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Our topics

• Random polynomials – How are zeros or

critical points distributed?

• Random complex geometry: generalize poly-

nomials to holomorphic sections of line bun-

dles.

• Counting universes in string/M theory–

‘Universes’ = ‘vacua’ of string/M theory

= critical points of ‘superpotentials’ on the

moduli space of Calabi-Yau manifolds. How

many vacua are there? How are they dis-

tributed?
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Outline of talk

1. Random polynomials of one complex vari-

able: classical and recent results. General-

ization to holomorphic sections of line bun-

dles.

2. String/M vacuum selection problem: Dou-

glas’ statistics of vacua program. Rigor-

ous results on counting possible universes

= string/M vacua.

3. Geometric problems on critical points of

holomorphic sections relative to a hermi-

tian metric or connection.
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Random polynomials of one vari-
able

A polynomial of degree N in one complex vari-

able is:

f(z) =
N∑
j=1

cjz
j, cj ∈ C

is specified by its coefficients {cj}.

A ‘random’ polynomial is short for a probability

measure P on the coefficients. Let

P(1)
N = {∑N

j=1 cjz
j, (c1, . . . , cN) ∈ CN}

� CN.

Endow CN with probability measure dP .

We call (P(1)
N , P ) an ‘ensemble’ of random poly-

nomials.
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Kac polynomials

The simplest complex random polynomial is

the ‘Kac polynomial’

f(z) =
N∑
j=1

cjz
j

where the coefficients cj are independent com-

plex Gaussian random variables of mean zero

and variance one. Complex Gaussian:

E (cj) = 0 = E(cjck), E(cjc̄k) = δjk.

This defines a Gaussian measure γKAC on P(1)
N :

dγKAC(f) = e−|c|2/2dc.
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Expected distribution of zeros

The distribution of zeros of a polynomial of de-

gree N is the probability measure on C defined

by

Zf =
1

N

∑
z:f(z)=0

δz,

where δz is the Dirac delta-function at z.

Definition: The expected distribution of ze-

ros of random polynomials of degree N with

measure P is the probability measure E PZf on

C defined by

〈E PZf, ϕ〉 =
∫
P(1)
N

{ 1

N

∑
z:f(z)=0

ϕ(z)}dP (f),

for ϕ ∈ Cc(C).
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How are zeros of complex Kac poly-
nomials distributed?

Complex zeros concentrate in small annuli around

the unit circle S1. In the limit as the degree

N → ∞, the zeros asymptotically concentrate

exactly on S1:

Theorem 1 (Kac-Hammersley-Shepp-Vanderbei)

The expected distribution of zeros of polyno-

mials of degree N in the Kac ensemble has the

asymptotics:

ENKAC(ZNf ) → δS1 as N → ∞ ,

where (δS1, ϕ) := 1
2π

∫
S1 ϕ(eiθ) dθ.
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Why the unit circle?

Do zeros of polynomials really tend to concen-

trate on S1?

Answer: yes, for the polynomials which domi-

nate the Kac measure dγNKAC. (Obviously no

for general polynomials)

The Kac-Hammersley-Shepp-Vanderbei mea-

sure γNKCA weights polynomials with zeros near

S1 more than other polynomials.

It did this by an implicit choice of inner product

on P(1)
N .
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Gaussian measure and inner prod-
uct

Choice of Gaussian measure on a vector space

H = choice of inner product on H.

The inner product induces an orthonormal ba-

sis {Sj}. The associated Gaussian measure dγ

corresponds to random orthogonal sums

S =
d∑

j=1

cjSj,

where {cj} are independent complex normal

random variables.

The inner product underlying the Kac mea-

sure on P(1)
N makes the basis {zj} orthonor-

mal. Namely, they were orthonormalized on

S1. And that is where the zeros concentrated.
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Gaussian random polynomials adapted
to domains

If we orthonormalize polynomials on the bound-

ary ∂Ω of any simply connected, bounded do-

main Ω ⊂ C, the zeros of the associated ran-

dom polynomials concentrate on ∂Ω.

I.e. define the inner product on P(1)
N by

〈f, ḡ〉∂Ω :=
∫
∂Ω

f(z)g(z) |dz| .

Let γN∂Ω = the Gaussian measure induced by

〈f, ḡ〉∂Ω and say that the Gaussian measure is

adapted to Ω.

