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Abstract. We report on some recent work with M. R. Douglas and B. Shiffman on vacuum
statistics for flux compactifications in string/M theory.
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1. Introduction

According to string/M theory, the vacuum state of our universe is a 10 dimensional space-
time of the form M3,1 × X, where M3,1 is Minkowski space and X is a small 3-complex
dimensional Calabi-Yau manifold X known as the ‘small’ or ‘extra’ dimensions [CHSW, St].
The vacuum selection problem is that there are many candidate vacua for the Calabi-Yau
3-fold X. Here, we report on recent joint work with B. Shiffman and M. R. Douglas de-
voted to counting the number of supersymmetric vacua of type IIb flux compactifications
[DSZ1, DSZ2, DSZ3]. We also describe closely related the physics articles of Ashok-Douglas
and Denef-Douglas [D, AD, DD] on the same problem.

At the time of writing of this article, vacuum statistics is being intensively investigated
by many string theorists (see for instance [DGKT, CQ, GKT, S, Ar] in addition to the
articles cited above). One often hears that the number of possible vacua is of order 10500

(see e.g. [BP]). This large figure is sometimes decried (at this time) as a blow to predictivity
of string/M theory or extolled as giving string theory a rich enough ‘landscape’ to contain
vacua that match the physical parameters (e.g. the cosmological constant) of our universe.
However, it is very difficult to obtain sufficiently accurate results on vacuum counting to
justify the claims of 10500 total vacua, or even the existence of one vacuum which is consistent
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with known physical parameters. The purpose of our work is to develop methods and results
relevant to accurate vacuum counting.

From a mathematical viewpoint, supersymmetric vacua are critical points

∇W (Z) = 0 (1)

of certain holomorphic sections WG called flux superpotentials of a line bundle L → C over
the moduli space C of complex structures on X×T 2 where T 2 = R

2/Z2. Flux superpotentials
depend on a choice of flux G ∈ H3(X,Z ⊕ √−1Z). There is a constraint on G called the
‘tadpole constraint’, so that G is a lattice point lying in a certain hyperbolic shell 0 ≤ Q[G] ≤
L in H3(X,C) (16). Our goal is to count all critical points of all flux superpotentials WG

in a given compact set of C as G ranges over such lattice points. Thus, counting vacua in
K ⊂ C is a combination of an equidistribution problem for projections of lattice points and
an equidistribution problem for critical points of random holomorphic sections.

The work we report on gives a rigorous foundation for the program initiated by M. R.
Douglas [D] to count vacua by making an approximation to the Gaussian ensembles the
other two authors were using to study statistics of zeros of random holomorphic sections (cf.
[SZ, BSZ]). The results we describe here are the first rigorous results on counting vacua in
a reasonably general class of models (type IIb flux compaticifications). They are admittedly
still in a rudimentary stage, in particular because they are asymptotic rather than effective.
We will discuss the difficulties in making them effective below.

This report is a written version of our talk at the QMath9 conference in Giens in October,
2004. A more detailed expository article with background on statistical algebraic geometry
as well as string theory is given in [Z], which was based on the author’s AMS address in
Atlanta, January 2005.

2. Type IIb flux compactifications of string/M theory

The string/M theories we consider are type IIb string theories compactified on a complex
3-dimensional Calabi-Yau manifold X with flux [GKP, GVW, GKTT, GKT, AD]. We recall
that a Calabi-Yau 3-fold is a compact complex manifold X of dimension 3 with trivial
canonical bundle KX , i.e. c1(X) = 0 [Gr, GHJ]. Such X possesses a unique Ricci flat Kähler
metric in each Kähler class. In what follows, we fix the Kähler class, and then the CY
metrics correspond to the complex structures on X. We denote the moduli space of complex
structures on X by MC. In addition to the complex structure moduli on X there is an
extra parameter τ called the dilaton axion, which ranges over complex structure moduli on
T 2 = R

2/Z2. Hence, the full configuration space C of the model is the product

C = MC × E , (Z = (z, τ); z ∈ MC, τ ∈ E) (2)

where E = H/SL(2,Z) is the moduli space of complex 1-tori (elliptic curves). One can think
of C as a moduli space of complex structures on the CY 4-fold X × T 2.

