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Topic

This talk is about decomposing a high tensor

power V ⊗N
λ of an irreducible representation Vλ

a compact Lie group such as SU(k) into irre-

ducibles.

There are three parameters: λ, N, k. It is im-

portant to understand the decomposition as all

three get large. In this talk, λ, k are fixed and

N →∞. In the language of spin chains, this is

a thermodynamic limit.
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Notation

Let G be a compact connected Lie group with
Lie algebra g. For simplicity, assume G semi-
simple

• T ⊂ G = maximal torus, t = Lie algebra of
T .

• 〈 ·, · 〉 = invariant inner product on g un-
der adjoint action (= negative Killing form
when (g) is semi-simple). We sometimes
identify the spaces g and t with their duals
g∗ and t∗ by 〈, 〉.

• W = Weyl group acting on (t).

• C ⊂ t∗ = (open) dual Weyl chamber.

•
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Weights and roots

Further let:

• I ⊂ t = integral lattice, i.e., I = exp−1(1);

• I∗ ⊂ t∗ = dual lattice := the lattice of

weights.

• Φ = roots, Φ+ = positive roots.

• Let B ⊂ Φ+ be the set of the simple roots,

so that f ∈ C if and only if 〈 f, α 〉 > 0 for all

α ∈ B. Let X∗ = linear span of the simple

roots in t∗ Since G is semisimple, X∗ = t∗.
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Weights in an irrep

Cartan-Weyl: dominant weights λ ∈ C∩I∗ ⇐⇒
irreducible unitary representation (πλ, Vλ).

Let m1(λ;µ) = multiplicity of the weight µ in

Vλ, i.e. multiplicity of χµ(t) = tµ in πλ|T .

Define: Mλ := {µ ∈ I∗ ; m1(λ;µ) 6= 0}= weights

occurring in Vλ.

Define: Q(λ) = convex hull of the W -orbit of

λ.

Basic fact: Q(λ) = convex hull of Mλ. I.e. all

weights occurring in Vλ lie in Qλ.
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Multiplicities in a tensor proudct

Let Vλ, Vγ be two irreps of a compact Lie group.

We are interested in two multiplicity problems:

• Multiplicity of an irrep Vµ in Vλ ⊗ Vγ;

• Multiplicity of a weight ν in Vλ ⊗ Vγ;

We are interested in large tensor products. First,

review known formulae for two.
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Multiplicity of irreps in a tensor proudct

Define the multiplicity m
µ
λ,γ by

Vλ ⊗ Vγ =
⊕

µ∈C̄∩I∗
m

µ
λ,γVµ.

Steinberg’s formula

m
µ
λ,γ =

∑
v,w∈W det(v · w)

· p(v(λ + ρ) + w(γ + ρ)− (µ + 2ρ)).

where p : I∗ → N is Kostant’s partition func-

tion: p(ζ) = number of decompositions of ζ

into positive roots, i.e.

ζ =
∑

α∈Φ+

nαα, nα ∈ N.
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Clebsch-Gordon vs. Steinberg

Simplest case is SU(2). ∃!1 > 0 root α. I

generated by α, I∗ by α/2. Dominant weights:

nα/2, n ≥ 0.

Steinberg’s formula (where n ≥ p)

m
µ·α/2
n·α/2,p·α/2 = p((n+p−µ)·α/2)−p((n−p−µ−2)α/2)).

Clebsch-Gordon:

Vn ⊗ Vp = Vn+p ⊕ Vn+p−2 ⊕+ · · ·+⊕Vn−p.

p(k ·α/2) = 1 if k ∈ N is even and p(k ·α/2) = 0

otherwise.
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Other multiplicity formulae

There are other multiplicity formulae, at least

in special cases.

• A recursive formula of Freudenthal;

• Littlewood-Richardson rule: For irreps of

SU(N), m
µ
λ,γ = # “tableaux of shape λ −

γ and weight µ such that the word w(T )

determined by T is a lattice permutation.”

Fair to say: All formulae are very hard to apply

for big groups, big representations or big tensor

products.
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Multiplicities in tensor powers

Our interest is in calculating multiplicities in

high tensor powers V ⊗N
λ of irreps of SU(k) or

any compact Lie group. We define:

• mN(λ; ν) = the multiplicity of a weight ν

in the N-th tensor power V ⊗N
λ ;

• aN(λ; ν)= the multiplicity of an irreducible

summand Vν in V ⊗N
λ with the highest weight

ν.
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Analogy: multiplicity vs entropy in
thermodynamics

View a unitary representation H as the Hilbert

space of a quantum mechanical system. The

multiplicity m(µ) of a weight µ (or irreducible)

measures how many states of the system have

this weight. Fixing the weight does not deter-

mine the state uniquely. The indeterminacy is

measured by logm(µ). As Boltzmann wrote,

the entropy of a weight is defined by S = logm.

