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On noncommutative crystalline cohomology

Boris Tsygan

Abstract. We outline several constructions of a noncommutative version of
crystalline cohomology for an associative algebra over a field of positive char-

acteristic.

1. Introduction

In this paper we review several approaches to generalizing cohomology of schemes
over a field of characteristic p to the case of noncommutative algebras or, more gen-
erally, differential graded categories.

Recall that the classical (commutative) theory uses several ideas. One starts
from a lifting of an Fp-algebra to a Zp-algebra. If a good lifting exists, one defines
crystalline cohomology as the De Rham cohomology of the lifting and proves that
the result does not depend on a lifting. If not, one has to use other methods [24],
[3]. Alternatively one can define De Rham forms and cohomology extending the
method by which Witt vectors are defined [22]. In a yet another approach, one
uses topological/bornological methods in non-Archimedean geometry [37].

Noncommutative versions of all of the above have been advanced in recent years.
In noncommutative geometry, the analog of De Rham cohomology is (periodic)
cyclic homology [8], [9], [10], [35], [38], [47]. It is more suited in characteristic zero,
and it had been long recognized that topological Hochschild and cyclic homology
[5], [6], [26], [39] works better for arithmetics. However, some versions of the
standard theory can be used to give some basic definitions, and sometimes they
give an alternative way of looking at the invariants from the topological theory.
Below we present four different approaches along these lines.

The author would like to thank B. Antieau, A. Beilinson, V. Drinfeld, D. Kaledin,
M. Kontsevich, K. Magidson, R. Nest, A. Petrov, M. Rivera, N. Rozenblyum,
D. Tamarkin, V. Vologodsky for fruitful discussions about various aspects of this
work.

2. Hochschild-Witt homology

Here we follow Kaledin’s works [29], [30], [31].
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2.1. Noncommutative Witt vectors. For a Z-module V , consider the ac-
tion of the cyclic group Cpn on V ⊗p

n

by permutations. We denote the generator of
Cpn by σ and write

(2.1) N = 1 + σ + . . .+ σp
n−1

We denote the image of N by Norms.

Lemma 2.1. Let x and y be two elements of V . Then

(x+ y)p − xp − yp ∈ Norms

Corollary 2.2. In an associative algebra A over Fp, for any x and y in A

(x+ y)p = xp + yp

in A/[A,A].

Lemma 2.3. (Noncommutative Dwork’s lemma). Let x and y be two elements
of V . Then

(x+ py)p
n

− xp
n

∈ pNorms

in V ⊗p
n

.

Proof. Let V be a free Z-module with a basis {xj |j ∈ J}. We will denote

a monomial in V ⊗p
n

(with respect to this basis) by X. We say a monomial is
primitive if it is not a pth power of another monomial. Any monomial is of the
form

X = Y p
n−k

where y is a primitive monomial in V ⊗p
k

. This happens if and only if the Cpn-orbit
of X is of order pk.

Let Mk be a set of representatives of all primitive monomials in V ⊗p
k

(two
monomials are equivalent if one is obtained from the other by a permutation from
Cpk).

Let V be a free Z-module with the basis {x, y}. Then

(2.2) (x+ y)p
n

=

n∑
k=0

∑
Y ∈Mk

Npk(Y p
n−k

)

where

(2.3) Npk = 1 + σ + . . .+ σp
k−1

(in particular N = Npn). Now let y be divisible by p. Then, unless k = 0 and

Y = x, Npk(Y p
n−k

) is in the image of pp
n−k

Npk . But the image of pn−k+1Npk is in

the image of pN. Indeed, n− k + 1 ≤ pn−k. This proves Lemma 2.3. Lemma 2.1
follows from (2.2) when n = 1. �

Definition 2.4. Let V be a free Z-module. Put

Wn(V ) = (V ⊗p
n

)Cpn /Norms

In other words,

Wn(V ) = Ȟ0(Cpn , V
⊗pn)

(the Tate cohomology of degree zero). Put also

W ′n(V ) = (V ⊗p
n

)Cpn /pNorms
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Lemma 2.5.

Wn(V ) =

n−1⊕
k=0

⊕
Y ∈Mk

(Z/pn−kZ)Npk(Y p
n−k

)

W ′n(V ) =

n⊕
k=0

⊕
Y ∈Mk

(Z/pn−k+1Z)Npk(Y p
n−k

)

(Recall that Mk is a set of representatives of primitive monomials of length pk

up to cyclic permutation).
The proof is clear: one only has to compute MCpn /N(M) and MCpn /pN(M)

for a Cpn -module M induced from a trivial representation of Cpk .

Lemma 2.6. Let f and g be two linear maps V1 → V2 that differ modulo p. Then
f⊗p

n

and g⊗p
n

define the same maps Wn(V1)→Wn(V2) and W ′n(V1)→W ′n(V2).

This follows from noncommutative Dwork’s lemma 2.3.

Corollary 2.7. For a vector space E over Fp choose a free Z-module Ẽ to-

gether with an isomorphism Ẽ/pẼ
∼−→ E. For any n ≥ 0, E 7→ Wn(Ẽ) is a

well-defined functor from vector spaces over Fp to modules over Z/pnZ.

We will denote this functor by the same symbol Wn, or Wn(E) where E is a
vector space over Fp.

