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BERNSTEIN POLYNOMIALS, BERGMAN KERNELS AND TORIC KÄHLER
VARIETIES

Steve Zelditch

We show that the classical Bernstein polynomials BN(f)(x) on the interval [0, 1] (and their
higher dimensional generalizations on the simplex Σm ⊂ R

m) may be expressed in terms of
Bergman kernels for the Fubini-Study metric on CPm: BN(f)(x) is obtained by applying the
Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes
immediately to any toric Kähler variety and Delzant polytope, and gives a novel definition of
Bernstein ‘polynomials’ BhN (f) relative to any toric Kähler variety. They uniformly approxi-
mate any continuous function f on the associated polytope P with all the properties of classical
Bernstein polynomials. Upon integration over the polytope one obtains a complete asymptotic
expansion for the Dedekind-Riemann sums 1

Nm

∑
α∈NP f( α

N
) of f ∈ C∞(Rm), of a type

similar to the Euler-MacLaurin formulae.

Introduction

Our starting point is the observation that the classical Bernstein polynomials

(1) BN (f)(x) =
∑

α∈Nm:|α|≤N

(
N

α

)
xα(1 − ||x||)N−|α|f(

α

N
),

on the m-simplex Σm ⊂ R
m may be expressed in terms of the Bergman-Szegö kernels ΠhN

F S
(z,w) for

the Fubini-Study metric on CP
m: Let eiθ denote the standard Tm = (S1)m action on C

m and and let
Dθj

denote the linearization (or ‘quantization’) of its infinitesimal generators on H0(CP
m,O(N)).

As will be shown in §1 (see also §3),

(2) BN (f)(x) =
1

ΠhN
F S

(z, z)
f(N−1Dθ)ΠhN

F S
(eiθz, z)|θ=0,z=μ−1

hF S
(x),

where f ∈ C∞
0 (Rm). Here, ΠhN

F S
denotes the Bergman-Szegö kernel on powers O(N) → CP

m of
the invariant hyperplane line bundle, f(N−1Dθ) is defined by the spectral theorem and μhF S

is
the moment map corresponding to hFS . Thus, the Bernstein polynomial BNf(x) is the Berezin

covariant symbol of the Toeplitz operator ΠhN
F S
f(N−1Dθ)ΠhN

F S
, i.e. the quotient

N
hN

F S
(z,z)

Π
hN

F S
(z,z) of its

kernel NhN
F S

(z, z) on the diagonal by the Bergman-Szegö on the diagonal. From this formula, many
properties of Bernstein polynomials may be derived from properties of the Fubini-Study Bergman-
Szegö kernel.

Furthermore, the formula (2) generalizes immediately to any polarized toric Kähler variety
(L,M,ω) and defines analogues BhN (f)(x) of Bernstein polynomials for any Delzant poytope P
and any positively curved toric hermitian metric h on the invariant line bundle associated to P .
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We simply replace the Hermitian line bundle O(1) → CP
m with its Fubini-Study metric by any

toric invariant Hermitian line bundle (L, h) → (M,ω) (see Definition 2).
The connection between Bernstein polynomials and Bergman-Szegö kernels may be used to obtain

asymptotic expansions of Bernstein polynomials as the degree N → ∞;

Theorem 1. Let (L, h) → (M,ω) be a toric Hermitian invariant line bundle over a toric Kähler
variety with associated moment polytope P . Let f ∈ C∞

0 (Rm) and let BhN (f)(x) denote its Bern-
stein polynomial approximation in the sense of Definition 2. Then there exists a complete asymptotic
expansion,

BhN (f)(x) = f(x) + L1f(x)N−1 + L2f(x)N−2 + · · · + Lmf(x)N−m +O(N−m−1),

in C∞(P̄ ), where Lj is a differential operator of order 2j depending only on curvature invariants
of the metric h; the expansion may be differentiated any number of times.

In the case of classical Bernstein polynomials (1) (i.e. the interval or simplex) , this expansion has
recently been derived by L. Hörmander [Hö] by a different method (see (6)). The approach taken
here is to use the Boutet de Monvel-Sjöstrand approximations of Bergman-Szegö kernels, with some
simplifications in the case of toric hermitian metrics [BSj, STZ]. The operators Lj are computable
from the coefficients of the asymptotic expansion of the Bergman-Szegö kernel ΠhN (z, z) on the
diagonal in [Z, Lu]. It should be noted that for general toric Hermitian line bundles, the Bernstein
‘polynomials’ are not quite polynomials in the usual sense, although they are algebro-geometric
objects in the sense of [D, T]; see §2 for further discussion.

As defined in (2) and in Definition 2, the Bernstein polynomials are quotients

(3) BhN (f)(x) =
NhNf(x)

ΠhN (μ−1
h (x), μ−1

h (x))

of a numerator polynomial NhNf(x) by the denominator ΠhN (z, z) with μh(z) = x. Here, μh is
the moment map associated to the Kähler form ωh associated to h. The numerator polynomials
also admit complete asymptotic expansions, and indeed the Bernstein polynomial expansions are
derived from the numerator expansion and from the asymptotic expansion of the denominator.
Hence, Theorem 1 follows from:

Theorem 2. With the same assumptions as above, there exist differential operators Nj, such that

NhN (f)(x) ∼ Nm

πm

(
f(x) +N−1N1f(x) + · · · ) ,

where the operators Nj are computable from the Bergman kernel expansion for ΠhN (z, z). In par-
ticular,

N1f(x) =
1
2

(
f(x)S(μ−1

h (x)) + ∇μh(μ−1
h (x)) · ∇2f(x)

)
,

where S(z) is the scalar curvature of the Kähler metric ωh.

The operator N1 is calculated in §5. Note that S is constant on μ−1(x) so it may be evaluated
at any point of this set.

Theorem 2 has an application to Dedekind-Riemann sums over lattice points in dilates of the
polytope P , i.e. sums of the form ∑

α∈NP

f(
α

N
), f ∈ C∞

0 (Rm).

Upon integration of NhNf(x) over P and multiplication by a universal constant, one obtains:
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Corollary 3. Let f ∈ C∞
0 (Rm). Then there exist differential operators Ej, such that∑

α∈NP

f(
α

N
) ∼ Nm

∫
P
f(x)dx+

Nm−1

2

∫
∂P
f(x)dσ +Nm−2

∫
P
E2f(x)dx+ · · · ,

where σ is the Leray measure on ∂P corresponding to the affine defining functions �r(x) = 〈x, νr〉
of the boundary facts (cf. 23). That is, on the rth facet of ∂P , d�r ∧ dσ = dx.

Exact and asymptotic formulae for
∑

α∈NP f( α
N ) have been previously proved for special f using

the generalized Euler-MacLaurin formulae of Khovanskii-Pukhlikov, Brion-Vergne, Guillemin-
Sternberg and others (cf. [G, GS, GSW, KSW]). For purposes of comparison, Theorem 4.2
of [GS] states that for f ∈ C∞

0 (Rn),

(4)
1
Nm

∑
α∈Nm:|α|≤N

f(
α

N
) ∼

⎛⎝∑
F

∑
γ∈Γ1

F

τγ(
1
N

∂

∂h
)
∫

Ph

f(x)dx

⎞⎠ |h=0 +O(N−∞),

where the sums involve various data associated to the polytope P and where Ph is a parallel dilate
of P . We refer to [GS] for the notation. The two term expansion given in Corollary 3 was stated
in [Sz]. It is straightforward to generalize the formula and proof to the case where f is a symbol
as in [GSW], and to obtain remainder estimates in the expansion.