Tensor powers V ⊗N
λ arise concretely in quan-

tum spin chains with N sites. At each site the

Hilbert space is Vλ and the Hilbert space of the

chain is the tensor product over sites of Vλ
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Okounkov’s log-concavity conjectures

In A. Okounkov’s paper, “Why should multi-
plicities be log-concave, ” this analogy moti-
vates conjectures that multiplicities should be
log-concave in many settings.

Definition: Let F : A → O be a function from
an abelian semi-group (e.g. dominant weights)
to an ordered abelian semi-group (e.g. repre-
sentations). Say F is concave if

(p + q)F (C) ≥ pF (A) + qF (B)

for any A, B, C ∈ A satisfying

(p + q)C = pA + qB, p, q ∈ N.

Conjecture (Okounkov) Littlewood-Richardson
coefficients m

µ
λγ are log-concave in (λ, γ, µ).

More generally, the representation valued func-
tion V : λ → Vλ is log-concave w.r.t. the natu-
ral ordering and tensor multiplication.
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Theme of results

Our main results give asymptotic formulae for
multiplicities mN(λ, µ) of moving weights µ =
µN or moving irreducibles aN(λ, µ) in high ten-
sor powers. The overall picture is:

• multiplicities peak at weights near the cen-
ter of gravity Q∗(λ) of Q(Nλ);

• They have a common exponential rate for
weights in a ball of radius O(

√
N) around

the center of mass;

• The exponential rate declines as the weight
moves from a moderate to a strong devia-
tions region towards the boundary of Q(Nλ).

• At the boundary point Nλ of Q(Nλ), the
multiplicity equals one.
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Comparison to multi-nomial coeffi-
cients

The multiplicity picture resembles Boltzmann’s

analysis of the asymptotics of multinomial co-

efficients




mN : {k = (k1, . . . , km) ∈ Nm : |k| := k1 + · · ·+ km ≤ N} → R+,

mN(k) =
(
N
k

)
= N !

(N−|k|)!k1!···km!.

, which are multiplicities for states of an ideal

gas. As we will see, this is more than an anal-

ogy.
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Binomial coefficients

The binomial coefficient bN(k) =
(
N
k

)
peaks

at the center k = N
2 where bN(N

2 ) ∼ N−1/22N .

Measuring distance from the center by dN(k) =

k − N
2 ,

bN(k) ∼





(CL) C N−1/22N e−
2dN(k)2

N , if dN(k) = o(N
2
3)

(MD) C N−1/22N e−
2dN(k)2

N −Nf(
2dN(k)

N ) , if dN(k) = o(N),

with f(x) =
∑∞

n=2
x2n

(2n)(2n−1)

(SD) 1√
2πNa(1−a)

aaN (1− a)(1−a)N , k ∼ aN, a < 1;

(RE) C0 Nk0, k = k0, N − k0.
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Binomial coefficientsThe first region is

the central limit region (CL), where the asymp-

totics are normal (i.e. have the form

N−1/22Nϕ(
dN(k)√

N
),

where ϕ is the Gaussian). The exponential

growth is fixed at log2 as long as dN(k) =

O(
√

N). In the next region (MD) of moderate

deviations, the exponent is decreased by the

function f . In the next regime (SD) of strong

deviations, the growth exponent decreases from

log2 to

log2 > a log
1

a
+ (1− a) log

1

1− a
(→ 0, a → 1)

as a increases from 1/2 to 1. In the final

boundary (RE) region of rare events, the expo-

nent vanishes and the growth rate is algebraic.
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Multiplicity regimes

Similarly, for multiplicities of weights and irre-
ducibles in V ⊗N

λ , there exist:

• A central limit regime of radius N2/3 around
the center of mass of Q(Nλ), where mul-
tiplicities grow at a rate dimV N

λ ;

• A moderate deviations regime, where the
exponent N log dimVλ decreases of order
o(N);

• A large deviations regime of weights of dis-
tance ∼ cN from the center of mass, where
the top order term in N of the exponent
decreases;

• A boundary regime, where the exponent is
zero.
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Center of mass for weight multiplic-
ities

The simplest problem is to determine the asymp-

totic distribution of multiplicities of weights in

V ⊗N
λ . Let us define a probability measure on

Q(λ) as follows:

(1)

dmλ,N :=
1

dimV ⊗N
λ

∑

ν∈Q(Nλ)

mN(λ, ν)δN−1ν.

