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Focus of talk

• Geometric aspects of random polynomials,

sections, analytic functions of one variable

: Gaussian measure induced from Hermi-

tian metrics on a line bundle. Curvature

influence on zeros. Bergman metrics and

conformal (bi-holomorphic) invariance of zero

point processes.

• Large N : large degree, fewnonmial num-

ber, inverse distance to boundary... Asymp-

totics problem: how do zeros and critical

points behave as the “complexity” N of a

random function increases?

• Szegö and Bergman kernels and their asymp-

totics.
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Random polynomials of one vari-
able

A polynomial of degree N in one complex vari-

able is:

f(z) =
N∑
j=1

cjz
j, cj ∈ C

is specified by its coefficients {cj}.

A ‘random’ polynomial is short for a probability

measure P on the coefficients. Let

P(1)
N = {∑Nj=1 cjz

j, (c1, . . . , cN) ∈ CN}

� CN.

Endow CN with probability measure dP .

We call (P(1)
N , P ) an ‘ensemble’ of random poly-

nomials.
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Kac polynomials

The simplest complex random polynomial is

the ‘Kac polynomial’

f(z) =
N∑
j=1

cjz
j

where the coefficients cj are independent com-

plex Gaussian random variables of mean zero

and variance one. Complex Gaussian:

E (cj) = 0 = E(cjck), E(cjc̄k) = δjk.

This defines a Gaussian measure γKAC on P(1)
N :

dγKAC(f) = e−|c|2/2dc.
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Expected distribution of zeros

The distribution of zeros of a polynomial of de-

gree N is the probability measure on C defined

by

Zf =
1

N

∑
z:f(z)=0

δz,

where δz is the Dirac delta-function at z.

Definition: The expected distribution of ze-

ros of random polynomials of degree N with

measure P is the probability measure E PZf on

C defined by

〈E PZf, ϕ〉 =
∫
P(1)
N

{ 1

N

∑
z:f(z)=0

ϕ(z)}dP (f),

for ϕ ∈ Cc(C).
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How are zeros of complex Kac poly-
nomials distributed?

Complex zeros concentrate in small annuli around

the unit circle S1. In the limit as the degree

N → ∞, the zeros asymptotically concentrate

exactly on S1:

Theorem 1 (Kac-Hammersley-Shepp-Vanderbei)

The expected distribution of zeros of polyno-

mials of degree N in the Kac ensemble has the

asymptotics:

ENKAC(ZNf ) → δS1 as N → ∞ ,

where (δS1, ϕ) := 1
2π

∫
S1 ϕ(eiθ) dθ.

6



Why the unit circle?

Do zeros of polynomials really tend to concen-

trate on S1?

Answer: yes, for the polynomials which domi-

nate the Kac measure dγNKAC. (Obviously no

for general polynomials)

The Kac-Hammersley-Shepp-Vanderbei mea-

sure γNKCA weights polynomials with zeros near

S1 more than other polynomials.

It did this by an implicit choice of inner product

on P(1)
N .
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Gaussian measure and inner prod-
uct

Choice of Gaussian measure on a vector space

H = choice of inner product on H.

The inner product induces an orthonormal ba-

sis {Sj}. The associated Gaussian measure dγ

corresponds to random orthogonal sums

S =
d∑

j=1

cjSj,

where {cj} are independent complex normal

random variables.

The inner product underlying the Kac mea-

sure on P(1)
N makes the basis {zj} orthonor-

mal. Namely, they were orthonormalized on

S1. And that is where the zeros concentrated.
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Gaussian random polynomials adapted
to domains

If we orthonormalize polynomials on the bound-

ary ∂Ω of any simply connected, bounded do-

main Ω ⊂ C, the zeros of the associated ran-

dom polynomials concentrate on ∂Ω.

I.e. define the inner product on P(1)
N by

〈f, ḡ〉∂Ω :=
∫
∂Ω

f(z)g(z) |dz| .

Let γN∂Ω = the Gaussian measure induced by

〈f, ḡ〉∂Ω and say that the Gaussian measure is

adapted to Ω.

How do zeros of random polynomials adapted

to Ω concentrate?
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Equilibrium distribution of zeros

Denote the expectation relative to the ensem-

ble (PN, γN∂Ω) by EN∂Ω.

Theorem 2

EN∂Ω(ZNf ) = νΩ +O (1/N) ,

where νΩ is the equilibrium measure of Ω̄.

The equilibrium measure of a compact set K

is the unique probability measure dνK which

minimizes the energy

E(µ) = −
∫
K

∫
K

log |z − w| dµ(z) dµ(w).

Thus, in the limit as the degree N → ∞, ran-

dom polynomials adapted to Ω act like electric

charges in Ω.
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Szegö kernels

Let Ω ⊂ C be a smooth bounded domain. The

Szegö kernel of Ω with respect to a measure

ρds on ∂Ω is the orthogonal projection

(1) S : L2(∂Ω, ρds) → H2(∂Ω, ρds)

onto the Hardy space of boundary values of

holomorphic functions in Ω which belong to

L2(∂Ω, ds). The Schwartz kernel of S is de-

noted S(z, w).
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Szegö kernels in terms of orthonor-
mal basis Let

{Pj(z) = aj0 + aj1z + · · · + ajjz
j}

be the orthonormal basis of orthogonal poly-

nomials for L2(∂Ω, ρds) obtained by applying

Gram-Schmidt to {1, z, z2, . . . , zj, . . . }. We have

(2) S(z, w) =
∞∑
k=0

Pk(z)Pk(w), (z, w) ∈ Ω × Ω

S(z, z) < ∞ for z ∈ Ω, and thus PN → 0 on Ω.