How do zeros of random polynomials adapted

to Ω concentrate?
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Equilibrium distribution of zeros

Denote the expectation relative to the ensem-

ble (PN, γN∂Ω) by EN∂Ω.

Theorem 2

EN∂Ω(ZNf ) = νΩ +O (1/N) ,

where νΩ is the equilibrium measure of Ω̄.

The equilibrium measure of a compact set K

is the unique probability measure dνK which

minimizes the energy

E(µ) = −
∫
K

∫
K

log |z − w| dµ(z) dµ(w).

Thus, in the limit as the degree N → ∞, ran-

dom polynomials adapted to Ω act like electric

charges in Ω.
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SU(2) polynomials

Is there an inner product in which the expected

distribution of zeros is ‘uniform’ on C, i.e. doesn’t

concentrate anywhere? Yes, if we take ‘uni-

form’ to mean uniform on CP1 w.r.t. Fubini-

Study area form ωFS.

We define an inner product on P(1)
N which de-

pends on N :

〈zj, zk〉N =
1(
N
j

)δjk.
Thus, a random SU(2) polynomial has the form

f =
∑

|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

Proposition 3 In the SU(2) ensemble, E (Zf) =

ωFS, the Fubini-Study area form on CP1.
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SU(2) and holomorphic line bundles

Proof that E (Zf) = ωFS is trivial if we make
right identifications:

• P(1)
N � H0(CP1,O(N)) where O(N) = Nth

power of the hyperplane section bundle O(1) →
CP1.Indeed, P(1)

N ⇐⇒ homogeneous poly-
nomials F (z0, z1) of degree N : homoge-
nize f(z) ∈ P(1)

N to F (z0, z1) = zN0 f(z1/z0).
Also H0(CP1,O(N)) ⇐⇒ homogeneous
polynomials F (z0, z1) of degree N .

• Fubini-Study inner product on H0(CP1,O(N))
= inner product

∫
S3 |F (z0, z1)|2dV on the

homogeneous polynomials.

• The inner product and Gaussian ensemble
are thus SU(2) invariant. Hence, EZf is
SU(2)-invariant.
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Gaussian random holomorphic sec-
tions of line bundles

The SU(2) ensemble generalizes to all dimen-
sions, and moreover to any positive holomor-
phic line bundle L→M over any Kähler mani-

fold.

We endow L with a Hermitian metric h and M

with a volume form dV . We define an inner
product

〈s1, s2〉 =
∫
M
h(s1(z), s2(z))dV (z).

We let {Sj} denote an orthonormla basis of the
space H0(M,L) of holomorphic sections of L.

Then define Gaussian holomorphic sections s ∈
H0(M,L) by

s =
∑
j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk.
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Statistics of critical points

Algebraic geometers are interested in zeros of
holomorphic sections. But from now on we
focus on critical points

∇s(z) = 0,

where ∇ is a metric connection.

Critical points of Gaussian random functions
come up in may areas of physics–

• as peak points of signals (S.O. Rice, 1945);

• as vacua in compactifications of string/M
theory on Calabi-Yau manifolds with flux
(Giddings-Kachru-Polchinski, Gukov-Vafa-
Witten);

• as extremal black holes (Strominger, Ferrara-
Gibbons-Kallosh) , peak points of galaxy
distributions (Szalay et al, Zeldovich), etc.
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Critical points

Definition: Let (L, h) → M be a Hermitian

holomorphic line bundle over a complex mani-

fold M , and let ∇ = ∇h be its Chern connec-

tion.

A critical point of a holomorphic section s ∈
H0(M,L) is defined to be a point z ∈M where

∇s(z) = 0, or equivalently, ∇′s(z) = 0.

In a local frame e critical point equation for

s = fe reads:

∂f(w) + f(w)∂K(w) = 0,

where K = − log ||e(z)||h.

The critical point equation is only C∞ and not

holomorphic since K is not holomorphic.
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Statistics of critical points

The distribution of critical points of s ∈ H0(M,L)
with respect to h (or ∇h) is the measure on M

(1) Chs :=
∑

z: ∇hs(z)=0

δz.

Further introduce a measure γ on H0(M,L).

