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Supergravity theory

An effective supergravity theory T is defined

by data (C, K, W ):

• a configuration space C, a complex mani-

fold with Kähler metric ω, with Kähler po-

tential K(z, z̄), ω = ∂∂̄K.

• The associated holomorphic line bundle L
over C, such that c1(L) = −ω.

• A hermitian metric ||W || and a natural holo-

morphic metric connection ∇ with curva-

ture ω.

• A superpotential W , which is a (locally)

holomorphic section of L.
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The potential

Physicists write a section locally as a holo-

morhic function W . Then the Hermitian metric

is written

||W ||2 = eK|W |2;
and the covariant derivative of a section W is

∇iW ≡ ∂iW + (∂iK)W.

The scalar potential V is the following function

on C,

(1) V = eK
(
gīj(DiW )(D̄j̄W

∗)− 3|W |2
)

where W ∗(z̄) is the complex conjugate section

and

D̄j̄W
∗ = p̄j̄W

∗ + (p̄j̄K)W ∗.

The choice of V is dicated by supersymmetry

(see Wess-Bagger).
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Vacua

A vacuum is then a critical point p ∈ C of V .

The vacua are further distinguished as follows:

A supersymmetric vacuum is one in which the

covariant gradient DiW = 0. This can be seen

to imply V ′ = 0, but the converse is not true.

A non-supersymmetric vacuum is one in which

DiW 6= 0. The norm of the gradient,

(2) M4
susy ≡ eKgījDiWDj̄W

∗,

is then referred to as the scale of supersym-

metry breaking.
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Cosmological constant

The value of V at a critical point is the cos-

mological constant Λ of that vacuum. These

are divided into Λ = 0, the Minkowski vacua,

Λ > 0, the de Sitter (or dS) vacua, and Λ < 0,

the Anti-de Sitter (or AdS) vacua. It is easy

to see that supersymmetric vacua can only be

Minkowski or AdS. The Minkowski vacua are

simultaneous solutions of DiW = W = 0; in

this case DiW = ∂iW and the existence of such

vacua is independent of the Kähler potential.

On the other hand, this is an overdetermined

set of equations, so supersymmetric Minkowski

vacua are not generic.
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Stable vacua

A stable vacuum is one in which small fluctua-

tions of the fields will not grow exponentially.

One might think that the condition for this

is for the Hessian V ′′ to be non-negative def-

inite. This is correct in a Minkowski vacuum,

but in curved space-time the linearized equa-

tions of motion also get a contribution from

the background curvature, and in AdS the spa-

tial boundary conditions are treated differently,

changing the discussion.

For AdS4, the correct stability condition is [?]

∂i∂jV ≥ −3

4
Λgij.

It can be shown that this is always satisfied by

supersymmetric vacua.
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Physical questions about vacua

• Find the expected number of stable super-

symmetric vacua, or the ratio between the

expected numbers of supersymmetric and

stable non-supersymmetric vacua. More

generally, one wants to know which param-

eters control this ratio.

• Having found stable non-supersymmetric vacua,

the next most basic question is to under-

stand the cosmological constant Λ, the value

of V at the minimum. Our universe at

present is clearly very similar to Minkowski

space-time, but according to recent ob-

servations there is a non-zero “dark en-

ergy” which can be fit by taking Λ > 0

and small. If this is actually a cosmological

constant, in the distant future the universe
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will asymptotically approach the de Sitter
space-time.

• If there are many candidate vacua, the next
general question which emerges is their dis-
tribution in the configuration space. Al-
though this is complicated in its details,
one would like to know whether or not the
vacua which pass the previous tests are
roughly uniformly distributed with respect
to the natural measure (the volume form
obtained from the Kähler form).

• Finally, one would like to consider more
global definitions of stability. In particu-
lar, a vacuum with Λ = Λ1 > 0 can tun-
nel or decay to another vacuum (refs) with
Λ1 > Λ = Λ2 ≥ 0, at a rate roughly given
by the exponential of the action

exp−
∫

dz

√
V (z)− gīj(z)ż

i ˙̄zj̄.



• Finally, there are questions which are sim-

pler than literally counting critical points,

but still relevant. Our basic example is the

following. The problem of counting criti-

cal points of a section is not a holomor-

phic problem, because of the presence of

the nonholomorphic connection ∂K. Thus,

critical points come with a non-zero Morse

sign sgn detDiDjW (here i, j are real co-

ordinates).