Hence,

SN(z, z) → S(z, z), uniformly on compact subsets of

where SN(z, w) =
∑N
k=0 Pk(z)Pk(w) is the par-

tial Szegö kernel
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Szegö kernel of unit disc

In the case of the unit disc U (with the weight

ρ ≡ 1), one has:

SU(z, w) =
1

2π(1 − zw̄)
.

The orthogonal polynomials are Pk(z) = zk,

hence

(3)

|PN(z)|2 = |z|2N, SUN(z, z) =
N−1∑
k=0

|z|2k =
1 − |z|2N
1 − |z|2 .

Clearly, SN(z, z) → ∞ at an exponential rate in

the exterior of Ω.
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Bergman kernels

When the inner product is chosen to be 〈f, ḡ〉Ω =∫
Ω fḡ dx dy, the role of the Szegö kernel is played

by the Bergman kernel, i.e. the orthogonal

projection from L2(Ω) onto the subspace H2(Ω)

spanned by the L2 holomorphic functions. We

denote by

{Pj(z) = aj0 + aj1z + · · · + ajjz
j}

the orthonormal basis of orthogonal polynomi-

als for L2(Ω, dxdy) with positive leading coef-

ficient. The Bergman kernel may be expressed

in terms of the orthogonal polynomials by:

(4)

B(z, w) =
∞∑
k=0

Pk(z)Pk(w) , (z, w) ∈ Ω × Ω.

We let BN(z, w) =
∑N
k=0 Pk(z)Pk(w); as in the

case of the Szegö kernel, we have

Bn(z, w) → B(z, w) , B(z, z) > 0 .
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Gaussian random analytic functions
adapted to domains

We can use the same inner product

〈f, ḡ〉∂Ω :=
∫
∂Ω

f(z)g(z) |dz|

on H2(Ω) to define an infinite dimensional Gaus-

sian ensemble of random analytic functions.

We denote the Gaussian measure by γ∂Ω.

We will come back to this later.
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Zero distribution and Szegö /Bergman
kernels

For convenience, we let

ZNf =
∑

f(z)=0

δz

denote the zero distribution of a polynomial f .

Normalize to Z̃f = 1
NZf .

Proposition 3 We have

EN
∂Ω,ρ(Zf) =

√−1

2π
∂∂̄ logSN(z, z).
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Proof

Since

Zf =

√−1

2π
∂∂̄ log |f |2,

we have

EN∂Ω,ρ(Zf) =

√−1

2π
∂∂̄EN∂Ω,ρ

(
log |f |2

)
.

Write f in terms of ONB basis {Pj} of PN :

f(z) =
N∑
j=0

ajPj(z) = 〈a, p(z)〉 ,

where a = (a0, . . . , aN), P = (P0, . . . , PN). Then,

EN∂Ω,ρ(Zf) = ∂∂̄
∫
CN+1

log |〈a, P (z)〉| 1

πN+1
e−‖a‖2 da.

We write

P (z) = ‖P (z)‖u(z), ‖P (z)‖2 =
∑N
j=0 |Pj(z)|2

= SN(z, z), ‖u(z)‖ = 1 .
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Proof

Then,

log |〈a, P (z)〉| = log ‖P (z)‖ + log |〈a, u(z)〉| .
We observe that∫

CN+1
log |〈a, u(z)〉| e−‖a‖2 da = constant

since for each z we may apply a unitary coordi-

nate change so that u(z) = (1,0, . . . ,0). Hence

the derivative equals zero, and we have

EN∂Ω,ρ(Zf) =

√−1

π
∂∂̄ log ‖P (z)‖ =

√−1

2π
∂∂̄ logSN(z, z)

By exactly the same argument, we also have:

Proposition 4 We have

EN
Ω(Zf) =

√−1

2π
∂∂̄ logBN(z, z).
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Sketch of proof of equilibrium dis-
tribution of zeros

The main point of the proof is to gain con-

trol over asymptotics of the partial Szegö and

Bergman kernels. This is often the key techni-

cal step in geometric asymptotics of zeros/critical

points.

In the present problem on planar domains, asymp-

totics of Szegö kernels is very different from

the case of line bundles. It is mainly due to

Szegö and Carleman, and involves orthogo-

nal polynomials, Faber polynomials, Riemann

mapping functions... We only sketch a bit of

it.
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Equilibrium measure and exterior Rie-
mann mapping function

Let Ω ⊂ C denote a simply connected bounded

plane domain with C∞ boundary ∂Ω. The ex-

terior domain Ĉ \Ω is also a simply connected

domain in Ĉ and we denote by

(5)

Φ : Ĉ\Ω → Ĉ\U , Φ(z) = cz+c0+c1z
−1+· · ·

the (unique) exterior Riemann mapping func-

tion with Φ(∞) = ∞, Φ′(∞) ∈ R+. We recall

that the equilibrium measure νΩ of Ω is given

νΩ = Φ∗(dθ
2π

).
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Exterior Riemann mapping function
and Szegö kernel Recalling that

Φ∗
NS

U
N(z, z) =

N∑
n=0

|Φ(z)|2n ,

it follows that

SN(z, z) = AN(z)Φ∗
NS

U
N(z, z) ,

where

0 < x < inf
z∈Wε

AN(z) < sup
z∈Wε

AN(z) ≤ C < +∞

with

Wε := (Ĉ\Ω) ∪ Tε(∂Ω) ,

The full Szegö kernel has a nice transformation

law with respect to the interior Riemann map-

ping function. The truncated (degree N) has

only a partial transformation law with respect

to the exterior Riemann mapping function.
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Exterior Riemann mapping function
and Szegö kernel

We now prove that
√−1

2π
∂∂̄ logSN(z, z) = NνΩ +O(1) .