Definition: The (expected) distribution E γChs
of critical points of s ∈ H0(M,L) w.r.t. ∇h and
γ is the measure on M defined by

〈E γC
h
s , ϕ〉 :=

∫
H0(M,L)

⎡
⎢⎣ ∑
z:∇hs(z)=0

ϕ(z)

⎤
⎥⎦ dγ(s).

The expected number of critical points is de-
fined by

N crit(h, γ) =
∫
S #Crit(s, h)dγ(s).
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Problems of interest

1. Calculate E γChs . How are critical points

distributed? (Deeper: how are they corre-

lated?)

2. How large is N crit(h, γ)? How does the ex-

pected number of critical points depend on

the metric?

3. The ‘best’ metrics are the ones which min-

imize this quantity. Which are they?
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The vacuum selection problem in
string/M theory

These problems have applications to string/M

theory.

According to string/M theory, our universe is

10- (or 11-) dimensional. In the simplest model,

it has the form M3,1×X where X is a complex

3-dimensional Calabi-Yau manifold.

The vacuum selection problem: Which X

forms the ‘small’ or ‘extra’ dimensions of our

universe? How to select the right vacuum?
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Complex geometry and effective su-
pergravity

The low energy approximation to string/M the-

ory is effective supergravity theory. It consists

of (M,L,W ) where:

1. M = MC × H, where MC = moduli space

of Calabi-Yau metrics on a complex 3-D

manifold X, H = upper half plane;

2. L → M is a holomorphic line bundle with

with first Chern class c1(L) = −ωWP (Weil-

Petersson Kähler form).

3. the “superpotential” W is a holomorphic

section of L.
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Hodge bundle and line bundle L

Given a complex structure z on X, let H3,0(Xz)

be the space of holomorphic (3,0) forms on X,

i.e. type dw1 ∧ dw2 ∧ dw3.

On a Calabi-Yau 3-fold, dimH3,0(Xz) = 1.

Hence, H3,0(Xz) → M is a (holomorphic) line

bundle, known as the Hodge bundle. We write

a local frame as Ωz.

L is the dual line bundle to the Hodge bundle.

(Similarly for H factor).
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Lattice of integral flux superpoten-
tials

Physically relevant sections correspond to in-

tegral co-cycles (‘fluxes’)

G = F + iH ∈ H3(X,Z ⊕√−1Z).

Such a G defines a section WG of L → M by:

〈WG(z, τ),Ωz〉 =
∫
X
[F + τH] ∧ Ωz.

Thus, G→WG maps

H3(X,Z ⊕√−1Z) → H0(M,L).

Let FZ = {WG : G ∈ H3(X,Z ⊕ √−1Z}. Also

let F = FZ ⊗ C (flux space).
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Possible universes as critical points

A possible universe or vacuum is a Calabi-Yau

3-fold Xz with complex structure z and τ ∈ H
s.th.

∇WG(z, τ) = 0,

⇐⇒ ∇τ,z
∫
X[F + τH] ∧ Ωz = 0 (z, τ) ∈ M

for some G = F + iH ∈ H0(X,Z ⊕ iZ): More-

over, the Hessian must be positive definite.

Here, ∇ = ∇WP is the Weil-Petersson covari-

ant derivative on H0(M,L) arising from ωWP .
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More on critical points

1. Solutions of ∇(G + τH) = 0 are actually

supersymmetric vacua. General vacua are

critical points of the potential energy V (τ) =

||∇W (τ)||2 − 3||W (τ)||2.

2. The critical point equation for is equivalent

to: find (z, τ) s.th.

G0,3 = G2,1 = 0

in the Hodge decomposition

H3(X,C) = H3,0
z ⊕H2,1

z ⊕H1,2
z ⊕H0,3

z .
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Tadpole constraint

There is one more constraint on the flux su-

perpotentials, called the tadpole constraint. It

has the form:

(2)
∫
X
F ∧H ≤ L ⇐⇒ Q[F + iH] =≤ L

where Q is the indefinite quadratic form on

H3(X,C) defined by

Q(ϕ1, ϕ2) =
∫
X
ϕ1 ∧ ϕ2.

Since Q is indefinite, the relevant superpoten-

tials are lattice points in the hyperbolic shell

(2).
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M. R. Douglas’ statistical program
(studied with Ashok, Denef, Shiff-
man, Z and others)

1. Count the number of critical points (bet-

ter: local minima) of all integral flux su-

perpotentials WG with Q[G] ≤ L.