Lemma 2.8. There is a natural isomorphism

W ′n(V )
∼−→Wn+1(V )

Proof. First observe that the two sides become isomorphic if one identifies
the terms corresponding to the same primitive monomial Y in the decomposition
from Lemma 2.5. It remains to see that this isomorphism is natural. We call a
linear map V → (V ⊗p)Cp standard if the induced map

V/pV → (V ⊗p)Cp/Norms

is the isomorphism sending each v to vp. From Lemma 2.6 we see that any standard
map defines the same map W ′n(V ) → Wn+1(V ). On the other hand, the map
xj 7→ xpj , j ∈ J, induces precisely the isomorphism above. �

2.1.1. Restriction and Verschiebung.

Definition 2.9. Define the natural transformation

R : Wn+1(V )→Wn(V )

by

Wn+1(V )
∼←−W ′n(V )→Wn(V )

where the isomorphism on the left is from Lemma 2.8 and the map on the right is
the obvious projection.

In terms of the decomposition from Lemma 2.5, R is the projection

(Z/pn+1−kZ)Npk(Y p
n−k

)→ (Z/pn−kZ)Npk(Y p
n−k

)

for every primitive monomial Y. If Y is of length pn then it maps to zero.
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Definition 2.10. Define the natural transformation

V : Wn(V ⊗p)→Wn+1(V )

by

Np : ((V ⊗p)⊗p
n

)Cpn
∼−→ (V ⊗p

n+1

)Cpn → (V ⊗p
n+1

)Cpn+1

(Recall that

Np = 1 + σ + . . .+ σp−1;

note that V takes norms to norms. Indeed, on the left hand side the norm is given
by

N = 1 + σp + . . .+ σp(p
n−1);

therefore its composition with Np is the norm on the right).

2.2. Trace functors. Following Kaledin, we define the trace functor from a
monoidal category (A,⊗) to a category K as a functor Tr : A → K together with a
natural transformation

(2.4) τM,N : Tr(M ⊗N)
∼−→ Tr(N ⊗M)

such that

(2.5) τM⊗N,LτN⊗L,MτL⊗M,N = idTr(L⊗M⊗N)

and

(2.6) τM,1 = τ1,M = idTr(M)

Given a trace functor Tr from k-modules to a category K, Kaledin defines a cyclic
object Tr\(A) of K for any k-algebra A. Namely, we put

(2.7) Tr\(A)[n] = Tr(A⊗(n+1))

The face maps d0, . . . , dn−1 are induced by the ones on A⊗(n+1) and so are the
degeneracy maps. The action of the cyclic permutation is by τA⊗n,A.

More generally, for a k-algebra A with an authomorphism α of order p one
defines a p-cyclic object Tr\(A,α) of K.

2.3. The construction.

Lemma 2.11. The cyclic permutation

σ : (M ⊗N)⊗p
n ∼−→ (N ⊗M)⊗p

n

,

v1 ⊗ w1 ⊗ . . .⊗ vpn ⊗ wpn 7→ w1 ⊗ vpn ⊗ . . .⊗ wpn ⊗ v1,

vi ∈M, wi ∈ N, turns Wn into a trace functor.

Now for an Fp-algebra A define the cyclic Z/pnZ-module

(2.8) W \
n(A)[k] = Wn(A⊗k+1)

Definition 2.12.

WnHH•(A) = HH•(W
\
n(A)); WnHC•(A) = HC•(W

\
n(A))

The following theorems are from [29] and [30].
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Theorem 2.13. For a finitely generated smooth commutative algebra over Fp
there is a natural isomorphism

WnHH•(A)
∼−→WnΩ•A

where the right hand side denotes De Rham -Witt forms of Deligne-Illusie [22]. This
isomorphism intertwines the cyclic differential B with the De Rham differential.

Theorem 2.14. For any algebra over Fp there is a natural isomorphism

WnHH0(A)
∼−→WH

n (A)

where the right hand side denotes Hesselholt’s generalized Witt vectors [25] .

3. The construction of Petrov and Vologodsky

In [41] (cf. also [40]), another approach to noncommutative crystalline coho-
mology is proposed. For an algebra (or a DG category) over Fp, a homology theory
HCcrys
• (A) is constructed. It has the following properties.

(1) When A admits a lifting Ã to an algebra over Zp then

HCcrys
• (A)

∼−→ ĤC
per

• (Ã);

(2)

HCcrys
• (A)

∼−→ T̂P•(A)

(TP denotes periodic topological cyclic homology; in both cases the hat
denotes the p-adic completion).

A few words about the construction in general. When we do not have a lifting,
what we can do is compute the periodic cyclic homology over Fp. We do this in the
derived sense, i. e. replace A by a DG algebra flat over Z and then computing the p-
adically completed standard complex over the DG resolution flat over Z. Explicitly,
this resolution is

(3.1) R = (Z[ξ], p
∂

∂ξ
)

where ξ is a free commutative variable of degree −1.
There are two problems with this. First, HCper

• (R) is too big.

(3.2) ĈC
per

• (R)
∼−→ ĈC

per

• (Z[ξ])

(with zero differential on the algebra in the right hand side). This may be com-
puted directly, or deduced from section 4. The right hand side projects to Zp (the
projection induced by Z[ξ] → Z, ξ 7→ 0). So the solution would be: tensor over

ĈC
per

• (Z[ξ]) by Zp.
But then the second problem arises: neither side of (3.2) is in any natural way

a commutative algebra. In fact, for a commutative algebra A, while CCper
• (A) is an

A∞ algebra, it is not clear why it is a homotopy commutative (E∞-)algebra, and if
yes why is there a preferred E∞ structure. Actually the known A∞ structure [27]
is manifestly not commutative.

