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A SIMPLER PROOF FOR THE C1 CONNECTING
LEMMA

LAN WEN AND ZHIHONG XIA

Abstract. Like the closing lemma, connecting lemma is of fun-
damental importance in dynamical systems. Based on an earlier
results of Xia [X], we give a simpler proof for the C1 connecting
lemma in this paper. Our results are also more general than the
original ones of Hayashi [H].

1. Introduction

We give a simpler proof for the C1 connecting lemma of Hayashi [H]
in this paper, which is based on an earlier work of Xia [X]. This is
Theorem E below. Its statement is also more general than the original
one of Hayashi. It provides certain answers to some old problems as
consequences. Since these consequences are also various kinds of C1

connecting lemmas, and their statements are easier to formulate than
Theorem E itself, we first state them as Theorem A through Theo-
rem D as follows. Let M be a compact manifold without boundary,
and f : M → M be a diffeomorphism. Denote Diff1(M) the set of
diffeomorphisms of M , endowed with the C1 topology. We state these
results for diffeomorphisms, but the corresponding results are also true
for flows.
Theorem A. Let p and q be two points of M with ω(p) ∩ α(q) 6= ∅.
We also assume that ω(p) ∩ α(q) contains some non-periodic point z.
Then for any C1 neighborhood U of f , there is g ∈ U such that q is
on the positive g-orbit of p. More precisely, for any C1 neighborhood
U of f , there is a positive integer L such that for any δ > 0, there is
a g ∈ U such that g = f outside the tube

⋃L
i=1B(f−i(z), δ) and such

that q is on the positive g-orbit of p.
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This gives an answer to an old problem of Pugh [P2]. Roughly,
Theorem A says that two points p and q can get connected via C1 per-
turbations if the original forward orbit of p and the original backward
orbit of q are nearly connected at some non-periodic point z. Note that
the C0 connecting problem is trivial just like the C0 closing problem.
Also note that the compactness of M is essential, which guarantees the
Lift Axiom formulated in [P-R]. If M is not compact, and if the Whit-
ney strong topology is used, then Theorem A and the other results of
this paper are not true. An instructive conterexample is given by Pugh
[P3]. We remark that the original problem of Pugh does not assume
that ω(p) ∩ α(q) contains some non-periodic points. This assumption
is a technical one. It is demanded by our method, but not by the na-
ture of the problem. Thus a complete answer to the original problem
of Pugh needs a separate treatment for the case that every point of
ω(p)∩α(q) is periodic, which we do not know how to deal with at this
point. Similarly, the problem of C1 closing the nth order prologational
recurrence, also raised by Pugh in [P2], is solved under the same sort of
non-periodicity assumption. More precisely, p ∈M is nth order prolon-
gationally recurrent if there are n points p = p1, p2, · · · , pn ∈M such
that ω(pi) ∩ α(pi+1) 6= ∅ for each i = 1, 2, · · · , n, where pn+1 = p1.
We have:
Theorem B. Let p be the nth order prolongationally recurrent. As-
sume that ω(pi) ∩ α(pi+1) contains non-periodic points for each i =
1, 2, · · · , n, where pn+1 = p1. Then for any C1 neighborhood U of f ,
there is a g ∈ U such that p is periodic of g.

The statement of the second half of Theorem A, which is more precise
than the first half, has the advantage that, in case p is not negatively
recurrent under f and q is not positively recurrent under f , then δ can
be chosen small enough so that the support tube

⋃L
i=1B(f−i(z), δ) is

disjoint from Orb−(p, f) and from Orb+(q, f), hence Orb−(p, f) =
Orb−(p, g) and Orb+(q, f) = Orb+(q, g). For instance, p could go
backward to a hyperbolic fixed point p0 under f , and q could go forward
to a hyperbolic fixed point q0 under f . Then this C1 perturbation
creates a heteroclinic connection from p0 to q0, respecting g. This gives
an answer as Theorem C to another old problem of creating homoclinic
points raised by Liao [L2] and Mañé [Mn].
Theorem C. Let Λ be an isolated hyperbolic set of f . Assume W s(Λ)∩
W u(Λ)−Λ 6= ∅. Then for any C1 neighborhood U of f , there is a g ∈ U
such that g = f on a neighborhood U of Λ and such that W s(Λ, g) ∩
W u(Λ, g)− Λ 6= ∅.
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Note that if the assumption in Theorem C is replaced by a weaker
one, W s(Λ) ∩W u(Λ) − Λ 6= ∅, the conclusion is still true, as long as
W s(Λ) ∩W u(Λ)− Λ contains non-periodic points, as easily seen from
Theorem E below. Another similar problem of this type appears in the
study of the C1 stability conjecture. We state an answer as Theorem
D below.
Theorem D. Let Λ be an isolated hyperbolic set of f . Assume that
periodic orbits outside Λ accumulate on Λ. Then for any C1 neighbor-
hood U of f , there is a g ∈ U such that g = f on a neighborhood of Λ
and that W s(Λ, g)∩W u(Λ, g)− Λ 6= ∅.

All these theorems are straightforward consequences of the following
general versaion of the C1 connecting lemma.
Theorem E. Let z ∈M be not periodic of f . For any C1 neighborhood
U of f , there are ρ > 1, L ∈ N and δ0 > 0 such that for any 0 < δ ≤ δ0,
and any two points p and q outside the tube ∆ =

⋃L
n=1 f

−nB(z, δ), if
the positive f -orbit of p hits the ball B(z, δ/ρ) after p, and if the
negative f -orbit of q hits the same ball B(z, δ/ρ), then there is g ∈ U
such that g = f off ∆ and that q is on the positive g-orbit of p.
Remark. Here we require that the positive orbit of p hits the ball after
p just to guarantee that the positive orbit of p goes through the tube at
least once before that hit. We do not require this for the negative orbit
of q, because the tube ∆ has been taken along the negative orbot of z.
Symmetricly, we can restate Theorem E for a tube along the positive
orbit of z, and require that the negative orbit of q goes through the
tube at least once before the hit. Likewise for Theorem F below.

Note that the formulation of Theorem E is more complicated than
Theorem A through Theorem D. However Theorem E assumes less. It
does not assume the limit behavior like the notion of ω-limit sets or
the notion of closures, nor does it assume hyperbolicity of invariant
sets. Hence it is more general than Theorem A through Theorem D,
and more flexible in applications. Note that δ can be always chosen so
small that B(z, δ) is disjoint from ∆, because z is non-periodic and δ
is independent of L, and because the tube ∆ covers iterates from 1 to
L, but not from 0 to L. Thus a special case of theorem E for which
the point q itself is in B(z, δ/ρ) will read as the follwing Theorem F,
which is convenient for some applications (see §7).
Theorem F. Let z ∈M be non-periodic of f . For any C1 neighborhood
U of f , there are ρ > 1, L ∈ N and δ0 > 0 such that for any 0 < δ ≤ δ0,
and for any point p outside the tube ∆ =

⋃L
n=1 f

−nB(z, δ) and any
point q ∈ B(z, δ/ρ) , if the positive f -orbit of p hits B(z, δ/ρ) after p,
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then there is g ∈ U such that g = f off ∆ and that q is on the positive
g-orbit of p.