By ‘flux’ is meant a complex integral 3-form

G = F + iH ∈ H3(X,Z ⊕√−1Z). (3)

The flux superpotential WG(Z) corresponding to G is defined as follows: On a Calabi-Yau
3-fold, the space H3,0

z (X) of holomorphic (3, 0)-forms for each complex structure z on X has
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dimension 1, and we denote a holomorphically varying family by Ωz ∈ H3,0
z (X). Given G as

in (3) and τ ∈ H, physicists define the superpotential corresponding to G, τ by:

WG(z, τ) =

∫
X

(F − τH) ∧ Ωz. (4)

This is not well-defined as a function on C, since Ωz is not unique and τ corresponds to the
holomorphically varying form ωτ = dx + τdy ∈ H1,0

τ (T 2) which is not unique either. To be
more precise, we define WG to be a holomorphic section of a line bundle L → C, namely the
dual line bundle to the Hodge line bundle H4,0

z,τ = H3,0
z (X) ⊗ H1,0(T 2) → C. We form the

4-form on X × T 2

G̃ = F ∧ dy +H ∧ dx
and define a linear functional on H3,0

z (X) ⊗H1,0
τ (T 2) by

〈WG(z, τ),Ωz ∧ ωτ 〉 =

∫
X×T 2

G̃ ∧ Ωz ∧ ωτ . (5)

When ωτ = dx+ τdy we obtain the original formula. As Z = (z, τ) ∈ C varies, (5) defines a
holomorphic section of the line bundle L dual to H3,0

z ⊗H1,0
τ → C.

The Hodge bundle carries a natural Hermitian metric

hWP (Ωz ∧ ωτ ,Ωz ∧ ωτ ) =

∫
X×T 2

Ωz ∧ ωτ ∧ Ωz ∧ ωτ
known as the Weil-Petersson metric, and an associated metric (Chern) connection by ∇WP .
The Kähler potential of the Weil-Petersson metric on MC is defined by

K = − ln〈Ω,Ω〉 = ln

∫
X

Ω ∧ Ω. (6)

There is a similar definition on E and we take the direct sum to obtain a Kähler metric on
C. We endow L with the dual Weil-Petersson metric and connection. The hermitian line
bundle (H4,0, hWP ) → MC is a positive line bundle, and it follows that L is a negative line
bundle.

The vacua we wish to count are the classical vacua of the effective supergravity Lagrangian
of the string/M model, which is derived by ‘integrating out’ the massive modes (cf. [St]).
The only term relevant of the Lagrangian to our counting problem is the scalar potential
[WB]

VG(Z) = |∇WG(Z)|2 − 3|W (Z)|2, (7)

where the connection and hermitian metric are the Weil-Petersson ones. We only consider
the supersymmetric vacua here, which are the special critical points Z of VG satisfying (1).

3. Critical points and Hessians of holomorphic sections

We see that type IIb flux compactifications involve holomorphic sections of hermitian
holomorphic line bundles over complex manifolds. Thus, counting flux vacua is a problem
in complex geometry. In this section, we provide a short review from [DSZ1, DSZ2].

Let L→M denote a holomorphic line bundle over a complex manifold, and endow L with
a hermitian metric h. In a local frame eL over an open set U ⊂ M , one defines the Kähler
potential K of h by

|eL(Z)|2h = e−K(Z) . (8)
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We write a section s ∈ H0(M,L) locally as s = feL with f ∈ O(U). We further choose local
coordinates z. In this frame and local coordinates, the covariant derivative of a section s
takes the local form

∇s =
m∑
j=1

(
∂f

∂Zj
− f

∂K

∂Zj

)
dZj ⊗ eL =

m∑
j=1

eK
∂

∂Zj

(
e−K f

)
dZj ⊗ eL . (9)

The critical point equation ∇s(Z) = 0 thus reads,

∂f

∂Zj
− f

∂K

∂Zj
= 0.

It is important to observe that although s is holomorphic, ∇s is not, and the critical
point equation is only C∞ and not holomorphic. This is due to the factor ∂K

∂Zj
, which is only

smooth. Connection critical points of s are the same as ordinary critical points of log |s(Z)|h.
Thus, the critical point equation is a system of real equations and the number of critical
points varies with the holomorphic section. It is not a topological invariant, as would be
the number of critical points of m sections in dimension m, even on a compact complex
manifold. This is one reason why counting critical points, hence vacua, is so complicated.