The simplest definition of “counting criti-

cal points” is to count with this sign,

I =
∑

DW (p)=0

sgn det
i,j

DiDjW |p.

This was called the “supergravity index”

in [?], and is closely related to the Morse

index of the norm of the section, eK|W |,
but is not literally the same if W has zeroes.

It is invariant under appropriate continuous

deformations of the section and metric.



Since this quantity is easier to compute
than the literal number of critical points,
it is of interest to know in what circum-
stances and how well it estimates the num-
ber of critical points, of the two types we
discussed.

• Similar comments might be relevant for
counting critical points of V . Of course, at
a minimum V ′′ > 0 this sign is positive, but
as we mentioned the AdS stability condi-
tion allows for some negative eigenvalues.

• To summarize, we would like to know the
expected distribution of critical points of
W (supersymmetric) and of V (nonsuper-
symmetric if DW 6= 0), the expected dis-
tribution of ||W ||2 at the critical points in
the supersymmetric case, and the expected
joint distribution of M4

susy and V in the non-
supersymmetric case.



Connection

We start with a choice of a d complex dimen-
sional Calabi-Yau manifold M , i.e. a complex
Kähler manifold with c1(M) = 0. The topo-
logical data of M of primary relevance for us is
its middle cohomology Hd(M,Z). This carries
an intersection form

ηij = (Σi,Σj),

symmetric (antisymmetric) for d even (odd).
This form is preserved by a linear action of
SO(b+(M), b−(M);Z) for d even, or Sp(bd(M);Z)
for d odd. We denote this group as G(η).

By Yau’s theorem, such a manifold admits Ricci-
flat Kähler metrics, which come in a family
parameterized locally by a choice of complex
structure on M and a choice of Kähler class.
One can show that the moduli space of com-
plex structures Mc(M) is an (open) manifold
of dimension bd−1,1(M).
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One can also think of the complex structure as

locally determined by a choice of nonvanishing

holomorphic d-form Ω, or by its cohomology

class [Ω] ∈ Hd(M,C). In some cases, this has

been extended to a global Torelli theorem (ref

Voisin). Conversely, Ω is uniquely determined

by the complex structure up to its overall scale.

Let Mc(M) be the moduli space of complex

structures; the association we just described

gives a local embedding

Mc(M) → CP(Hd(M,C)) ≡ CP(V ),

the “period map.” Pairing this with a basis for

Hd(M,Z) gives a basis for the periods, which

we can denote Πi.

The moduli space of complex structures carries

a natural Kähler metric, given by the Kähler

potential

e−K =
∫

M
Ω̄ ∧Ω.



Then, the periods are locally sections of the

line bundle L associated to this metric. They

are not global sections over Mc(M), because

of monodromy: Mc(M) is singular in codimen-

sion one (for a hypersurface f = 0, this is on

the discriminant locus) and a closed loop encir-

cling this singularity induces a Picard-Lefschetz

monodromy on Hd(M,Z). We can regard the

periods either as sections of V ⊗ L where V

is a flat G(η) vector bundle, or simply as sec-

tions of L over an appropriate covering space

of Mc(M).

We now have the ingredients required to de-

fine the effective supergravity theories (in the

flux sector) for the string compactifications of

interest. They each have C = Mc(M) and

K = KM . Finally, for each choice of the “flux”

N ∈ Hd(M,Z), the theory T (N) has

(3) W = (Ω, N).



The simplest example of the structure above is

to take M to be a complex torus Cd/L with L a

2d-dimensional lattice. We then have Mc(M)

the Siegel upper half plane, with coordinate τ

a d × d complex matrix with positive definite

imaginary part. The Kähler potential is K =

− log det=τ , and a Z-basis for the periods can

be taken to be the minors of τ of all ranks:

1, τij, . . . , (cof τ)ij,det τ .

The case d = 3 arises in heterotic string com-

pactification on T6.

F theory compactification on T8/Z2 leads to a

problem which is can be obtained from the case

d = 4 of what we discussed, by restriction to

the subspace of Mc in which τ is a direct sum

of a rank 1 and a rank 3 matrix (in other words,

the torus must admit an elliptic fibration).

The physical problem of interest is then more

or less the one we discussed, in which the



ensemble of sections is the set of periods of
Hd(M,Z). In the case of even d, one takes the
sum with fixed self-intersection (N, N).