The C1 connecting lemma is a long desired result. Many authors
have made important contributions to this problem. For the case that
M is the 2-sphere, Robinson [R] and Pixton [P] solved the problem
for any 1 ≤ r ≤ C∞. For volume-preserving diffeomorphisms, Takens
[T] solved the problem for r = 1, and Oliveira [O] solved the problem
for any 1 ≤ r ≤ C∞ when M is the 2-torus. Mañé [Mn] solved the
problem for r = 1, 2 with an additional measure theoretic assumption.
Liao [L2] solved the problem for r = 1 with an additional topologi-
cal assumption. A recent surprising result came with Hayashi [H] who
proved a general C1 connecting lemma which solved Theorems C and
D. The present paper proves another general version of the C1 connect-
ing lemma (Theorem E) which enables us to also obtain Theorems A
and B. What encourages us is that the proof of Theorem E presented
in this paper turns out not to be very long. We first formulate a ba-
sic C1 perturbation theorem, which can be extracted from the work of
Liao, Pugh, and Robinson (see [L1], [P1] and [P-R]) on the C1 closing
lemma. This is Theorem 3.1 below, which serves as a fundamental pre-
liminary for our proof of the C1 connecting lemma. A key ingredient
then added in is the brilliant idea of “cutting” of Hayashi [H]. Finally,
with an intensive use of these beautiful ideas in a series of combinato-
rial selections (Xia [X]), we are able to cut short some disjoint orbital
arcs with C1 perturbations, and eventually get the two points p and q
connected.

This work comes out from an earlier work [X] of the second author,
which contains a self-contained proof of the C1 connecting lemma for
an important case, and contains all the crucial ideas of the present
paper. We wish to thank J. Palis, Charles Pugh, and C. Robinson for
many good critical comments and suggestions.

In §2 we introduce Theorem 2.2, which is a linear version of Theorem
E. In §3 we formulate a basic C1 perturbation theorem. In §4 we give
an arrangement of boxes. These two sections serve as preparations for
proving Theorem 2.2. The proof of Theorem 2.2 itself will be given in
§5. In §6 we describe a linearization process needed to realize Theorem
2.2 on manifolds to obtain Theorem E. §7 is devoted to applications of
Theorem E.

2. A linear version of the C1
connecting lemma

We introduce a linear version of theorem E in this section. This is
Theorem 2.2 below. Its formulation uses a geometrical notion called
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ε-kernel avoiding transition, which is due to Mai [M] and is the ba-
sic pattern for the C1 perturbation constructed below. This way of
constructing perturbations in proving the C1 closing lemma actually
appeared very early ([P1]). It is just the unified notion of ε-kernel
avoiding transition that appeared relatively late ([M], [W]). First we
define ε-kernel lifts which serve as the basic elements of our C1 pertur-
bations.

Let B ⊂ R
m be a closed ball with radius r and let ε > 0. We denote

εB the ball of the same center and of radius εr. We call εB the ε-kernel
of B. Thus the number ε here tells a relative ratio but not an absolute
size. For any x and y in the interior of B, there is a (in fact many)
C∞ diffeomorphism h : Rm → R

m that is the identity outside B, which
takes x to y. If x and y are in εB, we call such an h an ε-kernel lift that
lifts x to y, supported on B. The following simple but fundamental
lemma tells how ε controls the first devivatives of h − id for certain
ε-kernel lifts h. The formal formulation of this fact with the proof on
manifolds can be found in [P-R, Theorem 6.1].
Lemma 2.1. For any β > 0, there is an ε > 0 such that for any closed
ball B in R

m , and any x and y in εB, there is an ε-kernel lift h that
lifts x to y, supported on B, such that all partial derivatives of h − id
have absolute values less than β.
Proof. The proof is easy. We only need to consider the case that x is
the center of the ball, because the composition of two lifts of this type
gives what we want. Fix a C∞ bump function α : Rm → R such that
0 ≤ α ≤ 1 on all Rm , α = 1 on B(0, 1

3), α = 0 off B(0, 2
3), and such

that all partial derivatives of α have absolute values less than or equal
to 6. Let r be the radius of B, and let y ∈ εB. Define h : Rm → R

m

by

h(u) = u+ α

(
u− x
r

)
(y − x).

Then h is a diffeomorphism if ε is small enough, and for any i,∣∣∣∣ ∂∂ui (h− id)
∣∣∣∣ ≤ 1

r
· 6 · εr = 6ε.

This proves the lemma.
Roughly, the number ε controls the size of the first derivatives of

h− id. Note that the radius r of B is not mentioned in the statement
of lemma 2.1, which clearly controls the C0 size of h−id. Therefore the
ε-kernel lift h can be defined to be C1 close to the identity if both ε and
r are small, and the composition h◦f hence gives a C1 perturbation of
f . The C1 perturbations used in this paper will be a composition of f



6 LAN WEN AND ZHIHONG XIA

with a finitely many this kind of ε-kernel lifts with disjoint supports. By
virtue of Lemma 2.1, we will not mention the ε-kernel lift h explicitly,
but only mention the ball B and the two points x, y ∈ εB. Whenever
such B, x, and y are specified, we can put on a suitable ε-kernel lift
h at any time. In this way we define ε-kernel avoiding transitions
now, which are the basic patterns of C1 perturbations used below. Let
V0, V1, · · · , Vn, · · · , be a sequence of m-dimensional inner product
spaces, and Tn : Vn → Vn−1, n = 1, 2, · · · , be a sequence of linear
isomorphisms. Let ε > 0, u, v ∈ V0, L ∈ N , Q ⊂ V0, and G ⊂ V0
be given. By an ε-kernel transition of {Tn} from u to v of length L,
contained in Q, avoiding G we mean L + 1 points cn, 0 ≤ n ≤ L,
together with L balls Bn ⊂ Vn, 0 ≤ n ≤ L− 1, such that

1. c0 = v, cL = F−1
L (u), where Fn = T1 ◦ T2 ◦ · · · ◦ Tn.

