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Asymptotics of polynomials and

eigenfunctions

S. Zelditch∗

Abstract

We review some recent results on asymptotic properties of polynomials of
large degree, of general holomorphic sections of high powers of positive line
bundles over Kähler manifolds, and of Laplace eigenfunctions of large eigen-
value on compact Riemannian manifolds. We describe statistical patterns in
the zeros, critical points and Lp norms of random polynomials and holomor-
phic sections, and the influence of the Newton polytope on these patterns.
For eigenfunctions, we discuss Lp norms and mass concentration of individual
eigenfunctions and their relation to dynamics of the geodesic flow.
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1. Introduction

In many measures of ‘complexity’, eigenfunctions
√

∆ϕλ = λϕλ of first order el-
liptic operators behave like polynomials p(x) =

∑
|α|≤x cαxα of degree N ∼ λ [6].

The basic example we have in mind is the Laplacian ∆ on a compact Riemannian
manifold (M, g), but the same is true of Schroedinger operators. The comparison
is more than an analogy, since polynomials of degree N are eigenfunctions of a first
order elliptic system.

The comparison between eigenfunctions and polynomials is an essentially local
one, most accurate on small balls B(x0,

1
λ ). Globally, eigenfunctions reflect the

dynamics of the geodesic flow Gt on the unit (co-)tangent bundle S∗M . This is one
of the principal themes of quantum chaos.
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In this article, we review some recent results on the asymptotics of polynomials
and eigenfunctions, concentrating on our work in collaboration with P. Bleher, A.
Hassell, B. Shiffman, C. Sogge, J. Toth and M. Zworski. A unifying feature is the
asymptotic properties of reproducing kernels, namely Szegö kernels ΠN (z, w) in the
case of polynomials, and spectral projections Eλ(x, y) for intervals [λ, λ + 1] in the
case of eigenfunctions of

√
∆. For other recent expository articles, see [9, 26].

2. Polynomials

There are several sources of interest in random polynomials. One is the desire
to understand typical properties of real and complex algebraic varieties, and how
they depend on the coefficients of the defining equations. Another is their use as a
model for the local behavior of more general eigenfunctions. A third is that they
may be viewed as the eigenvectors of random matrices. Just as random matrices
model the spectra of ‘quantum chaotic’ systems, so random polynomials model their
eigenfunctions.

2.1. SU(m+1) polynomials on CPm and holomorphic sections

Complex polynomials of degree ≤ p in m variables form the vector space

Pm
p := {f(z1, . . . , zm) =

∑

α∈Nm:|α|≤p

cαzα1
1 · · · zαm

m , cα ∈ C} .

To put a probability measure on Pm
p is to regard the coefficients cα as random

variables. The simplest measures are Gaussian measures corresponding to inner
products on Pm

p . By homogenizing f to F (z0, z1, · · · , zm) of degree p, we may
identify Pm

p with the space H0(CPm,O(p)) of holomorphic sections of the pth power
of the hyperplane bundle. It carries the standard SU(m + 1)-invariant Fubini-
Study inner product 〈F1, F̄2〉FS =

∫
S2m+1 F1F̄2 dσ , where dσ is Haar measure on

the (2m + 1)-sphere S2m+1. An orthonormal basis of H0(CPm,O(p)) is given by
{ zα

||zα||F S
}. The corresponding SU(m + 1)-invariant Gaussian measure γδ is defined

by

dγδ(s) =
1

πkp
e−|λ|

2
dλ, s =

∑

|α|≤p

λα
zα

||zα||FS
.

Thus, the coefficients λα are independent complex Gaussian random variables with
mean zero and variance one.