A significant difference between the Euler-MacLaurin and the Bernstein methods for obtaining
expansions of Dedekind-Riemann sums

∑
α∈Nm:|α|≤N f( α

N ) is that the Bernstein approaches uses
an arbitrary toric Kähler metric while the Euler-MacLaurin approach is metric independent. This
reflects the fact that the Bernstein approach is to integrate the pointwise expansion of Theorem
2, which depends on the metric h. The metric independence of the expansion in Corollary 3
is equivalent to a sequence of integration by parts identities involving curvature invariants. For
instance, we obtain the second term in the expansion in §6 by using an integration by parts identity
on polytopes due to Donaldson [D2]; see also §1 for the simplest case. Conversely, comparision of
the metric expansion in Theorem 2 and the Euler-MacLaurin expansion in (4) gives another proof
of this identity, and generates further identities in the lower order terms for any choice of toric
hermitian metric.

The connection between Bernstein polynomials, Bergman kernels and Berezin symbols appears to
be new, and one of the principal motivations of this article is simply to point out the toric geometry
underlying the classical Bernstein polynomials. We then exploit it to simplify the approximation
theory and to extend it to general toric Kähler varieties. The generalized Bernstein approximation
theory should be useful in the program of Yau-Tian-Donaldson of making algebro-geometric (i.e.
polynomial) approximations to transcendental geometric objects on Kähler varieties (cf. [D1, T]).
For instance, in [SoZ] what we recognize in this article as Bernstein polynomials were used to
approximate geodesic rays in C2 (see also [PS]). However, in [SoZ] the function denoted by f in
Definition 2 in §2 (denoted RN in [SoZ]) also depended on N in a subtle way, and so the polynomial
approximations were much more complicated than the Bernstein polynomials of this article. One
of our purposes in this article is to separate out the role of Bernstein polynomial approximations
implicit in [SoZ] for other applications, for instance to test configuration geodesics in [SoZ2]. In
particular, the measures μz

N defined in (31) are studied in detail in [SoZ2], and the ‘law of large
numbers’ in Corollary 5 is developed into a large deviations principle.

We close the introduction with references to related work. As mentioned above, the article
[Hö] also concerns relations between Bernstein polynomials and Bergman kernels, for the opposite
purpose of deriving Bergman kernel expansions on Reinhardt domains from classical Bernstein
polynomial expansions on the simplex. The exposition in §5 was influenced by its analysis of
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Bernstein polynomials. It also draws on the analysis of [STZ, SoZ]. More on Berezin symbols of
Toeplitz operators can be found in [Ch] and specifically in the toric case in [STZ].

Bernstein introduced Bernstein polynomials to uniformly approximate continuous functions on
[0, 1]. M. Kac and O. Szasz introduced analogous analytic functions on [0,∞] to approximate
continuous functions uniformly on compact subsets of [0,∞]. In [F], it is explained that the Szasz
analytic functions are also of the form (2), but with the Bargmann-Fock Bergman kernel replacing
the Fubini-Study one. Feng then generalizes the results of this article to infinite volume toric
varieties (e.g. Calabi-Yau toric varieties), and explains how the Szasz analytic function is the
scaling limit towards the boundary of a toric Bergman polynomial.

In addition to the Bergman-toric generalization of Bernstein polynomials, there also exists a
probabilistic generalization of Bernstein polynomial which replaces

(
N
α

)
by the weighted number

of lattice paths from 0 to α with steps in the polytope P . This definition also coincides with the
canonical one in the case of the Fubini-Study metrics on CP

m but in general gives a different class
of polynomials defined on the simplex of probability measures on {1, . . . ,m}. In the case of the
simplex Σm = P , both spaces are the same, but in general they are not. The relevant analysis could
be obtained form [TZ]; we will not discuss these generalizations here. In [Ta], T. Tate defines yet
another kind of Bernstein polynomial on a convex polytope, based on certain ‘Bernstein measures’.
They are closely related to the analysis in [Hö]. In his recent survey [D3] (Section 2.3), Donaldson
discusses a number of problems and results on norms of monomials and measures on lattice points
in convex polytopes which are closely related to the material in [SoZ, STZ, Ta].

We would like to thank H. Hezari for a careful reading of the article and for pointing out some
notational inconsistencies and misprints in an earlier version.

1. Fubini-Study and classical Bernstein polynomials

Let us begin by explaining in more detail the Bernstein-Bergman connection for the Fubini-Study
metric in one complex dimension. We recall that Bernstein polynomials of one variable give canon-
ical uniform polynomial approximations to continuous functions f ∈ C([0, 1]):

(5) BN (f)(x) =
N∑

j=0

(
N

j

)
f(

j

N
)xj(1 − x)N−j .

They have the special feature that they simultaneously uniformly approximate all derivatives of f
if f ∈ Ck, i.e. BN (f)(k)(x) → f (k)(x) (cf. [L]), and if f ∈ C∞ there exists a complete asymptotic
expansion ([Hö])

(6) BN (f)(x) ∼
∞∑

μ=0

Lμ(x,
d

dx
)f(x)N−μ

for certain polynomial differential operators Lμ(x, d
dx),

L0 = 1, L1 =
1
2
(x− x2)

d2

dx2
, L2 =

1
6
(x− x2)(1 − 2x)

d3

dx3
+

1
8
(x− x2)2

d4

dx4
.

In this case, BN (f) = 1
N+1NN (f) (cf. Theorem 2), and also(
N

j

)∫ 1

0
xj(1 − x)N−jdx =

(
N

j

)
j!(N − j)!
(N + 1)!

=
1

N + 1
.
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Hence, (5) implies that

(7)

∫ 1
0 NN (f)(x)dx =

∑N
j=0 f( j

N )

= (N + 1)
(∫ 1

0 f(x)dx+ 1
2N

∫ 1
0 (x− x2)f ′′(x)dx+ · · ·

)
= (N + 1)

(∫ 1
0 f(x)dx+ 1

2N

(
f(1) − f(0) − 2

∫ 1
0 f(x)dx

)
+ · · ·

)
= N

∫ 1
0 f(x)dx+ 1

2(f(1) − f(0)) +O( 1
N ).

We included the routine details to point out that obtaining the first two terms of the Euler-
MacLaurin Riemann sum expansion in Theorem 3 required two integrations by parts and cancella-
tions of

∫ 1
0 f(x)dx in the constant term between the subleading term of the dimension (Riemann-

Roch) polynomial (N + 1) term and in the
∫ 1
0 L1f(x)dx term. Similar cancellations occur in the

general case (see the proof of Theorem 3).
We now relate the Bernstein polynomials BN (f) on [0, 1] to the Bergman kernel for the Fubini-

Study metric on CP
1. The discussion is almost the same for the m-simplex Σm ⊂ R

m and the
Bergman kernel for the Fubini metric on CP

m, so we carry it out in all dimensions. We first need
to recall some standard facts about the Bergman or Szegö kernels for the Fubini-Study metric.