2. cn ∈ εBn, Tn+1(cn+1) ∈ εBn, 0 ≤ n ≤ L− 1.
3. Bn ⊂ F−1

n (Q), 0 ≤ n ≤ L− 1.
4. Bn ∩ F−1

n (G) = ∅, 0 ≤ n ≤ L− 1.
Two ε-kernel transitions c0, c1, · · · , cL; B0, B1, · · · , BL−1 and c′0, c

′
1, · · · , c′L;

B′0, B
′
1, · · · , B′L−1, contained respectively in Q1 and Q2, are disjoint if

Bn ∩B′n = ∅ for all 0 ≤ n ≤ L− 1.
Roughly, a transition of length L consists of L+1 points that form a

pseudo orbit with L jumps. The associated L balls indicate that these
L jumps are ε-kernel lifts. The containing set Q and the avoidence set
G are constraints put on the transition. Note that the terminologies
defined here are abreviated ones. Such an ε-kernel transition actually
is from F−1

L (u) to v, and is contained in the tube
⋃L
n=1 F

−1
n (Q), and is

avoiding a set of orbital arcs
⋃L
n=1(G). We emphasize that, in the defi-

nition of disjointness of two transitions, we do not require that Q1 and
Q2 are disjoint. We merely require that Bn and B′n in Vn are disjoint
(and hence the 2L balls are mutually disjoint, since Vn’s are distinct
vector spases. Later on Vn’s will correspond to disjoint neighborhoods
on the manifold). This is sufficient to our purpose because it is these
balls Bn that support our C1 perturbation.
Remark. We insert an informal illustration here on what these Vn and
Tn have to do withM and f . Applied to the manifold via some standard
linearization along a finite orbit of length L, these Vn, n = 0, 1, · · · , L−
1, simply correspond to disjoint neighborhoods of the iterates along a
backward orbit of f , and these Tn simply correspond to f itself. To see
the dynamics we mix them up just for illustration. Thus the transition
transits a point from one orbit of f to another orbit of f via L lifts
which form a pseudo orbit. If Q is small (which bounds the C0 size of
the perturbation), and if ε is small too, then the transition gives a C1

small perturbation. An important case is that u is on the positive orbit
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of v before perturbation, say u = fN(v). Then N must be much larger
than L since it needs more than L iterates for v ∈ Q to get back, for
the first time, to Q at some point v1 ∈ Q. Then it again needs more
than L iterates for v1 ∈ Q to get back to Q at some v2 ∈ Q, etc. Since
u is some return of v, say, u = vk, k ≥ 1, the Lth pull back f−L(u) of u,
which corresponds to F−1

L (u) , is still on the positive orbit of v under
f . Now in case the avoidence set G contains the set of intermediate
returns {v1, v2, · · · , vk−1}, then the old orbit from v to f−L(u) remains
unchanged. Hence this perturbation creates a periodic orbit through
v, which goes from v to f−L(u) via the old orbits, and from f−L(u) to
v via the transition. This is the way the perturbations are constructed
in proving the C1 closing lemma. The novelty of the perturbation
constructed in proving the C1 connecting lemma is that, while the
perturbation for the closing case consists of a single transition in a tube,
the perturbation for the connecting case consists of a finitely many
disjoint transitions in a same tube. Besides, for all but one transitions
in the connecting case the situation is somewhat the opposite: v is on
the positive orbit of u, and the avoidence set is the set of returns which
are non-intermediate to all (not just one itself) of the transitions. See
below for more comments about this. Thus what the transition from
F−1
L (u) to v does is not a closing, but a shortcut. This is formulated in

the following linear version of the C1 connecting lemma, whose proof
will be given in §5.
Theorem 2.2(The linear version of the C1 connecting lemma). Given
any sequence of isomorphisms {Tn}, and any ε > 0. There are σ > 1
and L ∈ N such that for any two sequences {xi}si=1 and {yi}ti=1 in V0,
with an order < defined on the union

X = {xi}si=1 ∪ {yi}ti=1

as
x1 < x2 < · · · < xs < yt < yt−1 < · · · < y1,

there exist two points x ∈ {xi}si=1∩B(xs, σ|xs− yt|) and y ∈ {yi}ti=1∩
B(xs, σ|xs − yt|), together with some ordered pairs {pi, qi} ⊂ X ∩
B(xs, σ|xs − yt|), say, k of them, with the order

x1 ≤ p1 ≤ q1 < p2 ≤ q2 < · · · < pk′ ≤ qk′ < x <

< y < pk′+1 ≤ qk′+1 < · · · < pk ≤ qk ≤ y1

such that the following four conditions are satisfied.
1. There is an ε-kernel transition from x to y of length L, contained

in B(xs, σ|xs − yt|).
2. For each i = 1, 2, · · · , k, there is an ε-kernel transition from pi to

qi of length L, contained in B(xs, σ|xs − yt|).
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3. These k+1 transitions are each avoiding X−[x, y]−[p1, q1]−· · ·−
[pk, qk], where the closed interval notation [x, y] denotes {z ∈ X|x ≤
z ≤ y}, etc.

4. These k + 1 transitions are mutually disjoint.
The formulation of Theorem 2.2 is complicated, because it describes

in detail how the connection is made. Note that the difference between
the pair {x, y} and the pairs {pi, qi} is that x and y belong to different
sequences, while pi and qi belong to the same sequence. While x and
y are different points, pi and qi may be the same point. In this case
the transition from pi to qi is understood as the trivial one, i.e. no lifts
at all. For convenience we will call the pair {x, y} the connecting pair,
and {pi, qi} the cutting pairs.
Remark. Let us give an informal illustration for Theorem 2.2. We
visualize the sequence {xi}si=1 as some returns of the positive orbit of
p to a neighborhood of z and {yi}ti=1 as some returns of the negative
orbit of q to the same neighborhood, where we think of p, q, and z as
the three points stated in Theorem A. Note that while xs and yt can be
arbitrarily close to z, the numbers σ and L are independent of |xs−yt|.
Hence all the k + 1 ε-kernel transitions can be put in an arbitrarily
thin tube of length L. Roughly, the existence of such a σ guarantees
the control of the C0 size of the perturbation. After perturbations, the
positive orbit of p will go through the following points successively:

p, · · · , x1, · · · , F−1
L (p1), · · · , q1, · · · , F−1

L (p2), · · · , q2, · · · ,
F−1
L (pk′), · · · , qk′, · · · , F−1

L (x), · · · , y, · · · ,
F−1
L (pk′+1), · · · , qk′+1, · · · , F−1

L (pk), · · · , qk, · · · , y1, · · · , q.
That is, it takes an old orbit from p to F−1

L (p1), then takes a transi-
tion (a shortcut) from F−1

L (p1) to q1, then takes an old orbit from q1

to F−1
L (p2), then takes a transition from F−1

L (p2) to q2, etc. All the
transitions here are shortcuts except for one: the transiton associafed
with {x, y} goes from the orbit of p to a different orbit of q. This is how
p and q get connected. We emphasize that, according to the condition
3 in the theorem, the transition from pi to qi does not need to avoid
the points of X that are intermediate to the other pairs (pj , qj). Only
those points of X that are non-intermediate to all of the pairs are to
be avoided. In this case, as long as these transitions are disjoint, they
together make the connecting.

3. A basic C1
perturbation theorem

In this section we formulate a basic C1 perturbation theorem, which
can be extracted from the work of Liao, Pugh, and Robinson on the
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C1 closing lemma. This is Theorem 3.1 below, which serves as a fun-
damental preliminary for the proof of Theorem 2.2.