More generally, we can define Gaussian ensembles of holomorphic sections
H0(M, LN ) of powers of a positive line bundle over any Kähler manifold (M, ω).
Endowing L with the unique hermitian metric h of curvature form ω, we induce
an inner product 〈, 〉 on H0(M, LN ) and a Gaussian measure γN . We denote the
unit sphere in H0(M, LN ) relative to this inner product by SH0(M,LN ). The Haar
measure on SH0(M, LN ) will be denoted µN . It is closely related to the Gaussian
measure.
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2.2. Zeros

The problems we discuss in this section involve the geometry of zeros of sections
s ∈ H0(M, LN ) of general positive line bundles. There is a similar story for critical
points.

• Problem 1: How are the simultaneous zeros Zs = {z : s1(z) = · · · = sk(z) =
0} of a k-tuple s = (s1, . . . , sk) of typical holomorphic sections distributed?

• Problem 2 How are the zeros correlated? When k = m, the simultaneous
zeros form a discrete set. Do zeros repel each other like charged particles? Or
behave independently like particles of an ideal gas? Or attract like gravitating
particles?

By the distribution of zeros we mean either the current of integration over Zs or
more simply the Riemannian (2m−2k)-volume measure (|Zs|, ϕ) =

∫
Zs

ϕdVol2m−2k .
By the n-point zero correlation functions, we mean the generalized functions

KN
nk(z1, . . . , zn)dz = E|Zs|n,

where |Zs|n denotes the product of the measures |Zs| on the punctured product
Mn = {(z1, . . . , zn) ∈ M × · · · ×M : zp 6= zq for p 6= q} and where dz denotes the
product volume form on Mn.

The answer to Problem 1 is that zeros almost surely become uniformly dis-
tributed relative to the curvature ω of the line bundle [18]. Curvature causes sec-
tions to oscillate more rapidly and hence to vanish more often. More precisely, we
consider the space S =

∏∞
N=1 SH0(M,LN ) of random sequences, equipped with

the product measure measure µ =
∏∞

N=1 µN . An element in S will be denoted
s = {sN}. Then, 1

N Zs → ω, as N →∞ for almost every s.
The answer to Problem 2 is more subtle: it depends on the dimension. We

assume k = m so that almost surely the simultaneous zeros of the k-tuple of sections
form a discrete set. We find that these zeros behave almost independently if they
are of distance ≥ D√

N
apart for D À 1. So they only interact on distance scales

of size 1√
N

. Since also the density of zeros in a unit ball B1(z0) around z0 grows

like Nm, we rescale the zeros in the 1/
√

N -ball B1/
√

N (z0) by a factor of
√

N to
get configurations of zeros with a constant density as N →∞. We thus rescale the
correlation functions and take the scaling limits

K̃∞
nkm(z1, . . . , zn) = lim

N→∞
KN

1k(z0)−nKN
nk(z0 +

z1

√
N

, . . . , z0 +
zn

√
N

) . (2.1)

In [1], we proved that the scaling limits of these correlation functions were univer-
sal, i.e. independent of M, L, ω, h. They depend only on the dimension m of the
manifold and the codimension k of the zero set.

In [?], we found explicit formulae for these universal scaling limits. In the case
n = 2, K̃∞

2km(z1, z2), depends only on the distance between the points z1, z2, since
it is universal and hence invariant under rigid motions. Hence it may be written as:

K̃∞
2km(z1, z2) = κkm(|z1 − z2|) . (2.2)

We refer to [1] for details.
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Theorem 1 [?] The pair correlation functions of zeros when k = m are given by

κmm(r) =





m+1
4 r4−2m + O(r8−2m) , as r → 0

1 + O(e−Cr2
), (C > 0) as r →∞.

(2.3)

When m = 1, κmm(r) → 0 as r → 0 and one has “zero repulsion.” When
m = 2, κmm(r) → 3/4 as r → 0 and one has a kind of neutrality. With m ≥ 3,
κmm(r) ↗ ∞ as r → 0 and there is some kind of attraction between zeros. More
precisely, in dimensions greater than 2, one is more likely to find a zero at a small
distance r from another zero than at a small distance r from a given point; i.e.,
zeros tend to clump together in high dimensions.