We now consider the Hessian of a section at a critical point. The Hessian of a holomorphic
section s of a general Hermitian holomorphic line bundle (L, h) → M at a critical point Z
is the tensor

D∇W (Z) ∈ T ∗ ⊗ T ∗ ⊗ L

where D is a connection on T ∗ ⊗ L. At a critical point Z, D∇s(Z) is independent of the
choice of connection on T ∗. The Hessian D∇W (Z) at a critical point determines the complex
symmetric matrix Hc (which we call the ‘complex Hessian’). In an adapted local frame (i.e.
holomorphic derivatives vanish at Z0) and in Kähler normal coordinates, it takes the form

Hc :=

(
H ′ H ′′

H ′′ H ′

)
=

(
H ′ −f(Z0)Θ

−f(z0)Θ H ′

)
, (10)

whose components are given by

H ′
jq = (

∂

∂Zj
− ∂K

∂Zj
)(

∂

∂Zq
− ∂K

∂Zq
)f(Z0) , (11)

H ′′
jq = − f

∂2K

∂Zj∂Z̄q

∣∣∣∣
Z0

= −f(Z0)Θjq , Θh(z0) =
∑
j,q

ΘjqdZj ∧ dZ̄q . (12)

Here, Θh(z0) =
∑

j,q ΘjqdZj ∧ dZ̄q is the curvature.

4. The critical point problem

We can now define the critical point equation (1) precisely. We define a supersymmetric
vacuum of the flux superpotential WG corresponding to the flux G of (3) to be a critical
point ∇WPWG(Z) = 0 of WG relative to the Weil-Petersson connection on L.

We obtain a local formula by writing WG(Z) = fG(Z)eZ where eZ is local frame for L → C.
We choose the local frame eZ to be dual to Ωz⊗ωτ , and then fG(z, τ) is given by the formula
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(4). The E component of ∇WP is ∂
∂τ

− 1
τ−τ̄ . The critical point equation is the system:⎧⎨⎩

∫
X

(F − τH) ∧ {∂Ωz

∂zj
+ ∂K

∂zj
Ωz} = 0,∫

X
(F − τ̄H) ∧ Ωz = 0,

(13)

where K is from (6).
Using the special geometry of C ([St3, Can1]), one finds that the critical point equation is

equivalent to the following restriction on the Hodge decomposition of H3(X,C) at z:

∇WPWG(z, τ) = 0 ⇐⇒ F − τH ∈ H2,1
z ⊕H0,3

z . (14)

Here, we recall that each complex structure z ∈ MC gives rise to a Hodge decomposition

H3(X,C) = H3,0
z (X) ⊕H2,1

z (X) ⊕H1,2
z (X) ⊕H0,3

z (X) (15)

into forms of type (p, q). In the case of a CY 3-fold, h3,0 = h0,3 = 1, h1,2 = h2,1 and
b3 = 2 + 2h2,1.

Next, we specify the tadpole constraint. We define the real symmetric bilinear form on
H3(X,C) by

Q(ψ, ϕ) = i3
∫
X

ψ ∧ ϕ̄. (16)

The Hodge-Riemann bilinear relations for a 3-fold say that the form Q is definite in each
Hp,q
z (X) for p+ q = 3 with sign alternating + − +− as one moves left to right in (15). The

tadpole constraint is that

Q[G] = i3
∫
X

G ∧ Ḡ ≤ L. (17)

Here, L is determined by X in a complicated way (it equals χ(Z)/24 where Z is CY 4-fold
which is an elliptic fibration over X/g, where χ(Z) is the Euler characteristic and where g
is an involution of X). Although Q is an indefinite symmetric bilinear form, we see that
Q >> 0 on H2,1

z (X) ⊕H0,3
z for any complex structure z.

We now explain the sense in which we are dealing with a lattice point problem. The
definition of WG makes sense for any G ∈ H3(X,C), so we obtain a real (but not complex)
linear embedding H3(X,C) ⊂ H0(C,L). Let us denote the image by F and call it the
space of complex-valued flux superpotentials with dilaton-axion. The set of WG with G ∈
H3(X,Z ⊕√−1Z) is then a lattice FZ ⊂ F , which we will call the lattice of quantized (or
integral) flux superpotentials.

