Random Complex Geometry,

or

How to count universes in string theory.

Steve Zelditch Department of Mathematics Johns Hopkins University

AMS meeting Atlanta Friday, January 7, 2005: 10: 05 - 10: 55

Joint work with M. R. Douglas and B. Shiffman Also joint work with P. Bleher

1

Our topics

• Random complex geometry-

How are zeros or critical points of random holomorphic functions (or sections) distributed?

• Counting universes in string/M theory-

'Universes' = 'vacua' of string/M theory = critical points of 'superpotentials' on the moduli space of Calabi-Yau manifolds. How many vacua are there? How are they distributed?

Outline of talk

- Random polynomials of one complex variable: classical and recent results. Generalization to holomorphic sections of line bundles.
- String/M vacuum selection problem: Douglas' statistics of vacua program. Rigorous results on counting possible universes = string/M vacua.
- 3. Geometric problems on critical points of holomorphic sections relative to a hermitian metric or connection.

Random polynomials of one variable

A polynomial of degree N in one complex variable is:

$$f(z) = \sum_{j=1}^{N} c_j z^j, \quad c_j \in \mathbb{C}$$

is specified by its coefficients $\{c_j\}$.

A 'random' polynomial is short for a probability measure P on the coefficients. Let

$$\mathcal{P}_N^{(1)} = \{ \sum_{j=1}^N c_j z^j, (c_1, \dots, c_N) \in \mathbb{C}^N \}$$
$$\simeq \mathbb{C}^N.$$

Endow \mathbb{C}^N with probability measure dP.

We call $(\mathcal{P}_N^{(1)}, P)$ an 'ensemble' of random polynomials.

Kac polynomials

The simplest complex random polynomial is the 'Kac polynomial'

$$f(z) = \sum_{j=1}^{N} c_j z^j$$

where the coefficients c_j are independent complex Gaussian random variables of mean zero and variance one. Complex Gaussian:

$$\mathbf{E}(c_j) = \mathbf{0} = E(c_j c_k), \quad E(c_j \bar{c}_k) = \delta_{jk}.$$

This defines a Gaussian measure γ_{KAC} on $\mathcal{P}_N^{(1)}$:

$$d\gamma_{KAC}(f) = e^{-|c|^2/2} dc.$$

Expected distribution of zeros

The distribution of zeros of a polynomial of degree N is the probability measure on \mathbb{C} defined by

$$Z_f = \frac{1}{N} \sum_{z: f(z) = 0} \delta_z,$$

where δ_z is the Dirac delta-function at z.

Definition: The expected distribution of zeros of random polynomials of degree N with measure P is the probability measure $\mathbf{E}_P Z_f$ on \mathbb{C} defined by

$$\langle \mathbf{E}_P Z_f, \varphi \rangle = \int_{\mathcal{P}_N^{(1)}} \{ \frac{1}{N} \sum_{z: f(z)=0} \varphi(z) \} dP(f),$$

for $\varphi \in C_c(\mathbb{C}).$

6

How are zeros of complex Kac polynomials distributed?

Complex zeros concentrate in small annuli around the unit circle S^1 . In the limit as the degree $N \to \infty$, the zeros asymptotically concentrate exactly on S^1 :

Theorem **1** (Kac-Hammersley-Shepp-Vanderbei) The expected distribution of zeros of polynomials of degree N in the Kac ensemble has the asymptotics:

 $\mathbf{E}^N_{KAC}(Z_f^N) o \delta_{S^1}$ as $N o \infty$,

where $(\delta_{S^1}, \varphi) := \frac{1}{2\pi} \int_{S^1} \varphi(e^{i\theta}) d\theta.$

7

Why the unit circle?

Do zeros of polynomials *really* tend to concentrate on S^1 ?

Answer: yes, for the polynomials which dominate the Kac measure $d\gamma^N_{KAC}$. (Obviously no for general polynomials)

The Kac-Hammersley-Shepp-Vanderbei measure γ^N_{KCA} weights polynomials with zeros near S^1 more than other polynomials.

It did this by an implicit choice of inner product on $\mathcal{P}_N^{(1)}$.

Gaussian measure and inner product

Choice of Gaussian measure on a vector space \mathcal{H} = choice of inner product on \mathcal{H} .

The inner product induces an orthonormal basis $\{S_j\}$. The associated Gaussian measure $d\gamma$ corresponds to random orthogonal sums

$$S = \sum_{j=1}^d c_j S_j,$$

where $\{c_j\}$ are independent complex normal random variables.