Let V be anm-dimensional inner product space and e = (e1, e2, · · · , em)
be an orthonormal basis o V . An e-box Q of center x ∈ V and of certain
size (λ1, λ2, · · · , λm) is defined as

Q = {y ∈ V | |yi − xi| ≤ λi, 1 ≤ i ≤ m},
where xi and yi are coordinates of x and y, respecting the basis e. For
α > 0, define

αQ = {y ∈ V | |yi − xi| ≤ αλi, 1 ≤ i ≤ m}.
If α < 1, we say that αQ is the α-kernel of Q. We say that a box Q′ is
of type Q, if

Q′ = z + αQ

for some z ∈ V and some α > 0.
Theorem 3.1. For any sequence of isomorphisms Tn : Vn → Vn−1, n =
1, 2. · · · , there is an orthonormal basis e = (e1, e2, · · · , em) in V0 such
that for any ε > 0, and any 0 < α < 1, there is an e-box A and an inte-
ger L ∈ N such that for any e-box Q of type A and any two points x, y ∈
αQ, there is an ε-kernel transition c0, c1, · · · , cL;B0, B1, · · · , BL−1 of
{Tn} from x to y of length L, contained in Q. Moreover, the radius of
Bn is less than or equal to half of the distance between ∂(F−1

n (Q)) and
∂(F−1

n (αQ)).
Note that Theorem 3.1 does not consider the avoidence of the transi-

tion. Thus some conbinatorial consideration of realizing certain avoidence
is needed for a proof of the C1 closing lemma using Theorem 3.1. For
the connecting case some additional considerations are needed below
on the disjointness of different transitions. In the statement of Theo-
rem 3.1 the requirement that the support balls are uniformly small in
ratio deserves a special attention. More precisely, in addition to that
the ball Bn should be contained in F−1

n (Q), the last sentence of this
theorem requires that the ball Bn should be also small enough rela-
tive to the parallelepiped F−1

n (Q) that, via a parallel translation, it
can be inserted into the gap between the two parallelepipeds F−1

n (Q)
and F−1

n (αQ). This is crucial below to the proof for the C1 connecting
lemma.

There is a beautiful proof for the C1 closing lemma by Mai [M] with
a different approach, which is then generalized to some non-invertible
maps by Wen [W]. The proof is fairly simple. It does not yield Theorem
3.1 however, because the radii of the balls used there do not have to
satisfy the last requirement of Theorem 3.1.
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4. An arrangement of boxes

We describe in this section a simple arrangement of boxes in V0. The
construction will be used in the next section to realize certain avoidence
in the proof of Theorem 2.2.

Let e be an orthonormal basis of V0, and A be an e-box. All boxes
considered in this section will be e-boxes of the same type A.

Given a box H0 of type A, there are 4m − 2m boxes Hi, 1 ≤ i ≤
4m − 2m, of the same type A, with size reduced by 1/2, which fill out
2H0 −H0 as the figure shows.

H0

H1 H2 ......

H(4m−2m)

Figure 1. E-Boxes

In other words, we can enclose H0 with boxes of the same type A but of
half-size to build up 2H0. Then we can enclose 2H0 with boxes (10m−
8m of them) of the same type but of 1/4-size to build up (2 + 1/2)H0.
This process continues, and gives a sequence

H0, H1, H2, · · · ,
where H1 through H4m−2m (we may call them the boxes of the second
generation) are those boxes of half-size, H4m−2m+1 through H10m−8m

(we may call them the boxes of the third generation) are those boxes
of 1/4-size, etc. The precise formulas for the subscripts like 4m − 2m
are not essential to us, and will not be calculated explicitly below. It
is clear that the union of all Hi is int(3H0). This open e-box will be
somewhat important to us, because all ε-kernel transitions below will
be contained in int(3H0) for a suitablly chosen H0.

Now let
Di = 2Hi, i ≥ 1.

The following three properties are clear.
D1) ∪i≥0Di = ∪i≥0Hi.
D2) Each Di is contained in int(3H0).
D3) There is a universal constant N∗, independent of e, A, and H0,

such that each Di intersects at most N∗ of the other Dj.
Properties D1) and D2) are obvious. To see property D3), we first

note that if Hi and Hj are three generations apart, then Di ∩ Dj =
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∅. Then each Di can intersect the other boxes Dj in at most five
generations. For each of the five generations, it is easy to see that
there is a constant N such that Di intersects at most N of the other
boxes Dj in this generation. Moreover, N can be chosen independent
of Di, and independent of e, A, and H0 as well.

5. The proof of Theorem 2.2

Now we prove Theorem 2.2.
Proof. Let {Tn}, ε > 0 be given. Let e be the orthonormal basis given
by theorem 3.1. Let N∗ be the universal constant in Property D3) in
§4. Let 0 < α < 1 be a number that satisfies the inequality

(
1
α
− 1)(

3
ε

)2N∗+3 ≤ 1.

For ε, α as chosen, take the e-box A = (λ1, · · · , λm) and the integer
L ∈ N as Theorem 3.1 claims. Then let

σ = 6 max{λi/λj| 1 ≤ i, j ≤ m},
that is, 6 times the ballicity of A.

Now we verify that σ and L such chosen satisfy the conditions of
Theorem 2.2. Given any two sequences {xi}si=1 and {yi}ti=1 in V0, we
need to select from X a connecting pair {x, y} and some cutting pairs
{pi, qi} in B(xs, σ|xs − yt|) that satisfy the four conditions stated in
theorem 2.2. This will be done in the following three steps.

Step1. A preliminary selection.
This step selects a pair {ξ, ζ}, which is a candidate for {x, y}, and

some pairs {ui, vi}, which are candidates for {pi, qi}. The final selection
for {x, y} and {pi, qi} will be done in Step 3.

The selection of {ξ, ζ} and {ui, vi} proceeds through a series of trial
selections as follows.

Let H0 be an e-box of type A such that xs, yt ∈ H0 ⊂ 3H0 ⊂
B(xs, σ|xs − yt|). Such an H0 exists because of the choice of σ. This
can be illustrated as follows. The ball B(xs, σ|xs − yt|) contains an
e-cube C of size σ|xs − yt| (in fact an e-cube of size

√
mσ|xs − yt|)

centered at xs. Shrinking with suitable ratio on each side one obtains
in C an e-box of type A of center xs with the longest side σ|xs−yt| and
with the shortest side 6|xs− yt|. It is easy to check that this box could
be our 3H0. Let H0, H1, · · · be the sequence of boxes determined by
H0, as arranged in §4. Everything we do below is in those Dn, and
hence in 3H0 by D2), which in turn is contained in B(xs, σ|xs − yt|).

First we look at H0 and choose ξ and ζ to be the smallest and
the largest points of X ∩H0. Here the terms smallest and largest are
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respecting the order < of X. Thus ξ ≤ xs < yt ≤ ζ because xs, yt ∈ H0.
We emphasize that this selection is a trial one. It is subject to change
.

Then we look at H1 and let a and b be the smallest and the largest
point of X within H1, subtracting the closed interval [ξ, ζ ]. In other
words, a and b are the smallest and the largest points in (X−[ξ, ζ ])∩H1.
Note that a and b could be the same, and then (X − [ξ, ζ ])∩H1 would
reduce to a single point. This corresponds to the case that some cutting
pairs {pi, qi} are a single point and the corresponding transition is the
trivial one. Also, (X − [ξ, ζ ])∩H1 could be empty and in this case we
simply go on to H2. There are two cases to consider.

Case 1. a and b belong to the same sequence. That is, a ≤ b < ξ < ζ ,
or ξ < ζ < a ≤ b.