The problem is solved as follows. As it is well known, periodic cyclic homology
of a cyclic module can be computed in terms of the projection of the module onto the
quotient by a certain subcategory. The projection does have a symmetric monoidal
structure, and (3.1) can be established at the level of this quotient.
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Remark 3.1. The subtle issue of the symmetric monoidal structure on (peri-
odic) cyclic homology is also studied in [36].

4. Operations on (co)chains and noncommutative crystalline
cohomology

The contents of this chapter are from [38].

Definition 4.1. A lifting of an Fp-algebra A is a torsion-free p-adically com-

plete Zp-module Ã with a p-adically continuous bilinear (not necessarily associative)

product together with a product-preserving isomorphism Ã/pÃ
∼−→ A. For two Fp-

algebras A and B, a morphism of liftings Ã → B̃ is a p-adically continuous linear
map whose reduction modulo p is a morphism of algebras.

Theorem 4.2. For any lifting Ã of an Fp-algebra A there exists a complex

ĈC
PER

• (Ã) such that:

(1) If the product on Ã is associative then there is a quasi-isomorphism

ĈC
PER

• (Ã)
∼−→ ĈC

per

• (Ã)

where the right hand side is the p-adic completion of the periodic cyclic

complex of the algebra Ã;
(2) For any n ≥ 1 and for any chain of morphisms of liftings

Ã0
f1−→ Ã1

f2−→ . . .
fn−→ Ãn

there is a map

T (f1, . . . , fn) : ĈC
PER

• (Ã0)→ ĈC
PER

• (Ãn)

such that

[b+ uB, T (f1, . . . , fn+1)] =

n∑
j=2

(−1)jT (f1, . . . , f̂j . . . , fn+1)−

n∑
j=2

(−1)jT (fj , . . . , fn+1)T (f1, . . . , fj)

Here b+ uB denotes the differential in ĈC
PER

• (Ã) for any Ã.

4.1. Hochschild and cyclic cohomology of DG coalgebras. We start
with the Hochschild and cyclic homology of second kind introduced and studied
in [42], [43], [44]. Note that the established generality for them is a conilpotent
(curved) DG coalgebra which ours will automatically be. Let (C, d) be a DG coal-
gebra with counit. We define Hochschild and cyclic complexes of C in a way dual
to what one does for algebras, with one nuance. Namely, we put

(4.1) C•II(C) =
⊕
n≥0

C ⊗ C[−1]⊗n

with the differential b+ d and

(4.2) CC•II(C) = (C•II(C)[[u]], b+ d+ uB)

with the differential b+ d+ vB Here C is the kernel of the counit and

b : C ⊗ C[−1]⊗n → C ⊗ C[−1]⊗(n+1); B : C ⊗ C⊗n[−1]→ C ⊗ C[−1]⊗(n−1)
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are defined dually to the standard Hochschild and cyclic differentials for algebras.
An important feature of both is that they are not invariant with respect to

quasi-isomorphisms of DG (co)algebras. This suits us well because we are going to
consider the example C = Bar(A) where A is a DG algebra, and C is contractible
when A has a unit.

Theorem 4.3. For an associative algebra A there are natural quasi-isomorphisms

C•II(Bar(A))
∼−→ C•(A); CC•II(Bar(A))

∼−→ CC−• (A)

where the right hand side is the standard Hochschild, resp. negative cyclic, complex
of A.

This is proven in [45] and [17].

4.2. The multiplicative structure on cyclic cochains. We start by ex-
tending the cyclic Alexander-Whitney constructions from [2] and [34]. Given two
associative algebras A1 and A2, there are two homotopy inverse maps (C• denotes
the Hochschild complex):

(4.3) C•(A1 ⊗A2)
−→←− C•(A1)⊗ C•(A2)

(i.e. the Alexander-Whitney the Eilenberg-Zilber morphisms). (The left hand side
is the total complex of a bisimplicial Abelian group and the right hand side is the
complex of the diagonal). The maps satisfy an associativity condition when we
consider three algebras. In particular, the Hochschild complex of a bialgebra is a
coalgebra. Dualizing this, we see that the Hochschild complex (4.1) of a bialgebra
viewed as a coalgebra acquires an algebra structure.

The above can be extended to cyclic (co)chains. For any n coalgebras C1 . . . , Cn
there is a map

(4.4) CCII(C1)⊗ . . .⊗ CCII(Cn)→ CCII(C1 ⊗ . . .⊗ Cn)

satisfying the A∞ relation. This implies that for any bialgebra H its cyclic complex
CCII(H) is an A∞ algebra.

Therefore for any bialgebra we have an associated A∞ algebra. It can be
constructed explicitly when H is a cocommutative DG Hopf algebra.

4.2.1. The DG algebra H ?Cobar(H). To start with, there are two subalgebras
of CCII(H) for a bialgebra H. One is H itself (the degree zero cyclic cochains). The
other is the subalgebra k⊗H[−1]⊗• which is identified with the cobar construction
of the coalgebra H. It turns out that the Hochschild complex of a Hopf algebra H
is isomorphic to the cross product of the two. For the cyclic complex, the same is
true up to an A∞ quasi-isomorphism and with the addition of a cross term in the
differential. Below are the details.