The inner product underlying the Kac measure on $\mathcal{P}_N^{(1)}$ makes the basis $\{z^j\}$ orthonormal. Namely, they were orthonormalized on S^1 . And that is where the zeros concentrated.

Gaussian random polynomials adapted to domains

If we orthonormalize polynomials on the boundary $\partial \Omega$ of any simply connected, bounded domain $\Omega \subset \mathbb{C}$, the zeros of the associated random polynomials concentrate on $\partial \Omega$.

I.e. define the inner product on $\mathcal{P}_N^{(1)}$ by

$$\langle f, \overline{g} \rangle_{\partial \Omega} := \int_{\partial \Omega} f(z) \overline{g(z)} |dz|$$
.

Let $\gamma_{\partial\Omega}^N$ = the Gaussian measure induced by $\langle f, \bar{g} \rangle_{\partial\Omega}$ and say that the Gaussian measure is adapted to Ω .

How do zeros of random polynomials adapted to $\boldsymbol{\Omega}$ concentrate?

Equilibrium distribution of zeros

Denote the expectation relative to the ensemble $(\mathcal{P}_N, \gamma^N_{\partial\Omega})$ by $\mathbf{E}^N_{\partial\Omega}$.

Theorem 2

$$\mathbf{E}_{\partial\Omega}^{N}(Z_{f}^{N}) = \nu_{\Omega} + O(1/N) ,$$

where ν_{Ω} is the equilibrium measure of $\overline{\Omega}$.

The equilibrium measure of a compact set K is the unique probability measure $d\nu_K$ which minimizes the energy

$$E(\mu) = -\int_K \int_K \log |z - w| \, d\mu(z) \, d\mu(w).$$

Thus, in the limit as the degree $N \rightarrow \infty$, random polynomials adapted to Ω act like electric charges in Ω .

SU(2) polynomials

Is there an inner product in which the expected distribution of zeros is 'uniform' on \mathbb{C} , i.e. doesn't concentrate anywhere? Yes, if we take 'uniform' to mean uniform on \mathbb{CP}^1 w.r.t. Fubini-Study area form ω_{FS} .

We define an inner product on $\mathcal{P}_N^{(1)}$ which depends on N:

$$\langle z^j, z^k \rangle_N = \frac{1}{\binom{N}{j}} \delta_{jk}.$$

Thus, a random SU(2) polynomial has the form

$$f = \sum_{|\alpha| \le N} \lambda_{\alpha} \sqrt{\binom{N}{\alpha}} z^{\alpha},$$

$$\mathbf{E}(\lambda_{\alpha}) = 0, \quad \mathbf{E}(\lambda_{\alpha}\overline{\lambda}_{\beta}) = \delta_{\alpha\beta}.$$

Proposition 3 In the SU(2) ensemble, $E(Z_f) = \omega_{FS}$, the Fubini-Study area form on \mathbb{CP}^1 .

SU(2) and holomorphic line bundles

Proof that $\mathbf{E}(Z_f) = \omega_{FS}$ is trivial if we make right identifications:

- $\mathcal{P}_N^{(1)} \simeq H^0(\mathbb{CP}^1, \mathcal{O}(N))$ where $\mathcal{O}(N) = N$ th power of the hyperplane section bundle $\mathcal{O}(1) \rightarrow \mathbb{CP}^1$.Indeed, $\mathcal{P}_N^{(1)} \iff$ homogeneous polynomials $F(z_0, z_1)$ of degree N: homogenize $f(z) \in \mathcal{P}_N^{(1)}$ to $F(z_0, z_1) = z_0^N f(z_1/z_0)$. Also $H^0(\mathbb{CP}^1, \mathcal{O}(N)) \iff$ homogeneous polynomials $F(z_0, z_1)$ of degree N.
- Fubini-Study inner product on $H^0(\mathbb{CP}^1, \mathcal{O}(N))$ = inner product $\int_{S^3} |F(z_0, z_1)|^2 dV$ on the homogeneous polynomials.
- The inner product and Gaussian ensemble are thus SU(2) invariant. Hence, $\mathbf{E} Z_f$ is SU(2)-invariant.

Gaussian random holomorphic sections of line bundles

The SU(2) ensemble generalizes to all dimensions, and moreover to any positive holomorphic line bundle $L \rightarrow M$ over any Kähler manifold.

We endow L with a Hermitian metric h and M with a volume form dV. We define an inner product

$$\langle s_1, s_2 \rangle = \int_M h(s_1(z), s_2(z)) dV(z).$$

We let $\{S_j\}$ denote an orthonorm la basis of the space $H^0(M, L)$ of holomorphic sections of L.

