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Purpose of talk

Our purpose is to survey positive results on the
basic inverse spectral problems:

• Determine as much as possible of the ge-
ometry of a Riemannian manifold (M, g)
from the spectrum of its Laplacian.

• Determine as much as possible of the ge-
ometry of a domain (Ω, g) ⊂ (M, g), in par-
ticular a Euclidean domain in Rn, from its
spectrum with fixed (e.g. Dirichlet or Neu-
mann) boundary conditions.

Positive = results which say that some fea-
ture can be determined or is rigid, at least in
a restricted setting.
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Basic strategy for positive results

The basic strategy is:

(A) Define a lot of spectral invariants;

(B) Calculate them in terms of geometric or

dynamical invariants;

(C) Try to determine the metric or domain

from the invariants.

We focus on wave invariants, which are related

to dynamics of the geodesic flow. We do not

survey results on λ1 or det∆ or on compact-

ness.
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Dimensional issues

The inverse spectral problem becomes more
difficult as the dimension increases.

• Inverse spectral theory for 1D Sturm-Liouville
operators on an interval is still an active re-
search area (B. Simon et al), though much
was done by Gelfand-Levitan, Marchenko,
Trubowitz and many others.

• Inverse spectral theory in dimension 2 is ‘in-
finitely more complex’ than inverse spectral
theory in dimension 1. It is still wide open.

• There are few positive results in dimen-
sions ≥ 3 except for rigidity results, com-
pactness results, and results for special ex-
tremal metrics.
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Focus on dynamics

Wave invariants contain dynamical invariants.

So many of the results are based on the reduc-

tion: Inverse spectral problem → dynamical in-

verse problem. The latter is often very hard to

solve, and is of independent interest.

The true dynamics is that of the wave group,

quantum dynamics. At the ‘principal symbol

level’ it is the dynamics of the geodesic flow.

Since wave invariants are ‘quantum’, it is pos-

sible to calculate and use them without consid-

ering the geodesic flow at all, and for bounded

domains this is to date the most successful ap-

proach.
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Ingredients from dynamics

• Geodesic flow (boundaryless case), billiard
flow and billiard map (boundary case);

• Closed geodesics: length spectrum, Poincare
map, type (elliptic, hyperbolic, etc.);

• Birkhoff normal form of metric or Poincare
map, Aubry-Mather theory.

• Zeta functions of flows;

• Livsic cohomology problem;

• Symplectic conjugacy problem;
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Classical-Quantum heuristics

Quantum: ∆, U(t) = eit
√

∆.

Classical: |ξ|2g =
∑

i,j gijξiξj, geodesic flow Gt.

Two Laplacians are isospectral if

(1) ∆g1 = U∆g2U
∗,

where U : L2(M1, g1) → L2(M2, g2) is a uni-

tary operator. The classical analogue of this

similarity is the symplectic conjugacy

|ξ|g1 = χ∗|ξ|g2 ⇐⇒ Gt
g1

= χ ◦Gt
g2
◦ χ−1

of the corresponding geodesic flows. Here,

χ : T ∗M1\0 → T ∗M2\0 is a homogeneous sym-

plectic diffeomorphism.) This analogy should

not be taken literally, but it is useful in sug-

gesting conjectures.
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Caveats on the heuristics

• The heuristics are literally true if there ex-
ists an intertwiner U which is a global FIO
(Fourier integral operator) associated to
a canonical transformation. But this is
rarely if ever the case. In the Sunada ex-
amples, there exists a U which is an FIO
but only associated to a multi-valued cor-
respondence. There is no apriori reason
why any intertwiner should be an FIO.

• It is very difficult to relate the classical and
quantum mechanics when the length spec-
trum is multiple. We will almost always as-
sume there is just one closed geodesic (or
component) of a given length. Are there
any known counterexamples with simple length
spectrum?
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Heuristic/rigorous results

The heuristics are quite correct on a local (for-

mal) level.

• (i) Isospectrality (with a simple length spec-

trum assumption) implies the formal lo-

cal symplectic equivalence of the geodesic

flows around corresponding pairs of closed

geodesics, i.e. it implies the equality of

their Birkhoff normal forms. (Guillemin,

with some inputs/additions by S. Z.).

• (ii) This implies local smooth symplectic

equivalence around hyperbolic orbits, al-

though not around elliptic orbits.
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Wave invariants:

We now introduce the main invariants: take

the wave group U(t) = eit
√

∆ of (M, g) and

consider its (distribution) trace

(2) TrU(t) =
∑

λj∈Sp(
√

∆)

eitλj .

It is a tempered distribution on R. We denote

its singular support (the complement of the set

where it is a smooth function) by Sing Supp

TrU(t).

Poisson relation

(3) Sing SuppTrU(t) ⊂ Lsp(M, g),

Here, we denote the length of a closed geodesic

γ by Lγ and the set of lengths (the length spec-

trum) by Lsp(M, g).
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Is entropy a spectral invariant?

The Poisson relation raises an unsolved prob-

lem:

The topological entropy of the geodesic flow

of (M, g) is the exponential growth rate of the

length spectrum:

(4) htop := lim inf
L→∞

log#{γ : Lγ ≤ L}.
Here, lengths are counted with multipicity. In

the case where geodesics come in families, we

count components of the fixed point sets.

Problem 1 Is htop a spectral invariant?
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Discussion

The question is only non-trivial when multi-
plicities in the length spectrum grow as fast
as the length spectrum, as occurs for com-
pact hyperbolic manifolds in dim ≥ 3 and for
arithmetic hyperbolic quotients in dimension 2
. As observed by Besson-Courtois-Gallot, an
affirmative answer would show that that hyper-
bolic metrics are spectrally determined among
other negatively curved metrics, since they are
the unique minimizers of htop.