This measure charges each possible weight ν

of V ⊗N
λ with its relative multiplicity mN(λ,ν)

dimV ⊗N
λ

and then dilates the weight back to Q(λ). As

N → ∞, the dilated weights become denser

in Q(λ) and we may ask how they become

distributed. In particular, which are the most

probable weights?
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Center of mass for multiplicities of
irreps

The analogous measures weighting µ ∈ Q(Nλ)

by the multiplicity of the irreducible represen-

tation Vµ in V ⊗N
λ is defined by

(2)
dMλ,N := 1

BN(λ)

∑
ν∈Q(Nλ) aN(λ, ν)δN−1ν,

where BN(λ) =
∑

ν aN(λ; ν).. The measures

dMλ,N are measures on the closed positive Weyl

chamber C.
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Center of mass result

Theorem 1 Assume that λ is a dominant weight

in the open Weyl chamber. Then, we have

mλ,N , Mλ,N → δQ∗(λ)

weakly as N → ∞, where δQ∗(λ) is the Dirac

measure at the (Euclidean) center of mass Q∗(λ)

of the polytope Q(λ) given by

(3) Q∗(λ) =
1

dimVλ

∑

ν∈Mλ

m1(λ; ν)ν.
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Central limit theorem

Our next result concerns the ‘central limit re-

gion’ of weights which are within a ball of ra-

dius O(
√

N) around the center of mass. Fix a

dominant weight λ in the open Weyl chamber

C. Let

dµλ
N :=

1

dimV ⊗N
λ

∑

ν∈Q(Nλ)

mN(λ; ν)δ 1√
N

(ν−NQ∗(λ))
.

Theorem 1 As measures on X∗, the linear

span of the simple roots, we have

w- lim
N→∞

dµλ
N =

e−〈A
−1
λ x x 〉/2

(2π)m/2√
detAλ

dx,

where m = dimX∗ and

Aλ =
1

dimVλ

∑

µ∈Mλ

m1(λ;µ)µ⊗µ−Q∗(λ)⊗Q∗(λ).
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Proofs

The center of mass and central limit theorem

are elementary results because the character

χVλ
satisfies:

(4)

χ
V ⊗N

λ
= χN

Vλ
=⇒ dmλ,N = D 1

N
dmλ ∗ · · · ∗ dmλ,

where dmλ = dmλ,1 and where D 1
N

is the dila-

tion operator by 1
N on the dual Cartan subal-

gebra t∗.

A sequence of convolution powers of probabil-

ity measures satisfies the law of large numbers,

the central limit theorem and the (Laplace)

large deviations principle.
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Recap of large deviations principle

Let us recall the definitions: Let mN (N =
1,2, . . .) be a sequence of probability measures
on a closed set E ⊂ Rn. Let I : E → [0,∞] be
a lower semicontinuous function. Then, the
sequence mN is said to satisfy the large devi-
ation principle with the rate function I (and
with the speed N) if the following conditions
are satisfied:

(a) The level set I−1[0, c] is compact for every
c ∈ R.

(b) For each closed set F in E,

lim sup
N→∞

1

N
logmN(F ) ≤ − inf

x∈F
I(x).

(c) For each open set U in E,

lim inf
N→∞

1

N
logmN(U) ≥ − inf

x∈U
I(x).
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Cramer’s theorem for weights

Theorem 2 Assume that G is semisimple. Then,

the sequence {dmλ,N} of measures on Q(λ)

satisfies a large deviations principle with speed

N and rate function:

(5)

Iλ(x) = sup
τ∈t

{
〈 τ, x 〉 − log

(
χλ(τ/(2πi))

dimVλ

)}
, x ∈ t∗,

where χλ(τ/(2πi)) =
∑

ν∈Mλ
m1(λ; ν)e〈 ν,τ 〉 de-

notes the character of Vλ extended on t⊗ C.
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Results for irreducibles

We have:

(6)

dMλ,N(µ) =
(dimVλ)

N

BN(λ)

∑

w∈W

sgn(w)dmλ,N(µ+ρ−wρ).

