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Overview

1. This talk is about geodesics in the infi-
nite dimensional symmetric space of Kahler
metrics in a fixed Kahler class a la Donaldson-
Semmes.

2. These geodesics are solutions of a homo-
geneous complex Monge-Ampere equation
in ‘space-time’. One would like to know
existence, regularity...

3. Phong-Sturm proved that one can construct
weak solutions by special polynomial ap-
proximations. The purpose of this talk is
to study the geodesics and the polynomial
approximation on a toric variety.



Space H of Kahler metrics in the
class [w]

Let L — M be an ample holomorphic line bun-
dle over a compact Kahler manifold (M, wqg)
with s~wo € HD(M,Z) and with ¢1(L) =
[wo], the class of wg. Put m = dim M.

Let hg be the unique Hermitian metric on L
with curvature (1,1) form wg. Any hermitian
metric h with curvature in [wg] may be written
ho = e~ *hg, with ¢ in the space

H={pecC®(M): w, = wo+?—18590>0}.



H 1S a symmetric space

We endow H with a Riemannian metric:

Identify the tangent space T,’H at ¢ € ‘H with
C*®(M), let Yy € TyH ~ C°°(M) and define

2 _ 2
W2 = [ W2 wu
With this Riemannian metric, ‘H is an infinite

dimensional negatively curved symmetric space
(Mabuchi, Semmes, Donaldson).

Formally, ' H = Gc\G where G is the group of
symplectic diffeomorphisms of (M, wg).



Geodesics of 'H

The energy of a path ¢ of metrics is then
energy functional

B[ s2umar
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The Euler Lagrange equations are

.. .2
This equation may be interpreted as a degener-
ate complex Monge-Ampeére equation on Ax M

where A ={w € C: 1 < |w| <e} is an annulus.
Let ®(2,w) = ¢|oq |w|(z). Then

(wo + %85¢)m+1 — 0, on A x M.



Why study geodesics?

The geometry of 'H is relevant to the study of
the relations between

1. Stability of the polarized Kahler manifold
(M, wo, L).

2. Existence of canonical metrics in [wg], i.e.
metrics of constant scalar curvature.

The first is an algebro-geometric notion, the
second is transcendental (differential geomet-
ric). Donaldson and others are developing tran-
scendental analogues of GIT to relate (1) and
(2). Geodesics are the transcendental ana-
logues of 1 PS (one-parameter subgroups), i.e.

they are formally the 1 PS of G¢ (which does
not exist).



Main problems about geodesics

e Existence/Uniqueness: does there exist a
unique geodesic between two given met-
rics ¢p, 1 in 'H? For which initial tangent
vectors (pq, ¢g) does there exist an infinite
geodesic ray ¢y with the given initial tan-
gent vector?

e Regularity: How smooth are the solutions
of the endpoint and/or initial value prob-
lem?

e Behavior of functionals (e.g. Mabuchi K-
energy) along an infinite geodesic ray.



Background results

The endpoint problem is a Dirichlet problem
for the homogeneous complex MA equation on
Ax M. When the boundary data are C°°, then
the solution is at least ¢1:1. (X.X. Cheng,
using work of B. Guan and J. Spruck).

T he initial value problem is the MA equation in
a punctured disc. There are no general results.

Donaldson observed that one can formally solve
the initial value problem as follows: Let exp tH%
be the Hamiltonian flow w.r.t. wg of ¢g. Com-

plexify ¢t to 2t. Then (expitH¢O)*wo —wp =
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Phong-Sturm approximations

Phong-Sturm construct geodesic segments and
infinite rays as limits of of 1 PS geodesics in
certain symmetric spaces B, C ‘H, known as
spaces of Bergman (or Fubini-Study) metrics.

The main idea is Monge-Ampeére geodesics are
1 PS of g¢. So they should be approximated
by 1 PS of the finite dimensional symmetric
spaces B, C 'H.



Bergman metrics

Let di,+1 = dim HO(M, L*) and let BHO (M, L*)

denote the manifold of all bases s = {sq,...,sq, }
of HO(M, L*). Given a basis, we define the Ko-
daira embedding

b M — CP%, 2 — [sg(2),.. .y 84, (2)].

A Bergman (hermitian) metric of height k is a
metric of the form
ho

1/k’
dy, , 2
(Zj:o |33(2)‘h18>

where hpg is the Fubini-Study Hermitian met-
ric on O(1) — CP%. We then define

(1) hs:= (Pthpg)t/F =

(2) Bk — {h§7 S & BHO(M7 Lk)}
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Hilbert maps from H — B;

Basic idea of Yau, Tian...B; is a very close
approximation to ‘H;. There is a specific cor-
respondence

Hilb, - H — By, h — h(k) = (CInghFS)l/k,

S;. = an orthonormal basis of HO(M, L*) for h.