Problem 2 Suppose that M with dimM ≥ 3
possesses a hyperbolic metric, and let M− de-
note the class of negatively curved metrics on
M . Is the hyperbolic metric g determined by
its spectrum among metrics in M−? I.e. can
there exist another non-isometric metric in this
class which is isospectral to the hyperbolic met-
ric?
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Is real analyticity of g a spectral in-
variant

We propose a new problem suggested by the
Poisson relation:

Problem 3 Can one tell from Spec(∆) if a met-
ric (or the underlying manifold or domain) is
real analytic?

The analytic wave front set of TrU(t)

WFa(
∑

λj∈Sp(
√

∆)

eitλj).

is the complement of the set where the trace is
real analytic. When (M, g) is a Cω, WFaTrU(t) ⊂
Lsp(M, g). If (M, g) is C∞ but not Cω, it is
plausible that WFaTrU(t) could contain an in-
terval or be all of R. Thus simply the discrete-
ness of WFaTrU(t) would say that (M, g) is
real analytic.
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Singularity expansion of the wave
trace

We now develop the theory further:

Theorem 1 TrU(t) has a singularity expansion:

TrU(t) ≡ e0(t) +
∑

L∈Lsp(M,g)

eL(t) mod C∞,

where singsuppe0 = {0}, singsuppeL = {L}. When

all closed geodesics are non-degenerate, the

expansions take the form

e0(t) = a0,−n(t+i0)−n+a0,−n+1(t+i0)−n+1+· · · ,

eL(t) = aL,−1(t− L + i0)−1 + aL,0 log(t− (L + i0))

+ aL,1(t− L + i0) log(t− (L + i0)) + · · · ,

where · · · refers to homogeneous terms of ever

higher integral degrees.
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Wave trace invariants

The wave coefficients a0,k at t = 0 are es-
sentially the same as the singular heat coef-
ficients, hence are given by integrals over M
of

∫
M Pj(R,∇R, ...)dvol of homogeneous cur-

vature polynomials. The wave invariants for
t 6= 0 have the form:

(5) aL,j =
∑

γ:Lγ=L

aγ,j,

where aγ,j involves on the germ of the metric
along γ. Here, {γ} runs over the set of closed
geodesics, and where Lγ, L#

γ , mγ, resp. Pγ are
the length, primitive length, Maslov index and
linear Poincaré map of γ. For instance, the
principal wave invariant at t = L in the case of
a non-degenerate closed geodesic is given by

(6) aL,−1 =
∑

γ:Lγ=L

e
iπ
4 mγL#

γ

|det(I − Pγ)|
1
2

.
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Definition of Poincaré map

Nonlinear Poincaré map Pγ: in S∗M one forms

a symplectic transversal Sγ to γ at some point

m0. One then defines the first return map, or

nonlinear Poincaré map,

Pγ(ζ) : Sγ → Sγ

by setting Pγ(ζ) = GT (ζ)(ζ), where T (ζ) is

the first return time of the trajectory to Sγ.

This map is well-defined and symplectic from

a small neighborhood of γ(0) = m0 to a larger

neighborhood. By definition, the linear Poincare

map is its derivative, Pγ = dPγ(m0).
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Appendix: Classification of closed
orbits

Closed geodesics are classified by the spectral
properties of the symplectic linear map Pγ. Its
eigenvalues come in 4-tuples λ, λ̄, λ−1, λ̄−1. A
closed geodesic γ is called non-degenerate if
det(I − Pγ) 6= 0, and

• elliptic if all of its eigenvalues are of mod-
ulus one, in which case they come in com-
plex conjugate pairs ei±αj.

• hyperbollic if all of its eigenvalues are real,
in which case they come in inverse pairs
λjλ

−1
j ; loxodromic or complex hyperbolic

in the case where the 4-tuple consists of
distinct eigenvlaues as above.
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Local problems on wave trace in-
variants

Thus, associated to any closed geodesic γ of

(M, g) is the sequence {aγr,j} of wave invariants

of γ and of its iterates γr. These invariants

depend only on the germ of the metric at γ.

The principal question of this survey may be

stated as follows:

Problem 4 How much of the local geometry

of the metric g at γ is contained in the wave

invariants {aγr,j}? Can the germ of the metric

g at γ be determined from the wave invariants?

At least, can the symplectic equivalence class

of its germ be determined?
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The principal wave invariant

It was proved by D. Fried many years ago that

from

aγr,−1 =
e

iπ
4 mγL#

γ

|det(I − P r
γ)|12

, r = 1,2, · · ·

one can determine the eigenvalues of Pγ (in

the non-degenerate case). Hence one can de-

termine the type of γ.

Until very recently, all inverse spectral results

using wave invariants only used the length spec-

trum and the spectrum of Pγ.

To go further one needs to calculate the lower

wave invariants.
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Calculation of wave invariants

For applications to inverse spectral theory it

is important to calculate wave invariants. Re-

sults:

• There is a useful algorithm (quantum nor-

mal form + non-commutative residue) which

calculates wave invariants for non-degenerate

closed geodesics. The formulae are com-

plicated except for special metrics such as

surfaces of revolution.

• There is a better algorithm (Balian-Bloch)

in the case of Euclidean domains with bound-

ary. It gives explcit formula for all wave in-

variants in terms of the boundary defining

funcion.
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Global problems on wave trace in-
variants

One may divide the potential use of wave in-

variants into two classes: (i) those which use

all of the closed geodesics, and (ii) those which

involve one or a few closed geodesics.

Problem 5 How much of the global geometry

(M, g) is contained in the entire set of wave

invariants {aγr,j}?

To the author’s knowledge, the global prob-

lem of combining wave invariants of all closed

geodesics has only been led to successful re-

sults on isospectral deformations. Otherwise

it is hard to combine the information.
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Inverse spectral results using wave
invariants

The positive results based on wave invariant
analysis are as follows.