We can thus deduce the upper-bound half of
the large deviation principle for the measure
dMλ,N from that for dmλ,N . It follows from
Theorem 2 that:

Corollary 3 Assume that G is semisimple. The
sequence {dMλ,N} of measures on Q(λ) sat-
isfies the upper-bound in a large deviations
principle with speed N and rate function Iλ(x)
given by (5).

(The large deviations principle with the rate
function (5) has already been proved by Duffield
for dMλ,N by a different method.
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Main results: pointwise asymptotics

We now turn to the main results, which per-

tain to pointwise asymptotics rather than bulk

weak convergence results. They resemble the

asymptotics of multinomial coefficients above.

As will be seen, the unifying thread is the com-

binatorics of lattice paths with steps in a con-

vex polytope.

We first state the multiplicity results for weights,

and then for irreps.
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Central limit asymptotics for weights

Our first asymptotic result concerns the ‘cen-
tral limit region’ of weights which are within
a ball of radius O(

√
N) around the center of

mass.

Theorem 4 Fix a dominant weight λ in the
open Weyl chamber C. Let νN be a sequence
of weights such that |νN | = O(N1/2). Then,
(7)

mN(λ; νN) = (2πN)−m/2|Π(G)|(dimVλ)
N

×
(

e
−〈A−1

λ
νN,νN 〉/(2N)√
detAλ

+ O(N−1/2)

)
,

where |Π(G)| is the order of a certain finite
group, where m = dim t is the rank of G and
the positive definite linear transform Aλ : t → t∗
is given by

(8) Aλ =
1

dimVλ

∑

µ∈Mλ

m1(λ;µ)µ⊗ µ.
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Exponent of growth

We observe that, in the Central Limit regime,

the exponent of growth of multiplicities is the

constant logdimVλ. As noted by Okounkov,

by the Weyl dimension formula, dimVλ is a

concave function of λ. Hence, logmN(λ, µ) is

asymptotically concave in both λ and µ in the

CLT region.

The central limit regime actually extends to

weights νN ∈ NQ(λ) of the form

(9)

νN = NQ∗(λ) + dN(νN), |dN(νN)| = o(Ns).

with 0 ≤ s ≤ 2/3. Here, as in the case of bi-

nomial coefficients, dN(νN) represents the dis-

tance to the center of gravity of Q(λ).
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Moving weights in the strong devi-
ations region

We now consider the moderate and strong de-

viations regions. As suggested by the behavior

of multinomial coefficients, the exponent must

decrease as we move away from the center of

gravity of Q(Nλ). A key role in the exponent

correction will be played by the homeomor-

phism µλ : X → Q(λ)

(10)
µλ(x) := 1∑

µ∈Mλ
m1(λ;µ)e〈µ,x 〉

∑
µ∈Mλ

m1(λ;µ)e〈µ,x 〉µ

(it resembles the moment map of a toric vari-

ety, restricted to the real torus in (C∗)m.)
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The rate function

Define the function δλ on the interior Q(λ)o of

the polytope Q(λ) by

(11)

δλ(x) = log




∑

µ∈Mλ

m1(λ;µ)e〈µ−x,τλ(x) 〉

 ,

where τλ = µ−1
λ : Q(λ)o → X. It is clear that

δλ(ν) > 0 for ν ∈ Q(λ)o ∩Mλ. It will turn out

that

δλ(x) = logdimVλ − Iλ(x), x ∈ Q(λ)o

where Iλ is the rate function. Hence, δλ(x)

is concave as a function of (x, λ), bearing out

Okounkov’s conjectures asymptotically in this

problem.
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Another ingredient

For ν ∈ Q(λ)o, we further define the linear map

A0
λ(ν) : t → t∗ by

(12)

A0
λ(ν) =

∑

µ∈Mλ

m1(λ;µ)e〈µ,τλ(ν) 〉
∑

µ′∈Mλ
m1(λ;µ′)e〈µ′,τλ(ν) 〉µ⊗µ−ν⊗ν.

Its restriction to the subspace X,

(13) Aλ(ν) := A0
λ(ν)|X ,

is positive definite as a linear map from X →
X∗.
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Weight asymptotics in the strong
deviations region

First, we consider the ‘strong deviations’ regime

where the weight in question has the form

ν = Nν0 + f .