In this case we trially select {a, b} as one of the cutting pairs, say
{u, v}. Note that b 6= ξ, and ζ 6= a, because the closed interval [ξ, ζ ]
has been subtracted out from X.

Case 2. a and b belong to different sequences. That is, a < ξ < ζ < b.
In this case we select {a, b} as a better candidate for the connecting

pair, and drop the open interval (a, b), including the old candidate ξ
and ζ , from our considerations, for ever. Thus we rename a as ξ, and
b as ζ . Note that this is still subject to change .

This finishes our observation in H1. We obtain a candidate con-
necting pair {ξ, ζ}, and a (or none) candidate cutting pair {u, v}. We
emphasize that the closed intervals determined by these pairs are mu-
tually disjoint.

Then we look at H2. Let a and b be the smallest and the largest
points in (X− [ξ, ζ ]− [u, v])∩H2, where {u, v} is the candidate cutting
pair obtained in Case 1 above. For Case 2, we simply do not have this
term. There are still two cases to consider.

Case 1. a and b belong to the same sequence.
In this case we select {a, b} as a candidate cutting pair. Note that

a and b do not belong to any of the closed intervals of the previously
chosen pairs, since they have been subtracted out from X. Thus [a, b]
is either disjoint from all these intervals, or its interior (a, b) covers
any of these intervals that intersect [a, b]. In the later case, we drop
(a, b) from our consideratons. Thus the closed intervals of all pairs so
obtained are mutually disjoint.

Case 2. a and b belong to different sequences.
In this case we select {a, b} as a better candidate for {ξ, ζ}, and drop

(a, b) from our considerations.
Remark. This might be a good place to indicate the brilliant idea
of “cutting” of Hayashi[H]. As mentioned earlier, {xi} will be some
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returns of the positive orbit of p to a neighborhood of z, and {yi} will
be some returns of the negative orbit of q to the same neighborhood
of z, where p, q, and z are the three points stated in Theorem A.
These returns are ordered in a way that fits our aim of connecting.
Now a and b are two of the returns and a is smaller than or equal
to b. Whenever we can transit from a to b, or more precisely, from
F−1
L (a) to b, directly via a transition, the old iterates after F−1

L (a) and
before b (which could form a single orbital segment if {a, b} is a cutting
pair, or two orbital segments if {a, b} is a connecting pair), including in
particular those returns between a and b in X, would be irrelevant to
our aim of connecting. The farther a and b are apart in X, the better
the transition would be, whatever {a, b} is a connecting or cutting
pair. This is why when a pair covers some other pairs in the selection
process above, we simply drop those pairs from our considerations.
This beautiful idea of cutting of Hayashi will be used throughout the
proof of theorem 2.2.

This finishes our observation in H2, and we go on to H3, etc. After
each stage, we obtain a unique candidate connecting pair, together with
some candidate cutting pairs such that the closed intervals determined
by these pairs are mutually disjoint. We may visualize the ordered set
X as a line, and draw a bridge across each of these closed intervals,
whatever connecting type or cutting type, as the figure shows.

x yξ η

Figure 2. Connecting and Cutting Pairs

Then the rule can be formulated as follows. Whenever a new bridge
(the solid line in the figure) appears, its two end points must not be
on any of the old closed bridges because they are subtracted before we
choose a new pair, and we drop the whole open interval down the new
bridge, all the old bridges down the new bridge in particular, from our
considerations. Note that the new bridge may have the two end points
chosen from a box Hi, but covers some points of X that are in some
other boxes Hj, because the order in X does not reflect the location
in V0. We must drop these points as well. This is important to keep
bridges mutually disjoint.
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This process terminates, because X is finite. This finishes Step 1
and gives us a connecting pair {ξ, ζ}, which is a candidate for {x, y},
and some cutting pairs {ui, vi}, say, l of them, which are candidates
for {pi, qi}, ordered as

x1 ≤ u1 ≤ v1 < · · · < ul′ ≤ vl′ < ξ < ζ < ul′+1 ≤ vl′+1 < · · · < ul ≤ vl ≤ y1.

Note that the index i of {ui, vi} is determined by the order < of X,
and not the order in which {ui, vi} was chosen in the above selection
process. Moreover, some boxes Hi may produce no new pairs. Thus
the box from which {ui, vi} was chosen may not be Hi at all. Let us
denote it as H∗i , and denote

D∗i = 2H∗i .

To keep the notations uniform, we use also {u0, v0} to denote {ξ, ζ}.
The following four properties are clear.
D∗1) ui, vi ∈ H∗i ⊂ D∗i , 0 ≤ i ≤ l.
D∗2) D∗i ⊂ B(xs, σ|xs − yt|), 0 ≤ i ≤ l.
D∗3) Each D∗i intersects at most N∗ of the other D∗j .
D∗4) (X − [ξ, ζ ]− [u1, v1]− · · · − [ul, vl]) ∩ int(3H0) = ∅.
Properties D∗1), D∗2), and D∗3) are obvious by construction. Prop-

erty D∗4) holds because int(3H0) is the union of all Hi, i = 0, 1, · · · , and
hence if the intersection were not empty, the selection process would
still continue, and produce more new pairs.

Step 2. Basic balls and jumbo balls in V0.
We define the so called jumbo balls in Vn for every n, which will be

used to form the ε-kernel transitions required by Theorem 2.2. First
we look at V0. In fact the treatment of V0 will take both Step 2 and
Step 3. The other Vn will be treated in the same way in Step 4 at the
end of the proof of Theorem 2.2. Let

Q∗i =
1
α
H∗i , 0 ≤ i ≤ l.

where α is the number determined in the begining of the proof of
Theorem 2.2, which is less than but very close to one. Then

ui, vi ∈ αQ∗i , 0 ≤ i ≤ l.

The box Q∗i is between D∗i and H∗i . It is only a little bit larger than
H∗i . More precisely, H∗i = αQ∗i . Since the type box A has been chosen
according to ε and this α, theorem 3.1 applies by treating Q∗i as Q
and H∗i as αQ. That is, for each i = 0, 1, · · · , l, there is an ε-kernel
transition

ci0, ci1, · · · , ciL; Bi0, Bi1, · · · , Bi,L−1,
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from ui to vi, contained in Q∗i , where L is the number determined in
the beginning of the proof of Theorem 2.2. Since the gap between Q∗i
and H∗i is very narrow, the balls Bin are very small relative to F−1

n (D∗i ),
and the precise ratio is given by the inequality that defines the number
α, whose geometrical meaning will become clear shortly. This will be
crucial to what follows. Recall that u0 = ξ, v0 = ζ .

Note that the first two conditions in Theorem 2.2 are satisfied if we
treat ui, vi as pi, qi. The third condition is also satisfied because of
D∗4). Another condition in Theorem 2.2 about the locations of x, y,
pi and qi is guaranteed by D∗2). The only problem now left is that
the fourth condition in Theorem 2.2 is not satisfied. Clearly, these
transitions are not necessarily disjoint. In fact they are not the right
transitions we want. The right transitions we want will use the so called
jumbo balls defined below. The key to this will be the fact that the
universal number N∗ bounds all the multiplicities of overlaps of D∗i .