The metric h(k) is independent of the choice
of orthonormal basis.

Then h(k) — h in C° and has a complete

asymptotic expansion in k1. (Tian-Yau-Z-
(Catlin); Boutet de Monvel-Sjostrand parametrix).
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Bergman Kahler potentials

We defined 'H is the space of Kahler potentials
of Kahler metrics in the fixed class. The Kahler

potential (relative to hg) corresponding to hs
IS

1
(3) ps(z) = . log ) |89(Z)|i’5
j=0
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Bergman geodesics

We note that B, = GL(dp + 1,C)/U(dy, + 1)
is @ symmetric space, since GL(d;, + 1,C) acts
transitively on the set of bases, while ® hpg is
unchanged if we replace the basis s by a fmitary
change of basis.

Geodesics in B, = 1 PS (one-parameter sub-
groups) et of GL(d,C). Given two endpoint
bases 3(?) 3(1) we may assume the change of
basis matrix is diagonal and write A = Diag(\;)
so that the 1PS geodesic between the endpoint
Bergman metrics is

1 N onit1(0) 12
or(t,z) = Elog > eYs; (Z)|h’8 :

7=0
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Phong-Sturm problem: Convergence
of Bergman space geodesics to Monge
Ampere geodesics

Let ©o, 1 € H and let ¢, be the Monge-Ampere
geodesic from ¢g to 1.

Let po(k) = Hilbi(v0),p1(k) = Hilb,(p1) be
the Bergman metrics of level &

Let ¢, (t) be the Bergman geodesic from g (k)
to ¢1(k).

Problem Show that ¢(t) — ¢ in @ good sense
as k — oo?
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Results of D.H. Phong- J. Sturm
on geodesic segments

Theorem 1 Let hy = e ¥thg be the unique C'1:1
metric joining hg to hy. Then,

o = lim {sup ¢, (t)}* uniformly as ¢ — oo
l—o0 k>4
where for u: X x [0,1] - R
u*(zg9) = lim  sup wu(2)
=0 z—zp|<e

iIs the upper envelope of wu.

Further, o, (t) = limy_ o{supg>,pr(t)} almost
everywhere.
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Results of D.H. Phong- J. Sturm
on geodesic rays and test configu-
rations

The most important geodesics are infinite geodesic
rays. The only known construction is Phong-
Sturms’s construction using test configurations

in the sense of Donaldson.

Test configurations are special 1PS degenera-
tions. We define them later for toric varieties,
where they are elementary.

Phong-Sturm defined T C geodesic rays as lim-
its of certain Bergman geodesic rays. They
proved that the limits are weak solutions of
MA. Question: what are these solutions? how
regular? what is weak?
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Convergence problem on a toric Kahler
manifold

For the rest of this talk, we assume (M,w) is
a toric Kahler manifold and L — M is the toric
line bundle.

Toric variety: a compactification of (C*)™ such
that (C*)™ acts holomorphicaly on M with an
open orbit.

Let T" be the underlying real torus. Let
puo - M — P

be the moment map wrt wg; we assume P is a
Delzant polytope.

Define the toric hermitian metrics in a fixed
Kahler class by

Hpm = {w € H : w is invariant under T™}.
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Monge Ampere on a toric variety
IS linearized by the Legendre trans-
form

Following Guillemin and Abreu, we let o denote
the full Kahler potential of w € Hm in the open
orbit. It is a functional only of the variables
|zj|2 = efi. The moment map for w, equals

Vop(p)-

The symplectic potential dual to ¢ is its Leg-
endre transform:

u(zx) = Sup ((z, p) —(p)) -

The curve of symplectic potentials correspond-
ing to a MA geodesic ¢; equals ug+ t(u1 — ug)
when the endpoint potentials are ugu;.
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Convergence results on a toric va-
riety:endpoint problem

The question is whether the Phong-Sturm Bergman
endpoint geodesics converge to the MA geodesics.
The answer is...

Theorem 2 (Song-Z, 2007) Let L — M be a
very ample toric line bundle over a smooth
compact toric variety M. Let Hp denote the
space of toric Hermitian metrics on L. Let
ho,h1 € Ht and let hy be the Monge-Ampeére
geodesic between them. Let hi(t) be the Bergman
geodesic between Hilbi.(hg) and Hilb(hy) in
By. Let hy(t) = e 92 hy and let hy = e~ #t(#) py.
T hen

lim ¢p(t, 2) = pi(2)
k— o0

in C2(R x M).
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Convergence results on a toric vari-
ety: test configuration initial value
problem

A toric test configuration is defined by a piece-
wise linear convex function f on P with rational
coefficients. Pick R € N larger than max f and
think of the graph of R — f(x) as a roof over
P, defining a new polytope ¢ of one higher
dimension. As one moves from bottom P to
top (R — f) one degenerates the toric variety.
Phong-Sturm construct an infinite ray from it:

Theorem 3 (Song-Z, 2007): Let L — X be a
very ample toric line bundle over a toric Kahler
manifold. Let hg € Hpm and let T a test
configuration. Then the Phong-Sturm rays
Yi(t; z) converge in Ct to a 11 geodesic ray
Yi(2) in Hypm. It is not C2 and wy, has null
directions on certain open sets.