Then define Gaussian holomorphic sections $s \in H^0(M, L)$ by

$$s = \sum_{j} c_j S_j, \quad \langle S_j, S_k \rangle = \delta_{jk}$$

with $E(c_j) = 0 = E(c_jc_k), E(c_j\overline{c_k}) = \delta_{jk}$.

14

Statistics of critical points

Algebraic geometers are interested in zeros of holomorphic sections. But from now on we focus on critical points

 $\nabla s(z) = 0,$

where $\boldsymbol{\nabla}$ is a metric connection.

Critical points of Gaussian random functions come up in may areas of physics-

- as peak points of signals (S.O. Rice, 1945);
- as vacua in compactifications of string/M theory on Calabi-Yau manifolds with flux (Giddings-Kachru-Polchinski, Gukov-Vafa-Witten);
- as extremal black holes (Strominger, Ferrara-Gibbons-Kallosh), peak points of galaxy distributions (Szalay et al, Zeldovich), etc.

Critical points

Definition: Let $(L,h) \rightarrow M$ be a Hermitian holomorphic line bundle over a complex manifold M, and let $\nabla = \nabla_h$ be its Chern connection.

A critical point of a holomorphic section $s \in H^0(M, L)$ is defined to be a point $z \in M$ where $\nabla s(z) = 0$, or equivalently, $\nabla' s(z) = 0$.

In a local frame e critical point equation for s = fe reads:

 $\partial f(w) + f(w)\partial K(w) = 0,$

where $K = -\log ||e(z)||_h$.

The critical point equation is only C^{∞} and not holomorphic since K is not holomorphic.

Statistics of critical points

The distribution of critical points of $s \in H^0(M, L)$ with respect to h (or ∇_h) is the measure on M

(1)
$$C_s^h := \sum_{z: \nabla_h s(z) = 0} \delta_z.$$

Further introduce a measure γ on $H^0(M, L)$.

Definition: The (expected) distribution $\mathbf{E}_{\gamma}C_s^h$ of critical points of $s \in H^0(M, L)$ w.r.t. ∇_h and γ is the measure on M defined by

$$\langle \mathbf{E}_{\gamma} C_s^h, \varphi \rangle := \int_{H^0(M,L)} \left[\sum_{z: \nabla_h s(z) = 0} \varphi(z) \right] d\gamma(s).$$

The expected number of critical points is defined by

$$\mathcal{N}^{crit}(h,\gamma) = \int_{\mathcal{S}} \#Crit(s,h)d\gamma(s).$$

17

Problems of interest

- 1. Calculate $\mathbf{E}_{\gamma}C_s^h$. How are critical points distributed? (Deeper: how are they correlated?)
- 2. How large is $\mathcal{N}^{crit}(h,\gamma)$? How does the expected number of critical points depend on the metric?
- 3. The 'best' metrics are the ones which minimize this quantity. Which are they?

The vacuum selection problem in string/M theory

These problems have applications to string/M theory.

According to string/M theory, our universe is 10- (or 11-) dimensional. In the simplest model, it has the form $M^{3,1} \times X$ where X is a complex 3-dimensional *Calabi-Yau* manifold.

The vacuum selection problem: Which X forms the 'small' or 'extra' dimensions of our universe? How to select the right vacuum?

Complex geometry and effective supergravity

The low energy approximation to string/M theory is effective supergravity theory. It consists of $(\mathcal{M}, \mathcal{L}, W)$ where:

- 1. $\mathcal{M} = \mathcal{M}_{\mathbb{C}} \times \mathcal{H}$, where $\mathcal{M}_{\mathbb{C}} =$ moduli space of Calabi-Yau metrics on a complex 3-D manifold X, $\mathcal{H} =$ upper half plane;
- 2. $\mathcal{L} \to \mathcal{M}$ is a holomorphic line bundle with with first Chern class $c_1(\mathcal{L}) = -\omega_{WP}$ (Weil-Petersson Kähler form).
- 3. the "superpotential" W is a holomorphic section of \mathcal{L} .

Hodge bundle and line bundle ${\mathcal L}$

Given a complex structure z on X, let $H^{3,0}(X_z)$ be the space of holomorphic (3,0) forms on X, i.e. type $dw_1 \wedge dw_2 \wedge dw_3$.

