Zeros of real analytic

ergodic Laplace eigenfunctions

AMS Atlanta, Wednesday, Jan. 5, 5: 45

Steve Zelditch
Department of Mathematics
Johns Hopkins University



Purpose of talk

This is a preliminary report on work in progress
on real and complex nodal hypersurfaces of er-
godic eigenfunctions.

We consider the eigenvalue problem

2
Apj = Aipj, (@), Pr) = djk
for Laplacians on Riemannian manifolds (M, g)
with the properties:

e (M,q) is real analytic;

e Its geodesic flow G' : S;M — SiM is er-
godic.

Problem How are nodal hypersurfaces distributed
in the limit Aj — 00.7



Real versus complex nodal hyper-
surfaces

We will consider two kinds of nodal hypersur-
faces:

e The real nodal hypersurface Z,, = {x €
M : p;(z) = 0};

e [he complex nodal hypersurface Z(pC =
J

{¢ € B*M : QO;C(C) = 0}, where gogc is the
analytic continuation of ¢; to the ball bun-
dle B*M for the natural complex structure
adapted to g. (Definitions to come).



Motivating conjecture

We measure distribution of zeros by the prob-
ability measure defined by integrating a con-
tinuous function over the nodal hypersurfaces

V) (Z)H = f@an

where dH" 1 is the (n—1)-dimensional (Hauss-
dorf) surface measure on the nodal hypersur-
face induced by the Riemannian metric of (M, g).

Conjecture 1 Let (M,gqg) be a real analytic Rie-
mannian manifold with ergodic geodesic flow,
and let {p;} be the density one sequence of
ergodic eigenfunctions Then,

(Ze)), 1) ~ | [ favolgix

Vl(M q)

At this time of writing, even the asymptotics
of the area (even in dimension two) has not
been proved.



Volumes of nodal hypersurfaces

The best result to date on volumes of nodal hy-
persurfaces on analytic Riemannian manifolds
are the following (note that our X is the square
root of the A-eigenvalue.)

Theorem 2 (Donnelly-Fefferman, Inv. Math.
1988) Suppose that (M, g) is real analytic. Then

ciA <HV 1 (Zp,) < Co.

The conjecture stated above implies an asymp-
totic formula H"1(Z,,) ~ CgX in the case of
ergodic geodesic flow.



Main result

Theorem 3 Assume (M, q) is real analytic and
that the geodesic flow of (M,gqg) is ergodic.
T hen

1 _ o
)\—ngogj — 00|§lg, weakly in ByM.

Here, 0 is the Cauchy-Riemann operator for
the complex structure on the unit ball bundle
with respect to the complex structure adapted
to g. Also, [£]7 = ¥, ;9Y¢&¢&; is the length-
squared of a (co-)vector.

Definition: The adapted complex structure
on B*M is uniquely characterized by the fact
that the maps (t,7) € Ct — B*M,

(t,7) — (), teR, 7€ RT
are holomorphic curves for any geodesic ~.
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Comments

e The Kaehler structure on the cotangent
bundle is 90|¢[2. But the limit current is
00[€|g. The latter is singular along M =
{¢ = 0} and the associated volume form is
not the symplectic one.

e T he reason for the singularity is that the
zero set is invariant under the involution
o:T*M — T*M, (x,£) — (x,—£), since the
eigenfunction is real valued on M. The
fixed point set of o0 is M and is also where
zeros concentrate. By pushing this further
one might be able to prove the conjecture
on real zeros.



Bruhat-Whitney complexification

Theorem 4 (Bruhat-Whitney, 1959) Let M
be a real analytic manifold of real dimension n.
Then there exists a complex manifold M¢ of
complex dimension n and a real analytic em-
bedding M — Mg such that M is a totally real
submanifold of M¢. The germ of Mc¢ is unique.

Totally real means: Let Jp : TeM¢g — I M de-
note the complex structure on the (complex-
ified) tangent bundle of M¢. Then J,7pM N
TpM = {0}. I.,e. T, M contains to complex sub-

Spaces.



Examples: Spheres and tori

BH complexifications of spheres and tori can
be identified with their full cotangent spaces:

1. S™ It is defined by «f +--- 4+ 27, ; = 1 in
R"*t1 Tts BH complexification is the complex
quadric

If we write z; = z; +1&;, the equations become
|$|2 o |§|1 — 17 <$7€> = 0.

2. T" = R™/Z™ The BH complexification is
Cn/Z" =T" x R™ = T*M.

The complexified exponential map is:

expc,(i€) = = + €.



Analytic continuation of the wave
kernel

Theorem 5 Let E(t,x,y) denote the kernel of
E(t) := eitVA . Then for e sufficiently small,

e E(t,z,y) can be analytically continued to a
holomorphic function in the strip 0 < St <

€,

e For fixed (x,¢), E(ie,xz,y) can be analyti-
cally continued in x to a holomorphic func-
tion E(ie,x,z) With z € M.
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Analytic continuation of the wave
kernel

A more precise description:

Theorem 6 E(ie, z,y) : L?2(M) — H2(OM,) is

a complex Fourier integral operator of order

—mT_l associated to the canonical relation

= {(y,n, expy(ie)n/In|)} C T"M x Ze.

Moreover,
m—1
E(ie) : H— & (M) — H?(0BM)

IS an isomorphism.
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Analytic continuation of eigenfunc-
tions

T he holomorphic extension of ¢, is obtained by
applying a complex Fourier integral operator:

(2) E(iT)pn = e T Y.

T his implies connections between the geodesic
flow and the growth rate and zeros of gogj.

Corollary 7 Each eigenfunction ¢, has a unique
holomorphic extensions to Me satisfying

sup |g0§(m)| < C AT LA,

me M

In particular, eigenfunctions extend holomor-
phically to the maximal Grauert tube in the
adapted complex structure.
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Outline of proof of distribution of
complex zeros

Theorem 8 Assume the geodesic flow of (M, g)
is ergodic. Then

05 ()2

€112
||90)\||L2(8B§M)

UL|? = . 1, weakly in L*(BM).

(Ergodicity on the hypersurfaces implies er-
godicity in the tube.)
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Strong limit of logarithm

Quantum ergodicity log |U;|?
plus pluri-subhamonicity implies:

1
00109 U;|* — 0, weakly in D'(My).
j

By Poincare- Lelong:
[Z;] = 88log |37 ]?.
Since
3 12 _ a5 ~C12 a7 ~C(2
891og |U;|* = 80log |@;|* — 80109 ||&; |5,

we find asymptotics of [Z;] from asymptotics
of log |52,
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Norm asymptotics

The final step is to prove:

Lemma 9

1

Cyp
1109 [ley ||L2(3Mﬁ) ~ |€lg-
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