One can understand this dimensional dependence heuristically in terms of
the geometry of the discriminant varieties Dm

N ⊂ H0(M, LN )m of systems S =
(s1, . . . , sm) of m sections with a ‘double zero’. The ‘separation number’ sep(F )
of a system is the minimal distance between a pair of its zeros. Since the nearest
element of Dm

N to F is likely to have a simple double zero, one expects: sep(F ) ∼√
dist(F,Dm

N ). Now,the degree of Dm
N is approximately Nm. Hence, the tube (Dm

N )ε

of radius ε contains a volume ∼ ε2Nm. When ε ∼ N−m/2, the tube should cover
PH0(M, LN ). Hence, any section should have a pair of zeros whose separation is
∼ N−m/4 apart. It is clear that this separation is larger than, equal to or less than
N−1/2 accordingly as m = 1,m = 2,m ≥ 3.

2.3. Bergman-Szegö kernels

A key object in the proof of these results is the Bergman-Szegö kernel ΠN (x, y), i.e.
the kernel of the orthogonal projection onto H0(M, LN ) with respect to the Kähler
form ω. For instance, the expected distribution of zeros is given by EN (Zf ) =√−1
2π ∂∂̄ log ΠN (z, z) + ω. Of even greater use is the joint probability distribu-

tion (JPD) DN (x1, . . . , xn; ξ1, . . . , ξn; z1, . . . , zn) of the random variables xj(s) =
s(zj), ξj(s) = ∇s(zj), which may be expressed in terms of ΠN and its deriva-
tives. In turn, the correlation functions may be expressed in terms of the JPD by
KN (z1, . . . , zn) =

∫
DN (0, ξ, z)

∏n
j=1

(‖ξj‖2dξj
)
dξ [1].

The scaling asymptotics of the correlation functions then reduce to scaling
asymptotics of the Bergman-Szegö kernel: In normal coordinates {zj} at P0 ∈ M
and in a ‘preferred’ local frame for L, we have [1]:

πm

Nm ΠN (P0 + u√
N

, θ
N ;P0 + v√

N
, ϕ

N ) ∼ ei(θ−ϕ)+u·v̄− 1
2 (|u|2+|v|2)

[
1 + b1(u, v)N− 1

2 + · · ·
]
.

To be precise, ΠN is the natural lift of the kernel as an equivariant kernel on the
boundary ∂D∗ of the unit (co-) disc bundle of L∗. Note that ei(θ−ϕ)+u·v̄− 1

2 (|u|2+|v|2)

is the Bergman-Szegö kernel of the Heisenberg group. These asymptotics use the
Boutet de Monvel -Sjostrand parametrix for the Bergman-Szegö kernel [4], as ap-
plied in [29] to the Fourier coefficients of the kernel on powers of positive line
bundles.
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2.4. Polynomials with fixed Newton polytope

The well-known Bernstein-Kouchnirenko theorem states that the number of simul-
taneous zeros of (a generic family of) m polynomials with Newton polytope P equals
m!V ol(P ). Recall that the Newton polytope Pf of a polynomial is the convex hull
of its support Sf = {α ∈ Zm : cα 6= 0}. Using the homogenization map f → F , the
space of polynomials f whose Newton polytope Pf contained in P may be identified
with a subspace

H0(CPm,O(p), P ) = {F ∈ H0(CPm,O(p)) : Pf ⊂ P} (2.4)

of H0(CPm,O(p)).
The problem we address in this section is:

• Problem 3: How does the Newton polytope influence on the distribution of
zeros of polynomials?

Again, one could ask the same question about L2 mass, critical points and so
on and obtain a similar story. In [19] we explore this influence in a statistical and
asymptotic sense. The main theme is that for each property of polynomials under
study, P gives rise to classically allowed regions where the behavior is the same as
if no condition were placed on the polynomials, and classically forbidden regions
where the behavior is exotic.