On a Calabi-Yau 3-fold, dim $H^{3,0}(X_z) = 1$. Hence, $H^{3,0}(X_z) \to \mathcal{M}$ is a (holomorphic) line bundle, known as the Hodge bundle. We write a local frame as Ω_z .

 $\ensuremath{\mathcal{L}}$ is the dual line bundle to the Hodge bundle.

(Similarly for \mathcal{H} factor).

Lattice of integral flux superpotentials

Physically relevant sections correspond to integral co-cycles ('fluxes')

$$G = F + iH \in H^{3}(X, \mathbb{Z} \oplus \sqrt{-1}\mathbb{Z}).$$

Such a G defines a section W_G of $\mathcal{L} \to \mathcal{M}$ by:

$$\langle W_G(z,\tau),\Omega_z\rangle = \int_X [F+\tau H] \wedge \Omega_z.$$

Thus, $G \rightarrow W_G$ maps

$$H^{3}(X,\mathbb{Z}\oplus\sqrt{-1}\mathbb{Z})\to H^{0}(\mathcal{M},\mathcal{L}).$$

Let $\mathcal{F}_{\mathbb{Z}} = \{W_G : G \in H^3(X, \mathbb{Z} \oplus \sqrt{-1}\mathbb{Z}\})$. Also let $\mathcal{F} = \mathcal{F}_{\mathbb{Z}} \otimes \mathbb{C}$ (flux space).

Possible universes as critical points

A possible universe or vacuum is a Calabi-Yau 3-fold X_z with complex structure z and $\tau \in \mathcal{H}$ s.th.

 $\nabla W_G(z,\tau) = 0,$

 $\iff \nabla_{\tau,z} \int_X [F + \tau H] \wedge \Omega_z = 0 \quad (z,\tau) \in \mathcal{M}$ for some $G = F + iH \in H^0(X, \mathbb{Z} \oplus i\mathbb{Z})$: Moreover, the Hessian must be positive definite.

Here, $\nabla = \nabla_{WP}$ is the Weil-Petersson covariant derivative on $H^0(\mathcal{M}, \mathcal{L})$ arising from ω_{WP} .

More on critical points

- 1. Solutions of $\nabla(G + \tau H) = 0$ are actually supersymmetric vacua. General vacua are critical points of the potential energy $V(\tau) =$ $||\nabla W(\tau)||^2 - 3||W(\tau)||^2$.
- 2. The critical point equation for is equivalent to: find (z, τ) s.th.

$$G^{0,3} = G^{2,1} = 0$$

in the Hodge decomposition

 $H^{3}(X,\mathbb{C}) = H^{3,0}_{z} \oplus H^{2,1}_{z} \oplus H^{1,2}_{z} \oplus H^{0,3}_{z}.$

Tadpole constraint

There is one more constraint on the flux superpotentials, called the tadpole constraint. It has the form:

(2)
$$\int_X F \wedge H \leq L \iff Q[F + iH] = \leq L$$

where Q is the indefinite quadratic form on $H^3(X, \mathbb{C})$ defined by

$$Q(\varphi_1,\varphi_2) = \int_X \varphi_1 \wedge \overline{\varphi}_2.$$

Since Q is indefinite, the relevant superpotentials are lattice points in the hyperbolic shell (2).

M. R. Douglas' statistical program (studied with Ashok, Denef, Shiffman, Z and others)

- 1. Count the number of critical points (better: local minima) of all integral flux superpotentials W_G with $Q[G] \leq L$.
- 2. Find out how they are distributed in \mathcal{M} .
- 3. How many are consistent with the standard model and the known cosmological constant?

Mathematical problem

Given L > 0, consider lattice points

$$G = F + iH \in H^{3}(X, \mathbb{Z} \oplus \sqrt{-1}\mathbb{Z})$$

in the hyperbolic shell

$$0 \le Q[G] \le L.$$

Let $\mathcal{K} \subset \mathcal{M}$ be a compact subset of moduli space. Count number of critical points in \mathcal{K} for *G* in shell:

$$\mathcal{N}_{\mathcal{K}}^{\mathsf{crit}}(L) = \sum_{Q[G] \leq L} \#\{(z,\tau) \in \mathcal{K} : \nabla W_G(z,\tau) = 0\}.$$

Problem Determine $\mathcal{N}_{\mathcal{K}}^{\text{crit}}(L)$ where L is the tadpole number of the model. Easier: determine its asymptotics as $L \to \infty$.

Distribution of moduli of universes?