• Negatively curved compact manifolds are
spectrally rigid (Guillemin-Kazhdan, Croke)

• Simple real analytic surfaces of revolution
(with one critical distance from the axis)
are spectrally determined within the class
of such surfaces. Any other metric on S2

which is isospectral to a simple surface of
revolution must be C0-integrable. Smooth
surfaces of revolution with a mirror sym-
metry thru the x − y plane are spectrally
determined among metrics of this kind.
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Inverse spectral results (cont.)

• Simply connected analytic plane domains
with two symmetry axes (i.e. with the sym-
metries of an ellipse) and with a bounc-
ing ball orbit of fixed length L are spec-
trally determined within this class. Convex
analytic domains with two symmetry axes
are spectrally determined within this class.
The shortest orbit is necessarily a bounc-
ing ball orbit and of course its length is a
spectral invariant (Ghomi).

• New result: Simply connected analytic plane
domains with one axis of symmetry are
spectrally determined within this class. (This
implies the preceding result, but we state
it separately since it is a new result based
on different methods).
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Inverse spectral results (cont.)

• There is a spectrally determined class of

convex plane domains (ellipses?) for which

each element is spectrally determined among

all convex plane domains (Marvizi-Melrose).

• The mean minimal action of a convex bil-

liard table is invariant under isospectral de-

formations (K. F. Siburg).
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Wave invariants at t = 0

They are the same as the (singular) heat in-
variants. Some classical results:

• Spheres: Tanno used a0, a1, a2, a3 to prove
that the round metric g0 on Sn for n ≤ 6
is determined among all Riemannian man-
ifolds by its spectrum, i.e. any isospec-
tral metric g is necessarily isometric to g0.
He also used a3 to prove that canonical
spheres are locally spectrally determined
(hence spectrally rigid) in all dimensions.
Patodi proved that round spheres are de-
termined by the spectra Spec0(M, g) and
Spec1(M, g) on zero and 1 forms.

• Complex projective space: Let (M, g, J) be
a compact Kähler manifold and let (CPn(H), g0, H0)
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be a complex n-dimensional projective space

with the Fubini-Study metric of constant

holomorphic sectional curvature H. Tanno

proves that if the complex dimension n ≤ 6

and if Spec(M, g, J) = Spec(CPn(H), g0, J0),

then (M, g, J) is holomorphically isometric

to (CPn(H), g0, J0). He also proves that

(CPn(H), g0, H0) is locally spectrally deter-

mined in all dimensions.

• Flat manifolds: Patodi and Tanno used the

heat invariants to prove in dimension ≤ 5

that if (M, g) is isospectral to a flat man-

ifold, then it is flat. More precisely, they

showed that if aj = 0 for j ≥ 1, and if

n ≤ 5 then (M, g) is flat. The result is

sharp, as Patodi (loc. cit.) showed that

aj = 0 for j ≥ 1 for the product of a

3-dimensional sphere with a 3-dimensional

space of constant negative curvature. In



fact, Tanno showed that if a2 = a3 = 0,

then (M, g) is either E6/Γ1, where Γ1 is

some discontinuous group of translations

of the Euclidean space E6, or (2) [S3(C)×
H3(−C)]/Γ2, where S3(C)[H3(−C)] is the

3-sphere [hyperbolic 3-space] with constant

curvature C > 0[−C < 0] and Γ2 is some

discontinuous group of isometries of S3(C)×
H3(−C). Kuwabara used the invariants to

prove that flat manifolds are locally spec-

trally determined, hence spectrally rigid.



Still open, after all these years

• Are (round) spheres spectrally determined?

(Unknown in dim ≥ 7)?

• Are ellipses spectrally determined among

(analytic, convex) plane domains?

• Can you tell from the spectrum if a metric

is flat?
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Two domains with the same wave
invariants

A Penrose mushroom type example due to Michael

Lifshits shows that wave invariants are not suf-

ficient to discriminate between all pairs of smooth

billiard tables. Indeed, Lifshitz constructs (many)

pairs of smooth domains (Ω1,Ω2) which have

the same length spectra and the same wave

invariants at corresponding pairs of closed bil-

liard orbits γj of Ωj (j = 1,2). It follows that

the Poincaré maps Pγj have the same Birkhoff

normal forms as well. It is unknown (but prob-

ably false) if the domains are isospectral.

Construction: take an ellipse and divide the

major axis into two parts, the segment be-

tween the foci and the other two segments.
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Remove the segment between the foci and re-

place it with any simple curve with the foci as

endpoints, e.g. a ‘tongue’ below the segment.

Next, remove the outer segments of the axis

between the foci and replace them with any

‘bumps’ below the segment. The trajectories

which start in the outer bumps never intersect

the segment between the foci and therefore

never go into the tongue. Similarly trajecto-

ries which come into the elliptical part from

the tongue pass through the segment between

the foci and never go into the outer bumps.

To obtain two domains, just reverse the orien-

tation of the tongue relative to the bumps.



Inverse spectral problem for bounded
analytic plane domains

Let us sketch the proof that a bounded simply

connected plane domain with one symmetry

is determined by its Dirichlet (or Neumann)

spectrum among other such domains.

The key is to calculate all of the wave invari-

ants at a bouncing ball orbit which is reversed

by the symmetry. A bouncing ball orbit is a

closed billiard trajectory formed by a segment

which hits the boundary orthogonally at both

endpoints.

We calculate the wave invariants by a new ap-

proach.
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Balian-Bloch 30 ans après

We follow Balian-Bloch (1971) in using the

asymptotics of the resolvent along horizontal

lines in the upper half plane to define wave

invariants.