Each integral flux superpotential WG thus gives rise to a finite set of critical points
Crit(WG) ⊂ C, any of which could be the vacuum state of the universe. Moreover, the
flux G can be any element of H3(X,Z ⊕ √−1Z) satisfying the tadpole constraint (17).
Thus, the set of possible vacua is the union

VacuaL =
⋃

G∈H3(X,Z⊕√−1Z), 0≤Q[G]≤L
Crit(WG). (18)

Our purpose is to count the number of vacua #VacuaL ∩ K in any given compact subset
K ⊂ C.
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More generally, we wish to consider the sums

Nψ(L) =
∑

N∈H3(X,Z⊕√−1Z):Q[N ]≤L
〈CN , ψ〉, (19)

where

〈CN , ψ〉 =
∑

(z,τ):∇N(z,τ)=0

ψ(N, z, τ), (20)

and where ψ is a reasonable function on the incidence relation

I = {(W ; z, τ) ∈ F × C : ∇W (z, τ) = 0}. (21)

We often write Z = (z, τ) ∈ C. Points (W,Z) such that Z is a degenerate critical point of

W cause problems. They belong to the discriminant variety D̃ ⊂ I of singular points of the
projection π : I → F . We note that π−1(W ) = {(W,Z) : Z ∈ Crit(W )}. This number is

constant on each component of F \ D where D = π(D̃) but jumps as we cross over D.
To count critical points in a compact subset K ⊂ C of moduli space, we would put

ψ = χK(z, τ). We often want to exclude degenerate critical points and then use test functions

ψ(W,Z) which are homogeneous of degree 0 in W and vanish on D̃ Another important
example is the cosmological constant ψ(N, z, τ) = VN(z, τ), i.e. the value of the potential at
the vacuum, which is homogeneous of degree 2 in W .

5. Statement of results

We first state an initial estimate which is regarded as ‘trivial’ in lattice counting problems.
In pure lattice point problems it is sharp, but we doubt that it is sharp in the vacuum counting
problem because of the ‘tilting’ of the projection I → C. We denote by χQ the characteristic
function of the hyperbolic shell 0 < QZ [W ] < 1 ⊂ F and by χQZ

the characteristic function
of the elliptic shell 0 < QZ [W ] < 1 ⊂ FZ .

Proposition 5.1. Suppose that ψ(W,Z) = χK where K ⊂ I is an open set with smooth
boundary. Then:

Nψ(L) = Lb3
[∫

C

∫
FZ

ψ(W,Z)| detHcW (Z)|χQZ
dW +RK(L)

]
,

where

(1) If K is disjoint from the D̃, then RK(L) = O
(
L−1/2

)
.

(2) If K is a general compact set (possibly intersecting the discriminant locus), then
RK(L) = O

(
L−1/4

)
Here, HcW (Z) is the complex Hessian of W at the critical point Z in the sense of (10).

We note that the integral converges since {QZ ≤ 1} is an ellipsoid of finite volume. This
is an asymptotic formula which is a good estimate on the number of vacua when L is large
(recall that L is a topological invariant determined by X).

The reason for assumption (1) is that number of critical points and the summand 〈CW , ψ〉
jump across D, so in Nψ(L) we are summing a discontinuous function. This discontinuity
could cause a relatively large error term in the asymptotic counting. However, superpoten-
tials of physical interest have non-degenerate supersymmetric critical points. Their Hessians
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at the critical points are ‘fermionic mass matrices’, which in physics have only non-zero
eigenvalues (masses), so it is reasonable assume that suppψ is disjoint from D.

Now we state the main result.

Theorem 5.2. Suppose ψ(W, z, τ) ∈ C∞
b (F × C) is homogeneous of degree 0 in W , with

ψ(W, z, τ) = 0 for W ∈ D. Then

Nψ(L) = Lb3

[∫
C

∫
Fz,τ

ψ(W, z, τ)| detHcW (z, τ)|χQz,τ (W )dWdVWP (z, τ) +O
(
L
− 2b3

2b3+1

)]
.

Here, b3 = dimH3(X,R), Qz,τ = Q|Fz,τ , and χQz,τ (W ) is the characteristic function of
{Qz,τ ≤ 1} ⊂ Fz,τ . Also C∞

b denotes bounded smooth functions.

There is a simple generalization to homogeneous functions of any degree such as the
cosmological constant. The formula is only the starting point of a number of further versions
which will be presented in §8 in which we ‘push-forward’ the dW integral under the Hessian
map, and then perform an Itzykson-Zuber-Harish-Chandra transformation on the integral.
The latter version gets rid of the absolute value and seems to most useful for numerical
studies. Further, one can use the special geometry of moduli space to simplify the resulting
integral. Before discussing them, we pause to compare our results to the expectations in the
string theory literature.

6. Comparison to the physics literature

The reader following the developments in string theory may have encountered discussions
of the ‘string theory landscape’ (see e.g. [S, BP]). The multitude of superpotentials and
vacua is a problem for the predictivity of string theory. It is possible that a unique vacuum
will distinguish itself in the future, but until then all critical points are candidates for the
small dimensions of the universe, and several groups of physicists are counting or enumerating
them in various models (see e.g. [DD, CQ, DGKT]).