2. Find out how they are distributed in M.

3. How many are consistent with the stan-

dard model and the known cosmological

constant?
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Mathematical problem

Given L > 0, consider lattice points

G = F + iH ∈ H3(X,Z ⊕√−1Z)

in the hyperbolic shell

0 ≤ Q[G] ≤ L.

Let K ⊂ M be a compact subset of moduli

space. Count number of critical points in K
for G in shell:

N critK (L) =
∑

Q[G]≤L
#{(z, τ) ∈ K : ∇WG(z, τ) = 0}.

Problem Determine N critK (L) where L is the

tadpole number of the model. Easier: deter-

mine its asymptotics as L→ ∞.
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Distribution of moduli of universes?

More generally, define

Nψ(L) =
∑

G∈H3(X,Z⊕√−1Z):H[G]≤L
〈CG,ψ〉,

where

〈CG,ψ〉 =
∑

(z,τ):∇G(z,τ)=0

ψ(G, z, τ).

Here, ψ(G, z, τ) is a smooth function with com-

pact support in (z, τ) ∈ M and polynomial

growth in G. D

Example: Cosmological constant ψ(G, z, τ) =

{|∇WG(τ, z)|2 − 3|WG(τ, z)|2}χ(z, τ), with χ ∈
C∞

0 (M).

Problem Find Nψ(L) as L→ ∞.
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Radial projection of lattice points

Since 〈CG,ψ〉 is homogeneous of degree 0 in G,

one can radially project G to the hyperboloid

Q[G] = 1.

Similar to model problem: take an indefinite

quadratic form Q and consider lattice points

inside a hyperbolic shell 0 ≤ Q ≤ L which lie

inside a proper subcone of the lightcone Q =

0. Project onto the hyperboloid Q = 1 and

measure equidistribution.

[Easier: do it for an ellipsoid].

Critical points of each G give an additional fea-

ture.
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Discriminant variety/mass matrix

A nasty complication is the real discriminant

hypersurface D of W ∈ F which have degener-

ate critical points, i.e the Hessian D∇W (τ) is

degenerate. The number of critical points and

〈CW,ψ〉 jump across D. So we are not sum-

ming a smooth function over lattice points.

But: the Hessian of a superpotential at a crit-

ical point is the ‘mass matrix’ and no massless

fermions are observed. So it is reasonable to

count vacua away from D.
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Rigorous result on lattice sums

Here is a sample result on distribution of vacua:

Theorem 4 Suppose Suppψ ∩ D = ∅. Then

Nψ(L) = Lb3

[∫
{Q[W ]≤1}

〈CW,ψ〉 dW +O

(
L
− 2b3

2b3+1

)]
.

Here, b3 = dimH3(X,C), integral is hyperbolic

shell in F.

Further results:

1. Let ψ = χK. Same principal term, but

O(Lb3−1) remainder.

2. Similarly if we drop assumption Suppψ ∩
D = ∅.
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Gaussian principal term

The principal coefficient
∫
{Q[W ]≤1}〈CW,ψ〉 dW

can be rewritten as:

∫
M
∫
{Qz,τ [W ]≤1} |detD∇W (z, τ)|ψ(W, z, τ)dWdV (z, τ)

= density of critical points of Gaussian random

superpotentials in the space

Fz,τ = {W : ∇W (z, τ) = 0}
with inner product Qz,τ = Q|Fz,τ .

It is Gaussian because Qz,τ >> 0 by special

geometry of M. dV (z, τ) is a certain volume

form on M.

[More precisely, the ensemble is dual to it under

the Laplace transform].
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Simplification using special geome-
try

There is a matrix ΛZ and a space of complex

symmetric matrices HZ so that

Kcrit(Z) = 1√
detΛZ

∫
HZ⊕C

∣∣∣detH∗H − |x|2I
∣∣∣

χΛZ(H,x)dHdx,

where χΛZ is the characteristic function of the

ellipsoid {(ΛZH,H)R + |x|2 ≤ 1}.

ΛZ may be expressed in terms of the (Stro-

minger) prepotential F.

Upshot: We can estimate the integral for Z

in a ball in moduli space using only curvature

invariants.
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Heuristic estimate

Using “concentration of measure” phenomena
for Gromov-Levy families of spaces, and con-
jectured volume estimates for balls in moduli
space, we guess that

Nvac,Kµ(L) ∼ (C1L)b3

b3!
.

