad \xrightarrow{C} \qquad \mathcal{K}$$

Problem (The sign problem, Bernstein-Deligne)

Compute the scalar c = ?.

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 へ ②

Theorem (G-Hadani '11, with Gabber)

We have c = 1.

Theorem (G–Hadani '11, with Gabber)

We have c = 1.

Proof.

$$((\mathcal{K} * \mathcal{K}) * \mathcal{K}) * \mathcal{K} \xrightarrow{\alpha} (\mathcal{K} * \mathcal{K}) * (\mathcal{K} * \mathcal{K})$$

$$\downarrow^{\alpha * id} \qquad \qquad \downarrow^{\alpha}$$

$$(\mathcal{K} * (\mathcal{K} * \mathcal{K})) * \mathcal{K} \qquad \qquad \mathcal{K} * (\mathcal{K} * (\mathcal{K} * \mathcal{K}))$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{Id}$$

$$\mathcal{K} * ((\mathcal{K} * \mathcal{K}) * \mathcal{K}) \xrightarrow{id * \alpha} \mathcal{K} * (\mathcal{K} * (\mathcal{K} * \mathcal{K}))$$

Theorem (G-Hadani '11, with Gabber)

We have c = 1.

Proof.

$$((\mathcal{K} * \mathcal{K}) * \mathcal{K}) * \mathcal{K} \xrightarrow{\alpha} (\mathcal{K} * \mathcal{K}) * (\mathcal{K} * \mathcal{K})$$

$$\downarrow^{\alpha * id} \qquad \qquad \downarrow^{\alpha}$$

$$(\mathcal{K} * (\mathcal{K} * \mathcal{K})) * \mathcal{K} \qquad \qquad \mathcal{K} * (\mathcal{K} * (\mathcal{K} * \mathcal{K}))$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{Id}$$

$$\mathcal{K} * ((\mathcal{K} * \mathcal{K}) * \mathcal{K}) \xrightarrow{id * \alpha} \mathcal{K} * (\mathcal{K} * (\mathcal{K} * \mathcal{K}))$$

• By successive application of θ , each term is identified with \mathcal{K} , and by naturality of α , the arrows become \mathcal{C} .

Theorem (G-Hadani '11, with Gabber)

We have c = 1.

Proof.

$$((\mathcal{K} * \mathcal{K}) * \mathcal{K}) * \mathcal{K} \xrightarrow{\alpha} (\mathcal{K} * \mathcal{K}) * (\mathcal{K} * \mathcal{K})$$

$$\downarrow^{\alpha * id} \qquad \qquad \downarrow^{\alpha}$$

$$(\mathcal{K} * (\mathcal{K} * \mathcal{K})) * \mathcal{K} \qquad \qquad \mathcal{K} * (\mathcal{K} * (\mathcal{K} * \mathcal{K}))$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{ld}$$

$$\mathcal{K} * ((\mathcal{K} * \mathcal{K}) * \mathcal{K}) \xrightarrow{id * \alpha} \mathcal{K} * (\mathcal{K} * (\mathcal{K} * \mathcal{K}))$$

- By successive application of θ , each term is identified with \mathcal{K} , and by naturality of α , the arrows become C.
- Hence $C^3 = C^2$, so C = 1.

(III) Canonical Category - DEFINITION

Definition

We define

$$\mathcal{C}(\mathbf{V}) = \left\{ egin{array}{l} (\mathcal{F}, \eta), \ \mathcal{F} \in \! \mathcal{D}^b(\mathbf{OLag} imes \mathbf{H}), \ \eta: \mathcal{K} * \! \mathcal{F} \widetilde{
ightarrow} \mathcal{F}, \end{array}
ight.$$

such that η is compatible with α and θ , i.e., the following diagram is commutative

$$(\mathcal{K} * \mathcal{K}) * \mathcal{F} \xrightarrow{\alpha} \mathcal{K} * (\mathcal{K} * \mathcal{F})$$

$$\downarrow \theta * id \qquad \qquad \downarrow id * \eta$$

$$\mathcal{K} * \mathcal{F} \qquad \qquad \mathcal{K} * \mathcal{F}$$

$$\downarrow \eta \qquad \qquad \downarrow \eta$$

$$\mathcal{T} \qquad \qquad id \qquad \mathcal{T}$$

We call C(V) the **canonical category** associated with $V \in Symp$.

THANK YOU

Ronny