Some exercises

1. Twistor construction. We regard P! as the union of two affine charts C,
and C,/, with 2’ = 1/z on the intersection, and we set S' = {|z = 1} = {|z/ = 1|}
Let o : P! — P' be the anti-holomorphic involution z — —1/Z.

(1) Let # be a holomorphic vector bundle on C,.

« Show that o*4Z is a holomorphic vector bundle on C,/.

(2) Let € : Hs1 ®oy, U*%le — OUg1 be Ogi-linear inducing an isomorphism
jﬁgl ~ 0" |s1. Then € defines a holomorphic bundle " on P! by gluing J#V
and o*77 along the previous isomorphism. Assume that 5 is equipped with a
meromorphic connection V having a pole at z = 0 only.

« Show that ¢*.7 has a meromorphic connection having a pole at 2z’ = 0
only.

o Show that if € is compatible with the connections, then the connection V
on "V and that on 0* are compatible and define a meromorphic connec-
tion V on # with pole at 0, co only.

o In such a case, show that % is uniquely determined from its restriction to
the local system .2 = ker V, which is a non-degenerate pairing C': %51 ®c,,
L_ly‘sl — Cg1, where ¢ is the involution z — —z (note that, for z € S*,

o(z) = u(2)).
Remark. Given (,V) and a non-degenerate pairing C : Z|s1 Qc,, flywl — Cs

as above, it is difficult to check whether S is trivial, or to compute the Birkhoftf-
Grothendieck decomposition of .77, as this reduces to a transcendental question.

(3) Assume that we are given (¢, %) as above. Show that H ~ o* #. Conclude
that, if (S, %) is a pure twistor of weight 0, that is, if 5 is the trivial bundle, then

H :=T'(P!, ) is equipped with a nondegenerate sesquilinear form.

2. Elementary C((z))-vector spaces with connection. Let R be a finite dimen-
sional C((z))-vector space equipped with a connection V having a regular singularity,
i.e., there exists a basis of R in which V = d + Adz/z, A a constant matrix.

(1) Let ¢ € C((2)). Show that V + dpId is a connection which only depends on
» mod C[z], that is, if ¢, ) € C((2)) are such that ¢ —1 € C[z], then (R, V+dpld) ~
(R,V +dyId).

(2) Show that if ¢ # 0 in C((2))/C[z], then ker V = 0. Applying this to End, show
the converse to the implication above.

(3) Let u be a new variable, let p € uC[u] with valuation v,(p) = p > 1, and set
z = p(u). Show that C((w)) is a C((z))-vector space. Let R be a n-dimensional C((u))-
vector space. Show that R is a finite dimensional C((2))-vector space and compute its
dimension. It is denoted by p. R.



(4) Assume R has a connection V (w.r.t. to u). Show that Va_ 1= p/(u) "'V, de-
fines a derivation of R as a C((z))-vector space. Then (R, Vg, ) is denoted p (R, Vg, ).

(5) Let S be a m-dimensional C((z))-vector space with a connection V (w.r.t. z)
and set p*S = C((u)) ®c(z) S- Show that the formula Vg, (1 ® s) = p'(u) ® Vo, s
defines a connection on p*S (w.r.t. u). It is denoted p™ (S, V).

(6) Let A € uC[u] with v,(A\) = 1. Compute A\T(S,d + d¢Id+Adz/z) and
At (R,d + dpId +Adu/u), ¢ € C((u)), ¥ € C((2)) and A a constant matrix.

(7) Let (R,V) and (R, V') be two C((u))-vector spaces with regular connection,
and let A € uC[u] with v,(A) = 1. Show that Ay (R, V 4+ dpld) ~ (R, V' + dy 1d)
iff oA = ¢ modClu] and (R,V) ~ (R, V’). (Hint: use the series p(u) such that
Ao p=1 and show that A, = pT.)