20



Sketch of proofs

The ingredients are:

e EXxplicit formulae for the Bergman geodesic
rays, both in the endpoint and test config-
uration cases.

e [ hey are sums over lattice pointsin P. But
very nonstandard ones with exponentially
growing/decaying coefficients in k.

e \We use a mixture of Bergman kernel asymp-
totics, large deviations methods, and ad
hoc boundary estimates to prove conver-
gence. Usual microlocal methods do not
work.
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Explicit formula for geodesic seg-
ments in 5,

The Bi-geodesic segments between Hilb,(hg)

and Hilb,(hq1) are given by

1
or(t,z) = A log Z

ackPNzm

Qlflo(a) t ||SO‘(Z)‘|}2L’5

[sall?
« hlé

Here, {sq} are the monomials of degree k =
joint eigenfunctions of the torus action on HO(M, L*)
The joint eigenvalues {a} run over lattice points

in the polytope P corresponding to M = the
image of M under a moment map for the Hamil-
tonian T™ action. Qi(a) = [|sallZ.-
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Norms of monomials in different Her-
mitian metrics

The L2-norms of the monomials ya(z) = 2% in
the inner product on HO(M, L*) determined by
the hermitian metric A are

Qhk(a) — ||5a||ik L= /m |Za|2€_k(p(z)w$/m!

Symplectic potential formula for norming con-
stants: push the integral forward to the poly-
tope P under pg:

Qp () :/ e—k(uw(w)+<%—$7vw($)>)dw,
P
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Family of probability measures

(4) :ui — 5ﬂ7
Hhk(Z,Z) ckPNZm ||Sa||f2L]8 kd
where
‘Sa(z)@k
l_lhk:(zaz) — Z 2 0

is the contracted Szego kernel on the diagonal
(or density of states);
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Large deviations principle

Theorem 4 Forany z € M, the probability mea-
sures Mi satisfy a uniform Laplace large devia-
tions principle with rate k and with convex rate
functions I?* > 0 on P. defined as follows:

e If = € M9, the open orbit, then I?*(z) =
upg(x) — (x,l09 |z|) + @po(z), wWhere ppo is
the canonical Kahler potential of the open
orbit and uqg is its Legendre transform, the
symplectic potential;

e When z € ual(F) for some face F of 0P,
then I%(x) restricted tox € F' is a restricted
version. On complement of F it is defined
to be +oo.
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Varadhan’s Lemma

Varadhan’s Lemma Let du; be probability
measures on X which satisfy the LDP with
rate k and rate function I on X. Let F be
a continuous function on X which is bounded
from above Then

lim Iog/ FF@) g (1) = sup[F(x) — ()],

This would give €9 convergence of our ray

Qlflo(a)) ' ||SO‘(Z)‘|}2L’8

1
pr(t,z) = A log Z (Qhk(a)

aEkPNZ™ ||5a||ik

Qs
i (2ol had the form eFfi(®) . This is true
Qhk( )

in the interior but false at the boundary...
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Test configuration rays

In this case, the ray has the basic form

lsa()112,

o =t0g ¥ I

a€kPNZm ||Sa||h’5
where f is a piecewise linear convex function
and R € Z,R >> 0. The graph of R — f is
used to make a one higher dimensional poly-
tope from P, which makes a toric degeneration
of M.

27



Test configuration rays

One finds that the limit ray (over the open or-
bit) is ¥y = L(ug+1tf) where ug is the symplec-
tic potential. Here, L is the Legendre trans-
form. So the test ray is the Legendre transform
of a piecewise smooth function.

The Legendre transforms smooths out the cor-
ners of f to C!, but no further than CH1. oy
determines a moment map

s MO — P, opy(eP/?110) = v (eP/2F0) on MO,

p¢ fails to be a homeomorphism from M/T™
to P as in the smooth case. Indeed, the usual
inverse map defined by gradient of the sym-
plectic potential pulls apart the polytope dis-
continuously into different regions. But it is a
homeomorphism from the underlying real toric
variety My to the graph of the subdifferential
of u+tf.
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