For a bialgebra H and an algebra A, an action of H on A is a linear map
H ⊗A→ A, x⊗ a 7→ ρ(x)a, such that

ρ(xy) = ρ(x)ρ(y); ρ(x)(ab) =
∑

ρ(x(1))(a)ρ(x(2))(b)

If H is a Hopf algebra acting on A then one can define a cross product

(4.5) H ? A = A⊗H; (a⊗ x)(b⊗ y) = aρ(x(1))b⊗ Sx(2)y

Let A = Cobar(H). Put

(4.6) ρ(x)(x1| . . . |xn) =
∑

(x(1)x1S(x(n+1))| . . . |x(n)xnS(x(2n)))
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where S is the antipode. The action commutes with the differential on Cobar(H)
(which we denote by b), and we get a DG algebra H ? Cobar(H).

Remark 4.4. Note that the comultiplication on H is given by

∆x =
∑

x(1) ⊗ x(2) − 1⊗ x− x⊗ 1

In other words, H ?Cobar(H) is the DG algebra generated by a subalgebra H
and by elements (x), linear in x ∈ H[1], subject to

(4.7) x · (y) =
∑

(x(1)yS(x(2))) · x(3); bx = 0; b(x) =
∑

(x(1))(x(2))

This DG algebra admits a derivation B determined by

Bx = 0, x ∈ H; B(x) = x, x ∈ H[−1].

It is easy to see that B is well defined and commutes with b. Of course, if H is a DG
Hopf algebra, then its differential d induces an extra differential on H ?Cobar(H).

Proposition 4.5. For a cocommutative DG Hopf algebra H,
1) there is an isomorphism of DG algebras

C•II(H)
∼−→ (H ? Cobar(H), b+ d);

2) there is a natural k[[u]]-linear (u)-adically continuous A∞ isomorphism

CC•II(H)
∼−→ ((H ? Cobar(H))[[u]], b+ d+ uB)

(An A∞ isomorphism is an A∞ morphism whose first term is invertible).

5. The action on the periodic cyclic complex

5.1. The A∞ action of CC•II(U(gA)). For an associative algebra A, let gA
denote the DG Lie algebra C•+1(A,A) with the Gerstenhaber bracket which we
identified with Coder(Bar(A)). We do not assume that the coderivations preserve
the coaugmentation. In other words, the Abelian subalgebra A[1] is contained in
gA. The latter defines the action of U(gA) on Bar(A) as well as linear maps

(5.1) µN : U(gA)⊗N ⊗ Bar(A)→ Bar(A)

(composition of the above action with the n-fold product on U(gA)).

Lemma 5.1. The above are morphisms of DG coalgebras.

Proof. Clear. �

Corollary 5.2. The compositions of

CC•II(U(gA))⊗N ⊗ CC•II(Bar(A))−→CC•II(U(gA)⊗N ⊗ Bar(A))

(cf. (4.4)) with the morphism induced by µN define on CC•II(Bar(A)) a structure
of an A∞ module over the A∞ algebra CC•II(U(gA)).

Remark 5.3. In classical calculus on a manifold M, the counterpart of the
periodic cyclic complex is the De Rham complex (Ω•M ((u)), ud). If g is the algebra

of multivector fields then the DG Lie algebra (g[[u]][ε], u ∂
∂ε ) acts on this complex: an

element X + εY acts by LX + ιY . In characteristic zero, the DGLA (gA[[u]][ε], u ∂
∂ε )

does act on CC−• (A) as on an L∞ module. Cf. for example [48] and, for a new and
different perspective, [7]. The A∞ algebra

CC•II(U(gA))
∼−→ (U(gA) ? Cobar(U(gA))[[u]], b+ δ + uB),
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while L∞ quasi-isomorphic to the former in characteristic zero, seems to be better
suited to working over Z, and perhaps also in a more general categorical context.

5.2. The construction. Let a be the graded Lie algebra with the basis con-
sisting of one element R of degree two. We start by constructing

(5.2) x ∈
∞∏
n=1

u−n(U(a) ?1 Cobar(U(a)))2n

satisfying

(5.3) (∂Cobar + uB)x+ x2 = −R

Here the graded component of degree n is spanned by elements of degree 2n with
respect to R and of degree 0 with respect to u. We are looking for a solution of the
form

(5.4) xF (R) =

∞∑
n=1

xn(R)(Rn) where F (R, y) =

∞∑
n=1

xn(R)yn

Equation (5.3) translates into the following two: first,

F (y1 + y2)− F (y1)− F (y2) + F (y1)F (y2) = 0

which implies

xn(R) = − 1

n!
f(R)n

for some f , and second,

−u
∞∑
n=1

1

n!
f(R)nRn = −R.

This implies

f(R)R = log(1 +
R

u
); 1− F (R, y) = exp(

y

R
log(1 +

R

u
)) = (1 +

R

u
)

y
R ;

we conclude that

(5.5) F (R, y) = −
∞∑
n=1

u−n

n!
y(y −R) . . . (y − (n− 1)R)

A crucial observation for us is that the homogeneous part of xF (R) ((5.4)) of total
degree n in R has the denominator n!.

Now assume that we have a chain of morphisms

(5.6) Ã0
f1−→ Ã1

f2−→ . . .
fn−→ Ãn

Here Ãj is a lifting of an algebra Aj and fj are morphisms modulo p. Let

(5.7) U(m0, . . . ,mn) = U(Lie(m0, . . . ,mn)) ?1 Cobar(U(Lie(m0, . . . ,mn))

where Lie(m0, . . . ,mn) stands for the free Lie algebra with generators m0, . . . ,mn

each of degree one. We claim that there is a pairing

(5.8) U(m0, . . . ,mn)⊗ ĈC
PER

• (Ã0)→ ĈC
PER

• (Ãn)

Moreover: define the DG category as follows. An object is a lifting Ã of an Fp-
algebra A. A morphism from Ã0 to Ãn is a pair of a chain {fj} (5.6) and an
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element of U(m0, . . . ,mn). Composition is concatenation of chains together with
the product

(5.9) U(m0, . . . ,mn)⊗ U(mn, . . . ,mn+k)→ U(m0, . . . ,mn+k)

(embed the two algebras on the left into the one on the right, and multiply there).
Then (5.8) extends to an A∞ functor from this DG category to the category of
complexes.