Let us define these terms. If P ⊂ Rm
+ is a convex integral polytope, then the

classically allowed region for polynomials in H0(CPm,O(p), P ) is the set

AP := µ−1
Σ

(
1
p
P ◦

)
⊂ C∗m

(where P ◦ denotes the interior of P ), and the classically forbidden region is its
complement C∗m \AP . Here, µΣ(z) =

(
|z1|2

1+‖z‖2 , . . . , |zm|2
1+‖z‖2

)
is the moment map of

CPm.
The result alluded to above is statistical. Since we view the polytope P of

degree p as placing a condition on the Gaussian ensemble of SU(P ) polynomials
of degree p, we endow H0(CPm,O(p), P ) with the conditional probability measure
γδ|P :

dγδ|P (s) =
1

π#P
e−|λ|

2
dλ, s =

∑

α∈P

λα
zα

‖zα‖ , (2.5)

where the coefficients λα are again independent complex Gaussian random variables
with mean zero and variance one.

Our simplest result concerns the the expected density E|P (Zf1,...,fm) of the
simultaneous zeros of (f1, . . . , fm) chosen independently from H0(CPm,O(p), P ).
It is the measure on C∗m given by

E|P (Zf1,...,fm)(U) =
∫

dγp|P (f1) · · ·
∫

dγp|P (fm)
[
#{z ∈ U : f1(z) = · · · = fm(z) = 0}] ,

(2.6)
for U ⊂ C∗m, where the integrals are over H0(CPm,O(p), P ). We will determine
the asymptotics of the expected density as the polytope is dilated P → NP,N ∈ N.
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Theorem 2 [19] Suppose that P is a simple polytope in Rm. Then, as P is dilated
to NP ,

1
(Nδ)m

E|NP (Zf1,...,fm
) →





ωm
FS on AP

0 on C∗m \ AP

,

in the distribution sense; i.e., for any open U ⊂ C∗m, we have

1
(Nδ)m

E|NP

(
#{z ∈ U : f1(z) = · · · = fm(z) = 0}) → m!VolCPm(U ∩ AP ) .

There are also results for k < m polynomials. The distribution of zeros is ωk
FS

in AP as if there were no constraint, while there is an exotic distribution in C∗m \
AP which depends on the exponentially decaying asymptotics of the conditional
Bergman- Szegö kernel

Π|NP (z, w) =
∑

α∈NP

zαwα

||zα||FS ||wα||FS
,

i.e. the orthogonal projection onto the subspace (2.4). It is obtained by sifting
out terms in the (elementary) Szegö projector of H0(CPm,O(pN)) using the poly-
tope character χNP (eiϕ) =

∑
α∈NP ei〈α,ϕ〉. To obtain asymptotics in the forbidden

region, we write χNP (eiϕ) =
∫

MP
ΠMP

N (eiϕw,w)dV (w), where ΠMP is Bergman-
Szegö kernel of the toric variety MP associated to P . We then make an explicit
construction of ΠMP

N as a complex oscillatory integral. An alternative is to express
χNP as a Todd derivative of an exponential integral over P (following works of
Khovanskii-Pukhlikov, Brion-Vergne and Guillemin). We thus obtain a complex
oscillatory integral formula for Π|NP (z, w). To obtain asymptotics in the forbid-
den region we carefully deform the contour into the complex and apply a complex
stationary phase method.

Although we only discuss expected behavior of zeros here, the distribution of
zeros is self-averaging: i.e., almost all polynomials exhibit the expected behavior in
an asymptotic sense. We also expect similar results for critical points.

3. Eigenfunctions

We now turn to the eigenvalue problem ∆gϕν = λ2
νϕν , 〈ϕν , ϕν′〉 = δνν′ on a

compact Riemannian manifold (M, g). We denote the λ-eigenspace by Vλ. The role
of the Szegö kernel is now played by the kernel Eλ(x, y) =

∑
λν≤λ ϕν(x)ϕν(y) of

the spectral projections.

