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Purpose of talk

This is a preliminary report on work in progress
on real and complex nodal hypersurfaces of er-
godic eigenfunctions.

We consider the eigenvalue problem

∆ϕj = λ2
j ϕj, 〈ϕj, ϕk〉 = δjk

for Laplacians on Riemannian manifolds (M, g)
with the properties:

• (M, g) is real analytic;

• Its geodesic flow Gt : S∗
gM → S∗

gM is er-
godic.

Problem How are nodal hypersurfaces distributed
in the limit λj → ∞.?

2



Real versus complex nodal hyper-
surfaces

We will consider two kinds of nodal hypersur-

faces:

• The real nodal hypersurface Zϕj = {x ∈
M : ϕj(x) = 0};

• The complex nodal hypersurface Z
ϕC

j
=

{ζ ∈ B∗M : ϕC
j (ζ) = 0}, where ϕC

j is the

analytic continuation of ϕj to the ball bun-

dle B∗M for the natural complex structure

adapted to g. (Definitions to come).
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Motivating conjecture

We measure distribution of zeros by the prob-
ability measure defined by integrating a con-
tinuous function over the nodal hypersurfaces

(1) 〈[Z̃ϕj], f〉 =
∫
Zϕj

f(x)dHn−1,

where dHn−1 is the (n−1)-dimensional (Hauss-
dorf) surface measure on the nodal hypersur-
face induced by the Riemannian metric of (M, g).

Conjecture 1 Let (M, g) be a real analytic Rie-
mannian manifold with ergodic geodesic flow,
and let {ϕj} be the density one sequence of
ergodic eigenfunctions. Then,

〈[Z̃ϕj], f〉 ∼ { 1

V ol(M, g)

∫
M

fdV olg}λ.

At this time of writing, even the asymptotics
of the area (even in dimension two) has not
been proved.
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Volumes of nodal hypersurfaces

The best result to date on volumes of nodal hy-

persurfaces on analytic Riemannian manifolds

are the following (note that our λ is the square

root of the ∆-eigenvalue.)

Theorem 2 (Donnelly-Fefferman, Inv. Math.

1988) Suppose that (M, g) is real analytic. Then

c1λ ≤ Hn−1(Zϕλ) ≤ C2λ.

The conjecture stated above implies an asymp-

totic formula Hn−1(Zϕλ) ∼ Cgλ in the case of

ergodic geodesic flow.
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Main result

Theorem 3 Assume (M, g) is real analytic and
that the geodesic flow of (M, g) is ergodic.
Then

1

λj
Z

ϕC
λj

→ ∂∂|ξ|g, weakly in B∗
gM.

Here, ∂ is the Cauchy-Riemann operator for
the complex structure on the unit ball bundle
with respect to the complex structure adapted
to g. Also, |ξ|2g =

∑
i,j gijξiξj is the length-

squared of a (co-)vector.

Definition: The adapted complex structure
on B∗M is uniquely characterized by the fact
that the maps (t, τ) ∈ C+ → B∗M,

(t, τ) → τ γ̇(t), t ∈ R, τ ∈ R
+

are holomorphic curves for any geodesic γ.
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Comments

• The Kaehler structure on the cotangent

bundle is ∂∂|ξ|2g . But the limit current is

∂∂|ξ|g. The latter is singular along M =

{ξ = 0} and the associated volume form is

not the symplectic one.

• The reason for the singularity is that the

zero set is invariant under the involution

σ : T ∗M → T ∗M , (x, ξ) → (x,−ξ), since the

eigenfunction is real valued on M . The

fixed point set of σ is M and is also where

zeros concentrate. By pushing this further

one might be able to prove the conjecture

on real zeros.
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Bruhat-Whitney complexification

Theorem 4 (Bruhat-Whitney, 1959) Let M

be a real analytic manifold of real dimension n.

Then there exists a complex manifold MC of

complex dimension n and a real analytic em-

bedding M → MC such that M is a totally real

submanifold of MC. The germ of MC is unique.

Totally real means: Let Jp : TCMC → TCMC de-

note the complex structure on the (complex-

ified) tangent bundle of MC. Then JpTpM ∩
TpM = {0}. I.e. TpM contains to complex sub-

spaces.
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Examples: Spheres and tori

BH complexifications of spheres and tori can

be identified with their full cotangent spaces:

1. Sn It is defined by x2
1 + · · · + x2

n+1 = 1 in

Rn+1. Its BH complexification is the complex

quadric

S2
C

= {(z1, . . . , zn) ∈ C
n+1 : z2

1+· · ·+z2
n+1 = 1}.

If we write zj = xj + iξj, the equations become

|x|2 − |ξ|1 = 1, 〈x, ξ〉 = 0.

2. Tn = Rn/Zn The BH complexification is

Cn/Zn = Tn × Rn ≡ T ∗M.

The complexified exponential map is:

expCx(iξ) = x + iξ.
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Analytic continuation of the wave
kernel

Theorem 5 Let E(t, x, y) denote the kernel of

E(t) := eit
√

∆. Then for ε sufficiently small,

• E(t, x, y) can be analytically continued to a

holomorphic function in the strip 0 ≤ �t ≤
ε;

• For fixed (x, ε), E(iε, x, y) can be analyti-

cally continued in x to a holomorphic func-

tion E(iε, x, z) with z ∈ Mε.
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Analytic continuation of the wave
kernel

A more precise description:

Theorem 6 E(iε, z, y) : L2(M) → H2(∂Mε) is

a complex Fourier integral operator of order

−m−1
4 associated to the canonical relation

Γ = {(y, η, expy(iε)η/|η|)} ⊂ T ∗M × Σε.

Moreover,

E(iε) : H−m−1
4 (M) → H2(∂B∗

ε M)

is an isomorphism.
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Analytic continuation of eigenfunc-
tions

The holomorphic extension of ϕλ is obtained by

applying a complex Fourier integral operator:

(2) E(iτ)ϕλ = e−τλϕC
λ .

This implies connections between the geodesic

flow and the growth rate and zeros of ϕC
λ .

Corollary 7 Each eigenfunction ϕλ has a unique

holomorphic extensions to Mε satisfying

sup
m∈Mε

|ϕC
λ(m)| ≤ Cελ

m+1eελ.

In particular, eigenfunctions extend holomor-

phically to the maximal Grauert tube in the

adapted complex structure.
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Outline of proof of distribution of
complex zeros

Theorem 8 Assume the geodesic flow of (M, g)

is ergodic. Then

|Uλ|2 =
|ϕε

λ(z)|2
||ϕε

λ||2L2(∂B∗
ε M)

→ 1, weakly in L1(B∗
ε M).

(Ergodicity on the hypersurfaces implies er-

godicity in the tube.)
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Strong limit of logarithm

Quantum ergodicity log |Uj|2
plus pluri-subhamonicity implies:

1

λj
∂∂̄ log |Uj|2 → 0, weakly in D′(M1).

By Poincare- Lelong:

[Z̃j] = ∂∂̄ log |ϕ̃C
j |2.

Since

∂∂̄ log |Uj|2 = ∂∂̄ log |ϕ̃C
j |2 − ∂∂̄ log ||ϕ̃C

j ||2∂Mε
,

we find asymptotics of [Z̃j] from asymptotics

of log |ϕ̃C
j |2.
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Norm asymptotics

The final step is to prove:

Lemma 9

1

λ
log ||ϕC

√
ρ

λ ||L2(∂M√
ρ)

∼ |ξ|g.
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