By the m-simplex we mean the convex set Σm = {(x1, . . . , xm) ∈ R
m
+ : ||x|| :=

∑m
j=1 xj ≤ 1}.

We denote its dilate by N ∈ N by NΣm. As discussed in [STZ] and elsewhere (see [STZ] for
references), the space Poly(NΣm) of polynomials with exponents α ∈ NΣm can be identified with
the space of degree-N homogeneous holomorphic polynomials in m+ 1 variables by identifying the
(non-homogeneous) polynomial

f(z1, . . . , zm) =
∑

|α|≤N

cαz
α (zα = zα1

1 · · · zαm
m )

with the homogeneous polynomial

F (ζ0, . . . , ζm) =
∑

|α|≤N

cαζ
N−|α|
0 ζα1

1 · · · ζαm
m .

The space Poly(NΣm) has a natural L2 inner product,

(8) 〈f, ḡ〉 =
1
m!

∫
S2m+1

FGdν, ,

where dν is normalized Haar measure on S2m+1.
This inner product is equivalent to viewing f, g as a holomorphic sections of the Nth power

O(N) of the hyperplane line bundle O(1) → CP
m dual to the tautological line bundle. The line

bundle O(1) carries a natural metric hFS given by

(9) ‖s‖hFS
([w]) =

|(s,w)|
|w| , w = (w0, . . . , wm) ∈ C

m+1 ,

for s ∈ C
m+1∗ ≡ H0(CP

m,O(1)), where |w|2 =
∑m

j=0 |wj |2 and [w] ∈ CP
m denotes the complex

line through w. The Kähler form on CP
m is the Fubini-Study form

(10) ωFS =
√−1

2
ΘhFS

=
√−1

2
∂∂̄ log |w|2 .
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The natural Fubini-Study inner product on sections is then

〈s1, s2〉 =
∫

CPm

(s1, s2)hF S
ωm

FS/m!.

In an affine chart and local frame e, sections have the form fe where f is a polynomial and the
inner product takes the explicit form

(11) 〈f, ḡ〉 =
1
m!

∫
Cm

f(z)g(z)
(1 + ‖z‖2)N

dVFS(z), f, g ∈ Poly(NΣm),

where dVFS =
∏d

j=1 dzj∧dz̄j

(1+|z|2)(d+1) is the Fubini-Study volume form. Both versions of the inner product
generalize to any holomorphic line bundle.

A basis for Poly(NΣm) is given by the monomials χα(z) = zα1
1 · · · zαm

m , |α| ≤ N . The monomials
{χα} are orthogonal but not normalized. Their L2 norms given by the inner product (8) are:

(12) ‖χα‖ =
[
(N − |α|)!α1! · · ·αm!

(N +m)!

] 1
2

.

Thus, an orthonormal basis for Poly(NΣm) is given by the monomials

(13)
1

‖χα‖ χα =
[

(N +m)!
(N − |α|)!α1! · · ·αm!

] 1
2

χα =

√
(N +m)!

N !

(
N

α

)
χα , |α| ≤ N .

where

(14)
(
N

α

)
=

N !
(N − |α|)!α1! · · ·αm!

.

We let χ̂N
α : S2m+1 → C denote the homogenization of χα:

(15) χ̂N
α (x) = x

N−|α|
0 xα1

1 · · · xαm
m .

The Bergman or Szegö kernel ΠhN
F S

for the Fubini-Study metric is the orthogonal projection to
the space H0(CP

m,O(N)) of holomorphic sections with respect to the inner produced induced by
hFS , which lifts to the orthogonal projection Π̂hN

F S
onto Poly(NΣ). The latter is given by

(16) Π̂hN
F S

(x, y) =
∑

|α|≤N

1
‖χα‖2

χ̂α(x)χ̂α(y) =
(N +m)!

N !
〈x, ȳ〉N ,

for x, y ∈ S2m+1. In particular, on the diagonal we have 〈x, x〉 = 1 and

(17) Π̂hN
F S

(x, x) =
(N +m)!

N !
.

In terms of the standard local affine frame on C
m, we have χ̂N

α (z) = zα

(1+‖z‖2)N/2 , and hence

ΠhN
F S

(z,w) =
(N +m)!

N !

∑
|α|≤N

(
N
α

)
zαw̄α

(1 + ‖z‖2)N/2(1 + ‖w‖2)N/2
(18)

We now have the ingredients to identify Bernstein polynomials for the simplex NΣm in terms
of the Fubini-Study Bergman-Szegö kernel. The Kähler potential of the Fubini-Study metric is
ϕFS = log(1 + ||z||2) where ||z||2 =

∑
j |zj |2, and its moment map is

μhF S
(z) = (

|z1|2
1 + ||z||2 , . . . ,

|zm|2
(1 + ||z||2 ).
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The Fubini-Study symplectic potential is the convex function on Σm given by the Legendre trans-
form of ϕFS in logarithm coordinates,

u0(x) =
m∑

j=1

xj log xj + (1 − ||x||) log(1 − ||x||)

where ||x|| =
∑m

j=1 xj . A simple calculation shows that the Bernstein terms may be expressed in
terms of the symplectic potential as

(19)
(
N

α

)
xα(1 − ||x||)N−|α| =

N !
(N +m)!

eN(u0(x)+〈 α
N
−x,∇u0(x)〉)

||zα||2
hN

F S

.

It follows that the Fubini-Study Bernstein polynomial is given by

(20) BN (f)(x) = 1
Π

hN
F S

(z,z)

∑N
α=0 f( α

N ) e
N(u0(x)+〈 α

N
−x,∇u0(x)〉)

||zα||2
hN

F S

, z = μ−1
hF S

(x).

On the other hand, one can also express the Bergman-Szegö kernel in terms of the symplectic
potential at the points (eiθz, z) as

(21)
ΠhN

F S
(eiθz, z) =

∑N
α=0 e

i〈θ,α〉 e
N(u0(x)+〈 α

N
−x,∇u0(x)〉)

||zα||2
hN

F S

= ΠhN
F S

(z, z)
∑N

α=0

(
N
α

)
ei〈θ,α〉xα(1 − ||x||)N−|α|.

Indeed, comparing (18) and (21), we see that the two expressions for the Bergman-Szegö kernel
agree as long as

(22) |zα|2e−N log(1+||z||2) = eN(u0(x)+〈 α
N
−x,∇u0(x)〉), when μhF S

(z) = x,

and this follows from the pair of identities,

|zα|2 = e〈α,∇u0(x)〉, log(1 + |z|2) = 〈x,∇u0(x)〉 − u0(x) when μhF S
(z) = x.

On the open orbit, we may use logarithmic coordinates z = eρ/2+iθ. Then ρ = ∇u0(x) and the
identities are equivalent to the fact that the Kähler potential and symplectic potential are Legendre
transforms of each other. Since both sides of (21) are continuous, the equality extends to all of M
and P̄ .