3.1. Lp bounds

Our first concern is with Lp norms of L2-normalized eigenfunctions. We measure
the growth rate of Lp norms by Lp(λ, g) = supϕ∈Vλ:||ϕ||L2=1 ||ϕ||Lp . By the local
Weyl law, Eλ(x, x) =

∑
λν≤λ |ϕν(x)|2 = (2π)−n

∫
|ξ|≤λ

dξ + O(λn−1), it follows that
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L∞(λ, g) = 0(λ
n−1

2 ) on any compact Riemannian manifold. This bound, which is
based entirely on a local analysis, is sharp in the case of the standard round sphere,
Sn or on any rotationally invariant metric on S2, but is far off in the case of flat
tori. This motivates:

• Problem 5 For which (M, g) is this estimate sharp? Which (M, g) are ex-
tremal for growth rates of ||ϕλ||p, both maximal and minimal? What if M
has a boundary? What is the expected Lp norm of a ‘random’ L2-normalized
polynomial or eigenfunction?

In [20], we give a necessary condition for maximal eigenfunction growth: there
must exist a point x ∈ M for which the set Lx = {ξ ∈ S∗xM : ∃T : expx Tξ = x} of
directions of geodesic loops at x has positive surface measure.

Theorem 3 [20] If Lx has measure 0 in S∗xM for every x ∈ M then

Lp(λ, g) = o(λδ(p)), p > 2(n+1)
n−1 δ(p) =

{
n(1

2 − 1
p )− 1

2 , 2(n+1)
n−1 ≤ p ≤ ∞

n−1
2 (1

2 − 1
p ), 2 ≤ p ≤ 2(n+1)

n−1 .

(3.1)

The Lp-bounds O(λδ(p)) were proved by Sogge to hold for all (M, g).
We further prove:

Theorem 4 [20] (see also [17]) Suppose that (M, g) is:

• Real analytic and that L∞(λ, g) = Ω(λ(n−1)/2). Then (M, g) is a Y m
` -

manifold, i.e. ∃m such that all geodesics issuing from the point m return to
m at time `. In particular, if dim M = 2, then M is topologically a 2-sphere
S2 or a real projective plane RP 2.

• Generic. Then L∞(λ, g) = o(λ(n−1)/2).

Here, Ω(λ
n−1

2 ) means O(λ
n−1

2 ) but not o(λ
n−1

2 ). The generic result holds because
Lx has measure 0 in S∗xM for all x ∈ M for a residual set of metrics.

In the case of random polynomials, or random combinations of eigenfunctions
in short spectral intervals, the almost sure growth of L∞ norms is O(

√
log N) while

the Lp norms for p < ∞ are bounded. This was proved by J. Vanderkam [24] for
Sm, Nonnenmacher-Voros [14] for elliptic curves and Shiffman-Zelditch (to appear)
for the general case using Levy concentration of measure estimates.

3.2. Integrable case

Results on minimal growth have been obtained by J. A. Toth and the author in
the quantum completely integrable case, where

√
∆ = P1 commutes with n− 1 first

order pseudodifferential operators P2, . . . , Pn ∈ Ψ1(M) (n = dim M) satisfying
[Pi, Pj ] = 0 and whose symbols define a moment map P := (p1, . . . , pn) satisfying
dp1 ∧ dp2 ∧ · · · ∧ dpn 6= 0 on a dense open set Ω ⊂ T ∗M − 0. Since {pi, pj} = 0, the
functions p1, . . . , pn generate a homogeneous Hamiltonian Rn-action whose orbits
foliate T ∗M − 0. We refer to this foliation as the Liouville foliation.
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We consider the Lp norms of the L2-normalized joint eigenfunctions Pjϕλ =
λjϕλ. The spectrum of ∆ often has bounded multiplicity, so the behaviour of joint
eigenfunctions has implications for all eigenfunctions.

Theorem 5 [22, 23] Suppose that the Laplacian ∆g of (M, g) is quantum com-
pletely integrable and that the joint eigenfunctions have uniformly bounded L∞

norms. Then (M, g) is a flat torus.

