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Overview

1. This talk is about geodesics in the infi-

nite dimensional symmetric space of Kähler

metrics in a fixed Kähler class á la Donaldson-

Semmes.

2. These geodesics are solutions of a homo-

geneous complex Monge-Ampère equation

in ‘space-time’. One would like to know

existence, regularity...

3. Phong-Sturm proved that one can construct

weak solutions by special polynomial ap-

proximations. The purpose of this talk is

to study the geodesics and the polynomial

approximation on a toric variety.
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Space H of Kähler metrics in the
class [ω]

Let L→M be an ample holomorphic line bun-

dle over a compact Kähler manifold (M,ω0)

with 1
2πω0 ∈ H(1,1)(M,Z) and with c1(L) =

[ω0], the class of ω0. Put m = dimM .

Let h0 be the unique Hermitian metric on L

with curvature (1,1) form ω0. Any hermitian

metric h with curvature in [ω0] may be written

hϕ = e−ϕh0, with ϕ in the space

H = {ϕ ∈ C∞(M) : ωϕ = ω0+

√−1

2
∂∂̄ϕ > 0 } .
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H is a symmetric space

We endow H with a Riemannian metric:

Identify the tangent space TϕH at ϕ ∈ H with

C∞(M), let ψ ∈ TϕH � C∞(M) and define

||ψ||2ϕ =
∫
M

|ψ|2 ωϕk .

With this Riemannian metric, H is an infinite

dimensional negatively curved symmetric space

(Mabuchi, Semmes, Donaldson).

Formally, H = GC\G where G is the group of

symplectic diffeomorphisms of (M,ω0).
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Geodesics of H

The energy of a path ϕt of metrics is then

energy functional

E =
∫ 1

0

∫
M
ϕ̇2
t ω

m
ϕtdt.

The Euler Lagrange equations are

ϕ̈− |∂ϕ̇|2ωϕ = 0.

This equation may be interpreted as a degener-

ate complex Monge-Ampère equation on A×M
where A = {w ∈ C : 1 ≤ |w| ≤ e} is an annulus.

Let Φ(z, w) = ϕlog |w|(z). Then

(ω0 +
i

2
∂∂̄Φ)m+1 = 0, on A×M.
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Why study geodesics?

The geometry of H is relevant to the study of
the relations between

1. Stability of the polarized Kähler manifold
(M,ω0, L).

2. Existence of canonical metrics in [ω0], i.e.
metrics of constant scalar curvature.

The first is an algebro-geometric notion, the
second is transcendental (differential geomet-
ric). Donaldson and others are developing tran-
scendental analogues of GIT to relate (1) and
(2). Geodesics are the transcendental ana-
logues of 1 PS (one-parameter subgroups), i.e.
they are formally the 1 PS of GC (which does
not exist).
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Main problems about geodesics

• Existence/Uniqueness: does there exist a

unique geodesic between two given met-

rics ϕ0, ϕ1 in H? For which initial tangent

vectors (ϕ0, ϕ̇0) does there exist an infinite

geodesic ray ϕt with the given initial tan-

gent vector?

• Regularity: How smooth are the solutions

of the endpoint and/or initial value prob-

lem?

• Behavior of functionals (e.g. Mabuchi K-

energy) along an infinite geodesic ray.
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Background results

The endpoint problem is a Dirichlet problem

for the homogeneous complex MA equation on

A×M . When the boundary data are C∞, then

the solution is at least C1,1. (X.X. Cheng,

using work of B. Guan and J. Spruck).

The initial value problem is the MA equation in

a punctured disc. There are no general results.

Donaldson observed that one can formally solve

the initial value problem as follows: Let exp tHϕ̇0

be the Hamiltonian flow w.r.t. ω0 of ϕ̇0. Com-

plexify t to it. Then (exp itHϕ̇0
)∗ω0 − ω0 =

i∂∂̄ϕt.
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Phong-Sturm approximations

Phong-Sturm construct geodesic segments and

infinite rays as limits of of 1 PS geodesics in

certain symmetric spaces Bk ⊂ H, known as

spaces of Bergman (or Fubini-Study) metrics.