Applying the operator f(Dθ
N ) just replaces ei〈θ,α〉 by f( α

N ). Then, dividing by ΠhN
F S

(z, z) gives
(20) and (2). Together with the formulae above for norms of monomials and the Szegö kernel in
dimension m, the formula (1) also reduces to (20).

2. Definition of the generalized Bernstein polynomials

We now generalize the definition of Bernstein polynomial to any polarized toric Kähler variety, and
generalize the calculations of the previous section.

We recall that a toric Kähler manifold is a Kähler manifold (M,J, ω) on which the complex torus
(C∗)m acts holomorphically with an open orbit Mo. We assume that M is projective and that P
is a Delzant polytope, i.e. a convex integral polytope in R

m with the property that each vertex is
contained in exactly m facets, and the normals to the m facets at each vertex form a Z-basis for a
lattice Γ ⊂ R

m so that Tm = R
m/Γ is the torus acting on MP . The convex polytope P is defined

by a set of inequalities of

(23) 〈x, vr〉 ≥ λr, r = 1, ..., d,
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where vr is a primitive element of the lattice and inward-pointing normal to the r-th (n − 1)-
dimensional face of P .

We denote by Tm = (S1)m the real torus underlying (C∗)m. By a toric Kähler metric we mean
a Kähler metric ω invariant under Tm. We assume that 1

πω is a de Rham representative of the
Chern class c1(L) ∈ H2(M,R) of the invariant holomorphic line bundle L → M . We let h denote
the Hermitian metric on L inducing the Chern connection with curvature (1, 1) form ωh = ω. Here,
given a Hermitian metric h,

(24) ωh = −
√−1

2
∂∂̄ log ‖eL‖2

h ,

where eL denotes a local holomorphic frame (i.e. a nonvanishing section) of L over an open set
U ⊂ M , and ‖eL‖h = h(eL, eL)1/2 denotes the h-norm of eL. We often write ω for ωh when the
metric is fixed.

Now fix a basepoint m0 on the open orbit and identify Mo ≡ (C∗)m, endowing Mo with the
logarithmic coordinates

z = eρ/2+iϕ ∈ (C∗)m, ρ, ϕ ∈ R
m.

Over the open orbit, ω has a Kähler potential, i.e. ω = −2i∂∂̄ϕ(z). The associated Hermitian
metric then has the form h = e−ϕ. Invariance under the real torus action implies that ϕ only
depends on the ρ-variables, hence,

ω =
i

2

∑
j,k

∂2ϕ

∂ρkρj

dzj
zj

∧ dz̄k
z̄k
.

We sometimes subscript ω to indicate the associated hermitian metric or Kähler potential, e.g.
ω = ωh = ωϕ. By a slight abuse of notation, we denote the Kähler potential in the logarithmic
coordinates by ϕ(ρ). Positivity of ω implies that ϕ is strictly convex of ρ ∈ R

n.
The real torus Tm acts on (M,ω) in a Hamiltonian fashion with respect to ω, and its moment

map μϕ = μh with respect to ωϕ = ωh is defined by

(25) μh(z1, . . . , zm) = ∇ρϕ(ρ1, . . . , ρm), (z = eρ/2+iθ).

The symplectic potential uϕ associated to the Kähler potential is defined to be the Legendre-dual
of ϕ, defined as follows: for x ∈ P there is a unique ρ such that μϕ(eρ/2) = ∇ρϕ = x. Then the
Legendre transform is defined to be the convex function

(26) uϕ(x) = 〈x, ρ〉 − ϕ(ρ), eρ/2 = μ−1
ϕ (x)

on P .
Guillemin [G] (see also [A]) has defined a ‘canonical’ Kähler metric and symplectic potential, as

follows: Let lr : Rn → R be the affine functions,

�r(x) = 〈x, vr〉 − λr.

Then the canonical symplectic potential is defined by

(27) u0(x) =
∑

k

�k(x) log �k(x),

which in turn corresponds to a canonical Kähler potential. Every symplectic potential has the same
singularities on the boundary ∂P as the canonical symplectic potential.

In general, we denote by Gϕ = ∇2
xuϕ the Hessian of the symplectic potential. It has simple poles

on ∂P . We also denote by Hϕ(ρ) = ∇2
ρϕ(eρ/2) the Hessian of the Kähler potential on the open

orbit in ρ coordinates. By Legendre duality,

(28) Hϕ(ρ) = G−1
ϕ (x), μϕ(eρ/2) = x.
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We now let (L, h) → M denote the invariant Hermitian line bundle with curvature ωh = ω.
A natural basis of the space of holomorphic sections H0(M,LN ) associated to the Nth power of
L→M corresponds to monomials zα where α is a lattice point in the Nth dilate of the polytope,
α ∈ NP ∩ Z

m. The hermitian metric h on L induces inner products HilbN (h) on H0(M,LN ),
defined by

〈s1, s2〉hN =
∫

M
(s1(z), s2(z))hN

ωm
h

m!
.

The monomials are orthogonal with respect to any such toric inner product and have the norm-
squares

(29) QhN (α) =
∫

Cm

|zα|2e−Nϕ(z)dVϕ(z),

where dVϕ = (i∂∂̄ϕ)m/m!. Integrating over the torus fibers, we obtain an expression in terms of
the symplectic potential,

(30) QhN (α) = CL

∫
P
eN(uϕ(x)+〈 α

N
−x,∇uϕ(x)〉dx,

where CL is the (common) volume of the torus fibers. It depends on the expression for ωm
h

m! in
action-angle variables with respect to the moment map μh, hence on the first Chern class c1(L).

The Bergman-Szegö kernels for this hermitian metric are the orthogonal projections with respect
to HilbN (h) to H0(M,LN ). If we denote the sections corresponding to the monomials by Sα then,

ΠhN (z,w) =
∑

α∈NP

Sα(z) ⊗ Sα(w)∗

QhN (α)
.

The diagonal contraction of the kernel is denoted by ΠhN (z, z) =
∑

α∈NP ||Sα(z)||2
hN

Q
hN (α) .

The following definition generalizes the formula of (1) to any toric Kähler manifold.

Definition: Let f ∈ C(P̄ ). The Nth normalized (Bergman-)Bernstein polynomial approximation
to f with respect to the hermitian metric h on L→M is defined by⎧⎪⎪⎨⎪⎪⎩

BhNf(x) = 1
Π

hN (z,z)NhNf(x), where

NhNf(x) =
∑

α∈NP f( α
N )e

N(uϕ(x)+〈 α
N

−x,∇uϕ(x)〉)
Q

hN (α) .

To our knowledge the only previously studied cases are the Bernstein polynomials for the simplex
(1) or the d-cube, where

BN (f)(x) =
∑

0≤i1,...,id≤N

f(
i1
N
, . . . ,

id
N

)
d∏

k=1

(
N

ik

)
xik

k (1 − xk)N−ik .

Here, (x1, . . . , xd) ∈ [0, 1]d.