In the interior of Ω, SN(z, z) → S(z, z) uni-

formly in compact subsets of Ω. Furthermore,

S(z, z) > 0 on Ω and hence logSN(z, z) →
logS(z, z). Thus

∂∂̄ logSN(z, z) = ∂∂̄ logS(z, z)+o(1) = O(1) in D′(

Using νΩ = Φ∗( dθ2π) and the transformation law

for the interior Szegö kernel reduces to the

case of Ω = U , where it is easy to check.
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Exterior of Ω

On

Wε := (Ĉ \ Ω) ∪ Tε(∂Ω) ,

for small ε we use that

i
2π(Φ

∗∂∂̄ logSUN, ϕ) = i
2π(∂∂̄ logSUN,Φ

∗ϕ)

= (ν,Φ∗ϕ) +O(1) = (νΩ, ϕ) +O(1) ,

and it suffices to show that (uN, ∂∂̄ϕ) = O(1)

where

uN := logSN−Φ∗ logSUN = logSN−log
1 − |Φ|2N+2

1 − |Φ|2 .
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Exterior of Ω

Recalling that

Φ∗
NS

U
N(z, z) =

N∑
n=0

|Φ(z)|2n ,

and

SN(z, z) = AN(z)Φ∗
NS

U
N(z, z) , sup

z∈Wε

AN(z) ≤ C <

we find that the functions uN = − logAN are

uniformly bounded onWε and hence (uN, ∂∂̄ϕ) =

O(1). This completes the proof.
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SU(2) polynomials

Is there an inner product in which the expected

distribution of zeros is ‘uniform’ on C, i.e. doesn’t

concentrate anywhere? Yes, if we take ‘uni-

form’ to mean uniform on CP1 w.r.t. Fubini-

Study area form ωFS.

We define an inner product on P(1)
N which de-

pends on N :

〈zj, zk〉N =
1(
N
j

)δjk.
Thus, a random SU(2) polynomial has the form

f =
∑

|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

Proposition 5 In the SU(2) ensemble, E (Zf) =

ωFS, the Fubini-Study area form on CP1.
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SU(2) and holomorphic line bundles

Proof that E (Zf) = ωFS is trivial if we make
right identifications:

• P(1)
N � H0(CP1,O(N)) where O(N) = Nth

power of the hyperplane section bundle O(1) →
CP1.Indeed, P(1)

N ⇐⇒ homogeneous poly-
nomials F (z0, z1) of degree N : homoge-
nize f(z) ∈ P(1)

N to F (z0, z1) = zN0 f(z1/z0).
Also H0(CP1,O(N)) ⇐⇒ homogeneous
polynomials F (z0, z1) of degree N .

• Fubini-Study inner product on H0(CP1,O(N))
= inner product

∫
S3 |F (z0, z1)|2dV on the

homogeneous polynomials.

• The inner product and Gaussian ensemble
are thus SU(2) invariant. Hence, EZf is
SU(2)-invariant.
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Gaussian random holomorphic sec-
tions of line bundles

The SU(2) ensemble generalizes to all dimen-
sions, and moreover to any positive holomor-
phic line bundle L→M over any Kähler mani-

fold.

We endow L with a Hermitian metric h and M

with a volume form dV . We define an inner
product

〈s1, s2〉 =
∫
M
h(s1(z), s2(z))dV (z).

We let {Sj} denote an orthonormla basis of the
space H0(M,L) of holomorphic sections of L.

Then define Gaussian holomorphic sections s ∈
H0(M,L) by

s =
∑
j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk.
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Gaussian analytic functions

Before looking at general line bundles L → M

let us consider Gaussian analytic functions on

domains Ω ⊂ C from a geometric viewpoint.

One goal is to understand when the zero point

process of a random analytic function is con-

formally invariant.

Under a holomorphic map T : M → N , T (Zs)

becomes a point process on N . The process is

said to be holomorphically invariant (or confor-

mally invariant in dimension two) if the distri-

bution of T (Zs) is the same as the distribution

of Zs.
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Bergman metric

In the language of line bundles and hermitian

metrics, to obtain a conformally (bi-holomorphically)

invariant ensemble, we need to introduce line

bundles and hermitian metrics which are canon-

ically determined by the complex structure.

All the canonical metrics and bundles are de-

rived from the Bergman metric.
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Bergman metric cont.

The Bergman space of a domain Ω ⊂ C is

the natural Hilbert space B2(Ω) of holomor-

phic square integrable H1,0 forms fdz with the

inner product 〈fdz, gdz〉 =
∫
Ω f(z)g(z)dz ∧ dz̄.

The orthogonal projection from L2 (1,0) forms

to H2(Ω) is the double one form Bergman ker-

nel

B(z, w)dz ⊗ dw̄ =
∞∑
j=0

ϕj(z)ϕj(w)dz ⊗ dw̄.

Let B be the unit ball in C. Then

BD(z, w) =
1

π
(1 − zw̄)−2dzdw̄.
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Bergman Gaussian analytic formsWe

let {ϕn} denote an orthonormal basis of B2(Ω)

and define the Bergman Gaussian analytic func-

tion by

f(z) =
∞∑
n=1

anϕn(z)

where the coefficients are independent Gaus-

sian random variables with zero mean and unit

variance.

In a standard way, the covariance kernel of such

L2 holomorphic functions is given by the diag-

onal part of the Bergman kernel:

B(z, w) = E(f(z)f(w) =
∞∑
n=1

ϕn(z)ϕn(w).
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Bergman Gaussian analytic forms

Let C+ denote the cone of positive currents on

a complex manifold M . Then we have a map

f → Zf := ∂∂̄ log |f |2, H2(Ω) → C+(Ω).

We can push forward the Gaussian measure to

obtain a probability measure on the space of

positive currents.

Let F : Ω1 → Ω2 be a bi-holomorphic map.

Then F induces a map F ∗ : C(Ω2) → C(Ω1) be

pullback. This map preserves positivity (holo-

morphic maps preserve pluri-subharmonic func-

tions).