This is a kind of quantum analogue of the ‘Hopf conjecture’ (proved by Burago-
Ivanov) that metrics on tori without conjugate points are flat. In [23], a quantitative
improvement is given under a further non-degeneracy assumption. Unless (M, g) is
a flat torus, the Liouville foliation must possess a singular leaf of dimension < n.
Let ` denote the minimum dimension of the leaves. We then construct a sequence
of eigenfunctions satisfying:

‖ϕk‖L∞ ≥ C(ε)λ
n−`
4 −ε

k , ‖ϕk‖Lp ≥ C(ε)λ
(n−`)(p−2)

4p −ε

k , (2 < p)

for any ε > 0. It is easy to construct examples were ` = n−1, but it seems plausible
that in ‘many’ cases ` = 1. To investigate this, one would study the boundary faces
of the image P(T ∗M − 0) of T ∗M − 0 under a homogeneous moment map. For a
related study in the case of torus actions, see Lerman-Shirokova [12].

3.3. Quantum ergodicity

Quantum ergodicity is concerned with the sums (A ∈ Ψ0(M)):

Sp(λ) =
∑

ν:λν≤λ

|〈Aϕν , ϕν〉 − ω(A)|p, ω(A) =
1

V ol(S∗M)

∫

S∗M

σAdµ. (3.2)

In work of A.I. Schnirelman [11], Colin de Verdiere and the author [27], it is
shown that Sp(λ) = o(N(λ)) if Gt is ergodic. In the author’s view [27], this is best
viewed as a convexity theorem. We mention briefly some new results.

In work of Gerard-Leichtnam [7] and Zelditch-Zworski [30], the ergodicity re-
sult was extended to domains ∂Ω with piecewise smooth boundary and ergodic
billiard flow. Since the billiard map on B∗∂Ω is ergodic whenever the billiard flow
is, suitable boundary values of ergodic eigenfunctions (e.g. ϕk|∂Ω in the Neumann
case or ∂νϕk|∂Ω in the Dirichlet case) should also have the ergodic property. This
was conjectured by S. Ozawa in 1993. A proof is given in our work with A. Has-
sell [8] for convex piecewise smooth domains with ergodic billiards (in the case of
domains with Lipschitz normal and with Dirichlet boundary conditions, this had
earlier been proved in [7] by a different method).

Little is known about the rate of decay. For sufficiently chaotic systems
(satisfying the central limit theorem) one can get the tiny improvement Sp(λ) =
O(N(λ)/(log λ)p)) [28]. The asymptotics S2(λ) ∼ B(A)λ have recently been ob-
tained by Luo-Sarnak [13] for Hecke eigenfunctions of the modular group, exploiting
the connections with L-functions. These asymptotics (though not the coefficient)
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are predicted by the random polynomial model. Other strong bounds in the arith-
metic case were obtained by Kurlberg-Rudnick for eigenfunctions of certain quan-
tized torus automorphisms [10]. Bourgain-Lindenstrauss [3] and Wolpert [25] have
developed the ’non-scarring’ result of [16] to give entropy estimates of possible
quantum limit measures in arithmetic cases.

A natural problem is the converse:

• Problem 6: What can be said of the dynamics if Sp(λ) = o(N(λ))? Does
quantum ergodicity imply classical ergodicity?

It is known that classical ergodicity is equivalent to this bound plus estimates
on off-diagonal terms [21]. The existence of KAM quasimodes (due to Lazutkin
[11], Colin de Verdiere [5], and Popov [15]) makes it very likely that KAM systems
are not quantum ergodic, nor are (M, g) which have stable elliptic orbits.

A further problem which may be accessible is:

• Problem 7: How are the nodal sets {ϕν = 0} distributed in the limit ν →∞?

In [14] (for elliptic curves) and [19] (general Kähler manifolds) it is proved that
the complex zeros of quantum ergodic eigenfunctions become uniformly distributed
relative to the volume form. Can one prove an analogue for the real zeros?
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