Theorem 5 Let λ ∈ C∩I∗ be a dominant weight,

and let ν0 ∈ Mλ be a weight of Vλ which lies in

the interior Q(λ)o of the polytope Q(λ). We

fix a weight f in the root lattice Λ∗. Then, we

have the following asymptotic formula:

mN(λ;Nν0 + f) ∼ CN−m/2 |Π(G)|eNδλ(ν0)−〈 f,τλ(ν0) 〉√
detAλ(ν0)

,

where m is the number of the simple roots,

|Π(G)| is the order of a certain finite group,

and τλ(ν0) = µ−1
λ (ν0) ∈ X.
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Weight asymptotics in the moder-
ate deviations regime

Next, we consider a general weight ν. We have
just handled the case where dN(ν) ∼ Nν0, so
now we assume that |dN(ν)| = o(N), i.e. the
weight lies in the moderate deviations region.

Theorem 6 Let λ ∈ C∩I∗ be a dominant weight,
and let νN ∈ NQ(λ) be a weight of the form

νN = Nx + dN(νN), |dN(νN)| = o(N),

where |dN(νN)| denotes the norm of the vector
dN(νN) with respect to the fixed W -invariant
inner product on t∗, and where x ∈ Q(λ)o is not
necessarily a weight. Then,

mN(λ; νN) ∼ (2πN)−m/2|Π(G)|eNδλ(νN/N)
√

detAλ(νN/N)
.

Furthermore,

lim
N→∞

1

N
logmN(λ; νN) = δλ(x).
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Biane’s central limit theorem for ir-
reps

We now state analogous results for multiplici-

ties of irreps, beginning withe the central limit

region. Our weight results could be used to

find irrep multiplicities, but there is a more di-

rect path due to P. Biane.

Theorem 7 (Biane) Assume that G is semisim-

ple. For every positive integer N , let NMλ be

the set of weights of the form ν1+· · ·+νN with

νj ∈ Mλ. Then, for µ 6∈ NMλ, aN(λ;µ) = 0.

For, µ ∈ NMλ with |µ| ≤ C
√

N , we have:

aN(λ;µ) ∼
|Π(G)|(dimVλ)

N(dimVµ)
∏

α∈Φ+
〈A−1

λ α, ρ 〉
√

detAλ(2π)m/2N(dimG)/2

(
e−〈A

−1
λ (µ+ρ),µ+ρ 〉/(2N)

)
,

where the matrix A is defined above, m is the

rank of G and the inner product 〈 ·, · 〉 is the

Killing form.
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Irrep multiplicities in the strong de-
viations region

We now consider asymptotic multiplicities of

irreps with highest weight in the region of strong

deviations.

Theorem 8 Let ν ∈ Mλ ∩ C be a dominant

weight in the polytope Q(λ). Then

(14)
aN(λ;Nν) = (2πN)−m/2eNδλ(ν)

(
|Π(G)|∆(τλ(ν)/(2πi))e−〈 ρ,τλ(ν) 〉√

detAλ(ν)
+ O(N−1)

)
,

where m is the number of simple roots, |Gλ| is
the order of a certain finite group.
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Example: U(2)

Let us see how our results apply to the simplest

case, the Clebsch-Gordon problem for U(2) Pick

a dominant weight λ = (λ1, λ2), λ1 > λ2 ≥ 0,

and set nλ = λ1 − λ2 > 0. The weights in the

irrep Vλ are:

(15) νj := λ− jα, j = 0, . . . , nλ,

where α is the unique positive (simple) root

α = (1,−1). All weights have multiplicity one:

m1(λ; νj) = 1. Therefore, the multiplicity for

the high tensor power V ⊗N
λ is given by

mN(λ;µ) = #{(j1, . . . , jN) ; 0 ≤ jk ≤ nλ,

µ = Nλ− (j1 + · · · jN)α}.
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Asymptotic formula

Then the multiplicity aN(λ;Nνj) of VNνj
in V ⊗N

λ
has the following asymptotic formula:

aN(λ;Nν) = (2πN)−1/2e−N(nλ−2j)

(
sinh(nλ+1)τj

sinh τj

)N (
aλ(j) + O(N−1)

)
,

where the positive constant aλ(j) is given by

aλ(j) = 2e−τj

√√√√ 2 sinh4 τj sinh2(nλ + 1)τj

sinh2(nλ + 1)τj − (nλ + 1)2 sinh2 τj
.

The leading term aj vanishes if and only if nλ is

even and j = nλ/2. In this case, the dominant

weight νj (j = nλ/2) is in the unique wall of

the Weyl chamber C.

37



Multiplicities and lattice paths

The proofs of the multiplicity asymptotics are

based on the relatation betweeen

• multiplicities of weights and irreps to mul-

tiplicities ;

• combinatorics and multiplicities of lattice

paths with steps in the convex polytope

Q(λ).
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What are lattice paths?