2.1. Associated measures μz
N . As in the classical case, Bernstein polynomials are closely related

to certain probability measures on P̄ . We define

(31) μz
N :=

∑
α∈NP

PhN (α, z)
ΠhN (z, z)

δ α
N
,
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where PhN (α, z) denote the Fourier coefficients of the Bergman kernel with respect to the Tm,

(32) PhN (α, z) :=
|zα|2e−Nϕ(z)

QhN (α)
.

Proposition 2.1. Let f ∈ C(P̄ ) and let x = μϕ(z) and let h = e−ϕ. Then,

BhN f(x) =
∫
P f(y)dμz

N (y).

Proof. This follows from the pair of identities,∫
P f(y)dμz

N (y) =
∑

α∈NP f( α
N )PhN (α,z)

Π
hN (z,z) ,

= 1
Π

hN (z,z)

∑
α∈NP f( α

N )eN(uϕ(x)+〈 α
N

−x,log μ−1
ϕ (x)〉

Q
hN (α) .

The first equality is obvious from the definition. The second equality generalizes the identity (22):

(33) |zα|2e−Nϕ(z) = eN(uϕ(x)+〈 α
N
−x,log μ−1

ϕ (x)〉), when μϕ(z) = x.

As in the case of the Fubini-Study metric, the identity splits into two identities on the open orbit,

(34) |zα|2 = e〈α,ρ〉, e−Nϕ(z) = eN(uϕ(x)−〈x,log μ−1
ϕ (x)〉).

The first follows from the fact that

(35) ∇xuϕ(x) = log μ−1
ϕ (x) = ρ,

since by (26), ∇xuϕ(x) = ρ+ 〈x,∇xρ〉− 〈∇ϕ(ρ),∇xρ〉 = ρ, as ∇ϕ(ρ) = x. The second then follows
from the fact that ϕ(ρ) and uϕ(x) are Legendre duals. The identity of the Proposition then extends
by continuity to the closure.

�

As a simple corollary, we obtain one of the standard properties of Bernstein polynomials.

Corollary 4. Let f ∈ C(P̄ ). Then minP̄ f ≤ BhN (f)(x) ≤ maxP̄ f .

Furthermore, as an obvious consequence of the leading order asymptotics in Theorem 1, we have:

Corollary 5. In the weak topology of measures on C(P̄ ), μz
k → δμh(z).

In [SoZ2], it will be shown that in addition the sequence {μz
k}∞k=1 of probability measures satisfies

a large deviations principle for each z (which is uniform in z).

2.2. Bernstein polynomials for the Guillemin Kähler metric. Let us calculate explicitly
the numerator polynomials for the canonical symplectic potential (27) or Kähler form. We have,

∇u0(x) =
∑

k

(log �k)vk + v̄, v̄ =
∑

k

vk.

Hence,

〈 α
N

− x,∇u0(x)〉 =
∑

k

〈 α
N

− x, vk〉 log �k + 〈 α
N

− x, v̄〉,

and
eN(u0(x)+〈 α

N
−x,∇u0(x)〉) = e〈α−Nx,v̄〉 ∏

k(�k(x))
N
k(x)+〈α−Nx,vk〉

= e〈α−Nx,v̄〉 ∏
k(�k(x))

−Nλk+〈α,vk〉
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where in the last line we use that �k(x) − 〈x, vk〉 = −λk. Hence, the numerator of the canonical
Bernstein polynomial may be rewritten as

(36) NhNf(x) =
∑

α∈NP f( α
N ) 1

Q
hN

can
(α)e

〈α−Nx,v̄〉 ∏
k(�k(x))

−Nλk+〈α,vk〉,

which closely resembles the classical cases (where also v̄ = 0). Here, QhN
can

(α) is the norming con-
stant with respect to the canonical Hermitian metric, given by (30) where the symplectic potential
is chosen to be the canonical one.

In general, the symplectic potential has the form

(37) uϕ(x) = u0(x) + gϕ(x) =
∑

k

�k(x) log �k(x) + gϕ(x),

where gϕ ∈ C∞(P̄ ) is smooth up the boundary [G, A, D2]. Hence the α term gets multiplied by
the additional factor

eN(gϕ(x)+〈α
k
−x,∇gϕ(x)〉).

3. Bernstein polynomials, Toeplitz operators and Berezin symbols

In this section, we prove formula (2) in the setting of general toric Kähler varieties. We use the
notation and terminology of [STZ].

We state the general result in the following

Proposition 3.1. We have,

NhN (f)(x) =
(
Π̂hN f(N−1Dθ)Π̂hN

)
(eiθz, z)|θ=0;μh(z)=x.

Remark:
We note that when f ≡ 1, then NhN (f)(x) ≡ ΠhN (z, z) (with μh(z) = x).

Proof. The proof is simply a matter of unwinding the definitions and using some basic Fourier
analysis. The Bergman kernel is a section of the bundle (LN ) ⊗ (LN )∗ → M ×M . It is simpler
to deal with scalar kernels, and so we lift the Bergman kernel to a kernel Π̂hN (x, y) on the unit
circle bundle π : X → M with respect to h in the dual line bundle L∗. In other words, X = ∂D∗

h
is the boundary of the unit disc bundle with respect to h in the dual line bundle L∗. We use local
product coordinates x = (z, θ) ∈M ×S1 on X where x = eiθ e(z)

||e(z)|| in terms of a local holomorphic
frame e(z) for L. When working on M we tacitly use the representative of ΠhN relative to the
frame e(z)N of LN . For the sake of brevity, we will not review the definitions but refer to [STZ]
for the relevant background.

The space H0(M,LN ) is naturally isomorphic to the space H2
N (X) of CR holomorphic functions

transforming by eiNθ under the S1 action of the circle bundle X → M . The generator of the S1

action is denoted by ∂
∂θ . We further denote by s → ŝ the lift of a section to an equivariant CR

function and by Π̂hN (x, y) the lifted Szegö kernel, i.e. the orthogonal projection from L2(X) →
H2

N (X). The monomial sections sα which equal zα on the open orbit lift to equivariant functions
ŝα on X.

By the standard linearization of geometric quantization (reviewed in this context in [STZ]), the
Tm action lifts to X as contact transformations of the Chern connection form associated to h. For
the sake of completeness, let us recall the lift of the torus action to H2

N (X), and its linearization
on H0(M,LN ): The generators ∂

∂θj
of the Tm action on M lift to contact vector fields Ξ1, . . .Ξm
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on X with respect to the vertical contact 1-form α satisfying dα = π∗ω. The horizontal lifts of the
Hamilton vector fields ξj are then defined by

π∗ξh
j = ξj , α(ξh

j ) = 0,

and the contact vector fields Ξj are given by:

Ξj = ξh
j + 2πi〈μ ◦ π, ξ∗j 〉

∂

∂θ
= ξh

j + 2πi(μ ◦ π)j
∂

∂θ
,

where μ is the moment map corresponding to h, and where ξ∗j ∈ R
m is the element of the Lie

algebra of Tm which acts as ξj on M .
It follows that the vector fields act as differential operators on the CR Hardy spaces, Ξj :

H2
N (X) → H2

N (X) satisfying

(38) (ΞjŜ)(ζ) =
∂

∂ϕj
Ŝ(eiϕ · ζ)|ϕ=0 , Ŝ ∈ C∞(X) .