The same problems can be discussed for more
general Calabi-Yau manifolds by using the the-
ory of deformation of Hodge structure. The
periods satisfy Picard-Fuchs equations, which
are generalized hypergeometric equations. Their
explicit solutions are known in many cases.

Quite a lot is known about the possible singular
behaviors of these periods, which are expected
to have an important effect on the distribu-
tions we are discussing. One common case
is for a pair of conjugate periods (under the
intersection form) to behave as z and z log z.
Critical points of sections

W = Mz + Nz log z

then can have exponentially small values for
Λ and M4

susy, giving a mechanism to realize



the small numbers hoped for in the previous

discussion.

In physics, the d = 3 case is extensively stud-

ied, and leads to a structure called “special

geometry”. This essentially states that the

image of the period map is a complex La-

grangian submanifold of H3(M,C), and thus

is determined by a single holomorphic function

(the “prepotential”). This is extremely useful

in the applications and leads to a fairly devel-

oped theory for finding these critical points.



Mathematical discussion

We begin with a precise definition of critical

points of a holomorhic section s ∈ H0(M, L).

It depends on a connection ∇ on L = the Chern

connection ∇ = ∇h which preserves the metric

h and satisfies ∇′′
s = 0 for any holomorphic

section s. Here, ∇ = ∇′+∇′′ is the splitting of

the connection into its L⊗T ∗1,0 resp. L⊗T ∗0,1

parts. We denote by Θh the curvature of h.

Definition: Let (L, h) → M be a Hermitian

holomorphic line bundle over a complex mani-

fold M , and let ∇ = ∇h be its Chern connec-

tion. A critical point of a holomorphic section

s ∈ H0(M, L) is defined to be a point z ∈ M

where ∇s(z) = 0, or equivalently, ∇′s(z) = 0.

We denote the set of critical points of s with

respect to the Chern connection ∇ of a Her-

mitian metric h by Crit(s, h).
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Critical points depend on the met-
ric

The set of critical points Crit(s, h) of s, and

even its number #Crit(s, h), depends on ∇h or

equivalently on the metric h.

Recall that the connection 1-form α of ∇h is

given in a local frame e by

∇e = α⊗ e, α = ∂ logh.

In the local frame, s = fe where f is a local

holomorphic function and then ∇s = (∂f +

αf) ⊗ e. Thus the critical point equation in

local coordinates reads:

(4) ∂f = −fα ⇐⇒ −∂ log f = ∂ logh.

This is a real C∞ equation, not a holomorphic

one.
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Another definition of critical point

An essentially equivalent definition which only
makes use of real functions is to define a crit-
ical point as a point w where

(5) d|s(w)|2h = 0.

Since

d|s(w)|2h = 0 ⇐⇒ 0 = ∂|s(w)|2h = hw(∇′s(w), s(w))

it follows that ∇′s(w) = 0 as long as s(w) 6= 0.
So this notion of critical point is the union of
the zeros and critical points. Another essen-
tially equivalent critical point equation which
puts the zero set of s at −∞ is

(6) d log |s(w)|2h = 0.

This is the equation studied by Bott in his
Morse theoretic proof of the Lefschetz hyper-
plane theorem, which is based on the observa-
tion that the Morse index of any such critical
point is at least m.
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Statistics of sections

Our purpose is to study the statistics of criti-
cal points of random sections with respect to
complex Gaussian measures γ on the space
H0(M, L) of holomorphic sections, or more gen-
erally on subspaces S ⊂ H0(M, L). The Gaus-
sian measure γ = γS,h,V is induced by the inner
product

(7) 〈s1, s2〉 =
∫

M
h(s1(z), s2(z))dV (z)

on H0(M, L), where dV is a fixed volume form
on M . When the metric and volume form
and subspace are fixed we denote the Gaus-
sian measure more simply by γ. By definition,

(8) dγ(s) =
1

πd
e−‖c‖

2
dc , s =

d∑

j=1

cjej,

where dc is Lebesgue measure and {ej} is an
orthonormal basis basis for S relative to h, dV .
We also denote the expected value of a random
variable X on with respect to γ by Eγ or simply
by E if the Gaussian measure γ is understood.
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Density of critical points

The critical point density of a fixed section s

with respect to h (or ∇h) is the measure

(9) Ch
s :=

∑

z∈Crit(s,h)

δz,

where δz is the Dirac point mass at z.