We first define jumbo balls in V0. We will define jumbo balls in other
Vn later. There are l + 1 balls

B00, B10, · · · , Bl0

in 3H0 ⊂ V0. Let us call them basic balls in V0. Each basic ball Bi0
contains two interesting points ci0 and T1(ci1) in its ε-kernel. Let us
call these l + 1 pair of points ci0, T1(ci1), 0 ≤ i ≤ l, basic points in V0.
Recall that ci0 = vi.

Let bi and ri be the center and the radius of Bi0, respectively, 0 ≤
i ≤ l. Consider the 2N∗ + 3 balls

B(bi, (3/ε)nri), 1 ≤ n ≤ 2N∗ + 3

of the same center bi. The largest of them is still in D∗i , by Theo-
rem 3.1 and the choice of α. Indeed, the inequality that defines α
just means geometrically that the gap between H∗i and 1/αH∗i should
be so narrow that by enlarging for 2N∗ + 3 times a ball B, which is
contained in 1/αH∗i and is small enough that can be inserted via a
parallel translation into the gap, each time by a factor 3/ε, we can
never get out of 2H∗i . Then there is one of these 2N∗+3 balls, denoted
as βi, such that βi − ( ε3)βi does not contain any basic points. This
is because each D∗i contains at most 2N∗ + 2 basic points. In fact,
each D∗i intersects at most N∗ of the other D∗j by property D∗3), and
cj0, T1(cj1) ∈ εBj0 ⊂ Q∗j ⊂ D∗j . Let

Ji = βi/3.

We will call Ji the prejumbo ball in V0 associated with Bi0. Thus each
basic ball Bi0 gives rise to a prejumbo ball Ji, i = 0, 1, · · · , l. Of course
Ji is contained in D∗i , and hence in int(3H0).
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Claim 1. Two prejumbo balls are either disjoint, or the ε-kernel of
one prejumbo ball contains all the basic points contained in the other
prejumbo ball.

In fact, Let Ji and Jj be two prejumbo balls. Without loss of gener-
ality we assume that the radius of Ji is less than or equal to the radius
of Jj . If Ji ∩ Jj 6= ∅, then Ji ⊂ βj. So all basic points in Ji are in βj,
hence are in εJj = ε

3βj , since βj − ε
3βj contains no basic points. This

proves the claim.
Let us call a collection C of prejumbo balls regular, if for every i =

0, 1, · · · , l, there is a prejumbo ball J(i) in C such that the pair of basic
points ci0 and T1(ci1) are contained in εJ(i). For instance, the whole
set of prejumbo balls J0, J1, · · · , Jl is regular, because every such pair
of basic points are contained in the ε-kernel of some basic ball, which
in turn is contained in the ε-kernel of some prejumbo ball.

Claim 2. There is a regular collection of prejumbo balls

Ji1 , Ji2, · · ·Jid
which are mutually disjoint.

In fact, if all prejumbo balls are mutually disjoint, we are done.
Otherwise there is a prejumbo ball, say Jl, such that all basic points
contained in Jl are contained in the ε-kernel of some other prejumbo
ball, by Claim 1. Then we drop Jl from the collection. (Note that at
this stage we do not drop any other prejumbo balls even if their basic
points may be contained in Jl. For instance, Jl and Jl−1 might contain
the basic points of their each other, and do not intersect any other
prejumbo balls. In this case we certainly do not want drop both of
them.) Then the collection of the rest prejumbo balls J0, J1, · · · , Jl−1
is still regular, and we go on to the next stage. In this way Claim 2 is
proved by induction.

From now on we fix such a disjoint regular collection of prejumbo
balls stated in Claim 2 and call them jumbo balls in V0. Clearly, each
pair of basic points ci0 and T1(ci1) in V0 are contained in the ε-kernel
of a unique jumbo ball in V0. Note that all jumbo balls defined in V0

are contained in int(3H0).
Step 3. A combining process.
We now combine the transitions whose basic points in V0 are con-

tained in a same jumbo ball in V0 into a single ε-kernel transition,
and adjust further the candidates for the connecting and cutting pairs.
Since this process will appear later for other Vn as well, we first describe
it in a more general way. Let [a1, b1], [a2, b2], · · · , [ak, bk] be k disjoint
closed intervals in X ordered as

x1 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk ≤ y1,
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where X is the set stated in Theorem 2.2. Assume for each i = 1, · · · , k
we have an ε-kernel transition

pi0, pi1, · · · , piL; Pi0, Pi1, · · · , Pi,L−1

from ai to bi of length L. Here Pin could be any ball in Vn, not neces-
sarily basic, nor jumbo (As mentioned before, we will define basic and
jumbo balls in Vn for every n later). We allow such a generality here
because later we will deal with thansitions that use both basic balls and
jumbo balls in a mixed way. After all, the balls used for transitions
stated in Theorem 2.2 are not specified to be basic, nor jumbo.

Now let n be an integer with 0 ≤ n ≤ L − 1, and J be a ball in Vn
whose ε-kernel εJ contains the two points Tn+1(p1,n+1) and pk,n. We
can combine these transitions into a single transition as follows. We
first use the old ε-kernel lifts of index i = 1 from L up to n+ 1. When
we get to the point Tn+1(p1,n+1) in Vn, instead of jumpping onto the
point p1n within P1n, we jump onto the point pkn within J . Then we
go on the rest of the old ε-kernel lifts of index i = k. That is, we make
a new ε-kernel transition

pk0, · · · , pk,n−1, pkn, p1,n+1, · · · , p1,L; Pk0, · · · , Pk,n−1, J, P1,n+1, · · · , P1,L−1.

This new transition is from a1 to bk, or more precisely, from F−1
L (a1)

to bk. Then Hayashi’s cutting idea applys. That is, we make a new
pair {a1, bk}, and drop everything in the open interval (a1, bk). This
includes in particular all the old pairs in (a1, bk), together with their
whole transitions. We phrase this process as combining thansitions and
adjusting pairs via {a1, bk}.

Now we do this process in V0. We start with the first jumbo ball
Ji1. Its ε-kernel εJi1 contains some basic points, but Ji1−εJi1 contains
no basic points. Let s1 and l1 be the smallest and the largest index of
basic points contained in εJi1 . By the regularity, basic points in εJi1
appear in pairs. In particular the two points T1(cs1,1) and cl1,0 are in
εJi1. This gives a new ε-kernel lift that pushes T1(cs1,1) onto cl1,0 within
the jumbo ball Ji1 in V0. As described above, we make a new ε-kernel
transition

cl1,0, cs1,1, cs1,2, · · · , cs1,L; Ji1, Bs1,1, Bs1,2, · · · , Bs1,L−1.