Furthermore, the generator of the S1 action acts on these spaces and

(39)
∂

∂θ
: H2

N (X) → H2
N (X) ,

1
i

∂

∂θ
ŝN = NŝN for ŝN ∈ H2

N (X) .

Since by (38), the operators Ξj act by translating functions by the Tm action lifted to X, we
henceforth denote 1

i Ξj by Dθj
. Then for 1 ≤ j ≤ m, the lifted monomials χ̂α ∈ H2

N (X) are joint
eigenfunctions of these commuting operators,

Dθj
χ̂α = αjχ̂α, ∀α ∈ NP.

The dilation P → NP is best viewed in terms of constructing a conic set of eigenvalues in one
higher dimension by adding the operator

(40) Îm+1 =
1
i

∂

∂θ
−

m∑
j=1

Dθj
.

The monomials χ̂α̂ are then the joint eigenfunctions of these (m+ 1) commuting operators and we
define the ‘homogenization’ N̂P ⊂ Z

m+1 of the lattice points in the polytope NP to be the set of
all lattice point α̂N of the form

(41) α̂N = α̂ := (α1, . . . , αm, N − |α|), α = (α1, . . . , αm) ∈ NP ∩ Z
m,

Given f ∈ C∞(Rm), we now define f(Dθ) on L2(X) by the spectral theorem for m commuting
operators, i.e.

f(Dθ) =
∫

Rm

f̂(ξ)ei〈ξ,Dθ〉dξ, where 〈ξ,Dθ〉 =
m∑

j=1

ξjDθj
.

We then have

(42) f(N−1Dθ)ŝα = f(
α

N
)ŝα

Since Π̂hN (ẑ, ŵ) =
∑

α∈NP ŝα(ẑ)ŝα(ŵ), where ẑ (etc.) denotes any point of X projecting to z under
π, we have

(43) f(N−1Dθ)Π̂hN (eiθ ẑ, ŵ) =
∑

α∈NP

f(
α

N
)ŝα(ẑ)ŝα(ŵ).

It follows that

(44) f(N−1Dθ)Π̂hN (eiθ ẑ, ŵ)|ẑ=ŵ =
∑

α∈NP

f(
α

N
) |ŝα(ẑ)|2 .
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The right hand side is constant along the orbits of the S1 action and may be identified with a
function of z ∈ M . On M we have |ŝα(ẑ)|2 = ||sα(z)||2

hN and by Proposition 2.1 we obtain the
definition of the numerator polynomials when we substitute z = μ−1

h (x). This is equivalent to the
statement in the Proposition. �

To obtain the Bernstein polynomial formula, we divide by ΠhN (z, z). As mentioned above, the
ratio is the Berezin covariant symbol of Π̂hN f(N−1Dθ)Π̂hN .

4. Proof of Theorems 1 and 2

We now use the Boutet de Monvel - Sjöstrand parametrix [BSj, BerSj, BBSj] to obtain a complete
asymptotic expansion for the Bernstein polynomials from (3.1). There now exist many expositions
of the construction and properties of this parametrix, so we will only briefly recall the essential
elements in the case of toric varieties [SoZ, STZ]. We also use the notation x, y for points of X,
hoping that no confusion with coordinates on P will occur.

We first recall that, on the diagonal, the Bergman-Szegö kernel has a complete asymptotic
expansion,

(45) ΠhN (z, z) =
dN∑
i=0

||SN
i (z)||2hN

=
Nm

πm

[
1 + a1(z)N−1 + a2(z)N−2 + · · · ] ,

for certain smooth coefficients aj(z), of which the first two lower coefficients are

(46)
{
a1 = 1

2S
a2 = 1

3ΔS + 1
24(|R|2 − 4|Ric|2 + 3S2)

where R,Ric and S denotes the curvature tensor, the Ricci curvature and the scalar curvature of
ωh, respectively, and Δ denotes the Laplace operator of (M,ωh).; see [Z, Lu, BSj, BBSj].

Off the diagonal we have the following expansion:

Proposition 4.1. For any C∞ positive hermitian line bundle (L, h), there exists a semi-classical
amplitude in the parameter N−1, sN (z,w) ∼ Nms0(z,w) +Nm−1s1(z,w) + · · · , such that

ΠhN (z,w) = eN(ϕ(z,w)− 1
2
(ϕ(z)+ϕ(w)))sN (z,w) +O(N−∞),

where ϕ is a smooth local Kähler potential for h, and where ϕ(z,w) is the almost-analytic extension
of ϕ(z) = ϕ(z, z̄).

Since the local Kähler potentials (e.g. the Kähler potential on the open orbit) are invariant
under the Tm action, they can be expressed in the form F (|z|2) where F ∈ C∞(R). We denote by
F (z · w̄) the almost analytic extension of F . Thus, we have:

Proposition 4.2. For any hermitian toric positive line bundle over a toric variety, the Szegö
kernel for the metrics hN

ϕ have the asymptotic expansions in a local frame on M ,

ΠhN (z,w) ∼ eN(F (z·w̄)− 1
2
(F (||z||2)+F (||w||2)))AN (z,w) mod N−∞,

where AN (z,w) ∼ (N
π )m

(
1 + a1(z,w)

N + · · ·
)

is a semi-classical symbol of order m.

We now prove Theorems 1 and 2.

Proof. We apply the geometric quantizations of the torus action to get, by Definition 2,

ei〈ξ,N−1Dθ〉ΠhN (eiθz,w)|z=w;θ=0 =
∑

α∈NP∩Zm

ei〈N−1α,ξ〉|zα|2e−NF (|z|2)

QhN (α)
.
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By (3.1), we obtain NhNf(x) by integrating the right side against f̂(ξ). We note that in general
ei〈ξ,N−1Dθ〉ψ(eiθw)|θ=0 = ψ(ei(θ+ ξ

N
)w)|θ=0 = ψ(ei

ξ
Nw) Performing the same transformation on the

parametrix gives,

(47) NhN (f)(x) ∼
∫

Rm

f̂(ξ)eN(F (eiN−1ξ|z|2)−F (|z|2))AN

(
z, ei

ξ
N z

)
dξ,

where ∼ means that the difference is a function which decays rapidly in N along with its deriva-
tives. Such a remainder may be neglected if we only consider expansions modulo rapidly decaying
functions of N .