The main idea is Monge-Ampère geodesics are

1 PS of GC. So they should be approximated

by 1 PS of the finite dimensional symmetric

spaces Bk ⊂ H.
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Bergman metrics

Let dk+1 = dimH0(M,Lk) and let BH0(M,Lk)

denote the manifold of all bases s = {s0, . . . , sdk}
of H0(M,Lk). Given a basis, we define the Ko-

daira embedding

Φs : M → CP
dk, z → [s0(z), . . . , sdk(z)].

A Bergman (hermitian) metric of height k is a

metric of the form

(1) hs := (Φ∗
shFS)

1/k =
h0(∑dk

j=0 |sj(z)|2hk0
)1/k

,

where hFS is the Fubini-Study Hermitian met-

ric on O(1) → CPdk. We then define

(2) Bk = {hs, s ∈ BH0(M,Lk)}.
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Hilbert maps from H → Bk

Basic idea of Yau, Tian...Bk is a very close

approximation to Hk. There is a specific cor-

respondence

Hilbk : H → Bk, h→ h(k) = (Φ∗
Sk
hFS)

1/k,

Sk = an orthonormal basis of H0(M,Lk) for h.

The metric h(k) is independent of the choice

of orthonormal basis.

Then h(k) → h in C∞ and has a complete

asymptotic expansion in k−1. (Tian-Yau-Z-

(Catlin); Boutet de Monvel-Sjöstrand parametrix).
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Bergman Kähler potentials

We defined H is the space of Kähler potentials

of Kähler metrics in the fixed class. The Kähler

potential (relative to h0) corresponding to hs

is

(3) ϕs(z) =
1

k
log

dk∑
j=0

|sj(z)|2hk0.
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Bergman geodesics

We note that Bk = GL(dk + 1,C)/U(dk + 1)

is a symmetric space, since GL(dk + 1,C) acts

transitively on the set of bases, while Φ∗
shFS is

unchanged if we replace the basis s by a unitary

change of basis.

Geodesics in Bk = 1 PS (one-parameter sub-

groups) etA of GL(dk,C). Given two endpoint

bases ŝ(0), ŝ(1) we may assume the change of

basis matrix is diagonal and write A = Diag(λj)

so that the 1PS geodesic between the endpoint

Bergman metrics is

ϕk(t; z) =
1

k
log

⎛
⎝ N∑
j=0

e2λjt|ŝ(0)
j (z)|2

hk0

⎞
⎠ .
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Phong-Sturm problem: Convergence
of Bergman space geodesics to Monge
Ampere geodesics

Let ϕ0, ϕ1 ∈ H and let ϕt be the Monge-Ampere

geodesic from ϕ0 to ϕ1.

Let ϕ0(k) = Hilbk(ϕ0), ϕ1(k) = Hilbk(ϕ1) be

the Bergman metrics of level k

Let ϕk(t) be the Bergman geodesic from ϕ0(k)

to ϕ1(k).

Problem Show that ϕk(t) → ϕt in a good sense

as k → ∞?
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Results of D.H. Phong- J. Sturm
on geodesic segments

Theorem 1 Let ht = e−ϕth0 be the unique C1,1

metric joining h0 to h1. Then,

ϕt = lim
�→∞

{sup
k≥�

ϕk(t)}∗ uniformly as �→ ∞

where for u : X × [0,1] → R

u∗(z0) = lim
ε→0

sup
|z−z0|<ε

u(z)

is the upper envelope of u.

Further, ϕk(t) = lim�→∞{supk≥� ϕk(t)} almost

everywhere.
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Results of D.H. Phong- J. Sturm
on geodesic rays and test configu-
rations

The most important geodesics are infinite geodesic

rays. The only known construction is Phong-

Sturms’s construction using test configurations

in the sense of Donaldson.