The graph of the scalar potential energy may be visualized as a landscape [S] whose
local minima are the possible vacua. It is common to hear that there are roughly 10500

possible vacua. This heuristic figure appears to originate in the following reasoning: assuming
b3 ∼ 250, the potential energy VG(Z) is a function roughly 500 variables (including fluxes G).
The critical point equation for a function of m variables is a system of m equations. Naively,
the number of solutions should grow like dm where d is the number of solutions of the jth
equation with the other variables held fixed. This would follow from Bézout’s formula if the
function was a polynomial and if we were counting complex zeros. Thus, if the ‘degree’ of
VG were a modest figure of 10 we would obtain the heuristic figure.

Such an exponential growth rate of critical points in the number of variables also arises in
estimates of the number of metastable states (local minima of the Hamiltonian) in the theory
of spin glasses. In fact, an integral similar to that in Theorem 5.2 arises in the formula for
the expected number of local minima of a random spin glass Hamiltonian. Both heuristic
and rigorous calculations lead to an exponential growth rate of the number of local minima
as the number of variables tends to infinity (see e.g. [F] for a mathematical discussion and
references to the literature). The mathematical similarity of the problems at least raises the
question whether the number of string/M vacua should grow exponentially in the number
2b3 of variables (G,Z), i.e. in the ‘topological complexity’ of the Calabi-Yau manifold X.
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Our results do not settle this problem, and indeed it seems to be a difficult question. Here
are some of the difficulties: First, in regard to the Bézout estimate, the naive argument
ignores the fact that the critical point equation is a real C∞ equation, not a holomorphic
one and so the Bézout estimate could be quite inaccurate. Moreover, a flux superpotential
is not a polynomial and it is not clear what ‘degree’ it has, as measured by its number
critical points. In simple examples (see e.g. [AD, DD, DGKT], the superpotentials do not
have many critical points and it is rather the large number of fluxes satisfying the tadpole
constraint which produces the leading term Lb3 . This is why the flux G has to be regarded
as one of the variables if one wants to rescue the naive counting argument. In addition, the
tadpole constraint has a complicated dimensional dependence. It induces a constraint on
the inner integral in Theorem 5.2 to an ellipse in b3 dimensions, and the volume of such a
domain shrinks at the rate 1/(b3)!. Further, the volume of the Calabi-Yau moduli space is
not known, and could be very small. Thus, there are a variety of competing influences on
the growth rate of the number of vacua in b3 which all have a factorial dependence on the
dimension.

To gain a better perspective on these issues, it is important to estimate the integral giving
the leading coefficient and the remainder in Theorem 5.2. The inner integral is essentially
an integral of a homogeneous function of degree b3 over an ellipsoid in b3 dimensions, and
is therefore very sensitive to the size of b3. The full integral over moduli space carries the
additional problem of estimating its volume. Further, one needs to estimate how large L is
for a given X. Without such effective bounds on L, it is not even possible to say whether
any vacua exist which are consistent with known physical quantities such as the cosmological
constant.

7. Sketch of proofs

The proof of Theorem 5.2 is in part an application of a lattice point result to the lattice
of flux superpotentials. In addition, it uses the formalism on the density of critical points
of Gaussian random holomorphic sections in [DSZ1]. The lattice point problem is to study
the distribution of radial projections of lattice points in the shell 0 ≤ Q[G] ≤ L on the
surface Q[G] = 1. Radial projections arise because the critical point equation ∇WG = 0 is
homogeneous in G.

Thus, we consider the model problem: Let Q ⊂ R
n (n ≥ 2) be a smooth, star-shaped set

with 0 ∈ Q◦ and whose boundary has a non-degenerate second fundamental form. Let |X|Q
denote the norm of X ∈ R

n defined by Q = {X ∈ R
n : |X|Q < 1} . In the following, we

denote the large parameter by
√
L to maintain consistency with Theorem 5.2.

Theorem 7.1. [DSZ3] If f is homogeneous of degree 0 and f |∂Q ∈ C∞
0 (∂Q), then

Sf (L) :=
∑

k∈Zn∩√LQ\{0}
f(k) = L

n
2

∫
Q

f dX +O(L
n
2
− n

n+1 ), L→ ∞.