Definition: The Bergman zero point process

is the probability measure on C+(Ω) induced by

the Bergman Gaussian measure on Hm,0(Ω).
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Conformal invariance of Bergman
zero point process

Definition: We say that a current process

is bi-holomorphically invariant if the probabil-

ity measure is invariant under bi-holomorphic

maps.

Proposition 6 The Bergman point process for

Ω ⊂ C is conformally invariant.

Let T : Ω1 → Ω2 be a conformal diffeomor-

phism or biholomorphic map. Then T ∗ : H2(Ω2) →
H2(Ω1) is an isometry of Hilbert spaces. That

is,

〈T ∗f, T ∗g〉 =
∫
Ω1

T ∗(fdz) ∧ T ∗gdz

=
∫
Ω2

f(w)dw ∧ g(w)dw.
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Therefore, T is a measure preserving transfor-

mation between the Gaussian spaces of ran-

dom analytic functions.

Since T ∗(∂∂̄ log |f |2) = ∂∂̄ log |T ∗f |2 it follows

that T ∗ induces a measure preserving trans-

formation on the corresponding spaces of cur-

rents.

The only point to check here is that in defining

the map from the Bergman space to currents,

we used the special Euclidean coordinate sys-

tem and dropped the coordinate differentials.

Since the change of variables has nowhere van-

ishing Jacobian, it will not change the current

∂∂̄ log |f |2 and hence the map from holomor-

phic forms to currents is coordinate indepen-

dent. Similarly for all other maps.



Sodin-Tsirelson-Peres-Virag point pro-
cesses

We now consider the Sodin-Tsirelson-Peres-

Virag point processes. They denote by ZU,ρ
the zero set of

f =
∞∑
n=0

(−ρ
n

)1
2
anz

n

on the unit disc where {an} are i.i.d. standard

complex Gaussians. It is observed that ZU,ρ
is invariant under Möbius transformations pre-

serving U and that they are the only zero sets

of Gaussian analytic functions with this invari-

ance property. When ρ = 1 Peres-Virag proved

that the point process is determinantal. The

expected distribution of zeros is ρ
π(1−|z|2)2.

34



Sodin-Tsirelson-Peres-Virag point pro-
cesses

They define Szegö random functions with pa-

rameter ρ as above and find that its covariance

kernel in the case of the unit disc is [SU(z, w)]ρ.

The random power series with ρ = 1 is

fU(z) =
∞∑
n=0

anz
n

with {an} i.i.d. standard normal. The two

point function is e−
|z|2
π . The radius of converge

is almost surely one and one obtains a zero

point process in the unit disc.
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Conformal invariance of Sodin-Tsirelson
Peres-Virag point processes

It is obvious when we reinterpret ZU,ρ as zeros

of Gaussian random holomorphic sections of

powers of a hermitian line bundle L→ U where

L and the hermitian metric are determined by

the Bergman metric, viewed as a Kähler metric

on U .

Proposition 7 Let T : Ω1 → Ω2 be bi-holomorphic.

Then T ∗ induces a measure-preserving trans-

formation between the zero current processes

of the Gaussian Hilbert spaces L2H0(Ω, Lρ)

above.
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Definitions

The Bergman Kähler form ∂∂̄ logB(z, z) de-

fines a Hermitian line bundle (L, h) → Ω with

associated Ricci curvature Θh = ∂∂̄ logB(z, z).

The line bundle is trivial, so we may regard sec-

tions as functions; only the Hermitian metric

is non-trivial. It equals eρ logB(z,z) on Lρ.

Szegö kernels ΠN for L2H0(Ω, LN) have the

form CNe
Nψ(z,w̄) where CN is a normalizing

constant and ψ = logK(z, w̄).
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Example

In the case of the unit disc D ⊂ C, the Bergman

is −i
2 ∂∂̄ log(1 − |z|2), the space L2H0(D,LN)

may be identified with the holomorphic func-

tions square integrable with respect to the in-

ner product

||f ||2N =
∫
D
|f(z)|2(1 − |z|2)N−2dz.

The factor eN log(1−|z|2) comes from the Her-

mitian metric. An orthonormal basis for the

holomorphic sections of LN is then given by

the monomials
√(

N+n−1
n

)
zn (n = 0,1,2, . . . ).

The Szegö kernels are given by ΠN(z, w) =

(1 − zw̄)N .

38



Notation

Sodin-Tsirelson define

∞∑
k=0

ak

√
L(L+ 1) · · · (L+ k − 1)

k!
zk

for the hyperbolic case and

∞∑
k=0

ak

√
L(L− 1) · · · (L− k+ 1)

k!
zk

for the elliptic case.

Our ensemble above is the hyperbolic case and

N = L. We note that Peres-Virag’s
(−ρ
n

)
is the

elliptic case with negative L. But also if one

pulls out the factors of −1 it is the hyperbolic

case with N = ρ. So the case ρ = 1 is just the

first power of L.
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Proof of conformal invariance

Because the unit disc is Kähler -Einstein, the

curvature (1,1) form of the Bergman Kähler

metric is the Bergman metric again.

Proposition 8 Let T : Ω1 → Ω2 be bi-holomorphic.

Then T ∗ induces a measure-preserving trans-

formation between the zero current processes

of the Gaussian Hilbert spaces L2H0(Ω, Lρ)

above.

Proof:

T is an isometry of the Bergman metrics and

therefore is isometric between the Hermitian

line bundles. Hence it preserves the induced

inner product on sections of these line bundles.

By the previous argument it induces a measure

preserving isomorphism on the zero currents of

sections.
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Observation about ρ = 1

If ρ = 1 corresponds to L then ρ = 2 corre-

sponds to H1,0. Thus, L =
√
H1,0, i.e. is the

bundle of forms f
√
dz. These indeed have a

natural inner product over the boundary. This

is the bundle of half-forms (spinors). Choosing

a square root is choosing a spin structure. It

is again natural that this bundle and its inner

product are conformally invariant.