Test configurations are special 1PS degenera-

tions. We define them later for toric varieties,

where they are elementary.

Phong-Sturm defined TC geodesic rays as lim-

its of certain Bergman geodesic rays. They

proved that the limits are weak solutions of

MA. Question: what are these solutions? how

regular? what is weak?
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Convergence problem on a toric Kähler
manifold

For the rest of this talk, we assume (M,ω) is
a toric Kähler manifold and L→M is the toric
line bundle.

Toric variety: a compactification of (C∗)m such
that (C∗)m acts holomorphicaly on M with an
open orbit.

Let Tm be the underlying real torus. Let

µ0 : M → P

be the moment map wrt ω0; we assume P is a
Delzant polytope.

Define the toric hermitian metrics in a fixed
Kähler class by

HTm = {ω ∈ H : ω is invariant under Tm}.
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Monge Ampère on a toric variety
is linearized by the Legendre trans-
form

Following Guillemin and Abreu, we let ϕ denote

the full Kähler potential of ω ∈ HTm in the open

orbit. It is a functional only of the variables

|zj|2 = eρj. The moment map for ωϕ equals

∇ρϕ(ρ).

The symplectic potential dual to ϕ is its Leg-

endre transform:

u(x) = sup
ρ

(〈x, ρ〉 − ϕ(ρ)) .

The curve of symplectic potentials correspond-

ing to a MA geodesic ϕt equals u0 + t(u1−u0)

when the endpoint potentials are u0u1.
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Convergence results on a toric va-
riety:endpoint problem

The question is whether the Phong-Sturm Bergman

endpoint geodesics converge to the MA geodesics.

The answer is...

Theorem 2 (Song-Z, 2007) Let L → M be a

very ample toric line bundle over a smooth

compact toric variety M . Let HT denote the

space of toric Hermitian metrics on L. Let

h0, h1 ∈ HT and let ht be the Monge-Ampère

geodesic between them. Let hk(t) be the Bergman

geodesic between Hilbk(h0) and Hilbk(h1) in

Bk. Let hk(t) = e−ϕk(t,z)h0 and let ht = e−ϕt(z)h0.

Then

lim
k→∞

ϕk(t, z) = ϕt(z)

in C2(R ×M).
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Convergence results on a toric vari-
ety: test configuration initial value
problem

A toric test configuration is defined by a piece-
wise linear convex function f on P with rational
coefficients. Pick R ∈ N larger than max f and
think of the graph of R − f(x) as a roof over
P , defining a new polytope Q of one higher
dimension. As one moves from bottom P to
top (R − f) one degenerates the toric variety.
Phong-Sturm construct an infinite ray from it:

Theorem 3 (Song-Z, 2007): Let L → X be a
very ample toric line bundle over a toric Kähler
manifold. Let h0 ∈ HTm and let T a test
configuration. Then the Phong-Sturm rays
ψk(t; z) converge in C1 to a C1,1 geodesic ray
ψt(z) in HTm. It is not C2 and ωψt has null
directions on certain open sets.

20



Sketch of proofs

The ingredients are:

• Explicit formulae for the Bergman geodesic

rays, both in the endpoint and test config-

uration cases.

• They are sums over lattice points in P . But

very nonstandard ones with exponentially

growing/decaying coefficients in k.

• We use a mixture of Bergman kernel asymp-

totics, large deviations methods, and ad

hoc boundary estimates to prove conver-

gence. Usual microlocal methods do not

work.
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Explicit formula for geodesic seg-
ments in Bk
The Bk-geodesic segments between Hilbk(h0)

and Hilbk(h1) are given by

ϕk(t, z) =
1

k
log

∑
α∈kP∩Zm

⎛
⎝Qkh0

(α)

Qhk(α)

⎞
⎠t ||sα(z)||

2
hk0

||sα||2
hk0

.