Although we have only stated it for smooth f , the method can be generalized to f |∂Q = χK
where K is a smooth domain in ∂Q [Z2]. However, the remainder then depends on K and
reflects the extent to which projections of lattice points concentrate on ∂K ⊂ ∂Q. The
asymptotics are reminiscent of the the result of van der Corput, Hlawka, Herz and Randol
on the number of lattice points in dilates of a convex set, but as of this time of writing
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we have not located any prior studies of the radial projection problem. Number theorists
have however studied the distribution of lattice points lying exactly on spheres (Linnik,
Pommerenke). We also refer the interested reader to [DO] for a recent article counting
lattice points in certain rational cones using methods of automorphic forms, in particular
L-functions. We thank B. Randol for some discussions of this problem; he has informed the
author that the result can also be extended to more general kinds of surfaces with degenerate
second fundamental forms.

Applying Theorem 7.1 to the string/M problem gives that

Nψ(L) = Lb3
[∫

{Q[W ]≤1}
〈CW , ψ〉 dW +O

(
L
− 2b3

2b3+1

)]
. (22)

We then write (22) as an integral over the incidence relation (21) and change the order of
integration to obtain the leading coefficient∫

{Q[W ]≤1}
〈CW , ψ〉 dW =

∫
C

∫
Fz,τ

ψ(W, z, τ)| detHcW (z, τ)|χQz,τdWdVWP (z, τ) (23)

in Theorem 5.2. Heuristically, the integral on the left side is given by∫
F

∫
C
ψ(W,Z)| detHcW (Z)|δ(∇W (z))χQ(Z)dWdV (Z). (24)

The factor | detHcW (Z)| arises in the pullback of δ under ∇W (Z) for fixed W , since
it weights each term of (20) by 1

|detHcW (Z)| . We obtain the stated form of the integral

in (23) by integrating first in W and using the formula for the pull-back of a δ func-
tion under a linear submersion. That formula also contains another factor 1

detA(Z)
where

A(Z) = ∇Z′
j
∇Z′′

k
ΠZ(Z ′, Z ′′)|Z′=Z′′=Z , where ΠZ is the Szegö kernel of FZ , i.e. the orthogonal

projection onto that subspace. Using special geometry, the matrix turns out to be just I
and hence the determinant is one.

8. Other formulae for the critical point density

In view of the difficulty of estimating the leading term in Theorem 5.2, it is useful to have
alternative expressions. We now state two of them.

The first method is to change variables to the Hessian HcW (Z) under the Hessian map

HZ : SZ → Sym(m,C) ⊕ C, HZ(W ) = HcW (Z), (25)

where m = dim C = h2,1 + 1. It turns out that Hessian map is an isomorphism to a real
b3-dimensional space HZ ⊕ C, where

HZ = spanR

{(
0 ej
etj F j(z)

)
,

(
0 iej
ietj −iF j(z)

)}
j=1,...,h2,1

. (26)

Here, ej is the j-th standard basis element of C
h2,1

and F j(z) ∈ Sym(h2,1,C) is the ma-

trix
(F j

ik(z)
)

whose entries define the so-called ‘Yukawa couplings’ (see [St3, Can1] for the
definition). We define the positive definite operator CZ : HZ → HZ by:

(C−1
Z HZW,HZW ) = QZ(W,W ). (27)

The entries in CZ are quadratic expressions in the F j
ik (see [DSZ3]).
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Theorem 8.1. We have:

Kcrit(Z) = 1
b3! detC′

Z

∫
HZ⊕C

|detH∗H − |x|2I| e−(C−1
Z H,H)+|x|2) dH dx ,

= 1
detC′

Z

∫
HZ⊕C

|detH∗H − |x|2I|χCZ
(H, x)dHdx,

where χCZ
is the characteristic function of the ellipsoid {(CZH,H) + |x|2) ≤ 1}.

Finally, we give formula of Itzykson-Zuber type as in [DSZ2, Lemma 3.1], which is useful
in that it has a fixed domain of integration.