More generally, define

$$N_{\psi}(L) = \sum_{G \in H^{3}(X, \mathbb{Z} \oplus \sqrt{-1}\mathbb{Z}) : H[G] \leq L} \langle C_{G}, \psi \rangle,$$

where

$$\langle C_G, \psi \rangle = \sum_{(z,\tau): \nabla G(z,\tau) = 0} \psi(G, z, \tau).$$

Here, $\psi(G, z, \tau)$ is a smooth function with compact support in $(z, \tau) \in \mathcal{M}$ and polynomial growth in G. D

Example: Cosmological constant $\psi(G, z, \tau) = \{|\nabla W_G(\tau, z)|^2 - 3|W_G(\tau, z)|^2\}\chi(z, \tau), \text{ with } \chi \in C_0^{\infty}(\mathcal{M}).$

Problem Find $N_{\psi}(L)$ as $L \to \infty$.

28

Radial projection of lattice points

Since $\langle C_G, \psi \rangle$ is homogeneous of degree 0 in G, one can radially project G to the hyperboloid Q[G] = 1.

Similar to model problem: take an indefinite quadratic form Q and consider lattice points inside a hyperbolic shell $0 \le Q \le L$ which lie inside a proper subcone of the lightcone Q = 0. Project onto the hyperboloid Q = 1 and measure equidistribution.

[Easier: do it for an ellipsoid].

Critical points of each G give an additional feature.

Discriminant variety/mass matrix

A nasty complication is the *real discriminant* hypersurface \mathcal{D} of $W \in \mathcal{F}$ which have degenerate critical points, i.e the Hessian $D\nabla W(\tau)$ is degenerate. The number of critical points and $\langle C_W, \psi \rangle$ jump across \mathcal{D} . So we are not summing a smooth function over lattice points.

But: the Hessian of a superpotential at a critical point is the 'mass matrix' and no massless fermions are observed. So it is reasonable to count vacua away from \mathcal{D} .

Rigorous result on lattice sums

Here is a sample result on distribution of vacua:

Theorem **4** Suppose Supp $\psi \cap \mathcal{D} = \emptyset$. Then

$$\mathcal{N}_{\psi}(L) = L^{2b_3} \left[\int_{\{Q[W] \le 1\}} \langle C_W, \psi \rangle \, dW + O\left(L^{-\frac{4b_3}{2b_3+1}}\right) \right]$$

Here, $b_3 = \dim H_3(X, \mathbb{C})$, integral is hyperbolic shell in \mathcal{F} .

Further results:

- 1. Let $\psi = \chi_{\mathcal{K}}$. Same principal term, but $O(L^{2b_3-1})$ remainder.
- 2. Similarly if we drop assumption $\operatorname{Supp} \psi \cap \mathcal{D} = \emptyset$.

Gaussian principal term

The principal coefficient $\int_{\{Q[W] \leq 1\}} \langle C_W, \psi \rangle \, dW$ can be rewritten as:

 $\int_{\mathcal{M}} \int_{\{Q_{z,\tau}[W] \leq 1\}} |\det D\nabla W(z,\tau)| \psi(W,z,\tau) dW dV(z,\tau)$

= density of critical points of Gaussian random superpotentials in the space

$$\mathcal{F}_{z,\tau} = \{ W : \nabla W(z,\tau) = 0 \}$$

with inner product $Q_{z,\tau} = Q|_{\mathcal{F}_{z,\tau}}$.

It is Gaussian because $Q_{z,\tau} >> 0$ by *special* geometry of \mathcal{M} . $dV(z,\tau)$ is a certain volume form on \mathcal{M} .

[More precisely, the ensemble is dual to it under the Laplace transform].

Gaussian and lattice ensembles

To summarize: we can approximate the discrete ensemble of integral flux superpotentials by a Gaussian random ensemble for large L.

This shows how fundamental Gaussian ensembles are. To understand

 $\int_{\mathcal{M}} \int_{\{Q_{z,\tau}[W] \leq 1\}} |\det D\nabla W(z,\tau)| \psi(W,z,\tau) dW dV_Q(z,\tau)| \psi(W,z,\tau)| \psi(W,z,\tau)|$

we now turn to model Gaussian geometric problems. Even on \mathbb{CP}^m the distribution of critical points is non-obvious.

Geometric study of critical points

Model problem: Given a hermitian holomorphic line bundle $(L,h) \rightarrow M$, define the *Hermitian Gaussian measure* γ_h to be the Gaussian measure induced by the inner product \langle,\rangle_h , i.e.

$$\langle s_1, s_2 \rangle = \int_M h(s_1(z), s_2(z)) dV(z).$$

We often take $dV = \frac{\omega^m}{m!}$.