We then use the exact (Fredholm-Neumann)

formula:

RΩ(k + iτ) = R0(k + iτ)

−D`(k + iτ)(I + N(k + iτ))−1γS`tr(k + iτ),

where R0(k + iτ) is the free resolvent −(∆0 +

(k + iτ)2)−1 on R2; γ is the restriction to the

boundary, and D`(k + iτ) (resp. S`(k + iτ)) is

the double (resp. single) layer potential

29



The quantized billiard map

The key object in this is the boundary inte-

gral operator

(7)

N(k+iτ)f(q) = 2
∫

∂Ω

∂

∂νy
G0(k+iτ, q, q′)f(q′)ds(q′)

induced by D`.

This is an elementary operator which is a hy-

brid (semiclassical) Fourier integral operator.

It has phase d∂Ω(q, q′), the distance between

boundary points. Thus, it quantizes the billiard

map. It also has homogeneous singularities on

the diagonal.

30



Wave invariants and N

The relation to wave invariants is:

Proposition 2 Suppose that Lγ is the only length

in the support of ρ̂. Then,

∫

R
ρ(k−λ)

d

dλ
log det(I+N(λ+iτ))dλ ∼

∞∑

j=0

Bγ;jk
−j,

where Bγ;j are the wave invariants of γ.

We use the explicit WKB formula for N , regu-

larize it and apply stationary phase to compute

the coefficients Bγr;j when γ is a bouncing ball

orbit.
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Calculation of wave invariants at a
bouncing ball orbit

In the case where the domain has a symmetry

interchanging the top and bottom, so that f±
are mirror images of the graph of y = f(x) ,

the formula simplies as follows:

Proposition 3 Suppose that γ (as above) is in-

variant under an isometric involution σ. Then,

modulo the error term R2r(j
2j−2f(0)), we have:

aγr,j−1 = r{2(h11)jf(2j)(0)

+{2(h11)j 1
2−2cosα/2

+(h11)j−2 ∑2r
q=1(h

1q)3}f(3)(0)f(2j−1)(0)}}.
Here, one sums over repeated indices.
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Inverse results

If Ω has two symmetries, the odd derivatives

vanish and we obtain all Taylor coefficients of

f .

If the domain has just one symmetry, we need

to obtain both even and odd coefficients.

The inverse spectral problem is then reduced

to analyzing sums of powers of inverse Hessian

coefficients. It turns out that different powers

give independent coefficients as r varies. So

we can separate out even and odd derivatives

and find that all are spectral invariants. We

again recover the domain.
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Inverse Birkhoff normal form results

The inverse result for domains with two sym-
metries was first proved using Birkhoff nor-
mal forms (by S. Z., and then by Iantchenko-
Sjostrand-Zworski using monodromy operators).
We briefly sketch the ideas. First, the BNF on
the (quasi-) eigenvalue level.

Let γ be a non-degenerate elliptic closed geodesic
on an n-dimensional Riemannian manifold. For
each transversal quantum number q ∈ Zn−1,
there exists an approximate eigenvalue of the
form

(8) λkq ≡ rkq +
p1(q)

rkq
+

p2(q)

r2kq

+ ...

where

rkq =
1

L
(2πk +

n∑

j=1

(qj +
1

2
)αj).
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BNF

The coefficients pj(q) are polynomials of spec-

ified degrees and parities. They are the quan-

tum BNF invariants at γ.

Operator level:

W
√

∆ψW−1 ≡ D+ p̃1(Î1,...,În)
LD + p̃2(Î1,...,În)

(LD)2

+ · · ·+ p̃k+1(Î1,...,În)

(LD)k+1 + . . .

where the numerators pj(Î1, ..., În), p̃j(Î1, ..., În)

are polynomials of degree j+1 in the variables

Î1, ..., În, where W−1 denotes a microlocal in-

verse to W . Here, D = Ds + 1
LHα.
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BNF

Above,

Ij = Ij(y, Dy) :=
1

2
(D2

yj
+ y2

j )

are the action operators (harmonic oscillators)

and e±iαk are the eigenvalues of the Poincare

map Pγ.

The inverse result of Guillemin (and partially

the author) is:

Theorem Let γ be a non-degenerate closed

geodesic. Then the quantum Birkhoff normal

form polynomials pj(Î1, ..., În) from the wave

trace invariants of ∆ at γ. around γ is a spec-

tral invariant; in particular the classical Birhoff

normal form is a spectral invariant.
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From BNF to inverse results

To obtain the domain, one then has to com-

pute the quantum BNF coefficients. The al-

gorithm is quite different for manifolds without

boundary and for those with boundary. The

latter has to date never been carried out. Rather,

one argues indirectly: if one knows the quan-

tum BNF, one knows the classical BNF of the

Poincare map. Colin de Verdière showed that

the latter determines the defining function f

for domains with two symmetries, and that

completes the proof.

It does not determine a domain with fewer

symmetries. So one needs the full quantum

BNF or else to use another method to com-

pute wave invariants (a là Balian Bloch, e.g.).
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Spectral rigidity

We move on to other results. One of the first

uses of wave invariants and dynamics was the

result of [Guillemin-Kazhdan, Croke]:

Theorem 4 Negatively curved manifolds are spec-

trally rigid.

Let us recall the idea. In the negatively curved

case, the Morse indices are always zero and no

cancellation takes place in the wave trace for-

mula. Hence, Lsp(M, g) is a spectral invariant

of negatively curved manifolds. An isospec-

tral deformation therefore preserves the length

spectrum.
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Spectral rigidity

If γ is an isolated, non-degenerate closed geodesic
of g, then for any deformation gt of g, γ de-
forms smoothly as a closed geodesic γt of gt

and one may define its variation

(9) L̇γ =
d

dt
|t=0Lγt.

It is not hard to compute that

(10) L̇γ =
∫

γ
ġds,

where ġ is viewed as a quadratic function on
TM and γ is viewed as the curve (γ(t), γ′(t))
in TM .