Definition: The expected density of critical

points of s ∈ S ⊂ H0(M, L) with respect to h

and V is defined by

(10) Kcrit
S,h,V (z) dV (z) = E γS,h,V Ch

s ,

i.e.,

(11)
∫

M
ϕ(z)Kcrit

S,h,V (z) dV (z) =
∫

S




∑

z:∇hs(z)=0

ϕ(z)


 dγS,h,V (s).
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Expected number of critical points

Definition:

We further define the expected number of crit-

ical points by

(12) N crit(S, h, V ) =
∫

M
Kcrit
S,h,V (z) dV (z).

To state the result, it is most convenient to

introduce a local frame (non-vanishing holo-

morphic section) eL for L over an open set

U ⊂ M containing z, and local coordinates

(z1, . . . , zm) on U in which the local connec-

tion form has zero pure holomorphic and anti-

holomorphic derivatives. We denote the cur-

vature (1,1)-form of ∇ in these coordinates by

Θ =
∑m

i,̄j=1
Θījdzi ∧ dz̄j and refer to the m×m
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matrix [Θi,̄j] as the curvature matrix of ∇. We

also denote by Sym(m,C) the space of complex

m×m symmetric matrices.

Theorem 1 Let (S,∇, γ) denote as above a

finite-dimensional subspace S ⊂ H0(M, L) of

holomorphic sections of a holomorphic line bun-

dle (L,∇) → M with connection on an m-

dimensional complex manifold, together with

a Gaussian measure γ on S. Assume that S
satisfies the 2-jet spanning property. Given a

local frame eL and adapted coordinates z =

(z1, . . . , zm), there exist positive-definite Her-

mitian matrices

A(z) : Cm → Cm , Λ(z) : Sym(m,C)⊕C→ Sym(m,C)⊕C ,

depending only on z, ∇ and ΠS such that the

expected density of critical points with respect

to Lebesgue measure dz in local coordinates is



given by

KcritS,γ,∇(z) = 1

π(m+2
2 ) detA(z) detΛ(z)

× ∫
C

∫
Sym(m,C) |det

(
H ′ xΘ(z)

x̄ Θ̄(z) H̄ ′
)
|

e−〈Λ(z)−1(H ′⊕x), H ′⊕x〉 dH ′ dx ,

where Θ(z) = [Θīj] is the curvature matrix

of ∇ in the coordinates (z1, . . . , zm). The ex-

pected distribution of zeros Kcrit
S,γ,∇(z)dz is in-

dependent of the choice of frame and coordi-

nates.



Density of critical points

The formulae for A(z) and Λ(z) in adapted

local normal coordinates are as follows. Let

FS(z, w) be the local expression for ΠS(z, w)

in the frame eL. Then A(z) is () and Λ =

C −B∗A−1B, where

A =
(

∂2

∂zj∂w̄j′
FS(z, w)|z=w

)
,

B =
[(

∂3

∂zj∂w̄q′∂w̄j′
)FS|z=w

) (
( ∂
∂zj

FS|z=w

)]
,

C =




(
∂4

∂zq∂zj∂w̄q′∂w̄j′
FS|z=w

) (
∂2

∂zj∂zq
FS

)

(
∂2

∂w̄q′∂w̄j′
FS

)
|z=w FS(z, z)


 ,

1 ≤ j ≤ m ,1 ≤ j ≤ q ≤ m ,1 ≤ j′ ≤ q′ ≤ m .

In the above, A, B, C are m × m, m × n, n × n

matrices, respectively, where n = 1
2(m

2 + m +

2). T
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Expected number of critical points
for positive line bundles We assume

that ω = i
2Θh so that c1(L) = [1πω] or −[1πω].

More precisely, the Kähler form is given by

ω = ± i

2
Θh = ± i

2
∂∂̄K, K = − logh.

The volume form is then assumed to be

dV =
ωm

m!

(and thus the total volume of M is πm

m! |c1(L)m| ).
Given one such metric h0 on L, the other met-

rics have the form hϕ = eϕh and Θh = Θh0
−

∂∂̄ϕ, with ϕ ∈ C∞(M). As a consequence of

Lemma 1, we obtain the following integral for-

mula for Kcrit in these cases:

Lemma 1 Let (L, h) → M denote a positive or

negative holomorphic line bundle, and suppose

that H0(M, L) contains a finite-dimensional sub-

space S with the 1-jet spanning property. Give
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M the volume form dV = 1
m!