It is not clear why the pair correlation func-

tion of zeros of random sections of this bundle

should be the same as the two-point function

of Bergman random forms, nor why the point

process should be determinantal.
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Distribution of zeros of Gaussian ran-
dom s ∈ H0(M,LN)

We now consider holomorphic sections of pos-

itive line bundles over Riemann surfaces. We

have already seen that polynomials of degree

N are the same as holomorphic sections of

O(N) → CP1. Further,

• M = T2 = C/Z2: the line bundle L with

curvature dz ∧ dz̄ is the bundle for which

H0(T2, LN) is the space of theta functions

of level N ;

• M = H/Γ, a hyperbolic surface. Then with

the hyperbolic area form, LN is the bundle

of differentials of type dzN , i.e. H0(M,LN)

is the space of holomorphic differentials

fdzN .
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Expected distribution of zeros

The expected distribution of zeros of a random

holomorphic section is given by the following

Theorem 1 (Shiffman-Z) We have:

1

(N)
EN(Zf → ω

in the sense of weak convergence; i.e., for any

open U ⊂ C∗m, we have

1
(N)EN

(
#{z ∈ U : f(z) = 0}

)
→ Volω(U) .

Zeros concentrate in curved regions. Curva-

ture causes sections to oscillate and hence ze-

ros to occur.
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Almost sure distribution of zeros

The distribution of zeros is ‘self-averaging’:

typical sections behave in the expected way.

To prove this, we define the space of sequences

of sections as the Cartesian product probability

space

Π∞
N=1H

0(M,LN), γ∞ := Π∞
N=1dγN.

THEOREM. (S–Zelditch, 1998) Consider a

random sequence {fN} of sections of LN (or

polynomials of degree N), N = 1,2,3, . . . .

Then

1

N
ZfN → ω almost surelyw.r.t.γ∞.
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Critical points of Gaussian random
holomorphic sections

We now turn to metric critical points, where
geometry dominates even more. The setting
is

• A holomorphic line bundle L→M ;

• A hermitian metric h on L;

• The Chern connection ∇h of h;

• The curvature Θh of ∇h.

• An inner product 〈, 〉 on the space H0(M,L)
of holomorphic sections (or on a subspace).

• The Gaussian measure γ associated to 〈, 〉.
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Metrics, connections, curvature

A Hermitian metric on L is a family of hz of

hermitian inner products on the lines Lz over

z ∈M . In a local frame e(z), hz is specified by

the positive function h(z) = ||e(z)||h.

Definition: the metric (Chern) connection ∇ =

∇h of h is the unique connection preserving

the metric h and satisfying ∇′′
s = 0 for any

holomorphic section s. Here, ∇ = ∇′ + ∇′′ is

the splitting of the connection into its L⊗T ∗1,0
resp. L⊗ T ∗0,1 parts.

We denote by Θh the curvature of h:

Θh = ∂∂̄K, K = − logh.
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Positive/negative line bundles

In a local frame e, the hermitian metric is a

positive function h(z) = ||e||z.

The curvature form is defined locally by

Θh = ∂∂̄K, K = − logh.

The bundle is called positive (resp. negative)

if Θh is a positive (resp. negative) (1,1) form.

Given one positive metric h0 on L, the other

metrics have the form hϕ = eϕh and Θh =

Θh0
− ∂∂̄ϕ, with ϕ ∈ C∞(M).
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Critical point

Definition: Let (L, h) → M be a Hermitian

holomorphic line bundle over a complex mani-

fold M , and let ∇ = ∇h be its Chern connec-

tion.

A critical point of a holomorphic section s ∈
H0(M,L) is defined to be a point z ∈M where

∇s(z) = 0, or equivalently, ∇′s(z) = 0.

We denote the set of critical points of s with

respect to the Chern connection ∇ of a Her-

mitian metric h by Crit(s, h).
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Critical points depend on the met-
ric

The set of critical points Crit(s, h) of s, and

even its number #Crit(s, h), depends on ∇h or

equivalently on the metric h.

In a local frame e critical point equation for

s = fe reads:

∂f + f∂K = 0.

Recall that K = − logh.

The critical point equation is only C∞ and not

holomorphic since K is not holomorphic.

Hence Crit(s, h) is not a topological invariant

of L, unlike (say) the number of zeros in di-

mension one. It is a non-trivial random vari-

able.
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An equivalent definition of critical
point

An essentially equivalent definition: w ∈ Crit(s, h)

if

(6) d|s(w)|2h = 0.

Since

d|s(w)|2h = 0 ⇐⇒ 0 = ∂|s(w)|2h = hw(∇′s(w), s(w))

it follows that ∇′s(w) = 0 as long as s(w) �= 0.

So this notion of critical point is the union of

the zeros and critical points.

The Morse theory of connection critical points

∇s(w) = 0 is equivalent to the Morse theory

of |s(w)|2h.
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Hermitian Gaussian random holo-
morphic sections

A Gaussian measure γ on H0(M,L) is induced

by an inner product on H0(M,L). The simplest

are the Hermitian Gaussian measures induced

by a hermitian metric h on L:

(7) 〈s1, s2〉h =
∫
M
h(s1(z), s2(z))dV (z)

on H0(M,L), where dV =
Θm
h

m! . By definition,

(8) dγ(s) =
1

πd
e−‖c‖2dc , s =

d∑
j=1

cjej,

where dc is Lebesgue measure and {ej} is an

orthonormal basis basis. We denote the ex-

pected value of a random variable X on with

respect to γ by Eγ.
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Statistics of critical points I: density

The distribution of critical points of a fixed

section s with respect to h (or ∇h) is the mea-

sure

(9) Chs :=
∑

z∈Crit(s,h)
δz,

where δz is the Dirac point mass at z.