Then the distribution $\mathcal{K}^{crit}(h,\gamma)(z)$ and the number $\mathcal{N}^{crit}(h,\gamma)$ of critical points w.r.t. ∇_h are purely metric invariants of (L,h).

How do they depend on h?

Exact formula for $\mathcal{N}^{crit}(h_{FS}, \gamma_{FS})$ on \mathbb{CP}^1

Theorem **5** The expected number of critical points of a random section $s_N \in H^0(\mathbb{CP}^1, \mathcal{O}(N))$ (with respect to the Gaussian measure γ_{FS} on $H^0(\mathbb{CP}^1, \mathcal{O}(N))$ induced from the Fubini-Study metrics on $\mathcal{O}(N)$ and \mathbb{CP}^1) is

$$\frac{5N^2 - 8N + 4}{3N - 2} = \frac{5}{3}N - \frac{14}{9} + \frac{8}{27}N^{-1}\cdots$$

Of course, relative to the flat connection d/dz the number is N-1. Thus, the positive curvature of the Fubini-Study hermitian metric and connection causes sections to oscillate much more than the flat connection. There are $\frac{N}{3}$ new local maxima and $\frac{N}{3}$ new saddles.

Asymptotic expansion for the expected number of critical points

Theorem **6** Let (L,h) be a positive hermitian line bundle. Let $\mathcal{N}^{crit}(h^N)$ denote the expected number of critical points of random $s \in H^0(M, L^N)$ with respect to the Hermitian Gaussian measure. Then,

$$\mathcal{N}(h^N) = \frac{\pi^m}{m!} \Gamma_m^{\text{crit}} c_1(L)^m N^m + \int_M \rho dV_\omega N^{m-1} + C_m \int_M \rho^2 dV_\Omega N^{m-2} + O(N^{m-3}).$$

Here, ρ is the scalar curvature of ω_h , the curvature of h.

 $\Gamma_m^{\text{crit}} c_1(L)^m$ is larger than for a flat connection.

To what degree is the expected number of critical points a topological invariant?

The first two terms are topological invariants of a positive line bundle, i.e. independent of the metric! (Both are Chern numbers of L). But the third term

$$C_m \int_M \rho^2 dV_{\Omega} N^{m-2}$$

is a non-topological invariant, as long as $C_m \neq$ 0. It is a multiple of the Calabi functional.

(These calculations are based on the Tian-Yau-Zelditch (and Catlin) expansion of the Szegö kernel and on Zhiqin Lu's calculation of the coefficients in that expansion.)

Calabi extremal metrics are asymptotic minimizers

As long as $C_m > 0$, we see from the expansion $\mathcal{N}(h^N) = \frac{\pi^m}{m!} \Gamma_m^{\text{crit}} c_1(L)^m N^m + \int_M \rho dV_\omega N^{m-1}$

 $+C_m \int_M \rho^2 dV_{\Omega} N^{m-2} + O(N^{m-3}).$

that Calabi extremal metrics asymptotically minimize the metric invariant = average number of critical points. Indeed, they minimize the third term.

We have proved $C_m > 0$ in dimensions $m \le 5$. We conjecture $C_m > 0$ in all dimensions. Ben Baugher has a new formula for C_m which makes this almost certain.

Summing up

- 1. Counting candidate universes in string theory amounts to counting critical points of integral superpotentials, which form a lattice in the hyperbolic shell $Q[N] \leq L$.
- 2. As $L \to \infty$, this ensemble is well-approximated by Lebesgue measure in the shell, which is dual (Laplace transform) to Gaussian measure.
- 3. As the degree deg $\mathcal{L} = N \to \infty$, we understand the geometry of the distribution of critical points of Gaussian random sections or the dual Lebesgue one.

Open problems

- 1. For fixed X, the asymptotic number of vacua is L^{b_3} . Typically, $b_3 \simeq 100$ and $L \sim 100$, so this gives 100^{100} vacau. Make effective results in the lattice point problem for the actual tadpole number L.
- 2. How many consistent with the cosmological constant (a very small > 0 number)? Or with known mass matrix?
- 3. How are critical points correlated? Generalize results of Bleher-Shiffman-Z on zeros of m independent random sections to critical points. Conjecture: when dim $\mathcal{M} \geq 3$, the critical points cluster. They repel when dim $\mathcal{M} = 1$. Compare to computer graphics of Denef-Douglas.