Theorem 8.2. Let ΛZ = CZ ⊕ I on HZ ⊕ C and let PZ denote the orthogonal projection
from Sym(m,C) onto HZ. Then:

Kcrit(Z) = cm lim
ε′→0+

∫
Rm

lim
ε→0+

∫
Rm

∫
U(m)

∆(ξ) ∆(λ) |∏j λj| ei〈ξ,λ〉e−ε|ξ|
2−ε′|λ|2√

det
[
iΛZPZρ(g)∗D̂(ξ)ρ(g) + I

] dg dξ dλ,

where:

• m = h2,1 + 1, cm = (−i)m(m−1)/2

2m π2m
∏m

j=1 j!
;

• ∆(λ) = Πi<j(λi − λj),
• dg is unit mass Haar measure on U(m),

• D̂(ξ) is the Hermitian operator on Sym(m,C) ⊕ C given by

D̂(ξ)
(
(Hjk), x

)
=

((
ξj + ξk

2
Hjk

)
, −

(∑m
q=1 ξq

)
x

)
,

• ρ is the representation of U(m) on Sym(m,C) ⊕ C given by

ρ(g)(H, x) = (gHgt, x) .

• HZ is a real (but not complex) subspace of Sym(m,C).

The proof is similar to the one in [DSZ2], but we sketch the proof here to provide a
published reference. Some care must be taken since the Gaussian integrals are over real but
not complex spaces of complex symmetric matrices.

Proof. We first rewrite the integral in Theorem 8.1 as a Gaussian integral over HZ ⊕ C

(viewed as a real vector space):

Kcrit(Z) =

∫
HZ⊕C

| detH∗H − |x|2I| χ{〈Λ−1
Z H,H〉≤1}dHdx =

πm
√

det ΛZ

b3!
I(Z) ,

where

I(Z) =
1

πm
√

det ΛZ

∫
HZ×C

∣∣det(HH∗ − |x|2I)∣∣ exp
(−〈Λ−1

Z (H, x), (H, x)〉) dHdx . (28)

Here, H is a complex m × m symmetric matrix, so H∗ = H. The inner product in the
exponent is the real part of the Hilbert-Schmidt inner product, 〈A,B〉 = ReTrAB∗.

As in [DSZ2], we rewrite the integral as

I(Z) = lim
ε′→0

lim
ε→0

Iε,ε′(Z) ,
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where Iε,ε′(Z) is the absolutely convergent integral,

Iε,ε′(Z) =
1

(2π)m2πm
√

det Λ

∫
Hm

∫
Hm

∫
HZ×C

|detP | e−εTrΞ∗Ξ−ε′TrP ∗P ei〈Ξ,P−HH∗+|x|2I〉HS

× exp
(−〈Λ−1

Z (H, x), (H, x)〉) dH dx dP dΞ. (29)

Here, Hm denotes the space of all Hermitian matrices of rank m, and 〈, 〉HS is the Hilbert-
Schmidt inner product TrAB∗. Formula 29 is valid, since as ε→ 0, the dΞ integral converges
to the delta function δHH∗−|x|2I(P ). Then, as ε′ → 0, the dP integral evaluates the integrand
at P = HH∗ − |x|2I and we retrieve the original integral I(Z).

By the same manipulations as in [DSZ2], we obtain:

Iε,ε′(Z) =
(−i)m(m−1)/2

(2π)m(
∏m

j=1 j!)π
m
√

det ΛZ

∫
U(m)

∫
HZ×C

∫
Rm

∫
Rm

∆(λ)∆(ξ) |det(D(λ))|

× ei〈λ,ξ〉e−ε(|ξ|
2+|λ|2)ei〈D(ξ),|x|2I−gHH∗g∗〉HS−〈Λ−1(H,x),(H,x)〉 dξ dλ dH dx dg . (30)

Further we observe that the dHdx integral is a Gaussian integral. Simplifying the phase as
in [DSZ2] using

〈D(ξ), gHH∗g∗−|x|2I〉HS = Tr(D(ξ)gHgtḡH∗g∗)−TrD(ξ) |x|2 =
〈
D̂(ξ)ρ(g)(H, x), ρ(g)(H, x)

〉
HS

where D̂(ξ) and ρ(g) are as in the statement of the theorem, the HZ × C integral becomes

Iξ,g(Z) :=

∫
HZ×C

exp
[− i

〈
D̂(ξ)ρ(g)(H, x), ρ(g)(H, x)

〉
HS

− 〈Λ−1
Z (H, x), (H, x)〉] dH dx.