Here, {sα} are the monomials of degree k =

joint eigenfunctions of the torus action on H0(M,Lk)

The joint eigenvalues {α} run over lattice points

in the polytope P corresponding to M = the

image of M under a moment map for the Hamil-

tonian Tm action. Qhk(α) = ||sα||2hk.
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Norms of monomials in different Her-
mitian metrics

The L2-norms of the monomials χα(z) = zα in

the inner product on H0(M,Lk) determined by

the hermitian metric h are

Qhk(α) = ||sα||2hk :=
∫
Cm

|zα|2e−kϕ(z)ωmϕ /m!

Symplectic potential formula for norming con-

stants: push the integral forward to the poly-

tope P under µϕ:

Qhk(α) =
∫
P
e−k(uϕ(x)+〈αk−x,∇uϕ(x)〉)dx,
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Family of probability measures

(4) µzk =
1

Π
hk0

(z, z)

∑
α∈kP∩Zm

|sα(z)|2
hk0

||sα||2
hk0

δ α
kd
,

where

Π
hk0

(z, z) =
∑

α∈kP∩Zm

|sα(z)|2
hk0

||sα||2
hk0

is the contracted Szegö kernel on the diagonal

(or density of states);
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Large deviations principle

Theorem 4 For any z ∈M , the probability mea-

sures µzk satisfy a uniform Laplace large devia-

tions principle with rate k and with convex rate

functions Iz ≥ 0 on P . defined as follows:

• If z ∈ M0, the open orbit, then Iz(x) =

u0(x) − 〈x, log |z|〉 + ϕPo(z), where ϕPo is

the canonical Kähler potential of the open

orbit and u0 is its Legendre transform, the

symplectic potential;

• When z ∈ µ−1
0 (F ) for some face F of ∂P ,

then Iz(x) restricted to x ∈ F is a restricted

version. On complement of F̄ it is defined

to be +∞.

25



Varadhan’s Lemma

Varadhan’s Lemma Let dµk be probability
measures on X which satisfy the LDP with
rate k and rate function I on X. Let F be
a continuous function on X which is bounded
from above. Then

lim
k→∞

1

k
log

∫
X
ekF (x)dµk(x) = sup

x∈X
[F (x) − I(x)].

This would give C0 convergence of our ray

ϕk(t, z) =
1

k
log

∑
α∈kP∩Zm

⎛
⎝Qkh0

(α)

Qhk(α)

⎞
⎠t ||sα(z)||

2
hk0

||sα||2
hk0

.

if

(
Qkh0

(α)

Q
hk

(α)

)t
had the form ekFt(α). This is true

in the interior but false at the boundary...
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Test configuration rays

In this case, the ray has the basic form

ϕk(t, z) =
1

k
log

∑
α∈kP∩Zm

ek(R−f(αk))
||sα(z)||2

hk0

||sα||2
hk0

.

where f is a piecewise linear convex function

and R ∈ Z, R >> 0. The graph of R − f is

used to make a one higher dimensional poly-

tope from P , which makes a toric degeneration

of M .

27



Test configuration rays

One finds that the limit ray (over the open or-
bit) is ψt = L(u0+tf) where u0 is the symplec-
tic potential. Here, L is the Legendre trans-
form. So the test ray is the Legendre transform
of a piecewise smooth function.

The Legendre transforms smooths out the cor-
ners of f to C1, but no further than C1,1. ψt
determines a moment map

µt : M
o → P, µt(e

ρ/2+iθ) = ∇ρψt(e
ρ/2+iθ) on Mo.

µt fails to be a homeomorphism from M/Tm

to P as in the smooth case. Indeed, the usual
inverse map defined by gradient of the sym-
plectic potential pulls apart the polytope dis-
continuously into different regions. But it is a
homeomorphism from the underlying real toric
variety MR to the graph of the subdifferential
of u+ tf .
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