To see that, we need to refer to section 8, namely to 8.1. Define for any chain
(5.6) a morphism of coalgebras

(5.10) U(Lie(m0))⊗ . . .⊗ U(Lie(mn))→ Bar(C•(A0, An))

as follows:

(5.11) mk0
0 ⊗ . . .⊗mkn

n 7→ f1∗m̃
•k0
0 • . . . • fn∗m̃•kn−1

n−1 • m̃•knn

Here m̃j are cochains in C2(Ãj , Ãj) corresponding to the product. The above
intertwines the • product(8.7) with the product in U(Lie(m0))⊗. . .⊗U(Lie(mn+k)).
Now follow (5.10) by

U(Lie(m0, . . . ,mn))→ U(Lie(m0))⊗ . . .⊗ U(Lie(mn+k))

and apply CC•II . We then get (5.8).
Next, let g be the free graded Lie algebra over k[[u]] generated by three elements

λ of degree 1 and δλ, R of degree 2. Define a derivation δ of degree one by

δ : λ 7→ δλ 7→ [R, λ]; R 7→ 0.

(For us, this is a subalgebra of Lie(m0,m1)[ 1
2 ][[u]] with λ = m1−m0, R = m2

0, and
δ = [m0, ]).

We assign weight one to λ and δλ, and weight two to R. Extend the weight to
the algebra

(5.12) U = U(g) ?1 Cobar(U(g))

multiplicatively. Denote by g(n), U(n), etc. the span of all homogeneous elements
of weight at least n. Let

(5.13) Û =

∞∏
k=0

u−kk!

n!
U(k)[[u]]

For any r ∈ g2(1), define an element of

(5.14) xF (r) ∈ Û
by (5.4) with R replaced by r.

Consider the differential

(5.15) µ(t) = δ + x(R)t− (−1)ltx(R− δλ+ λ2)

for t ∈ U l.
We construct an invertible element t01 of degree zero in the completion Û , such

that

(5.16) (µ+ ∂Cobar + uB)t01 + t01λ = 0

We write t01 = 1 +x1 +x2 + . . . where xk is in U(k). We find xn recursively just as
we did above, using the acyclicity of the differential induced by µ on U(n)/U(n+1).

For example, x1 = − (λ)
u .
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It remains to prove that gr(U) is indeed acyclic. Let g0 be the graded Lie
algebra g with the differential δ0 defined by

δ0 : λ 7→ δλ 7→ 0; R 7→ 0.

Define the DGA

(5.17) U0 = U(g0) ?1 Cobar(U(g0))

with the differential δ0 + ∂Cobar + uB. Then

gr(U)
∼−→ ⊕u

−k

k!
U0(k)

Looking at the differential δ0 as the leading term of a spectral sequence, we see that
the above is quasi-isomorphic to itself with g0 is replaced by a0, the latter being the
free graded Lie algebra generated by R of degree two (and weight one). Looking at
uB as the leading term in a spectral sequence, we see that our complex is indeed
acyclic.

More generally, let gn be the free graded algebra with generators λ0j of degree
one and δλ0j of degree two, 1 ≤ j ≤ n, as well as R of degree two. Let the weight
of δλ0j and λ0j be one, and the weight of R be two. Define a derivation δ of degree
one by

(5.18) δ : λ0j 7→ δλ0j 7→ [R, λ0j ].

Remark 5.4. Consider the graded Lie algebra generated by elementsm0, . . . ,mn

of degree one and R of degree two, subject to the relation [m0,m0] = 2R. Let
δ = [m0, ]. The span of all monomials of degree > 1 and of m0 −mj , 1 ≤ j ≤ n, is
a graded subalgebra stable under δ. It maps to gn via m0 −mj 7→ λ0j ; R 7→ R.

To finish the proofs, recall the A∞ module structure given by Proposition 4.5
and Corollary 5.2. Together with the above, it gives an A∞ functor to the category
of complexes from the following DG category: objects are liftings of Fp-algebras;
morphisms are:

(1) morphisms of liftings (recall: they preserve the product only modulo p,
and the products are associative only modulo p);

(2) in addition, every object has an endomorphism of degree one and square
zero; and

(3) morphisms in (1) commute with the morphisms in (2).

The value of the A∞ functor on an object Ã is the complex ĈC
PER

• (Ã).

6. Comparisons between different constructiions

Let us start by comparing sections 3 and 4. They obviously give the same
result when A admits a lifting to an algebra over Zp. When this is not the case,
the constructions diverge; we strongly expect them to give the same answer. Note
that the general construction of section 3 is carried out in terms quite close to the
methods of section 4. Clarifying these connections could be quite instructive.

Next we compare sections 2 and 4. We start by giving more details on the
approach of section 2.
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6.1. More on Frobenius under the trace. Let E be a finite dimensional
space over Fp. Corollary 2.2 provides a linear map

(6.1) F : E → (E⊗p)Cp

sending e to ep for any e in E. Passing to dual spaces and taking the adjoint
operator, we get

(6.2) C : (E⊗p)Cp → E

For a more general perfect field of scalars k, those maps are linear if the action on
E is twisted by the Frobenius automorphism of k.