It follows that whenever the closed geodesics
are non-degenerate and of multiplicity one in
the length spectrum, we have∫

γ
ġds = 0, ∀γ.
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Livsic cohomology

This raises the Livsic cohomology problem. In

the case of negatively curved surfaces, the geodesic

flow is Anosov and it is known that the coho-

mology is trivial, i.e. that
∫

γ
ġds = 0, ∀γ =⇒ ġ = Ξ(f)

for some smooth f .

The next step is to study harmonic analysis

on the unit sphere bundle S∗M to determine if

there actually can exist f when ġ is a quadratic

form. For surfaces of negative curvature, there

cannot exist a smooth solution when ġ is quadratic,

and hence there exist no isospectral deforma-

tions of negatively curved surfaces.
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More on Livsic cohomology

This is such a general argument that one is

tempted to apply it to many other situations.

The first question is whether the Livsic coho-

mology equation is solvable for other systems.

Hyperbolic billiard domains (e.g. Sinai billiards)

might be candidates, but there are no results

at this time due to the singularities always oc-

curring in billiard problems.

One might also consider integrable systems

such as surfaces of revolution. The general

Livsic equation leads to small divisor problems,

but one has more control due to known spec-

tral invariants (see below).
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Isospectral deformations and marked
length spectrum

Isospectral deformations also lead to the in-

verse marked length spectral problem and to

the symplectic equivalence of the geodesic flows.

An isospectral deformation preserves lengths of

closed geodesics in the generic case where the

multiplicities all equal one, and therefore marks

the length spectrum, i.e. gives a correspon-

dence between closed geodesics and lengths,

by the length spectrum of the initial metric.

More precisely, as one deforms the metric or

domain, each one-parameter family of closed

geodesics γε stays in a fixed free homotopy

class of the fundamental group of M . There-

fore, an isospectral deformation gives rise to

a one-parameter family of metrics or domains

with the same marked length spectrum.
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Length spectrum and marked length
spectrum

The set of lengths is unformatted in the sense
that one does not know which lengths in the
list correspond to which closed geodesics. A
formatted notion in which lengths are assigned
to topogically distinct types of closed geodesics
is the marked length spectrum MLg. When
∂M = ∅, it is the function assigning to a free
homotopy class of geodesics the length of the
shortest geodesic in the class.

On a convex plane domain with boundary, topo-
logically distinct closed geodesics correspond
to different rotation numbers m

n = winding number
number of reflections.

The marked length spectrum associates to each
rational rotation number the maximal length of
the closed geodesics having n reflection points
and winding number m.
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Spectral rigidity of Zoll manifolds?

To give an extreme example of an open isospec-

tral deformation problem, consider the case of

Zoll manifolds. It is simple to see that isospec-

tral deformations of Zoll manifolds must be

Zoll, but it is an open problem whether any

non-trivial isospectral deformations exist even

for M = S2. One of the main problems is that

all principal symbol level spectral invariants of

Zoll manifolds are the same, so one has to dig

further into the wave trace expansions to find

obstructions to isospectral deformability.
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When does the marked length spec-
trum determine (M, g) up to isome-
try?

Isospectral deformations preserve the MLS, so

the question is:

Problem 6 For which (M, g) does the marked

length spectrum of (M, g) determine (M, g) up

to isometry?

Results:

• V. Bangert proved that the marked length

spectrum of a flat two-torus determines the

flat metric up to isometry.
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• J. P. Otal and C. Croke independently proved

that the answer is ‘yes’ under certain non-

positive curvature assumptions.

• An example due to F. Bonahon shows that

the answer is ‘no’ for metric structures more

general than Riemannian metrics.

• U. Hamenstadt proved that a locally sym-

metric manifold is determined by its marked

length spectrum.



Symplectic equivalence problem

Having the same MLS sometimes implies exis-

tence of a time-preserving conjugacy between

the geodesic flows.

Problem 7 When does this hold? When does

the symplectic equivalence of two geodesic flows

(in the sense of (11)) imply isometry of the

metrics? Does symplectic equivalence of bil-

liard maps of convex domains imply their isom-

etry?

Two geodesic flows are called symplectically

equivalent or conjugate if there exists a homo-

geneous symplectic diffeomorphism χ : T ∗M1 →
T ∗M2 satisfying

(11) χ ◦Gt
1 ◦ χ−1 = Gt

2.
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Results on the symplectic equiva-
lence problem

• Weinstein showed that the geodesic flow of

any Zoll surface is symplectically equivalent

to that of the standard 2-sphere.

• J. P. Otal and by C. Croke proved indepen-

dently that negatively curved surfaces with

the same marked length spectrum must

have conjugate geodesic flows and that such

surfaces with conjugate flows must be iso-

metric. The corresponding statement in

higher dimensions still appears to be open

in general.
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• Hammenstädt constructed a time-preserving

conjugacy between negatively curved man-

ifolds with the same marked length spec-

trum. When this conjugacy is C1 the work

of Besson, Courtois and Gallot proves that

the manifolds must be isometric. The method

of Hammenstadt avoids this regularity is-

sue.

• The conjugacy problem for nilmanifolds was

studied by C. Gordon, D. Schueth and Y.

Mao. They proved for special classes of

2-step nilmanifolds that conjugacy of the

geodesic flow implies isometry. The rela-

tions between marked length spectral equiv-

alence, conjugacy of geodesic flows and

isometry does not seem to have been stud-

ied in other settings.



Equivalence problem for Birkhoff nor-
mal forms

A much related problem is the equivalence prob-

lem for Birkhoff normal form.

Problem 8 To what extent can the germ of

a metric g at γ be determined by its Birkhoff

normal form at γ?

Let us recall the definition and the relations to

symplectic equivalence.
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Birkhoff normal form

Birkhoff normal forms are approximations to

Hamiltonians (or symplectic maps) near equi-

libria by completely integrable Hamiltonians (or

symplectic maps).