This new transition is from us1 to vl1 . More precisely, from F−1
L (us1) to

vl1 . It uses the original ε-kernel lifts in Vn, n ≥ 1, but a new ε-kernel lift
with a jumbo ball in V0. As described above, we simply take {us1, vl1}
as a new candidate pair, and drop all pairs of index i with s1 ≤ i ≤ l1,
together with their whole transitions, from our further considerations.
This is just the combining and adjusting process described above caused
by a jumbo ball in V0. That is, we combine all the transitions associated
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with the pairs which are covered by the bridge of the new pair {us1, vl1},
including the two transitions associated with the two pairs {us1, vs1}
and {ul1 , vl1} themselves, into this single new transition. Note that in
Step 1 we did not have transitions yet and what we dropped are pairs
in V0, while now we drop the whole transitions. But this is not really
a difference because, when we dropped a pair (a, b) in Step 1, we had
ignored for ever all possible transitions from a to b. Thus what are left
now after this combination are still some transitions, one of which uses
a jumbo ball at V0. Also note that, when we drop all pairs of index i
with s1 ≤ i ≤ l1 together with their transitions, we may have dropped
at the same time some transitions associated with (i.e. whose basic
points in V0 are contained in) some other jumbo balls rather than just
with Ji1, because the inequality s1 ≤ i ≤ l1 reflects the order in X but
not the location in V0. This is similar to the situation we had in Step 1,
and is important to keep bridges mutually disjoint. Finally, note that
this new pair {us1, vl1} could be of the connecting type, and becomes
a better candidate for {x, y}. Or, it could be of the cutting type, and
becomes a better candidate for a {pi, qi}. In either case, we still have a
unique candidate connecting pair and some candidate cutting pairs in
V0 with disjoint bridges, together with their transitions, one of which
is the combined one. We remark that this is still subject to change.

Then we deal with the transitions that are left after the combination,
and look at the second jumbo ball Ji2 in V0. In the same way, we
combine the transitions whose basic points in V0 are contained in Ji2
into a new transition. This gives a new pair, or what is the same, a new
bridge in X, which is either disjoint from the old (Here the word “old”
means the ones that are just left after the last combination) bridges,
or covers some old bridges in whole. Then we adjust the pairs in X as
before.

We go on dealing with the transitions that are left and look at the
third jumbo ball Ji3, etc. In this way we will end up with a collection of
disjoint bridges in X, together with their ε-kernel transitions of length
L, each uses one jumbo ball at V0. The number of transitions that are
left could be equal to d which is the number of jumbo balls in V0, or
less than d as well, because when we deal with Ji1, say, we may have
dropped some transitions associated with some other jumbo balls as
well, as noticed above. This finishes our work in V0.

Step 4. The other Vn with n ≥ 1. The final selection of pairs.
Now we treat V1. By basic ball and basic points in V1 we mean

the balls Bi1 and the points ci1, T2(ci2), where the indices i are rear-
ranged ones which run from one to however may transitions are left.
These basic balls are contained in the parallelepiped F−1

1 (3H0). In the
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same way, we define prejumbo balls and jumbo balls in V1, then com-
bine all the transitions (each has exactly one jumbo ball at V0) that
are associated with (i.e. whose basic points in V1 are contained in)
a jumbo ball in V1 into a single new transition, and adjust the pairs
in V0 accordingly, as we did in V0. The only difference is that the
boxes D∗i , Q

∗
i and H∗i in V0 become parallelepipeds F−1

1 (D∗i ), F
−1
1 (Q∗i ),

and F−1
1 (H∗i ) in V1, respectively. But the parallelepipeds F−1

1 (D∗i )
still overlap with multiplicity no more than N∗ as the boxes D∗i in V0

do. Hence each F−1
1 (D∗i ) contains at most 2N∗ + 2 basic points, since

cj1, T2(cj2) ∈ F−1
1 (Q∗j) ⊂ F−1

1 (D∗j ). Moreover, when we consider the
2N∗ + 3 concentric balls surrounding a basic ball Bi1, which is con-
tained in F−1

1 (Q∗i ) and is small enough so that it can be inserted into
the gap between F−1

1 (Q∗i ) and F−1
1 (H∗i ) by Theorem 3.1, the largest

one is still in F−1
1 (D∗i ) by the choice of α. Thus all the arguments

still go through, and we get a unique connecting pair and some cutting
pairs in V0, together with their ε-kernel transitions of length L, each of
which uses two jumbo balls at V0 and V1.

Inductively, we treat V2, V3, · · · , VL the same way. This eventually
gives us a unique connecting pair x, y and some cutting pairs pi, qi in V0
such that the balls used for ε-kernel transitions are all jumbo balls. All
these transitions are contained in 3H0, and hence in B(xs, σ|xs − yt|).
The four conditions of Theorem 2.2 are easily checked. In fact, the
first two conditions are obvious. The third condition (the avoidence
condition) is satisfied because, by the way those combinations are done
in Step 3, the avoidence set X− [x, y]− [p1, q1]−· · ·− [pk, qk] is a subset
of the avoidence set X − [ξ, ζ ]− [u1, v1]− · · · − [ul, vl], which is outside
int(3H0), and because that all jumbo balls are contained in some pull
back of int(3H0). The fourth condition is satisfied because being jumbo
balls, those balls are mutually disjoint. Thus all conditions of Theorem
2.2 are satisfied, and Theorem 2.2 is proved.

6. An illustration for the linearization process

Via a linearization process, Theorem E reduces to Theorem 2.2. This
linearization process is rather standard, and the details can be found,
for instance, in [W]. For convenience we give in this section a brief
illustration for this process. Thus we are in a position of having the
assumptions of Theorem E, and trying to prove Theorem E by using
Theorem 2.2.

Let U be any C1 neighborhood of f in Diff1(M). First we take a
number η > 0 such that the η-ball of f in Diff1(M) is contained in U .
Then we take two numbers r > 0 and ε > 0 such that hg is within
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the η/2-ball of g for any g that is within the 1-ball of f in Diff1(M),
where h is any ε-kernel lift supported on a ball of radius r as defined
in Lemma 2.1.

Since z is not periodic of f , all terms in the negative orbit of z
are hence distinct. Treating the tangent spaces Tf−n(z)M as Vn, and
the tangent maps Tf−n(z)f as Tn, we get a sequence of isomorphisms
{Tn}. Applying Theorem 2.2 to the sequence {Tn} and the number ε
determined above, we get two numbers σ > 1 and L ∈ N . Since L is
specified now, we can take a small number δ0 > 0 such that the ball
B(z, δ0) and its negative iterates f−nB(z, δ0), 0 ≤ n ≤ L, are mutually
disjoint, and are all of radius less than r. Actually δ0 may have to
be smaller to meet another requirement of some linearization process
below. For 0 < a ≤ δ0, let us denote by ∆(a) the tube

⋃L
n=1 f

−nB(z, a).
Let 0 < δ ≤ δ0 be given. As a preliminary C1 perturbation we take a

linearization of f , which is a diffeomorphism that agrees with f off the
tube ∆(δ), and agrees with the tangent maps Tf−n(z)f on the thiner
tube ∆(δ/2). Here we identify a neighborhood of the iterates f−n(z)
in the manifold with a neighborhood of the origin in the tangent space
Tf−n(z)M , via the exponential map. Also, as noticed above, here we
may assume that δ0 has been chosen so small that the linearization
along the δ-tube ∆(δ) of length L is within the η/2-ball of f . To keep
the behavior of some orbits unchanged we need cancel out the change
brought in by this linearization. See [W] for details. For simplicity we
still denote this linearization by f , and let ρ = 2σ.