Explicitly: when a basis of E is chosen, F and C act on the corresponding basis
of E⊗p

n

as follows: F sends a monomial to its pth power; C sends a monomial X
to Y if X = Y p for some Y ; if there is no such Y then X is sent to zero. Applying
this to E⊗p

n

instead of E, we get an inverse system

(6.3) C : (E⊗p
n

)Cpn → (E⊗p
n−1

)Cpn−1

Lemma 6.1. For a free Z-module M there is a natural isomorphism

Wn+1(M)/pWn+1(M)
∼−→ ((M/pM)⊗p

n

)Cpn

which intertwines the restriction R with C as in (6.3).

Proof. This was proven in [31], [29] and essentially follows from Lemma
2.5. �

6.1.1. Recollection on cyclic objects. Fix a unital commutative ring K. For a
small category C, a C-module is by definition a functor C → K−mod. For a functor
f : C1 → C2, we have the restriction functor

(6.4) f∗ : C2 −mod→ C1 −mod

There are two functors

(6.5) f!, f∗ : C1 −mod→ C2 −mod

The functor f! is left adjoint and the functor f∗ is right adjoint to f∗. A bit infor-
mally,

f!M = C2 ×C1 M ; f∗M = HomC1(C2,M).

Recall the definition of the cyclic category Λ ([11]) and its generalizations Λp
for any natural number p ([16], [39]). For p = 1, Λ = Λp. By definition, a cyclic
K-module is a Λop-module; a p-cyclic K-module is a Λop

p -module. One has

AutΛp([n])
∼−→ Cp(n+1)

(the cyclic group). the subgroups Cp for all n form the center of Λp.

Remark 6.2. One also defines the category Λ∞ ([14], [4], [16]) with the same
objects, with

AutΛ∞([n])
∼−→ Z.

For any p ≥ 1, Λp is the quotient (in an easy precise sense) of Λ∞ over the subgroup
p(n+ 1)Z.
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Let ∆ be the category whose objects are [n] = {0, . . . , n} for all n ≥ 0 and
whose morphisms are order-preserving maps. By definition, simplicial K-modules
are ∆op-modules.There are inclusions jp : ∆→ Λp for all p.

For any associative algebra A over K one defines the Λop-module A\. More
generally, for an algebra A together with an automorphism α of degree p one defines
the Λop

p -module A\α.One has

(6.6) A\α([n]) = A⊗n+1

Each group AutΛp([n]) has a generator tn that acts by

tn(a0 ⊗ . . .⊗ an) = α(an)⊗ a0 ⊗ . . .⊗ an−1

We put

(6.7) τn = tn+1
n

For any small category C define

prC : C → ∗
to be the unique morphism to the category with one morphism. For a simplicial
module M define

(6.8) HH•(M) = L•pr∆!(M)

For a p-cyclic module M define

(6.9) HC•(M) = L•prΛp!(M); HH•(M) = HH•(j
∗
pM)

For an algebra A with an automorphism α of degree p one has

(6.10) HH•(A
\
α)

∼−→ H•(A, αA)

(the Hochschild homology of A with coefficients in A on which A acts by multipli-
cation on the right, and by multiplication twisted by α on the left). Also,

(6.11) HC•(A
\
α)

∼−→ HC•(A,α)

(the generalized cyclic homology from [17]). This is the generalized theorem of
Connes [11].

6.2. Subdivisions. Here we follow [28]. There are two functors

(6.12) πp, ip : Λp → Λ.

The functor πp sends τn to 1. One has

(6.13) πp!(M) = MCp
; πp∗(M) = MCp

where Cp is the center. To define ip, start with any algebra A and pass to the algebra
A⊗p with the automorphism α acting by cyclic permutation. Now construct the
p-cyclic module (A⊗p)]α. We have

(A⊗p)]α[n] = A][p(n+ 1)− 1]

and it is clear from the construction that the rest of the p-cyclic structure on
(A⊗p)]α. is constructed in terms of the cyclic structure on A]. In other words, there
exists unique functor ip : Λp → Λ such that

(6.14) (A⊗p)]α = i∗p(A
])

In particular
ip([n]) = p(n+ 1)− 1
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Proposition 6.3. There are natural isomorphisms

HH•(i
∗
pM)

∼−→ HH•(M); HC•(i
∗
pM)

∼−→ HC•(M)

where M is any cyclic module.

6.2.1. Frobenius under the trace and subdivisions. Let A be an algebra over
Fp. Apply Lemma 6.1 and (6.3) to E = A⊗(n+1). It is straightforward that the
morphisms C and F are compatible with the cyclic structures and therefore define
morphisms

(6.15) F : A\ → πp!i
∗
pA

\

(6.16) C : πp∗i
∗
pA

\ → A\

There is an inverse system of morphisms of cyclic modules

(6.17) C : πpn∗i
∗
pnA

\ → πpn−1∗i
∗
pn−1A\

and the diagram where the vertical maps are isomorphisms:

(6.18) W \
n+1(A)/pW \

n+1(A)
R //

��

W \
n(A)/pW \

n(A)

��
πpn∗i

∗
pnA

\ C // πpn−1∗i
∗
pn−1A\

To summarize: We observe that the periodic version of the Hochschild-Witt complex
has some resemblance to the construction in section 4. Both use a lifting of A.
Both, when reduced modulo p, become nonstandard (larger) complexes that compute
periodic cyclic homology of A or something close to it. We hope that a common
framework for operations on higher Hochschild chains and cochains, as discussed
in the end of this article, will allow us to compare the two constructions directly.