Let us first consider the Birkhoff normal form

of the metric Hamiltonian near a non- degen-

erate elliptic closed geodesic γ. The normal

form algorithm defines a sequence of canoni-

cal transformations χM at γ which conjugate

H to the normal forms

(12)
χ∗MH ≡ σ + 1

L

∑n
i,j=1 αjIj

+p1(I1,...,In)
σ + ... + pM(I1,...,In)

σM mod O1
M+1

where pk is homogeneous of order k+1 in I1, . . . , In,

and where O1
M+1= germs of functions homo-

geneous of degree 1 which vanish to order

M + 1 along γ.
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BNF

The Birkhoff normal form for the Poincaré map:

(13)

P(I, ϕ) = (I, ϕ +∇IGM(I)), mod O1
M+1,

where GM(I) is a polynomial of degree M in

the I variables. Thus, to order M + 1, the

Poincare map leaves invariant the level sets of

the actions (ellipses, hyperbolas etc. according

to the type of γ) and ‘rotates’ the angle along

them.
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Convergence of BNF

The question arises whether the full (infinite

series) Birkhoff normal form converges and whether

the formal symplectic map conjugating the Hamil-

tonian to its normal form converges. Accord-

ing to a recent article of Perez-Marco, there

are no known examples of analytic Hamiltoni-

ans having divergent Birkhoff normal forms In

the case of hyperbolic orbits of analytic sym-

plectic maps in two degrees of freedom, it

was proved by J. Moser that the Birkhoff nor-

mal form and transformation do converge. In

Rouleux used results of de la Llave et al to

prove the existence of a local smooth sym-

plectic conjugacy κ∗H = q(I) of the metric

Hamiltonian H near a hyperbolic fixed point

(or orbits) to a smooth normal form q(I).
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Local symplectic equivalence prob-
lem

Thus, in the hyperbolic case, equality of BNF’s

implies local symplectic conjugacy = symplec-

tic conjugacy between Poincare maps:

(14)

χ : Sγ1 ⊂ S∗g1M1 → Sγ2 ⊂ S∗g2M2, χPγ1χ
−1 = Pγ2.

One could ask:

Problem 9 When does local symplectic conju-

gacy of Poincare maps at a closed geodesic (or

local symplectic conjugacy of geodesic flows)

imply local isometry?
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Local symplectic equivalence prob-
lem: hyperbolic metrics

As a special case of the local equivalence prob-

lem, suppose that (M, g) is a hyperbolic mani-

fold, and let γ be a closed geodesic. Let g′ be

a second real analytic metric on M . Suppose

that there exists a closed geodesic for g′ for

which the Poincare maps Pγ are symplectically

conjugate. Must g′ be a hyperbolic metric?
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Zeta functions

We now turn to a different spectral invariant

connected to dynamics: the Ruelle zeta func-

tion

(15) log Z(M,g)(s) =
∑

γ∈P

∞∑

k=1

e−skL(γ)

k|det(I − P k
γ )|,

Here, we are assuming that the metric is bumpy

so that the fixed point sets of the geodesic flow

consist of isolated, non-degenerate closed or-

bits. We denote by P = {γ} the set of primitive

periodic orbits of the geodesic flow Φt and by

Pγ the linear Poincare map of γ. It is a spec-

tral invariant as long as the (extended) length

spectrum is simple (multiplicity free) or if the

metric has no conjugate points.

54



Zeta function and spectrum of the
geodesic flow

The zeta function log Z(M,g)(s) arises as the

Laplace transform of the so-called flat trace of

the unitary Koopman operator

Wt : L2(S∗M) → L2(S∗M), Wtf(x, ξ) := f(Gt(x, ξ)).

This operator does not possess a distribution

trace but it has a flat trace given by

(16) TrW (t) = e0(t) +
∑

γ∈P

∞∑

k=1

δ(t− Lγ)

|det(I − P k
γ )|.

The Laplace transform may be viewed as the

flat trace of the resolvent of Ξ, so that

(17) log Z(M,g)(s) = Tr(Ξ− s)−1.
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Zeta function and spectrum of the
geodesic flow

The inverse problem is:

Problem 10 What are the analytical properties

of the zeta function when the geodesic flow

has some given dynamical signature. Can one

determine apriori from Z(M,g)(s) whether the

geodesic flow is ergodic, weak mixing or mix-

ing?
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Discussion

Formally, the Ruelle zeta function is the trace
of a spectral function of the geodesic flow and
it is natural to wonder how much of the spec-
trum of Wt can be determined from the traces.
In particular, ergodicity, weak mixing and mix-
ing are spectral properties of geodesic flows,
i.e. can be read off from the spectrum of Wt.
For instance, ergodicity is equivalent to the
statement that the multiplicity of the eigen-
value 1 for Wt equals one.

But the trace is not a distribution trace and it
is far from clear that one can read off spectral
properties of Wt from these traces. Almost
nothing seems to be known about zeta func-
tions except in the case of hyperbolic flows, in
which case one knows many properties of the
spectrum of the geodesic flow, e.g. that it is
mixing.
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Inverse problems for integrable sys-
tems

The geodesic flow of an n-dimensional Riem-
manian manifold (M, g) is completely integrable
if it commutes with a Hamiltonian action of Rn

on T ∗M − 0 (n = dimM). That is, the metric
Hamiltonian |ξ|g satisfies

{|ξ|g, pj} = 0 = {pi, pj}, i, j = 1, . . . , n

where pj : T ∗M − 0 → R are homogeneous of
degree one and are independent in the sense
that

dp1∧dp2∧· · ·∧dpn 6= 0 on a dense open subset U ⊂ T ∗M.