The tadpole number usually is in the range
L ∼ Cb3 with C ∈ [13,3].

So the number of vacua in a ball Kµ satisfying
the tadpole constraint would grow at a rate
eCb3.

(This might sound reasonable, but in high di-
mensions, volumes and integrals tend to grow/decay
at factorial rates. The exponential estimate
is based on a cancelation betweeen factorial
growth and decay.)
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Gaussian and lattice ensembles

To summarize: we can approximate the dis-

crete ensemble of integral flux superpotentials

by a Gaussian random ensemble for large L.

This shows how fundamental Gaussian ensem-

bles are. To understand∫
M

∫
{Qz,τ [W ]≤1}

|detD∇W (z, τ)|ψ(W, z, τ)dWdVQ(z, τ)

we now turn to model Gaussian geometric prob-

lems. Even on CPm the distribution of critical

points is non-obvious.
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Geometric study of critical points

Model problem: Given a hermitian holomor-

phic line bundle (L, h) →M , define the Hermi-

tian Gaussian measure γh to be the Gaussian

measure induced by the inner product 〈, 〉h, i.e.

〈s1, s2〉 =
∫
M
h(s1(z), s2(z))dV (z).

We often take dV = ωm

m! .

Then the distribution Kcrit(h, γ)(z) and the num-

ber N crit(h, γ) of critical points w.r.t. ∇h are

purely metric invariants of (L, h).

How do they depend on h?
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Exact formula for N crit(hFS, γFS) on
CP1

Theorem 5 The expected number of critical

points of a random section sN ∈ H0(CP1,O(N))

(with respect to the Gaussian measure γFS on

H0(CP1,O(N)) induced from the Fubini-Study

metrics on O(N) and CP1) is

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · .

Of course, relative to the flat connection d/dz

the number is N−1. Thus, the positive curva-

ture of the Fubini-Study hermitian metric and

connection causes sections to oscillate much

more than the flat connection. There are N
3

new local maxima and N
3 new saddles.
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Asymptotic expansion for the ex-
pected number of critical points

Theorem 6 Let (L, h) be a positive hermitian

line bundle. Let N crit(hN) denote the expected

number of critical points of random s ∈ H0(M,LN)

with respect to the Hermitian Gaussian mea-

sure. Then,

N (hN) = πm

m!Γ
crit
m c1(L)mNm

+
∫
M ρdVωNm−1

+[Cm
∫
M ρ2dVΩ + top]Nm−2 +O(Nm−3) .

Here, ρ is the scalar curvature of ωh, the cur-

vature of h.

Γcrit
m c1(L)m is larger than for a flat connection.
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To what degree is the expected num-
ber of critical points a topological
invariant?

The first two terms are topological invariants

of a positive line bundle, i.e. independent of

the metric! (Both are Chern numbers of L).

But the non-topological part of the third term

Cm

∫
M
ρ2dVΩN

m−2

is a non-topological invariant, as long as Cm �=
0. It is a multiple of the Calabi functional.

(These calculations are based on the Tian-

Yau-Zelditch (and Catlin) expansion of the Szegö

kernel and on Zhiqin Lu’s calculation of the co-

efficients in that expansion.)
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Calabi extremal metrics are asymp-
totic minimizers

As long as Cm > 0, we see from the expansion

N (hN) = πm

m!Γ
crit
m c1(L)mNm +

∫
M ρdVωNm−1

+Cm
∫
M ρ2dVΩN

m−2 +O(Nm−3) .

that Calabi extremal metrics asymptotically min-

imize the metric invariant = average number

of critical points. Indeed, they minimize the

third term.

We have proved Cm > 0 in dimensions m ≤
5. We conjecture Cm > 0 in all dimensions.

Ben Baugher has a new formula for Cm which

makes this almost certain.
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Summing up

1. Counting candidate universes in string the-

ory amounts to counting critical points of

integral superpotentials, which form a lat-

tice in the hyperbolic shell Q[N ] ≤ L.

2. As L→ ∞, this ensemble is well-approximated

by Lebesgue measure in the shell, which is

dual (Laplace transform) to Gaussian mea-

sure.

3. As the degree degL = N → ∞, we under-

stand the geometry of the distribution of

critical points of Gaussian random sections

or the dual Lebesgue one.
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