7. Noncommutative dagger completions

In [12] and [13] Cortiñas, Cuntz, Meyer, Mukherjee, and Tamme introduce and
study another approach to noncommutative crystalline cohomology, the one based
on Monsky and Washnitzer’s work [37]. It would be very interesting to compare
this with another approaches outlined in this article.

8. What do DG categories form?

8.1. A category in cocategories. For every two algebras A and B and
any two morphisms f, g : A → B we consider the Hochschild cochain complex
C•(A, fBg) where B is viewed as an A-bimodule on which A acts on the left via f
and on the right via g. We use the picture

(8.1) A

f
))

g
55 B

to refer to such cochains. There is the cup product

C•(A, fBg)⊗ C•(A, gBh)→ C•(A, fBh).
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In other words, given two cochains described by the picture

(8.2) A

f
))g //

h

55 B

one produces a cochain corresponding to

A

f
))

h

55 B

Also, given a cochain ϕ in C•(B, g1Cg2),

(8.3) A
f // B

g1
))

g2

55 C
h // D

one defines a cochain h∗f
∗ϕ in C•(A, hg1fDhg2f ).

A

hg1f
))

hg2f

55 D

Given two cochains as shown below, i.e. ϕ in C•(A, f1Bg1) and ψ in C•(B, f2Cg2),

(8.4) A

f1
))

g1

55 B
f2
))

g2

55 C

there are two ways to produce a cochain n C•(A, f2f1Cg2g1).

A

f2f1
))

g2g1

55 C

One is f2∗ϕ ∪ g∗1ψ and the other is f∗1ψ ∪ g2∗ϕ. There is a homotopy between the
two, given by the brace operation ψ{ϕ}.

One may ask whether any two ways to compose the cup product, f∗, and f∗

are essentially the same (up to homotopy). Below we outline an affirmative answer.
Let us first look at vertical compositions, i.e. at the cup product. It is asso-

ciative, so we can define a DG category C•(A,B) whose objects are morphisms

A
f−→ B and whose morphisms are C(A, fBg), with the cup product being the

composition. Naively we could expect these to form a 2-category, in which case we
would have a functor C•(A,B)⊗C•(B,C)→ C•(A,C) satisfying the associativity
condition. As we have seen, there are not one but two candidates for such a functor,
and the associativity could be true up to homotopy at best.

In reality, algebras form a category not in categories but in cocategories. Namely,
let

(8.5) B(A,B) = Bar(C•(A,B))

be the bar construction. Recall that for a (small, conilpotent) DG category C

(8.6) Bar(C)(f, g) =

∞⊕
n=0

⊕
h1,...,hn∈Ob(C)

C(f, h1)[1]⊗ . . .⊗C(hn, g)[1]



16 BORIS TSYGAN

The coproduct is the deconcatenation. The differential ∂Bar is the usual bar dif-
ferential plus the one induced by the one in C. The term with n = 0 stands for
C(f, g)[1].

Generalizing [18] and [19], we define a morphism of DG cocategories

(8.7) • : Bar(C•(A,B))⊗ Bar(C•(B,C))→ Bar(C•(A,C))

which satisfies the associativity property (when four algebras A, B, C, D are cho-
sen).

We can define CC•II(B) for any DG cocategory B. We get an A∞ category
whose objects are algebras and whose morphisms are CC•II(B(A,B)). We also have
an A∞ module A 7→ CC•II(Bar(A)).

8.2. Category in categories. One can obtain a version of a two-category
structure on the category of algebras when one applies to (8.7) the functor Cobar.
Now to any two algebras one puts in correspondence the DG category

(8.8) C(A,B) = Cobar(Bar(C•(A,B)))

which is quasi-isomorphic to C•(A,B). Those still do not form a strict two-category
because Cobar is not compatible to the tensor product in the strictest possible way.
Rather, Cobar is a lax monoidal functor which is enough to define a reasonable
2-category structure on algebras ([38], [48]).

Remark 8.1. Note that, at least in the classical (not derived) sense, algebras
form a 3-category, namely, a symmetric monoidal 2-category (the monoidal struc-
ture being the tensor product of algebras). The contents of 8.3 below address some
aspects of this structure in the derived situation. The other very important aspect
of this is the issue of the multiplicative structure on Hochschild and periodic cyclic
chains (as we saw in section 3).

8.3. Higher Hochschild complexes. Now, in addition to cochains described
by the ”bigon” (8.1), let us consider more general 2k-gons such as the one below
(for k=2)

(8.9) A1
f11 //

g12

��

B1

B2 A2

g21

OO

f22

oo

Namely, for any algebras Aj , Bj , 1 ≤ j ≤ k, and for any morphisms fjj : Aj → Bj
and gj,j+1 : Aj → Bj+1, 1 ≤ j ≤ k (the indices are added modulo k, we define the
complex

(8.10) C•(⊗kj=1Aj , ⊗fjj (⊗kj=1Bj)⊗gj,j+1
)
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One can generalize the cup product (8.2); namely, for two cochains