The orbits of an Rn action give a (usually sin-
gular) torus (or affine) foliation of S∗gM . The
orbits which contain periodic geodesics are some-
times called ‘periodic tori’, and they furnish the
components T in the trace formula.
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Trace formulae for integrable sys-
tems

For integrable systems, periodic orbits usually

come in families filling out invariant tori. We

assume that the closed geodesics components

are clean (Bott-Morse).

The trace of its wave group is then:

(18) Treit
√

∆g = e0(t) +
∑

T
eT (t)

where the singular term e0(t) = Cn V ol(M, g) (t+

i0)−n + . . . at t = 0 is the same as in the non-

degenerate case and {T } runs over the critical

point components of Lg.
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Wave coefficiens

One has:

eT = cT ,dT
(t− LT + i0)−dT /2

+cT ,dT−1(t− LT + i0)(−dT /2+1) + . . . , dT = dim T .

Here, dT is the dimension of the symplectic

cone formed by the family of closed geodesics

within T ∗g M and LT is the common length of

the closed geodesic in T . For instance, in the

non-degenerate case, T = R+γ is the symplec-

tic cone generated by γ ⊂ S∗gM and dT = 2.
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Spectral determination of analytic
simple surfaces of revolution

We first recall that such surfaces are spectrally
determined among other simple analytic sur-
faces of revolution and then sketch a result
observed independently by the author and G.
Forni and by K.F. Siburg regarding their spec-
tral determination among all metrics on S2.

The precise class of metrics we consider are
those metrics g on S2 which belong to the class
R∗ of real analytic, rotationally invariant met-
rics on S2 with simple length spectrum in the
above sense and satisfying the following ‘sim-
plicity’ condition

• g = dr2 + a(r)2dθ2

• ∃!r0 : a′(r0) = 0;

• The Poincare map P0 ; is elliptic of twist type
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Spectral determination of analytic
simple surfaces of revolution

Theorem 5 Suppose that g1, g2 are two real

analytic metrics on S2 such that (S2, gi) are

simple surfaces of revolution with simple length

spectra. Then Sp(∆g1) = Sp(∆g2) implies

g1 = g2.

The proof is based on quantum Birkhoff nor-

mal forms for the Laplacian ∆. There is a

global normal form, and the spectrum deter-

mines it. One calculates the principal and sub-

principal term to get the Taylor coefficients of

the profile curve at the equator.
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Spectral determination of surfaces
of revolution?

We now ask whether we can remove the as-

sumption that g2 ∈ R∗? The question is, if

Spec∆g = Spec∆h and g ∈ R∗, then is h ∈ R∗?
An affirmative answer would give a large class

of metrics which are spectrally determined. To

the author’s knowledge, the only metric on

S2 known to be spectrally determined is the

canonical round one.

Partial result (Forni-Z, Siburg): any isospec-

tral metric has a C0 integrable geodesic flow.
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Aubrey-Mather and inverse spectral
theory

Theorem 6 Let g ∈ R∗ and suppose that h is

any metric on S2 with simple clean length spec-

trum for which Spec∆g = Spec∆h. Then h

has the following properties:

• (i) It has just one isolated non-degenerate

closed geodesic γh (up to orientation); all

other closed geodesics come in one-parameter

families lying on invariant tori in S∗hS2;

• (ii) The Birkhoff normal form of Gt
h at γh

is identical to that of Gt
g at its unique non-

degenerate closed orbit. Hence it is con-

vergent.
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• (iii) the geodesic flow Gt
h of h is C0- inte-

grable. That is, S∗hS2 has a C0-foliation by

2-tori invariant under Gt
h.

If we knew in (ii) that the Birkhoff transforma-

tion conjugating Gt
h to its Birkhoff normal form

was convergent, then it would follow that Gt
h is

completely integrable with global action-angle

variables, and that it would commute with a

Hamiltonian torus action. We conjecture that

this is the case. Statement (iii) shows that it

is at least integrable in the C0 sense. At the

present time, metrics on S2 whose geodesic

flows commute with Hamiltonian torus actions

have not been classified.



Wave invariants for g ∈ R∗

The proof is based on a study of the wave

trace formula in this setting.

Proposition 7 Suppose that g ∈ R∗. Then the

trace of its wave group has the form:

Treit
√

∆g = e0(t) + eγg(t) +
∑

T
eT (t)

where

e0(t) = Cnarea(M, g)(t + i0)−n + . . .

is singular only at t = 0, where

eγg(t) = cγ(t−Lγ+i0)−1+aγ0 log(t−Lγ+i0)+. . .

and where

eT = cT (t− LT + i0)−3/2 + . . . .
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Suppose now that h is any other metric with
Spec ∆h = Spec∆g and with simple length
spectrum. Then the wave trace of h has pre-
cisely the same singularities as the wave trace
of g. Since there is only one singularity of the
order (t + i0)−1, there can exist only one non-
degenerate closed geodesic, proving (i). By
Guillemin’s inverse result, the Birkhoff normal
form of the metric and Poincaré map for γh is
the same as for γg. In particular, the Poincare
map Ph of γh is elliptic of twist type. From the
fact that all other critical components have the
singularity of a three-dimensional cone, it fol-
lows that in S∗hS2 the other closed geodesics
come in one-parameter families. They weep
out a surface foliated by circles, which can only
be a two dimensional torus, proving (ii)

It is the third statement (iii) which requires a
new idea. So far we only know that periodic
orbits lie on invariant tori, but we do not know
what lies between these tori. Aubry-Mather
theory will now close the gaps.