(31)
The only new points in the calculation are that this Gaussian integral is over the Hessian
space HZ rather than over the full space of complex symmetric matrices of this rank, and
that it is a real subspace a complex vector space. Hence the Gaussian integral is a real one
albeit with a complex quadratic form. We denote by PZ the orthogonal projection

PZ : Sym(m,C) → HZ

and then we have:

1

πm
√

det ΛZ

Iξ,g(Z) =
1√

det ΛZ

1√
det[iPZρ(g)∗D̂(ξ)ρ(g) + Λ−1

Z ]

=
1√

det
[
iΛZPZρ(g)∗D̂(ξ)ρ(g) + Im

] . (32)

Substituting (32) into (30), we obtain the desired formula. We now recall that Λ = C ′ ⊕ 1.
It follows that

ΛZPZρ(g)∗D̂(ξ)ρ(g) + Im = (C ′
ZPZρ(g)∗D(ξ)ρ(g) + Ih21) ⊕ (1 −

m∑
q=1

ξq),
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where

D(ξ)(Hjk)
)

=

(
ξj + ξk

2
Hjk

)
.

Hence, its determinant equals

(1 −
h21∑
q=1

ξq) det(C ′
ZPZρ(g)∗D(ξ)ρ(g) + Ih21).

�

9. Black hole attractors

We close this survey with a discussion of a simpler problem analogous to counting flux
vacua that arises in the quantum gravity of black holes [St, FGK], namely counting solutions
of the black-hole attractor equation. For a mathematical introduction to this equation, we
refer the reader to [MM]. The attractor equation is the same as the critical point equation for
flux superpotentials except that C = M and G ∈ H3(X,R). Physically, Nψ(S) counts the
so-called duality-inequivalent, regular, spherically symmetric BPS black holes with entropy
S ≤ S∗. The charge of a black hole is an element Q = NαΣα ∈ H3(X,Z). The central charge
Z = 〈Q,Ω〉 plays the role of the superpotential.

There are two main differences to the vacuum counting problems for flux superpotentials.
First, the reality of the flux G in the black-hole attractor equation ∇WG(z) = 0 forces
G ∈ H3,0

z ⊕ H0,3
z rather than G ∈ H2,1

z ⊕ H0,3
z as in the flux vacua equation. The space

H3,0 ⊕ H0,3 is only 2-dimensional and that drastically simplifies the problem. Second, by
a well-known computation due to Strominger, the Hessian D∇G(z) of |Z|2 at a critical
point is always a scalar multiple xΘ of the curvature form of the line bundle, which is the
Weil-Petersson (1, 1) form.

We now state the analogue of Theorem 8.1 in the black hole attractor case (see also [DD]).
The new feature is that the image of Hessian map from the space Sz of WG with a critical
point at z is the one-dimensional space of Hessians of the form(

0 −xΘ
−xΘ 0

)
, (33)

and hence the pushforward under the Hessian map truly simplifies the integral in Theorem
8.1. The formula for the black-hole density becomes

Kcrit
γ,∇(z) =

∫
C

|x|2b3χQz(x)dx.

We note that the difficult absolute value in Theorem 8.1 simplifies to a perfect square in
the black hole density formula and can therefore be evaluated as a Gaussian integral. Addi-
tionally, the one-dimensionality of the space of Hessians has removed the complexity of the
b3-dimensional integral in the flux vacuum setting.

We can further simplify the integral by removing Qz, which is a scalar multiple of the
Euclidean |x|2. The scalar multiple involves the orthogonal projection ΠSz(z, w) onto the
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space of Sz for the inner product Qz. If we change variables x→ √
ΠSz(z, z), we get

Kcrit
γ,∇(z) = |ΠSz(z, z)|

∫
C

|x|2b3e−〈x,x〉dx.

In Kähler normal coordinates, use of special geometry shows that Πz(z, z) = 1. A simple
calculation shows:

Proposition 9.1. The density of extremal black holes is given by:

Kcrit
γ,∇(z) =

1

b3
dVWP =⇒ Nψ(L) ∼ Lb3V olWP (M).

The analogy between the black hole density and flux vacuum critical point density should
be taken with some caution since the simplifying features are likely to have over-simplified
the problem. We therefore mention another modified flux vacuum problem in which the
off-diagonal entries xΘ of the Hessian matrix vanish, so that the Hessian matrix is purely
holomorphic and |detH∗H − |x|2Θ| = |detH∗H| again becomes a perfect square which can
be evaluated by the Wick method. Namely, if one uses a flat meromorphic connection
∇ rather than the Weil-Petersson connection, the curvature vanishes away from the polar
divisor. The Weil-Petersson connection arises naturally in string/M theory [CHSW], but
one may view a meromorphic connection as an approximation in which the ‘Planck mass’
is infinitely large. In any case, it would be interesting to evaluate the density of critical
points relative to meromorphic connections since they are more calculable and should have
the same complexity as those for Weil-Petersson connections.
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