We have,
(48)
FC(eiN

−1ξ|z|2) − F (|z|2) =
∫ 1
0

d
dtFC(eitN

−1ξ|z|2)dt

= iN−1
∫ 1
0 〈∇ξF (eitN

−1ξ+ρ), θ〉dt

= iN−1〈∇ξF (eρ), (iξ)〉 + (iN)−2
∫ 1
0 (t− 1)∇2

ρ(F (eitN
−1ξ+ρ))(iξ)2/2dt

= iN−1〈μ(z), ξ〉 + (iN)−2∇2
ρ(F (eρ))(iξ)2 +R3(ξ,N, α)

= iN−1〈μ(z), ξ〉 + (iN)−2〈Hzξ, ξ〉 +N−2R3(ξ,N, z),

where

(49) R3(ξ,N, z) := N−3

∫ 1

0
(t− 1)2∇3

ρ(F (eitξ+ρ))(iξ)3/3!,

and where Hz = ∇2F (|z|2) = ∇2ϕ(eρ) is the Hessian in the notation (28). Hence, (47) takes the
form

(50) NhN (f)(x) ∼ ∫
Rm f̂(ξ)ei〈μ(z),ξ〉e(iN)−1〈Hzξ,ξ〉+N−1R3(ξ,N,z)AN

(
z, ei

ξ
N z, 0, N

)
dθ

and by Taylor expanding the factor e(iN)−1〈Hzξ,ξ〉+N−1R3(θ,N,z) one obtains an amplitude ÃN such
that

(51) NhN (f)(x) ∼ ∫
Rm f̂(ξ)ei〈μ(z),ξ〉ÃN

(
z, ei

ξ
N z, 0, N

)
dθ.

The amplitude ÃN has an expansion of the form,

ÃN

(
z, ei

ξ
N z, 0, N

)
= Nma0 +Nm−1a1 +O(Nm−1),

for various smooth coefficients aj(z); the first one is constant. If we divide by ΠhN (z, z) we cancel
the constant and by expanding the denominator we obtain,
(52)
NhN (f)(x) ∼ (N

π )m
(
f(μ(z)) +N−1

(
i−1〈HzDx,Dx〉f(μ(z)) + a1(z, z)f(μ(z))

)
+O(N−2)

)
,

As a check on the leading term, we set f ≡ 1 and use Remark 3. Since μ(z) = x we obtain Theorem
2. Dividing by ΠhN (z, z) and using (45) completes the proof of Theorem 1. �

It is difficult (but possible) to calculate the coefficients in explicit geometric terms by this method.
In the next section, we will reduce the calculation to the known calculation of Bergman kernel
expansion coefficients.
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5. Calculation of coefficients for the Bernstein expansion of Theorems 1 - 2

In this section, we give a second proof of Theorems 1 - 2 which gives a more effective approach
to the calculation of the coefficients in the Bernstein polynomimal expansion, and in particular we
calculate the operator N1 in the expansion of Theorem 2. The approach is based on the localization
of the sum over α

N ∈ P∩ 1
N Z

m around the image of z under the moment map. For classical Bernstein
polynomials, this is well-known and various expositions can be found in [Hö, K, L]; see also [D]
Lemma 6.3.5). The localization approach reduces the calculation of the lower order terms in the
Bernstein polynomial expansion to that of the Bergman kernel expansion in [Z, Lu] and elsewhere.

The relevant Localization Lemma was proved in [SoZ]. We use a notation similar to [Hö].

Lemma 5.1. (Localization of Sums) [SoZ] Let f ∈ C(P̄ ). Then, there exists C > 0 so that∑
α∈NP∩Zm

f(
α

N
)
|Sα(z)|2

hN

QhN (α)
=

∑
α:| α

N
−μh(z)|≤N−1+δ

f(
α

N
)
|Sα(z)|2

hN

QhN (α)
+ Oδ(N−C).

Given the localization lemma, it is natural to Taylor expand f around μh(z) to obtain

f(
α

N
) =

∑
ν<2M

f (ν)(μh(eρ))(
α

N
− μh(eρ))ν/ν! +RM (f, eρ,

α

N
),

where RM is the Mth order Taylor remainder. We then have,

(53)
NhNf(x) =

∑
β:|β|≤M

1
β!D

β
xf(μ(z))

(∑
α∈NP∩Z( α

N − μh(z))β
|Sα|2

hN

QN (α)

)
+R(M,N, z),

where the remainder is obtained by summing RM (f, eρ, α
N ) in the variable α

N .
The next step is to study the special functions

(54) Iν
hN (z) :=

∑
α∈NP∩Z

(
α

N
− μh(z))ν

|Sα(z)|2
hN

QN
h (α)

=
∑

α∈P∩Z

(
α

N
− μh(eρ/2))ν

e〈α,ρ〉−Nϕt(eρ/2)

QN
h (α)

.

Proposition 5.2. Uniformly for z ∈M we have:

(55) Iν
hN (z) = O(Nm−ν/2(logN)ν).

Proof. The Localization lemma implies that

Iν
hN (z) =

∑
α∈NP∩Zm:| α

N
−μh(z)|≤C log N

N

(
α

N
− μh(z))ν

|Sα(z)|2
hN

QN (α)
+O(N−C).

In the domain of summation we then have,

(
α

N
− μh(eρ/2))ν = (

logN√
N

)ν ,

and this implies the statement.
�

We can explicitly evaluate these functions by relating them to derivatives of the Bergman-Szegö
kernels. The following Lemma was also used in [SoZ]. We employ a tensor product notation
( α

N − μh(eρ/2))⊗2
ij for (αi

N − μh(eρ/2)i)(
αj

N − μh(eρ/2)j). In the following, we implicitly assume that
z lies in the open orbit and express it as z = eρ/2+iθ. Similar formula hold at the boundary as well
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where the vector fields ∂
∂ρj

are replaced by derivatives in affine coordinates. For the sake of brevity
we refer to [SoZ] for the modifications to the formulae around the boundary.

Proposition 5.3. We have:

1)
∑

α∈NP∩Zm( α
N − μ(eρ/2))e〈α,ρ〉−Nϕ(eρ/2)

Q
hN (α) = 1

N ∇ρΠhN (eρ/2, eρ/2);

2)
∑

α∈NP∩Zm( α
N − μ(eρ/2))⊗2

ij
e〈α,ρ〉−Nϕ(eρ/2)

Q
hN (α) = 1

N ΠhN (eρ/2, eρ/2)∇2
ρϕ+ 1

N2∇2ΠhN (eρ/2, eρ/2).

Proof. To prove (1), we differentiate (25) to obtain

∇ρΠhN (eρ/2, eρ/2) = N
∑

α∈NP∩Zm( α
N − μ(eρ/2))e〈α,ρ〉−Nϕ(eρ/2)Π

hN (eρ/2,eρ/2)

Q
hN (α) .

To prove (2), we take a second derivative of (1) in ρ to get

∇2
ρΠhN (eρ/2, eρ/2) = −N∇μh(eρ/2))ΠhN (eρ/2, eρ/2)

+N2
∑

α∈NP∩Zm( α
N − μh(eρ/2))⊗2 e〈α,ρ〉−Nϕ(eρ/2)

Q
hN (α) .

�
We now evaluate these functions geometrically. Recall that S is the scalar curvature of the

Kähler metric ωh. Below, Cm denotes a constant depending only on the dimension (which may
vary in each occurrence).

Proposition 5.4. We have:
1) I(1)

hN (z) = CmN
m−2∇S(z) +O(Nm−3);

2) I(2)

hN (z) = π−mNm−1∇2
ρϕ+ 1

2N
m−2S(z)∇2

ρϕ+O(Nm−3).