Definition: The (expected) density of critical

points of s ∈ S ⊂ H0(M,L) with respect to h

and a Gaussian measure γ is defined by

Kcrit(z) dV (z) = E γC
h
s ,

i.e.,

∫
M
ϕ(z)Kcrit(z) dV (z) =

∫
S

⎡⎢⎣ ∑
z:∇hs(z)=0

ϕ(z)

⎤⎥⎦ dγ(s).
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Expected number of critical points

Definition: The expected number of critical

points of a Gaussian random section is defined

by

N crit(h, γ) =
∫
M Kcrit(z) dV (z)

=
∫
S #Crit(s, h)dγ(s).

For Hermitian Gaussian measures, where γ comes

from the inner product 〈, 〉h, N crit(h, γ) is a

purely metric invariant of a line bundle.
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Positive/Negative line bundles

Corollary 9 Let (L, h) → M denote a positive

or negative holomorphic line bundle. Give M

the volume form dV = 1
m!

(
± i

2Θh

)m
induced

from the curvature of L. Then

Kcrit
h,S (z) = 1

detAdetΛ

∫
Sym(m,C)×C

∣∣∣det(H ′H ′∗ − |x|2I)

|e−〈Λ(z)−1(H ′,x),(H ′,x)〉 dH ′ dx .

Here, H ′ ∈ Sym(m,C) is a complex symmetric

matrix, and the matrix Λ is a Hermitian opera-

tor on the complex vector space Sym(m,C)×C.
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Formulae for A(z) and Λ(z)

A(z) and Λ(z) depend only on ∇ and on the

Szegö kernel, i.e. orthogonal projection

ΠS : L2(M,L) → S ⊂ H0(M,L),

for S and for the inner product. Let FS(z, w) be

the local expression for ΠS(z, w) in the frame

eL. Then Λ = C −B∗A−1B, where

A =
(

∂2

∂zj∂w̄j′
FS(z, w)|z=w

)
,

B =
[(

∂3

∂zj∂w̄q′∂w̄j′
)FS|z=w

) (
( ∂
∂zj
FS|z=w

)]
,

C =

⎡⎢⎢⎣
(

∂4

∂zq∂zj∂w̄q′∂w̄j′
FS|z=w

) (
∂2

∂zj∂zq
FS
)

(
∂2

∂w̄q′∂w̄j′
FS
)
|z=w FS(z, z)

⎤⎥⎥⎦ ,
1 ≤ j ≤ m,1 ≤ j ≤ q ≤ m,1 ≤ j′ ≤ q′ ≤ m.

In the above, A,B,C are m ×m, m × n, n × n

matrices, respectively, where n = 1
2(m

2 +m+

2).
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Geometric problem

In the case of a positive line bundle, we now

have an explicit formula for the expected num-

ber N crit(h) of critical points of a Gaussian

random holomorphic section relative to the Her-

mitian Gaussian measure and the full space

H0(M,L):

N crit(h) =
∫
M{ 1

detAdetΛ

∫
Sym(m,C)×C∣∣∣det(H ′H ′∗ − |x|2I)

∣∣∣ e−〈Λ(z)−1(H ′,x),(H ′,x)〉 dH ′ dx}dVh .
Here, Λ, A depend only on the Szegö kernel for

H0(M,L).

N crit(h) is a purely metric invariant of (L, h).

Is it a topological invariant, or does it depend

on the metric? If the latter, how?
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Universal limit theorem

We now give an asymptotic expansion for Kcrit
N (z):

Theorem 10 For any positive Hermitian line
bundle (L, h) → (M,ω) over any compact Kähler
manifold, the critical point density relative to
the curvature volume form has an asymptotic
expansion of the form

N−mKcrit
N (z) ∼ Γcrit

m +a1(z)N
−1+a2(z)N

−2+· · · ,
where Γcrit

m is a universal constant depending
only on the dimension m of M . Hence the
expected total number of critical points on M
is

N (hN) =
πm

m!
Γcrit
m c1(L)mNm +O(Nm−1) .

The leading constant in the expansion is given
by the integral formula

Γcrit
m =

(
2π

m+3
2

)−m ∫+∞
0

∫
Sym(m,C) |det(SS∗ − tI)|

e−
1
2‖S‖2−t dS dt ,
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Comments

• The leading order term being constant, crit-

ical points are uniformly distributed relative

to the curvature volume form in the N → ∞
limit. Curvature causes sections to oscillate

more rapidly, so critical points concentrate

where the curvature concentrates.

• Universality of the leading term is not so

surprising, since it is a local calculation.

• As we will see, the leading order constant is

larger than 1, so positive curvature causes

polynomials of degree N to have substan-

tially more critical points than in the classi-

cal flat sense of dF = 0.
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Riemann surfaces In the case of Riemann

surfaces, we can explicitly evaluate the leading

coefficient:

Corollary 11 For the case where M is a Rie-

mann surface, we have Γcrit
1 = 5

3π, and hence

the expected number of critical points is N (hN) =
5
3c1(L)N + O(

√
N). The expected number of

saddle points is 4
3N while the expected number

of local maxima is 1
3N .

There are ∼ N critical points of a polynomial of

degree N in the classical sense, all of which are

saddle points. There are an extra 1
3N saddles

cancelled by an extra 1
3N local maxima.
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Density of critical points on Rie-
mann surfaces

For Riemann surfaces, we can give a simple ex-

plicit formula for the density of critical points.

We measure the critical point density with re-

spect to the volume form ± i
2Θh. Put:

Q =

⎛⎜⎝−1 0

0 1

⎞⎟⎠
and denote the eigenvalues of Λ(z)Q by µ1, µ2.

We observe that µ1, µ2 have opposite signs

since detQΛ = −detΛ < 0. Let µ2 < 0 < µ1.