Now let 0 ≤ δ ≤ δ0 be given, and let p and q be two points outside the
tube ∆(δ) such that the positive orbit of p hits the ball B(z, δ/ρ) after
p, and the negative orbit of q hits the ball B(z, δ/ρ) too, at two points
fa(p) and f−b(q), respectively. Collect the iterates of p from f(p) up to
fa(p) that are in the ball B(z, δ/2) as x1, x2, · · · , xs, and the iterates of
q from q up to f−b(q) that are in the same ball as y1, y2, · · · , yt. Thus xs
and yt are both in B(z, (δ/2)/σ). Clearly, the point f−L(x1) is still on
the positive orbit of p. (This is why we require that the positive orbit
hits the ball B(z, δ/ρ) after p and have collected the iterates of p from
f(p) to fa(p) but not from p to fa(p) that are in the ball B(z, δ/2).)
Then a direct application of Theorem 2.2 gives Theorem E.

7. Some Applications of the C1
Connecting Lemma

In this section we are concerned with applications of the C1 con-
necting lemma. First we note that it implies the celebrated C1 closing
lemma directly. In fact, the non-wandering point z in the assumption
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of the C1 closing lemma can be assumed to be non-periodic, for oth-
erwise it is closed already. Since z is non-wandering, there is a point
p ∈ B(z, δ/σ) and an integer n ≥ 1 such that fn(p) ∈ B(z, δ/σ). Ap-
plying Theorem F by treating p itself as q yields a periodic orbit of g.
Another perturbation takes this periodic orbit right passing through z.
This is because both the proofs for the C1 connecting lemma and the
C1 closing lemma are in an essential way based on the basic C1 pertur-
bation theorem, Theorem 3.1, and the main difference is just that the
former contains some more complicated combinatorial considerations
of avoidence discussed above.

Now we prove Theorem A through Theorem D. This is fairly straight-
forward. We only take Theorem B and D as examples, which are more
general than Theorem A and C, respectively.
The Proof of Theorem B. Take zi ∈ ω(pi) ∩ α(pi+1) such that zi is
not periodic. We treat the case that the 2n orbits Orb(pi) and Orb(zi)
are distinct and apply Theorem E. The other cases can be treated
similarly. (For instance, if zi and zj , or pi and pj, share the same orbit,
then p is actually a reduced order prolongationally recurrent. Also,
if zi and pj share the same orbit, then the special connecting lemma
Theorem F applys too.)

Given any C1 neighborhood U of f . By Theorem E, for each zi,
there are three numbers ρi, Li, δ0i that satisfy the conditions of Theo-
rem E. Denote ρ = max{ρi}, L = max{Li}, and δ0 = min{δ0i}. We
may assume that δ0 has been taken small enough so that the n tubes
∆i(δ0) =

⋃L
k=1B(f−k(zi), δ0) are mutually disjoint, and that pi and

pi+1 are outside ∆i(δ0) for all i. By the prolongational recurrence, for
any 0 < δ ≤ δ0, the positive orbit of pi hits B(zi, δ/ρ) after pi, and the
negative orbit of pi+1 hits B(zi, δ/ρ) too.

Now for each i = 1, · · · , n we choose suitable δi to get the desired
tube ∆i(δi). For i = 1, we simply take δ1 to be δ0 itself. Then take two
integers a1 ≥ 1 and b1 ≥ 0 so that fa1(p1) and f−b1(p2) are both
in B(z1, δ1/ρ). Take 0 < δ2 ≤ δ0 small enough so that the tube
∆2(δ2) is disjoint from the two finite orbits {p1, f(p1), · · · , fa1(p1)}
and {p2, f

−1(p2), · · · , f−b1(p2)}. Then take two integers a2 ≥ 1 and
b2 ≥ 0 so that fa2(p2) and f−b2(p3) are both in B(z2, δ2/ρ). Then take
0 < δ3 ≤ δ0 small enough so that the tube ∆3(δ3) is disjoint from the
previously chosen four finite orbits, and so on. After these n tubes
∆i(δi) and the 2n finite orbits have been chosen, we start the connect-
ing process as follows. First we apply Theorem E to the tube ∆n(δn)
by treating zn as z, pn as p, and p1 as q to make p1 on the positive orbit
of pn under a new diffeomorphism g1. By construction this does not
affect the other 2n − 2 finite orbits, one of which takes pn backwards
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to hit the ball B(zn−1, δn−1/ρ). Hence the negative g1-orbit of p1 hits
B(zn−1, δn−1/ρ). Then we apply Theorem E to the tube ∆n−1(δn−1)
by treating zn−1 as z, pn−1 as p, and still, p1 as q, to make p1 on the
positive orbit of pn−1 for a g2. This does not affect the rest of the 2n−4
finite orbits, and so on. This eventually makes p periodic.
The Proof of Theorem D. We apply theorem F, the special C1

connecting lemma, twice as follows.
By assumption, there is a sequence of periodic orbits outside Λ that

accumulate on Λ. Since Λ is isolated, there is a neighborhood W of Λ
such that any periodic orbit which is not in Λ can not be entirely in W .
Then there must be zu ∈ W u(Λ) − Λ and zs ∈ W s(Λ) − Λ such that
for any neighborhood U of zu and any neighborhood V of zs, there is
a point p ∈ U and an integer n ∈ N such that fn(p) ∈ V . Note that
zu and zs are not periodic of f . Also, we may assume zs is not on the
positive orbit of zu under f , otherwise there is nothing to prove.

Let U be any C1 neighborhood of f . By Theorem F, there are three
numbers ρu, Lu, and δu0 for zu that satisfy the conditions of Theorem
F. Also, there are three numbers ρs, Ls, and δs0 for zs that satisfy the
conditions of Theorem F. Denote ρ = max(ρu, ρs), L = max(Lu, Ls),
and δ0 = min(δu0 , δ

s
0). We may assume that δ0 has been chosen small

enough so that the tube ∆s =
⋃L
i=1B(f−i(zs), δ0) is disjoint from the

tube ∆u =
⋃L
i=1B(f i(zu), δ0), and ∆s is disjoint from Orb+(zs, f), ∆u

is disjoint from Orb−(zu, f). Now there is a point p ∈ B(zu, δ0/ρ)
and n ≥ 1 such that fn(p) ∈ B(zs, δ0/ρ). Applying Theorem F to
∆s by treating zs as q = z makes zs on the positive orbit of p for a
g1. Let fk(p) be the first f -iterate of p that is in the tube ∆s. We
emphasize that while this perturbation does many cuttings (and ε-
kernel transitions too) to the finite orbit {fk(p), fk+1(p), · · · , fn(p)} ,
it does not hurt the finite orbit {p, f(p), · · · , fk(p)}. Thus p is on the
negative orbit of zs for g1. Then we apply Theorem F symmetricly, as
mentioned in the remark after the statement of Theorem E in §1, to
the tube ∆u by treating zu as z = q, zs as p. This makes zu on the
negative orbit of zs for a g and proves Theorem D.
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