Proof. From (45) it follows that

∇ρΠhN (z, z) = π−mNm−1 1
2∇S(z) +O(Nm−2),

∇ρμh(z)ΠhN (z, z) = π−mNm(∇μh + 1
2N

−1S(z)∇μh(z) +O(N−2));

∇2
ρΠhN (eρ/2, eρ/2) = 1

2π
−mNm−1∇2

ρS(z) +O(Nm−2).

We also use that ∇μh(eρ/2) = ∇2ϕ.
�

To complete the second proof of Theorem 1, it suffices to observe that the remainder in (53)
after expanding to order M is O(Nm−M/2(logN)M ), which follows from the fact that R(M,N, z) ≤
CfN

mIν+1
hN (z).

5.1. Calculation of N1. By Proposition 5.4 and by (45)-(46),
(56)
NhN (f)(μ(z)) = f(μ(z))ΠhN (z, z)

+
∑

|β|=1D
βf(μ(z))I(β)

hN (μ(z))

+ 1
2

∑
|β|=2D

βf(μ(z))Iβ
hN (μ(z)) +O(N−3/2(logN)3)

= (N
π )m

(
f(μ(z)) + N−1

2 (f(μ(z))S(z) + ∇μh(z) · ∇2f(μ(z))
)

+O(Nm−3/2(logN)3).

After multiplying by πm we obtain the stated result.
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6. Dedekind-Riemann sums over lattice points: Proof of Corollary 3

To prove the Corollary, we integrate the expansion (52) over P . The terms in

(57)
(
Π̂hNf(N−1Dθ)Π̂hN

)
(eiθz, z)|θ=0

are the values on the diagonal of an orthonormal basis of H0(M,LN ). When integrated over M
one obtains

∑
α∈NP f( α

N ). Since (57) is constant along torus orbits, and since ωm
h

m! is a constant
multiple of dθdx, we obtain

(58)
∑

α∈NP f( α
N ) = πm

∫
P NhN (f)(x)dx.

Here, we use that πm is the common volume of the torus fibers. We can calculate this constant by
putting f ≡ 1 and determining the leading order term in the asymptotics as N → ∞. The left side
is #{α ∈ NP ∩ Z

m} ∼ NmV ol(P ) + · · · while the right side is CL(N
π )mV ol(P ) + · · · . Matching

expressions shows that the fiber volume is πm.
The existence of an asymptotic expansion for the Riemann sums thus follows immediately from

Theorem 2. However, it is an expansion in terms of integrals of curvature invariants against
derivatives of f over P . We now prove that the first two terms can be put in the form stated in
Corollary 3, and thus to clarify the relation between the Bernstein and Euler-MacLaurin approaches
to lattice point sums.

By Proposition 5.4 only the zeroth and second order terms of the Taylor expansion of f contribute
to the N−1 term of the Riemann sum expansion, and we have

(59)

∑
α∈NP f( α

N ) = πm
∫
P f(x)ΠhN (μ−1(x), μ−1(x))dx

+ πm

2

∑
|β|=2

∫
P D

βf(x)Iβ
hN (x)dx +O(N−3/2(logN)3)

= Nm
∫
P f(x)dx+Nm−1

∫
P (1

2f(x)S(μ−1(x))

+1
2〈∇ρμh(μ−1(x),∇2

xf(x)〉)dx+O(Nm−3/2(logN)3).

Here, 〈∇μh,∇2f(μ(z))〉 denotes the Hilbert-Schmidt inner product of the tensors.
By Legendre duality, the Hessians of the Kähler potential and symplectic potentials are inverses,

i.e.

(60) ∇ρμh(μ−1(x) = (∇2uϕ(x))−1.

Hence,

(61) 〈∇ρμh(μ−1(x),∇2
xf(x)〉dx =

∫
P

∑
jk

ujk
ϕ f,jkdx.

Further, we recall (cf. [D2, A]) that the scalar curvature of a toric Kähler metric is given in terms
of the symplectic potential by

(62) S = −
∑
j,k

∂2ujk
ϕ

∂xj∂xk
,

where ujk
ϕ , 1 ≤ j, k ≤ n are the entries of the inverse of the matrix ∇2uϕ. See [D2] (3.1.4).

We now use the following integration by parts formula due to Donaldson:
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Lemma 6.1. ([D2], Lemma 3.3.5) For any symplectic potential uϕ and f ∈ C∞,
∑

jk u
jk
ϕ f,jk ∈

L1(P ) and ∫
P

∑
jk

ujk
ϕ f,jk =

∫
P

∑
jk

(ujk
ϕ ),jkfdx+

∫
∂P
fdσ,

where dσ is the measure defined in Corollary 3.

Combining Lemma 6.1 and (62) we obtain∫
P

1
2
f(x)S(μ−1(x)) +

1
2
〈∇ρμh(μ−1(x),∇2

xf(x)〉dx =
1
2

∫
∂P
fdσ,

proving that the two term expansion in Corollary 3 is correct.

Remark:
(i) We note that in [D2] Lemma 3.3.5, the boundary term is given the − sign. However, the
measure dσ was only defined there (page 307) up to sign. The sign of this term is universal and by
comparing with the one-dimensional case, we see that it is positive.

(ii) To connect this calculation to the classical one-dimensional case (7), and perhaps clarify the
notation, we note that its Nm−1 term (with m = 1),∫ 1

0
f(x)dx+

1
2

∫ 1

0
(x− x2)f ′′(x)dx,

may be expressed in terms of the Fubini-Study Kähler potential and moment map as∫ 1

0

d

dρ
μFS(μ−1(x))f ′′(x)dx, x = μ(eρ/2),

since

ϕFS(eρ/2) = log(1 + eρ),
d

dρ
ϕFS(eρ/2) = μFS(eρ/2) =

eρ

1 + eρ
= x,

and
d2

dρ2
ϕFS(eρ/2) =

eρ

(1 + eρ)2
= x(1 − x).

Regarding S, we recall that it is the scalar curvature of the metric g11̄ associated to the Kähler
form ωFS = i

2∂∂̄(1 + |z|2), thus

S = − ∂2

∂z∂z̄
log(1 + |z|2)−2 = 2Trg11̄ = 2.
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34–35 (1976), 123–164.

[Ch] L. Charles, Berezin-Toeplitz operators, a semi-classical approach. Comm. Math. Phys. 239 (2003), no. 1-2,
1–28.

[D] P. J. Davis, Interpolation and approximation. Dover Publications, Inc., New York, 1975.

[D1] S. K. Donaldson, Scalar curvature and projective embeddings, I, J. Diff. Geom. 59 (2001), 479–522.

[D2] S. K. Donaldson, Scalar curvature and stability of toric varieties. J. Differential Geom. 62 (2002), no. 2,
289–349.

[D3] S. K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry,
arXiv:0803.0985.

[F] R. Feng, Szasz Analytic Functions and Toric Varieties (preprint, 2008).

[G] V. Guillemin, Kaehler structures on toric varieties. J. Differential Geom. 40 (1994), no. 2, 285–309.

[GS] V. Guillemin and S. Sternberg, Riemann sums over polytopes ( math.CO/0608171).

[GSW] V. Guillemin, S. Sternberg, and J. Weitsman, The Ehrhart Function for Symbols (arXiv:math/0601714).
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