Theorem 12 let (L, h) → M be a positive or

negative Hermitian line bundle on a (possibly

non-compact) Riemann surface M with volume

form dV = ± i
2Θh. Then:

Kcrit
h (z) =

1

πA(z)

µ2
1 + µ2

2

|µ1| + |µ2|
, .
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Exact formula on CP1

Theorem 13 The expected number of critical

points of a random section sN ∈ H0(CP1,O(N))

(with respect to the Gaussian measure on H0(CP1,O(

induced from the Fubini-Study metrics on O(N)

and CP1) is

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · .

Of course, relative to the flat connection d/dz

the number is N − 1.
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Asymptotic expansion for the ex-
pected number of critical points

Theorem 14 Let (L, h) be a positive hermi-

tian line bundle. Let N crit(hN) denote the

expected number of critical points of random

s ∈ H0(M,LN) with respect to the Hermitian

Gaussian measure. Then,

N (hN) = πm

m!Γ
crit
m c1(L)mNm

+
∫
M ρdVωNm−1

+[Cm
∫
M ρ2dVΩ + top]Nm−2 +O(Nm−3) .

Here, ρ is the scalar curvature of ωh, the cur-

vature of h.

Γcrit
m c1(L)m is larger than for a flat connection.
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To what degree is the expected num-
ber of critical points a topological
invariant?

The first two terms are topological invariants

of a positive line bundle, i.e. independent of

the metric! (Both are Chern numbers of L).

But the non-topological part of the third term

Cm

∫
M
ρ2dVΩN

m−2

is a non-topological invariant, as long as Cm �=
0. It is a multiple of the Calabi functional.

(These calculations are based on the Tian-

Yau-Zelditch (and Catlin) expansion of the Szegö

kernel and on Zhiqin Lu’s calculation of the co-

efficients in that expansion.)
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Asymptotic expansion for number
of critical points

We calculate the first three terms in the ex-

pansion of the number of critical points for

(LN, hN):

N (hN) = πm

m!Γ
crit
m c1(L)mNm

+
∫
M ρdVωNm−1

+Cm
∫
M ρ2dVΩN

m−2 +O(Nm−3) .

The first two terms are topological invariants

of a positive line bundle, i.e. independent of

the metric! (Both are Chern numbers of L).

As long as Cm �= 0 the third term is not a

topological invariant.

64



Asymptotically minimal number of
critical points

The average number of critical points can grow
without bound, but has a lower bound (the
Euler characteristic). Which hermitian met-
rics minimize the expected number of critical
points? These would be ideal for vacuum se-
lection.

To put the question precisely, let L→ (M, [ω])
be a holomorphic line bundle over any compact
Kähler manifold with c1(L) = [ω], and consider
the space of Hermitian metrics h on L for which
the curvature form is a positive (1,1) form:

P (M, [ω]) = {h :
i

2
Θ(h) is a positive (1,1)− form }.

Definition: We say that h ∈ P ([ω]) is asymp-
totically minimal if
(10)
∃N0 : ∀N ≥ N0, N (hN) ≤ N (hN1 ), ∀h1 ∈ P ([ω]).
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Calabi extremal metrics are asymp-
totic minimizers

From the expansion

N (hN) = πm

m!Γ
crit
m c1(L)mNm +

∫
M ρdVωNm−1

+Cm
∫
M ρ2dVΩN

m−2 +O(Nm−3) ,

we see that if Cm > 0 the metric with asymp-

totically minimal N (hN) is the one with mini-

mal
∫
M ρ2dVω. This is the Calabi extremal met-

ric! Thus, Calabi extremal metrics are mini-

mizers of the metric invariant = average num-

ber of critical points.

E.g. for the canonical bundle, Kähler -Einstein

metrics are asymptotic minimizers of the func-

tional N (hN).
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When is Cm > 0?

We have shown that Cm > 0 in dimensions ≤ 5.

We conjecture that Cm > 5 in all dimensions.

Ben Baugher has recently shown that this is

equivalent to a random matrix integral identity.

The identity is true in dimensions ≤ 5 and is

almost certainly true in higher dimensions.
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Complex oscillatory integrals

This is obtained from the Boutet de Monvel

- Sjostrand parametrix for the full Bergman

kernel: Π(x, y) =
∑∞
N=1 ΠN(x, y):

Π(x, y) ∼
∫ ∞
0

eψ(x,y)s(x, y, λ)dλ,

where

• ψ(x, y) = (1 − λµ̄

√
a(x,y)√

a(x,x)a(y,y)
.

• s(x, y, λ) ∼ λm
∑∞
j=0 aj(x)λ

−j.
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Asymptotics of ΠN

ΠN is a Fourier coefficient of Π:

ΠN(x, y) =
∫
S1

Π(x, eiθy)eiNθdθ.

Hence, we get

ΠN(z, z) =
∫ ∞
0

∫
S1
eNΨ(z,θ,λ)aN(z, θ, λ,

with

• Ψ(x, θ) = (1 − ψ(x, eiθx)).

• aN(x, θ) = s(x, eiθx, λ).

Applying stationary phase: (The critical points
occur only at ϕ = 0.)

ΠN(z, z) ∼ Nm
∞∑
j=0

aj(z)N
−j.
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Correlations between zeros

Although the expected distribution of zeros is

uniform, the zeros do not behave as if they

are thrown down independently. The zeros are

“correlated.” To make this precise, we intro-

duce the n point correlation functions sections

of degree N

KN
n (z1, . . . , zn) = E(|Zs|n),

= the probability density of zeros at points

z1, . . . , zn. Here,

|Zs|n =
(
|Zs︸︷︷︸ | × · · · × |Zs|n

)
is product measure on

Mn = {(z1, . . . , zn) ∈Mn : zp �= zq for p �= q} .
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Correlations functions (cont.)