Aubry-Mather

Aubry-Mather theory is concerned with an area-

preserving diffeomorphism ϕ of an annulus A =

S1×(a, b). Let ϕ̃ denote a lift to R×(a, b) with

ϕ̃(x + 1, y) = ϕ̃(x, y) + (1,0). The map ϕ is

called a monotone twist mapping if it preserves

the orientation of A, if it preserves the bound-

ary components and if the lift ϕ̃(x0, y0) = (x1, y1)

satisfies the twist condition: ∂x1
∂y0

> 0;

If a, b are finite, ϕ̃ extends continuously to the

boundary as a pair of ‘rotations’:

ϕ̃(x, a) = (x + ω−, a), ; ϕ̃(x, b) = (x + ω+, b).

The interval (ω−, ω+) is called the twist inter-

val of ϕ.
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Aubry-Mather

Let {(xi, yi)} be an orbit of ϕ̃. Its rotation
number is defined to be

lim
|i|→∞

xi − x0

i
.

A curve C ⊂ A is called an invariant circle if it
is an invariant set which is homeomorphic to
the circle and which separates boundary com-
ponents. According to Birkhoff’s invariant cir-
cle theorem, an invariant circle is a Lipschitz
graph over the factor S1 of A. Any invariant
circle has a well-defined rotation number (the
common rotation number of orbits in the cir-
cle) and the rotation number belongs to the
twist interval.

An orbit {(xi, yi)} is determined by the sequence
{xi} of its x-coordinates. It is called minimal if
every finite segment is action-minimizing with
fixed endpoints
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Aubry-Mather

The corresponding orbit orbit (xi, yi) is called

a minimal orbit. The Aubrey-Mather theorem

states:

A monotone twist map possesses minimal or-

bits for each rotation number ω ∈ (ω1, ω+) in

its twist interval. Every minimal orbit lies on

a Lipschitz graph over the x-axis. For each

rational rotation number ω = p
q , there exists

a periodic minimal orbit of rotation number p
q.

When ω is irrational, there exists either an in-

variant circle with rotation number ω, or an

invariant Cantor set E.

The theorem also describes three possible orbit

types in both the rational or irrational case.
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Applications to inverse spectral the-
ory

We now return to our problem on simple sur-

faces of revolution. We fix Poincaré sections

to the geodesic flows at the equators γg, resp.

γh. The Poincaré maps Pg are area-preserving

twist maps of Poincarè sections with a non-

degenerate elliptic fixed point. The foliation of

S∗Sg\γh by 2-tori intersects Sg in a foliation by

invariant circles converging to the fixed point.

Circles with rational rotation numbers contain

only periodic orbits, and conversely all periodic

orbits belong to invariant circles with rational

rotation numbers.
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Aubrey Mather and ISP

Since Ph is a twist map, the rotation number
ωI is a monotone increasing function of I.

It follows by the Aubry-Mather theorem that
every rational number p/q in the twist interval
is the rotation number of a periodic circle CI ⊂
Sh.

Lemma 8 Sh is foliated in the C0 sense by in-
variant circles for Ph.

Proof: If not there exists an annulus A ⊂ Sh
with boundary consisting of two invariant cir-
cles and containing no invariant circles in its
interior. But by the Aubrey-Mather theorem,
there must exist a periodic point in A. Since
the periodic points come in circles, there must
exist a periodic circle, contradicting the non-
existence of invariant circles in A. QED
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Isospectral class of an ellipse

Instead of surfaces in R∗, one can apply this

reasoning to the Dirichlet (or Neumann) prob-

lem for an ellipse Ea,b = {(x, y) : x2

a2 + y2

b2
= 1}.

It is well-known that ellipses have integrable

billiards.

The ellipse has three distinguished periodic bil-

liard orbits:

• The bouncing ball orbit along the minor

axis, which is a non-degenerate elliptic or-

bit;

• The bouncing ball orbit along the major

axis, which is a non-degenerate hyperbolic

orbit;
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• Its boundary.

All other periodic orbits come in one-parameter

families. The wave trace formula shows that

any domain Ω with Spec(Ω) = Spec(Ea,b) has

precisely one isolated elliptic orbit, one isolated

hyperbolic orbit. The accumulation points in

the length spectrum must be multiples of the

perimeter of the domain (a spectral invariant),

so the boundary must be a closed geodesic as

well.

One can apply the twist map theory either

to the boundary orbit or to the unique non-

degenerate elliptic orbit with isolated length

in the length spectrum. The argument above

shows that there exists a C0 foliation by invari-

ant circles at least near these two orbits.



Marked length spectral rigidity of
domains

Finally, we present a result of Siburg on the

MLS of bounded domains. The key invariant

is the mean minimal action

(19) α : [ω−, ω+] → R,

of a twist map ϕ, which associates to a rota-

tion number ω in the ‘twist interval’ the mean

action

(20) α(ω) = − lim
N→∞

1

2N

N∑

i=−N

h(xi, xi+1)

of a minimal orbit (qi, ηi) of ϕ of rotation num-

ber ω.
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Properties of the mean minimal ac-
tion

It is a strictly convex function which is differ-

entiable at all irrational numbers. If ω = p/q,

then α is differentiable at ω if and only if there

exists an invariant circle of rotation number

p/q consisting entirely of periodic minimal or-

bits. If a monotone twist map possesses an

invariant circle of rotation number ω, then ev-

ery orbit on the circle is minimal. In the case

of a bounded plane domain, h(q, q′) = −|q− q′|.

K. F. Siburg:the marked length spectrum is es-

sentially the same invariant as the mean min-

imial action. The mean minimal action is there-

fore an isospectral deformation invariant.

73



Inverse mean minimal action

The only explicitly known mean minimal action

is that of the disc D: α(ω) = −1
π sinπω ([?]); α

is only smooth when Ω = D

For the ellipse? Perhaps ellipses characterized

by their mean minimal actions.

Problem 11 Is the map from curvature func-

tions κ of convex plane domains to the mean

minimal action α of the associated convex do-

main injective or finitely many to one? at least

near ellipses or under some additional analyt-

icity or discrete symmetry condition?
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