(8.11) A1
f11 //

g12

��

B1

��
B2 A2

g21

OO

f22oo
g22=f22

oo

f23

��
A3

f32

OO

g33
// B3

one produces a cochain

A1
f11 //

g12

��

B1

B2 A2

g21

OO

f23

��
A3

f32

OO

g33
// B3

Also, for a morphism f : A′j → Aj , resp. Bj → B′j , one defines f∗, resp. g∗.
Furthermore, one can generalize (8.4) and define the • product that takes two

cochains as shown below

(8.12) C1 B3
g31oo

f32

��
A2

f22 //

g21

��

B2

f21

OO

g22 // C2

B1 A1
f11

oo

g12

OO

and produces a cochain described by

C1 B3
g31oo

f32

��
A2

f21f22

>>

g21

��

C2

B1 A1
f11

oo
g22g21

>>

As in (8.4), this product is a homotopy between two different ways to compose the
two cochains using the cup product and the operations of direct and inverse image.
When one takes Aj = Bj = A and fjj = gj,j+1 = idA for all j, one defines the
Kontsevich-Vlassopoulos bracket on

(8.13)

∞∏
k=1

C•+1(A⊗k, α(A⊗k))Ck
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of degree −1 in k. As above, α is the cyclic permutation.
One would expect a generalization of the construction mentioned in 8.2. Namely,

a strict structure would be as follows. We have defined a complex C•(K) corre-
sponding to a 2k-gon K. For any picture which is a union of 2k-gons such as (8.11)
or (8.12),

(8.14) K = ∪mj=1Kj

there should be an operation

(8.15) Op(K1, . . . ,Km) : ⊗mi=1C
•(Kj)→ C•(K)

and an associativity condition for Op(K1, . . . ,Kn) and Op(Kj1, . . . ,Kj,nj) for every
”double subdivision”

(8.16) K = ∪mi=1Kj ; Kj = ∪nj

i=1Kj,i, 1 ≤ j ≤ m
More realistically, there should be a version of the notion of an operad (related to
and generalizing Batanin’s two-operads):

(1) a collection of complexes O(K;K1, . . . ,Km) for any subdivision (8.14);
(2) compositions

(8.17) O(K; {Kj})⊗⊗mj=1O(Kj ; {Kji})→ O(K; {Kji})
for any ”double subdivision” (8.16);

(3) an associativity condition for any ”triple subdivision”

(8.18) K = ∪mi=1Kj ; Kj = ∪nj

i=1Kj,i, 1 ≤ j ≤ m; Kj,i = ∪`K`,j,i

An algebra over such a generalized operad will be

(1) A complex C•(K) for each K;
(2) A morphism

O(K; {Kj})⊗⊗mj=1C
•(Kj)→ C•(K)

for every subdivision (8.14) which is compatible with composition for any
(8.16).

We expect the higher Hochschild complexes (8.10) to form an algebra over a gener-
alized operad O which is homotopically constant, i.e. such that O(K; {Kj}) are all
weakly homotopy equivalent to the scalar ring k. This would generalize Tamarkin’s
theorem [46].

Furthermore, for a 2k-gon {Aj , Bj , fjj , gj,j+1} there is also the chain complex

(8.19) C•(⊗kj=1Aj , ⊗fjj (⊗kj=1Bj)⊗gj,j+1
)

(In fact, when k > 1, there are also mixed chain-cochain complexes). The above
should generalize to this situation, within the context of (generalized) multi-colored
operads.

Remark 8.2. This is not quite straightforward because chains have different
functoriality properties. For example, given morphisms as in (8.3), at the level of
cochains we get morphisms of complexes C•(B, g1Cg2)→ C•(A, hg1fDhg2f ) (as we
saw earlier); but at the level of chains we get

C•(A, g1fCg2f )→ C•(B, hg1Dhg2)

In [38] we proved two results about the structure of chains and cochains in a
two-categorical language. Firstly, we showed that the category in cocategories
Bar(C•( , )) admits a trace functor up to homotopy (in a precise sense); this
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structure involves only the Hochschild chain complexes TRA(f) = C•(A,f A) for
endomorphisms f of algebras. The structure on all C•(A, fBg) is what we call a
twisted tetramodule structure over Bar(C•( , )).

To summarize: we expect a rich but homotopically constant structure on higher
Hochschild chains and cochains. When restricted to the case when all algebras are
the same and all morphisms are identities, the structure stops being homotopically
constant (not unlike passing from EG to BG for a group G). We then should
recover a package consisting of the Kontsevich-Vlassopoulos Lie algebra structure
on Hochschild cochains, the action(s) of this Lie algebra on Hochschild chains, and
the subdivision isomorphism of Proposition 6.3 (which produces the Frobenius in
characteristic p).
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[36] T. Moulinos, M. Robalo, B. Toën, A universal Hochschild–Kostant–Rosenberg theorem,

Geom. Topol. 26 (2022), no. 2, 777–874.
[37] P. Monsky, G. Washnitzer, Formal cohomology. I, Ann. of Math. (2) 88 (1968), 181–217.

[38] R. Nest, B. Tsygan, Cyclic Homology, book in progress, available at:

https://sites.math.northwestern.edu/̃ tsygan/Part1.pdf
[39] T. Nikolaus, P. Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–

409.

[40] A. Petrov, D. Vaintrob, V. Vologodsky, The Gauss-Manin connection on the periodic cyclic
homology, Selecta Math. (N.S.) 24 (2018), 1, 531–561.

[41] A. Petrov, V. Vologodsky, On the periodic topological cyclic homology of DG categories in

characteristic p, arXiv:1912.03246, 1–15 (2019).
[42] A. Polishchuk, L. Possitselski, Hochschild (co)homology of the second kind I, Trans. AMS,

364, (2012), 5311–5368.

[43] L Possitselski, Homological algebra of semimodules and semicontramodules, vol. 70 of In-
stytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series),
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