Examples

• When n = 1, we get the one-point corre-

lation function KN
1 (z) = the expected den-

sity of simultaneous zeros of k sections at z.

We have seen: KN
1 (z) = cmkN + O(N−1) ,

for any positive line bundle.

• When n = 2 we get the pair correlation

function. KN
2 (z1, z2) = the probabality of

finding a pair of simeltaneous zeros of k sec-

tions at (z1, z2).
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Scaling limit of correlation functions

For any positive line bundle LN →M over any

Kähler manifold, the density of zeros increases

with N . If we scale by a factor
√
N , the ex-

pected density of zeros stays constant. We fix

a point z0 and consider the pattern of zeros

in a small ball B(z0,
1√
N

). We fix local coordi-

nates z for which z0 = 0 and rescale. In the

limit we obtain the n-point scaling limit zero

correlation function

(11)
K∞
nkm(z1, . . . , zn)

= limN→∞
(
cmkN

k
)−n

KN
nk

(
z1√
N
, . . . , z

n√
N

)
.
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Universality of the scaling limit

Theorem 15 (Bleher-Shiffman-Z) The scaling

limit correlation functions K∞
nkm(z1, . . . , zn) are

universal, i.e. independent of M,L, ω. They

are given by a universal rational function, ho-

mogeneous of degree 0, in the values of the

function ei�(z·w̄)−1
2|z−w|2 and its first and sec-

ond derivatives at the points (z, w) = (zp, zp
′
),

1 ≤ p, p′ ≤ n. Alternately it is a rational func-

tion in z
p
q , z̄

p
q , e

zp·z̄p′

The function ei�(z·w̄)−1
2|z−w|2 which appears in

the universal scaling limit is (up to a constant

factor) the Bergman kernel ΠH
1 (z, w) of level

one for the reduced Heisenberg group Hn
red.
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Decay of correlations

We have explicit formulas for K̃∞
nkm in all di-

mensions and codimensions.

The universal scaling limit pair correlation func-

tion is a function only of distance between the

points:

K∞
2km(z1, z2) = κkm(|z1 − z2|).

Theorem 16 (BSZ) κkm(r) = 1+O(r4e−r2), r →
+∞.

Thus, even the scale r√
N

, correlations are ex-

tremely short range: they differ from the case

of independent random points by an exponen-

tially decaying term.
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Discrete case

Pair correlation between zeros of m indepen-
dent sections in m variables in dimension m:

Theorem 17 (Bleher-Shiffman-Z, 2001):

κmm(r) =

⎧⎪⎪⎨⎪⎪⎩
m+1

4 r4−2m +O(r8−2m) , as r → 0,

1 +O(r4e−r2), r → +∞.

• When m = 1, κmm(r) → 0 as r → 0 and one
has “zero repulsion.”

• When m = 2, κmm(r) → 3/4 as r → 0 and
one has a kind of neutrality.

• With m ≥ 3, κmm(r) ↗ ∞ as r → 0 and
zeros attract (or ‘clump together’): One is
more likely to find a zero at a small distance
r from another zero than at a small distance
r from a given point.

75



Ideas of Proofs

A key object is the Bergman-Szegö projector

ΠN(x, y) =
dN∑
j=1

Sj(x)Sj(y)

of H0(M,LN). Here, {Sj} is an ONB. Its im-
portance stems from:

• EN

(
|f(z)|2

)
= ΠN(z, z);

• EN(Zf) =
√−1
2π ∂∂̄ logΠN(z, z);

• EN(Zf1,...,fk) = [
√−1
2π ∂∂̄ logΠN(z, z)]∧k;

Here, we use the Poincare-Lelong formula:

Zs =
√−1
2π

(
∂∂̄ log ‖s‖2h + ∂∂̄ logh

)
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Co-area formula for correlations

A second key ingredient is the denote the joint

probability distrbution (JPD)

DN(x1, . . . , xn; ξ1, . . . , ξn; z1, . . . , zn)

of the random variables

xj(s) = s(zj), ξj(s) = ∇s(zj), j = 1, . . . , n.

The zero correlations may be expressed in terms

of the JPD by a formula generalizing the Kac-

Rice formula: KN(z1, . . . , zn)

=
∫
DN(0, ξ, z)

n∏
j=1

(
‖ξj‖2dξj

)
dξ
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Bergman kernels and JPD

The JPD is a Gaussian measure.

Dn(x, ξ; z) =
exp〈−∆−1

n v, v〉
πkn(1+m) det∆n

, v = (xξ) ,

where

∆n =

(
An Bn
B∗
n Cn

)
where

An =
(
Expj x̄

p′
j′
)
, Bn =

(
Expj ξ̄

p′
j′q′
)
,

Cn =
(
E ξpjqξ̄

p′
j′q′
)
;

j, j′ = 1, . . . , k; p, p′ = 1, . . . , n; q, q′ = 1, . . . ,m.

All the expected values can be expressed in

terms of ΠN and its covariant derivatives.
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Scaling asymptotics of the Bergman
kernel

The scaling asymptotics of the correlation func-

tions then reduce to scaling asymptotics of the

Bergman kernel.

Theorem 18 (Bleher-Shiffman-Z, 1999): In nor-

mal coordinates {zj} at P0 ∈ M and in a ‘pre-

ferred’ local frame for L, we have:

N−mΠN(P0 + u√
N
, θN ;P0 + v√

N
, ϕN )

∼ 1
πme

i(θ−ϕ)+u·v̄−1
2(|u|2+|v|2)

·
[
1 +

∑K
r=1N

− r
2br(P0, u, v) + · · ·

]
,

Note that ei(θ−ϕ)+u·v̄−1
2(|u|2+|v|2) is the Bergman-

Szegö kernel of the Heisenberg group. These

asymptotics use the Boutet de Monvel -Sjostrand

parametrix for the Bergman kernel.
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