Given a set S ⊂ Nm of allowed steps, an S- lat-

tice path of length N from 0 to β is a sequence

(v1, . . . , vN) ∈ SN such that v1 + · · ·+ vN = β.

We define the multiplicity (or partition) func-

tion of the lattice path problem by

(16)

PN(γ) = #{(v1, . . . , vN) ∈ SN : v1+· · ·+vN = γ}.
The set of possible endpoints of an S- path of

length N forms a set PS,N , and we may ask

how the numbers PN(γ) are distributed as γ

varies over PS,N .
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Weighted lattice paths

Let X be a real vector space and let and L ⊂ X

be a lattice, with duals X∗ and L∗. Let S ⊂ L∗
(#S ≥ 2) be a finite set, and let P be the

convex hull of the finite set S. Let c be a

strictly positive function c on S, and define

the weighted multiplicity of lattice paths Pc
N

of length N with weight c and the set of the

allowed steps S by

(17)

Pc
N(γ) =

∑

β1,...,βN∈S ; γ=β1+···+βN

c(β1) · · · c(βN).

If c ≡ 1, then Pc
N(γ) = PN(γ).
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Examples

Example 1 Let S = pΣ ∩ Nm, where Σ is the

standard simplex and p is a positive integer,

and let c(β) = p!
β!(p−|β|)! =

(
p
β

)
. Then the

weighted multiplicity function Pc
N(γ) is given

by Pc
N(γ) =

(
Np
γ

)
.

Example 2 Let Sλ = {µ− λ ; µ ∈ Mλ}, and let

Pλ be its convex hull. Then Pλ = Q(λ)−λ. Let

cλ(β) := m1(λ;µ), β = µ− λ ∈ Sλ. Then:

mN(λ;µ) = Pcλ
N (µ−Nλ)

for every µ ∈ NQ(λ). Further,

aN(λ;µ) = Σw∈W sgn(w)Pcλ
N (µ−Nλ + ρ− wρ).
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Multiplicities of lattice paths

It follows that asymptotics of multiplicities of

weights and irreps reduces to lattice path asymp-

totics. How do we study these?

Multiplicities of lattice paths = Fourier coeffi-

cients of powers k(w)N of a complex exponen-

tial sum of the form

(18) k(w) =
∑

β∈P

c(β)e〈β,w 〉, w ∈ Cn

with positive coefficients c(β), where P is a

convex lattice polytope.
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Multiplicities and lattice paths

One obtain the precise asymptotics of the Fourier

coefficients of k(w)N by a complex stationary

phase (or steepest descent) argument. It is

necessary to deform the contour of the Fourier

integral to pick up the relevant complex crit-

ical points and to study the geometry of the

complexified phase
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Final remarks and open problems

As mentioned at the outset, there are three pa-

rameters in the multiplicity mN(λ, µ) for V ⊗N
λ

in SU(k) and it is interesting to analyze the

asymptotic behavior in all three parameters.

Some problems are:

• Asymptotic log convexity of multiplicities.

• Joint asymptotics in (N, λ)? The asymp-

totics in λ are semi-classical and the limit

distribution of multiplicities in this aspect

for N = 1 is given by the Duistermaat-

Heckmann measure on Q(λ). The sim-

plest problem is the center of mass problem

for the joint asymptotics of mN(Nλ0N, µ).

One could also consider pointwise asymp-

totics.
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More problems

• Letting the dimension of the group vary

raises new problems, associated with Kerov-

Vershik, Olshansky, Okounkov, Borodin and

others.

• Finite groups such as the symmetric group

Sd. Joint asymptotics of V N
λ in (N, d). Large

d asymptotics often involve free probability

theory.
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Entropy problems in spectral geom-
etry

Let {0 = λ0 < λ1 < λ2 < · · · } denote the dis-
tinct eigenvalues of ∆ and let m(λj) denote
the multiplicity.

• Suppose g is a metric on Sn with the eigen-
value multiplicities m0(λ

0
j ) of the standard

metric g0. Is g = g0?

• Define the (quantum statistical entropy) of
e−t∆ as follows: Z(t) = Tre−t∆ and put
the probability measure

pt(j) =
m(λj)e

−tλj

Z(t)

on N. Let S(t) =
∑∞

j=0 pt(j) log pt(j) be the
entropy of this measure. What are the
metrics of maximal entropy? It is easy to
see that g0 is a critical point for S(t) for all
t. Is it the maximum?
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