(
± i

2Θh

)m
induced

from the curvature of L. Then there exist pos-

itive Hermitian matrices A(z),Λ(z) (cf. (??))

depending on h and z such that

Kcrit
h,S (z) = 1

π(m+2
2 )

detAdetΛ
∫
Sym(m,C)×C

∣∣∣det(H ′H ′∗ − |x|2I)

|e−〈Λ(z)−1(H ′,x),(H ′,x)〉 dH ′ dx .

Here, H ′ ∈ Sym(m,C) is a complex symmetric

matrix, and the matrix Λ is a Hermitian opera-

tor on the complex vector space Sym(m,C)×C.



Universal limit theorem

Our main result gives an associated asymptotic
expansion for Kcrit

N (z):

Theorem 2 For any positive Hermitian line bun-
dle (L, h) → (M, ω) over any compact Kähler
manifold, the critical point density has an asymp-
totic expansion of the form

N−m Kcrit
N (z) ∼ Γcrit

m +a1(z)N
−1+a2(z)N

−2+· · · ,

where Γcrit
m is a universal constant depending

only on the dimension m of M . Hence the
expected total number of critical points on M
is

N (hN) =
πm

m!
Γcrit

m c1(L)m Nm + O(Nm−1) .

The leading constant in the expansion is given
by the integral formula

Γcrit
m =

(
2π

m+3
2

)−m ∫ +∞
0

∫
Sym(m,C) |det(SS∗ − tI)|

e−
1
2‖S‖2HS−t dS dt ,
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Riemann surfaces The universality of the

principal term may seem rather surprising in

view of the fact that the number of critical

points depends on the metric. In the case of

Riemann surfaces, we can explicitly evaluate

the leading coefficient:

Corollary 3 For the case where M is a Riemann

surface, we have Γcrit
1 = 5

3π, and hence the

expected number of critical points is N (hN) =
5
3c1(L)N + O(

√
N). The expected number of

saddle points is 4
3N while the expected number

of local maxima is 1
3N .

There are ∼ N critical points of a polynomial

of degree N in the classical sense, all of which

are saddle points.
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Metrics with minimal number of crit-
ical points

It is natural to wonder which hermitian metrics

produce the minimal expected number of crit-

ical points. To put the question precisely, let

L → (M, [ω]) be a holomorphic line bundle over

any compact Kähler manifold with c1(L) = [ω],

and consider the space of Hermitian metrics h

on L for which the curvature form is a positive

(1,1) form:

P (M, [ω]) = {h :
i

2
Θ(h) is a positive (1,1)− form }.

Definition: We say that h ∈ P ([ω]) is asymp-

totically minimal if

(13)

∃N0 : ∀N ≥ N0, N (hN) ≤ N (hN
1 ), ∀h1 ∈ P ([ω]).
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Density of critical points on Rie-
mann surfaces

We measure the critical point density with re-
spect to the volume form ± i

2Θh. Put:

Q =



−1 0

0 1




and denote the eigenvalues of Λ(z)Q by µ1, µ2.
We observe that µ1, µ2 have opposite signs
since detQΛ = −detΛ < 0. Let µ2 < 0 < µ1.

Theorem 4 let (L, h) → M be a positive or
negative Hermitian line bundle on a (possibly
non-compact) Riemann surface M with vol-
ume form dV = ± i

2Θh, and let S be a finite-
dimensional subset of H0(M, L) with the 1-jet
spanning property. Then:

Kcrit
h (z) =

1

πA(z)

µ2
1 + µ2

2

|µ1|+ |µ2|
=

1

πA(z)

Tr Λ2

Tr|Λ1
2QΛ

1
2|

,

where µ1, µ2 are as above.
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Exact formula on CP1

Theorem 5 The expected number of critical

points of a random section sN ∈ H0(CP1,O(N))

(with respect to the Gaussian measure on H0(CP1,O(N))

induced from the Fubini-Study metrics on O(N)

and CP1) is

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · .
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Asymptotically minimal number of
critical points

Integrating the density of critical points, we

find that the expected total number of critical

points has the expansion

N (hN) = πm

m!Γ
crit
m c1(L)m Nm

+
∫
M ρdVωNm−1

+Cm
∫
M ρ2dVΩNm−2 + O(Nm−3) .

The leading order term is universal, so the met-

ric with asymptotically minimal N (hN) is the

one with minimal
∫
M ρ2dVω, at least assuming

that it is non-universal.
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